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Abstract 

Modelling reindeer rut activity using on-animal acoustic recorders and machine learning 

Alexander J. Boucher 

Researchers have been using sound to study the biology of wildlife to understand their 

ecology and behaviour for decades. By gathering audio from free-ranging species using on-animal 

recorders, their vocalizations can be used to describe their behaviour and ecology through signal 

processing. Unfortunately, processing hours of recordings is incredibly time-consuming. By 

applying machine learning to audio recordings, researchers have used neural networks to decrease 

the processing time of acoustic data. However, until now, most of this research has focused on 

analyzing the data of stationary recorders. To show the utility of on-animal recorders in 

combination with machine learning, we recorded the vocalizations of reindeer (Rangifer tarandus) 

during their rut at the Kutuharju research station in Kaamanen, Finland. We used vocalizations as 

an activity index to describe the rut activity of male reindeer. In 2019 and 2020, we placed recorders 

around the necks of seven reindeer during their rut. We trained convolutional neural networks to 

identify reindeer grunts, which were then used to classify their vocalizations. Of the networks’ 

vocalization classifications, around 95% of them were correct. With such high metrics, we could 

reliably explore the males' activity patterns using a neural network. We then analyzed the reindeers’ 

vocalization using generalized additive models. The patterns suggested heavier, older males 

vocalized more than lighter, younger males and, overall, were more active during the day than 

night. Overall, on-animal acoustic recorders, in tandem with machine learning, proved to be 

effective tools, and with more attention, they could prove valuable tools for other researchers. 
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Figure 4 A-G. Estimated smooth curves of the 24-hour rut patterns of seven reindeer according to 
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data set to serve as an example for the data gathered. (B-G) represent six smooth curves of 
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and shaded areas represent the 95% confidence interval. Models were fit using ten basis 

functions, and edf represents effective degrees of freedom. Days of observation represent 

the number of days the smooth curves were estimated. 2019 and 2020 represent the year 

the data were gathered. 1.5-5.5 represent the age of the reindeer, and 1-3 represent different 

individuals of the same age class. 
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Introduction 

 In 1859, Charles Darwin stated that sexual selection is a driving force in species evolution. 

He noted that traits are selected for during an individual’s reproduction if they improve fitness, 

even if they hinder their survival (Darwin, 1859, 1871). Sexual selection acts on many traits, 

including exotic colouration, acoustic signals, and other sexually dimorphic traits (Andersson, 

1994; Baker & Parker, 1979; Bowyer et al., 2020; Cassini, 2020; Charlton et al., 2007; Cooper et 

al., 2016; Darwin, 1859, 1871; Mukharji, 2021; Zahavi, 1975); however, acoustic signals are one 

of the more common reproduction traits and are prevalent in anurans, insects, and birds 

(Andersson, 1994). These signals are used for mate assessments, territory defence, and to ward off 

competitors (Andersson, 1994; Arak, 1983; Boake & Capranica, 1982; Garcia et al., 2013; Krebs 

et al., 1978; Mitani, 1985; Vannoni & McElligott, 2008; Wyman et al., 2012).  

Individuals use acoustic signals to convey information and regulate interactions (Bradbury 

& Vehrencamp, 2011). For example, the emitter can convey information for danger avoidance, 

peer recognition, social learning and mating (Bradbury & Vehrencamp, 2011). However, 

understanding the contents of these vocalizations has been an ongoing challenge for the field of 

bioacoustics, though relating our understanding of behavioural ecology to bioacoustics has helped 

surmount these challenges. Consequently, researchers have been able to explore new aspects of 

animal behaviour using the sounds they produce. However, the field of bioacoustics is still nascent. 

Many issues within the literature and emerging technologies still exist, as deriving information 

from acoustic signals has proven rather difficult; thus, integrating the fields of bioacoustics and 

behavioural biology has been a slow process (e.g., Charlton et al., 2007; Stowell et al., 2017; 

Garcia et al., 2013; Studd et al., 2021). Nevertheless, researchers have recently begun using animal 
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sounds to study their occupancy, behaviour and ecology (Blumstein et al., 2011; Browning et al., 

2017; Enari et al., 2017, 2019; Rognan et al., 2012; Stein, 2011). 

 Broadly, bioacoustics researchers study a range of aspects of animal ecology and behaviour 

and, across ecosystems, use sound to analyze community richness and demography (Gammon et 

al., 2005; Habib et al., 2007; Laiolo, 2010; Laiolo & Tella, 2007; McComb et al., 2001; Wimmer 

et al., 2013). Formerly, in-person observations were necessary to record the sounds emitted by 

individuals; however, autonomous recording units (ARUs) have begun to emerge (Shonfield & 

Bayne, 2017; Sousa-Lima et al., 2013; Wimmer et al., 2013). ARUs are favoured over traditional 

methods because they record continuously, allow researchers to capture a greater degree of a 

species’ behaviour, remove the human influence, and allow for sampling over greater temporal and 

spatial scales (Darras et al., 2019; Shonfield & Bayne, 2017; Zwart et al., 2014). Moreover, in 

addition to gleaning biological information, techniques are being developed to document species 

distribution, abundance, and biodiversity (Blumstein et al., 2011; Enari et al., 2017, 2019; Johnson 

& Bayne, 2022; Stein, 2011; Zwart et al., 2014). However, ARUs have several drawbacks, as they 

are stationary and record passively (Fairbrass et al., 2017; Farina et al., 2011; Shonfield & Bayne, 

2017). Consequently, individuals may not be near a recorder when they vocalize. Moreover, high 

environmental noise may mask vocalizations, and the environments housing the recorders may 

erratically affect their recordings (Fairbrass et al., 2017; Farina et al., 2011; Shonfield & Bayne, 

2017). Stationary acoustic monitoring applications often struggle to capture behaviour relevant to 

the ecology and behaviour of individuals due to their movement. Consequently, researchers have 

recently started using on-animal acoustic recorders to study their behaviour and demography. 

Commonly used in marine environments (Casoli et al., 2022; Holt et al., 2011; Johnson & 

Tyack, 2003; Silva et al., 2016; Stimpert et al., 2011), recent efforts have been made to use on-
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animal acoustic recorders in terrestrial environments as well. Though these recorders have several 

drawbacks, their primary benefit is that they continuously record an individual’s intentional and 

unintentional sounds (Shonfield & Bayne, 2017). Unfortunately, recorders are often heavy due to 

power requirements and challenging to retrieve. Additionally, because no commercially available 

recorders are produced for the terrestrial environment, custom recorders are often required (Cvikel 

et al., 2015; Ilany et al., 2013; Lynch et al., 2013; Stowell et al., 2017; Studd et al., 2021; Thiebault 

et al., 2021; Wijers et al., 2018). Moreover, recorders are likely to be damaged by the animals 

wearing them or by their environment. Consequently, recording quality might change drastically 

over temporal and spatial scales and between individuals. Although the number of studies to 

employ on-animal acoustic recorders within the terrestrial environment remains low, preliminary 

studies have demonstrated promising results. As they also record unintentional sounds, researchers 

have used on-animal recorders for event/behaviour classification (Stowell et al., 2017; Wijers et 

al., 2018), to estimate the metabolic cost of sound production (Ilany et al., 2013) and to analyze 

feeding behaviour (Lynch et al., 2013; Studd et al., 2019, 2021; Thiebault et al., 2021). However, 

to date, no researchers have used on-animal recorders to study the reproductive activity of 

terrestrial species.  

Because of the amount of data these applications produce, processing and analyzing data 

remains a significant hurdle for many researchers. In recent years, researchers have begun to 

collaborate with computer scientists to apply machine learning to the field of bioacoustics 

(Blumstein et al., 2011; Dufourq et al., 2021; Enari et al., 2019; Mcloughlin et al., 2019; Stowell 

et al., 2017; Studd et al., 2021; Thiebault et al., 2021; Wijers et al., 2018). These techniques 

decrease the time required to process and identify features of interest within data sets. Further, 

tremendous progress has been made using convolutional neural networks (CNNs; Dufourq et al., 
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2021, 2022). CNNs are a type of neural network (a type of machine learning that learns to 

recognize patterns in large amounts of data through the use of layered, interconnected nodes that 

mimic the structure of the human brain) used for image recognition/classification (refer to O’Shea 

& Nash, 2015 for more info). The convolutional part of CNN refers to the transformation of images 

to a grid of mathematical operations/values, which a neural network can interpret (O’Shea & Nash, 

2015; Yamashita et al., 2018). The neural network part of CNNs then learns to group similar 

feature sets from annotated data to recognize and classify similar feature sets in new data using the 

processed images (Bermant et al., 2019; Zhong et al., 2020).  

When used for bioacoustics research, sounds are transformed into spectrograms, which the 

CNNs then learn to interpret. To date, several commercially available vocalization classification 

software tools have been produced. However, compared to CNNs, commercially available 

classifiers classify vocalizations with poorer accuracy (Knight et al., 2017). Yet, creating and 

training a CNN is a non-trivial task. Researchers need to choose a suitable neural network 

architecture, a problem, as there are no clear guidelines for applications concerning bioacoustics 

(Dufourq et al., 2022). Consequently, the development of CNNs lies primarily with researchers 

who have knowledge of machine learning. Secondly, hyper-parameter (these are parameters 

chosen by the practitioner and are set before the model training process) tuning is an arduous step 

wherein significant time is spent developing an optimal model (Dufourq et al., 2022). As a result, 

these factors make creating an effective CNN complicated. However, within the machine learning 

field, these issues have been addressed using transfer learning (Pan & Yang, 2010; Weiss et al., 

2016).  

 Transfer learning uses a model trained on one data set to predict a feature of interest on 

another (Dufourq et al., 2022; Zhong et al., 2020). Because pre-trained models are loaded rather 
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than built, it simplifies network development and decreases hyper-parameter tuning (Dufourq et 

al., 2022; Pan & Yang, 2010; Weiss et al., 2016; Zhong et al., 2020). Further, because a pre-trained 

model is used, training on a user’s feature set requires fewer manually annotated vocalizations. 

Thus, it can accelerate the development of an effective CNN (Dufourq et al., 2022; Zhong et al., 

2020). This is because model development without transfer learning typically requires an extensive 

database of images to avoid overfitting and to ensure sufficient precision and accuracy (Dufourq 

et al., 2022; Pan & Yang, 2010; Weiss et al., 2016).  

In the field of bioacoustics, transfer learning is relatively understudied, though a recent 

study has already delivered promising results, with high performance metrics for several pre-

trained models and data sets using a relatively simple architecture (Dufourq et al., 2022). 

Consequently, transfer learning will likely simplify the development and training of CNNs for 

machine learning experts and non-experts. Unfortunately, the aforementioned models were 

developed for stationary recorders, and few machine learning models have been used to classify 

the vocalizations of terrestrial species wearing recorders (Casoli et al., 2022; Stowell et al., 2017; 

Studd et al., 2021; Thiebault et al., 2021; Wijers et al., 2018).  

Consequently, several issues arise when pairing machine learning applications with on-

animal recorders. Because recorders are easily damaged, recording quality can vary drastically 

between individuals and environments, over time and with varying weather and because of the 

increased likelihood of damage, recorders are likely to fail during field deployment. Moreover, 

because on-animal recorders record the environment of the equipped animal, classifier 

performance often suffers (Bravo Sanchez et al., 2021; Lostanlen et al., 2019). As a result, copious 

example noises are required to develop an accurate network. But despite these drawbacks, there 

are numerous benefits to modelling species’ behaviour using machine learning and on-animal 
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recorders. Recording the intentional and unintentional noises emitted by an animal allows 

researchers to study a range of topics concerning the behavioural ecology of a target species (Ilany 

et al., 2013; Lynch et al., 2013; Stowell et al., 2017; Studd et al., 2021; Thiebault et al., 2021; 

Wijers et al., 2018). Until now, though, no on-animal acoustic recorders have been used to study 

the mating activity of terrestrial species. 

In the context of reproduction, vocalizations play an important role in regulating sexual 

selection. Among many terrestrial species, these vocalizations are well-developed and aid in 

guiding interactions (Vannoni et al., 2005). Among Cervidae who organize into herds, social 

hierarchy is guided by communication (Vannoni et al., 2005; Vannoni & McElligott, 2008). 

Consequently, in gregarious species like red deer (Cervus elaphus; e.g., Charlton et al., 2007; 

Garcia et al., 2013) and reindeer (Rangifer tarandus; e.g., Espmark, 1964; Frey et al., 2007), their 

vocalizations are highly developed and help regulate sexual selection (Reby & McComb, 2003b). 

In this context, calls are used for mate selection, male-to-male competition and territory defence 

(Reby & McComb, 2003b). Among Cervidae, several researchers have studied these calls 

(Charlton et al., 2007; Charlton & Reby, 2011; Feighny et al., 2006; Liu et al., 2016; Reby & 

McComb, 2003a; Volodin et al., 2015; Yen et al., 2013); however, there has been little research 

focusing on the vocalizations of reindeer. Compared to other Cervidae, the acoustic repertoire of 

reindeer is small (Lent, 1975). Females and offspring use vocalizations for peer recognition, and 

males use vocalizations during the rut to establish harems (Espmark, 1964, 1971). In harems, males 

grunt, which are a series of short calls produced by several exhalations, to antagonize other males 

and court mates (Espmark, 1964; Frey et al., 2007). During the rut, males compete for control over 

harems, with heavier/dominant males gaining access to more females than smaller/subdominant 
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males (Espmark, 1964; L’Italien et al., 2012). Thus, when used as a proxy for activity, vocalizations 

can be used to study the mating activity of male reindeer. 

To study their mating activity, on-animal acoustic recorders and machine learning will 

prove versatile and suitable for the application. Because our study seeks to describe the presence 

and absence of calls within long, continuous recordings, this study represents an essential 

preliminary step in demonstrating the utility of custom, on-animal recorders in a field setting in 

tandem with machine learning and transfer learning. As a result, this study represents a relatively 

simple application of machine learning, and with the use of transfer learning, it may ease the uptake 

of machine learning applications by non-machine learning experts. It may also demonstrate the 

utility of on-animal recorders, possibly aiding in the development of purpose-built tools. 

Additionally, because the audio recorded from on-animal recorders is inundated with unintentional 

noises, creating an effective CNN might prove difficult. To date, few studies have attempted to 

classify on-animal acoustic recordings using CNNs; thus, testing and identifying ongoing issues is 

essential for developing emerging technologies. Finally, this study will act as an important 

indicator of the utility of the previously mentioned tools for the application of documenting the 

behaviour of numerous individuals over a relatively long temporal scale. Consequently, it will 

demonstrate the utility of emerging technologies for studying existing fields, thus aiding the 

collaboration of computer scientists and biologists. 

Therefore, this study seeks to 1) Evaluate the efficacy of on-animal recorders for studying 

the rutting activity of male reindeer and identify ongoing issues; 2) Develop and train a 

convolutional neural network using transfer learning to identify reindeer vocalizations within a 

series of continuous recordings captured during their rut; with performance metrics of at least 90%; 

and 3) Describe the activity patterns of male reindeer during their rut to document how their 
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grunting activity varies by day and hour. Based on past studies, which have noted that older, 

heavier males are dominant to younger, lighter males, we hypothesize that male reindeer status, 

age and weight will play an important role in regulating grunting activity. Thus, we predict that 

older, heavier males will spend more time grunting than younger, lighter males, as they will be 

subdominant to the older, heavier. Further, we predict that older, heavier males will be dominant 

for a greater portion of time than younger, lighter males. 

 As we develop and train our CNNs, we will train two models across our data sets. We will 

inspect the recordings manually for the first CNN and annotate them accordingly. Then, once we 

have our first model, we will use our second data set to demonstrate the ease with which a second 

network can be trained on a similar group once a preliminary network is produced.
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Methods

i. Field site and focal individuals: 

 The bioacoustics data were captured at the Kutuharju research site in Kaamanen, Finland 

(69.1° N, 27.2°E). There, a semi-domesticated reindeer herd is kept within a 45 km2 enclosure, 

consisting of about 100 individuals (including calves, females, and males). The herd has been 

studied continuously since 1969. During the rut (mid-September to late October), the herd is 

brought into a smaller pen (Lauluvaara ~ 13.8 km2). During this translocation, males were weighed 

and fitted with collars with VHF locators (allowing for telemetry tracking) and acoustics recorders 

(used to record our males' intentional and unintentional sounds). Females were fitted with 

numbered coloured collars, which allowed for individual identification. All animals were of known 

age and individually recognizable due to long-term bookkeeping. Moreover, parentage analysis 

was done on offspring so that the reproductive success of each male was known; however, note 

that for the 2020 sampling period, the offspring born the following spring had not yet had their 

parentage analyzed. 

 Bioacoustics data were gathered during the 2019 and 2020 ruts. In 2019, we collected 

vocalizations from two males; in 2020, we collected vocalizations from six males. Due to 

equipment issues, however, the sampling time varied from three days to two months. Furthermore, 

the number of recorders we could gather data from was limited due to technical failures. As a 

result, we only collected data from seven individuals (two from 2019 and five from 2020). The 

individual characteristics of each male are listed in Table 1. We had males across five different 

age classes (1.5 – 5.5 years old) with varying weights. Finally, reproductive success notes the 

number of offspring born to a male the following spring. 
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ii. Acoustic recorders and acoustic analysis: 

 During the males’ translocation to Lauluvaara, they were outfitted with on-animal acoustic 

recorders. These recorders contained recording devices (SOROKA-15E, TS-Market Ltd., 

Zelenograd, Russia; amplitude resolution: 16 bits, sampling rate: 16 kHz; Figure 1) to collect the 

animals’ vocalizations. These recorders provided us with continuous recordings throughout the 

rut. To store the recordings, each recorder was outfitted with a 256-gigabyte microSD card, which 

was capable of recording over 92 days of audio. Finally, each recorder contained a 9000-milliamp 

hour 3.6-volt lithium-ion battery, which could power the recorders for over two months, 

notwithstanding damage.  

The housing containing the recorders was 3D printed by TS-Market Ltd. Before putting 

the recorders on the animals, the batteries were attached to the recorders and tested, and the two 

halves of the housing were attached with silicon to prevent water from affecting the recorders and 

screwed together. Then, the recorders were attached to each animal’s collar using silicon, metal 

hose clamps and a rubber sheath for protection.  

Each male's status and social rank within the group were documented by observers 

throughout the ruts. During these sampling events, the size of the male's harem was noted; if he 

was in a dominant position (i.e., in control of a harem), he was labelled as such, and if he was not, 

they were labelled subdominant (i.e., not in control of a harem). Throughout each season, the social 

hierarchy of the males was predicted through observations and agonistic interactions. Further, if 

there were no observations documenting the status of a male (as sometimes males could not be 

located for a few days), attempts were made during recording playback to comment on the male’s 

status. For example, if females and calves could be heard in the background of a male's recorder 

and he was actively grunting, we took that as an indication that a male was dominant. Similarly, if 
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a competing male could be heard grunting towards a male whose recorder was being played, and 

he was not responding, then that would be taken as an indication that the male we were listening 

to was subdominant. Lastly, if a male was being listened to, but no other individuals could be 

heard, and he was not grunting, then that would be taken as an indication that the male was 

searching for a herd and was subdominant. However, if the status of a male proved difficult to 

determine during playback, and no notes were available, then this status was labelled as unknown 

until such a time as his status could be determined. 

We used Sonic Visualiser (Cannam et al., 2010) to analyze the recordings and for 

annotation. Every recording was manually annotated using the "boxes layer" feature, allowing us 

to draw bounding boxes around intentional and unintentional noises. Thus, each sound's start and 

end times were noted within the recordings, along with each call's minimum and maximum 

frequency. Each bounding box was also given a binary label, presence or absence. To label the 

presence class, bounding boxes were placed around single and series vocalizations to capture the 

grunting behaviours of the reindeer (Figure 2). The grunts of the animals wearing the recorders 

were annotated. However, to avoid over-sampling the activity of the focal individuals, the 

incidental calls of other reindeer were not annotated to not affect the training of the CNN. 

Bounding boxes of varying lengths were randomly placed throughout each recording to annotate 

the absence class. To thoroughly train the CNN, we captured a wide range of unintentional sounds 

(including sounds from biological, natural, and anthropogenic sources; Figure 2). As noted by 

Dufourq et al. (2022), an important preliminary step is to annotate the vocalizations of other 

species to prevent false positive classifications made by the network later in the process. 

Consequently, as part of our absence class, we took special care to annotate the vocalizations of 

any other species whose frequency range overlapped with our males’ range. If the frequency of an 
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unintentional sound was outside of our sampling range, then that sound was not annotated. Sonic 

Visualiser was used later in the process to confirm the vocalization classifications made by our 

CNN and to remove false positive or false negative classifications. 

iii. Machine Learning methodology and process: 

 We trained our CNNs using code and methodology adapted from Dufourq et al. (2022). We 

thus used a supervised learning method to train our networks. Firstly, we started by annotating 150 

audio segments from our 2020 recordings. We annotated 25 recordings from six individuals from 

the 2020 field season, amounting to 150 recordings. However, due to technical issues with one of 

the recorders, we did not include the annotations from this individual; when we included the 

recordings from this individual, the performance of the networks suffered. Due to computer 

hardware limitations, we used a subset of the remaining 125 annotated audio segments. Recordings 

were picked to get a range of recordings across individuals from as broad a temporal scale as 

possible from various environments and weather conditions. As a result, our 2020 training set 

ended up containing 8605 presence segments (augmented to 14000 during the training process 

[this was done via time-shifting existing presence annotations]) and 18000 absence segments (of 

which 14000 were randomly sampled) to create a balanced data set. These two sets of spectrograms 

were used to train the 10 and 50-epoch 2020 CNNs (an epoch is one complete pass over a set of 

training files, if a model is being trained over 10 epochs, this means that the model will adjust 

classification parameters over 10 iterations; Figure A1 A-D).  

 After annotating the audio recordings, we randomly searched for the hyper-parameters that 

would allow us to train the most effective CNN. After trying over 40 hyper-parameter 

combinations, we found that the values in Table 2 gave us the best-performing network. As CNNs 

require a fixed input and as the length of multiple grunts can vary drastically, with a series of 



 13 

grunts lasting from a fraction of a second to over 30, windows longer than a few seconds did not 

perform any better than those that were only four seconds. As grunts vary little during a series of 

grunts, window lengths that were more than four seconds increased computation time with no 

performance gains. The other characteristics we focused on were minimum and maximum call 

frequency values. As the frequency of reindeer grunts begins below 100 Hz, our minimum 

frequency was set to zero Hz. For the maximum frequency, we set our frequency to 4000 Hz. 

While the vocalizations of reindeer are often indiscernible after 2500 Hz, preliminary results 

indicated that increasing the maximum frequency to 4000 Hz improved network performance. 

However, setting the maximum frequency above 4000 Hz did not improve network performance 

and increased computation time. 

Four pre-processing steps were conducted to create the inputs for the CNNs, the same as 

those performed in Dufourq et al. (2022). Firstly, a low pass filter (this acts as a filter that only 

passes signals below its cut-off frequency while attenuating all signals above it) was applied to 

each audio file. This reduces aliasing artifacts (these are parts of an image that are incorrectly 

reconstructed after being downsampled, which may result in parts of an image being distorted, 

which can affect the interpretation of an image), which can occur during downsampling (this is the 

process whereby the sampling rate of a recording is decreased; Dufourq et al., 2022). The cut-off 

rate associated with the filter was selected based on the maximum frequency of the males’ 

vocalizations within our presence class. Within Sonic Visualizer, the grunts of our males were 

indiscernible after about 1000 Hz, although some of the louder calls were discernable after 1000 

Hz, these examples were rare; hence, the low pass filter cut-off was set to 1000 Hz. 

Next, each audio file was downsampled to reduce computation times, as higher frequencies 

were unnecessary. Within our recordings, sampling rates above 4000 Hz did not improve network 



 14 

performance and only increased computation requirements. Hence, the Nyquist rate (or Nyquist 

frequency, which is the minimum rate at which a signal needs to be sampled to retain all the 

acoustic information; Landau, 1967) was set to 4000 Hz and the downsampling rate to twice that 

of the Nyquist rate (Dufourq et al., 2022). Then, the annotations for both annotation classes were 

extracted from each. This operates on a sliding window approach. As each segment window is four 

seconds, a sliding window would begin at a bounding box's initial time. This would then produce 

a four-second spectrogram. The four-second segment would then slide one second forward in time 

and extract another four-second segment. This process would repeat until the four-second window 

overlapped with the end time of the bounding box. The spectrograms extracted would then be 

labelled with the same binary label as the bounding box (either presence or absence). This process 

would then be repeated for each bounding box within an entire audio file and across all the audio 

files. Finally, audio segments were converted into two-dimensional mel-frequency spectrograms 

(a spectrogram where the frequencies are converted to the mel scale, which is a perceptual scale 

of pitches judged by listeners to be equal in distance from one another; Stevens et al., 2005) with 

the associated values found in Table 2. Figure 3 illustrates the pre-processing steps.   

 During the training process, we tested several of the pre-trained models listed in Dufourq 

et al. (2022); the ResNet152V2 (He et al., 2016) model had the highest performance metrics. The 

feature extractor and output layer were fine-tuned to produce as accurate a model as possible. 

Although it increased the computation time, it increased the networks’ classification performance. 

Like the study conducted by Dufourq et al. (2022) and knowing that the pre-trained models 

required a three-channel input (often corresponding to the three channels in a  colour [RGB] 

image), we used the exponent method described in the above study. Channel one corresponds to 

the original spectrogram, whereas channels two and three represent exponential values of the 
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original spectrogram’s density values (as transformed onto a normalized scale). This works by 

applying an exponent to a normalized spectrogram (which has values between 0 and 1); thus, parts 

of the spectrogram with little noise will have their values decrease, while louder areas will still be 

visible (Dufourq et al., 2022). While developing our networks, the exponent values that produced 

the most accurate and precise networks were S1, S3 and S5. This is perhaps due to the high amount 

of wind within our recordings. Consequently, these exponential values likely produced a series of 

spectrograms where grunts were more distinguishable from other noises. 

For testing, the CNNs predicted two softmax outputs (the final layers of a neural network 

that convert real number vectors into probability distributions, which then determine an image’s 

final classification class) on each spectrogram within an entire testing file. The final class (presence 

or absence) was assigned based on the softmax output with a value greater than 0.5. Each file was 

predicted by using a sliding window approach. The window length was four seconds, which shifted 

one second at a time until the network predicted an entire recording. Two models were trained on 

the same 2020 data set, one over ten epochs and another over 50, to see how training over 

additional epochs might affect the performance of the first CNN. Appendix Figure A1 

demonstrates the difference between the two models. Note that the validation loss values increase 

over epochs to over one. This is often a sign of overfitting, but even when testing the performance 

of the networks on individuals it was not trained on, they often had performance metrics of over 

90%. This may result from the similarity between grunts or an inherent issue with transfer learning. 

Whatever the issue, it appeared not to affect the performance of our networks, and to find the cause 

of this issue, the problem will likely require further attention. 

After training the initial networks, we used the 50-epoch network to collect vocalizations 

from the 2019 recordings. In total, we collected presence annotations from 32 of our 2019 
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recordings. These annotations were manually verified to ensure accuracy and remove false positive 

classifications. Absence annotations were also added to provide the network with additional 

training material. Then, we used a subset of our 2020 annotations and all those from our 2019 

recordings to train another CNN. This secondary CNN was trained upon 10778 presence and 11546 

absence annotations but, based on the optimization patterns displayed in Figure A1, was only 

trained for 25 epochs.  

We used the same 12 audio files to test the networks' performance. These files were not 

used to train the networks and represented individuals from across the rut and various rutting 

behaviours. For example, some files contained almost no vocalizations, while others contained 

over 250. Eight of the twelve recordings originated from the 2020 data, while four originated from 

the 2019 data. For the networks trained on the 2020 data, the 2020 verification files were labelled 

as 'trained' under the audio file subset category and the 2019 recordings as ‘untrained’ (Table 3). 

These untrained files were used to gauge the networks' performance in classifying vocalizations in 

recordings that did not contain the vocalizations of individuals used to train the networks. All the 

files were labelled 'trained' for the network trained on both years' recordings under the audio file 

subset category (Table 3). 

 To measure the performance of the networks, we used recall rate, precision, accuracy and 

F1 scores (Equation A 1-4). Recall rate (sensitivity) indicates how well a model detects sounds of 

interest (the proportions of true positives to actual positives; Do Nascimento et al., 2021; Mesaros 

et al., 2016; Navarro et al., 2017). Precision indicates the detector's reliability (what proportion of 

positive identifications were correct; Do Nascimento et al., 2021; Mesaros et al., 2016; Navarro et 

al., 2017). Accuracy measures the proportion of classifications a model correctly classifies 

(Navarro et al., 2017). Finally, F1 score measures the harmonic precision and accuracy mean 
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(Navarro et al., 2017). Within the equations, classifications are classified into three categories. 

True positives (TP) occur when a grunt presence is correctly classified, false negatives (FN) occur 

when an absence of a grunt is classified in a segment that contains a grunt, and false positives (FP) 

occur when a grunt is classified in a segment when there is no grunt (Nascimento et al., 2021). Of 

these classifications, we want as many true positive classifications as possible and as few false 

negatives and false positives. The corresponding performance metrics are listed in Table 3. 

 To train the networks, we used the packages listed in Table A1. The script was processed 

using Python 3, and the CNNs were implemented in Tensorflow 2 (Abadi et al., 2016). Each CNN 

was trained over several epochs using the Adam optimizer with a batch size of 32 (Kingma & Ba, 

2014). Finally, spectrograms were generated using the Librosa library (McFee et al., 2020). Model 

training and testing were conducted on a 2021 Apple Macbook Pro with an Apple M1 pro processor 

with 16 GB of unified LPDDR5 RAM running MacOS Ventura 13.1. 

iv. Data analysis: 

 We conducted statistical analysis in R v. 4.1.3 (R Core Team, 2018). To evaluate the hourly 

and daily patterns of our male reindeer over the 2019 and 2020 ruts, we used hierarchical 

generalized additive models (HGAMs, using the ‘gam’ function in the R package mgcv version 

1.8-41; Pedersen et al., 2019; Wood, 2017). GAMs are a nonparametric technique that uses 

penalized regression splines to fit smooth relationships between independent and dependent 

variables. Thus, they can describe time series data's nonlinear trends and relationships. 

 The vocalizations classified by our CNNs were visually and audibly verified, and then the 

window lengths (seconds) of presence annotations (vocalization detections) were summed by the 

hour of the day. The hours of the day were based on the recorders’ memory and verified using GPS 

data and audio from when the reindeer were released into the pen. Then, we compared the years 
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using their estimated peak rut (referred to as peak hereafter). We estimated this date by averaging 

the births of calves in the spring and backdating using a gestation length of 221 days (Mysterud et 

al., 2009). The peaks for the 2020 and 2019 cohorts were estimated as October 6th and October 5th, 

respectively. We also tested for the effect of temperature (degrees Celsius) and weather (sunny, 

overcast, snow and rain) on the activity of our reindeer. The data were captured by a weather station 

near Kaamanen, Finland (station code 102047, 69.14° N, 27.27°E). We tested for the interaction 

of weather and temperature on daily and hourly patterns using HGAMS; however, no discernable 

patterns were present for either temporal variable that helped to describe their rutting activity. 

Consequently, temperature and weather did not help to explain grunting patterns and were thus 

excluded from our models. 

Smoother terms were used to compare the patterns of the proportion of time spent grunting 

across days and hours in terms of individuals (Equation 1 [i indicates each variable is calculated 

for each individual]; Zuur & Ieno, 2016). 

(𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏)      𝐺𝑟𝑢𝑛𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑔𝑖(𝑡)~ 𝐵𝑒𝑡𝑎(𝜇𝑖(𝑡), 𝜃) 

                                  𝑙𝑜𝑔𝑖𝑡(𝜇𝑖(𝑡)) =  𝑓𝑖(𝐷𝑎𝑦) + 𝑔𝑖(𝐻𝑜𝑢𝑟) + 𝑟𝑒(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) + 𝑆𝑡𝑎𝑡𝑢𝑠𝑖 

The data were fit using the beta regression family (Wood, 2017) with a logit link function 

and restricted maximum likelihood, and zero values were offset by 2.2x10-14 to avoid having a 

complete separation with the data (complete separation, or quasi-complete separation, occurs when 

an outcome variable separates a predictor variable or set of predictor variables completely or nearly 

completely; Albert & Anderson, 1984). Status was modelled as a categorical variable with two 

levels: dominant and subdominant (Equation 1). The hourly patterns (Equation 1) were fit using 

cyclic cubic regression splines due to the repeating nature of 24-hour days, and to describe the 

pattern more generally, the splines were fit with ten basis functions (basis functions being the 
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number of functions each smoother is allowed to use in order to fit a set of data; Wood, 2017). The 

daily patterns (Equation 1) were fit using thin plate regression splines, and to allow for 

considerable flexibility in describing the pattern, the splines were fit with 22 basis functions. 

Finally, the smoothers fit by individual (Equation 1) were treated as random effects (intercepts) 

to account for inter-individual variability in the average frequency of vocalizations. Both temporal 

patterns were fit using individual group-level smoothers with differing wiggliness to describe the 

pattern of each reindeer (Pedersen et al., 2019). Finally, trends were fit using individual smoothers 

to describe the behaviour of the reindeer, and 95% confidence intervals were used to describe the 

uncertainty in the shapes of the estimated functions (Wood, 2017).  

To describe the grunting activity of the reindeer, proportions were transformed into time as 

a proportion of each hour and when values were reported, we did so as a mean and standard error 

(mean ± SE) and to determine if dominant and subdominant statuses were significantly different, 

we used a Wilcoxon rank sum test. The HGAM models’ performance, fit and autocorrelation were 

assessed using the ‘appraise’ function in gratia (Simpson, 2021) and the ‘ACF’ function in mgcv 

(Wood, 2017). Finally, models were chosen according to model fit and the Akaike information 

criterion (Wood, 2017). 

Lastly, to document the resting activity of our males, three days for each male were 

analyzed randomly to document the time males spent resting each day. This could not be analyzed 

via network classifications as our classifier was trained to analyze for the presence of vocalizations, 

so their resting activity had to be manually analyzed via recorder playback. 
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Results 

i. Machine Learning Performance: 

 Due to the number of spectrograms our ‘combined’ network was trained upon, it was 

quicker to train per epoch than the ‘2020’ networks; the output layers took about 425 and 550 

seconds to train, respectively, while the feature extraction layers took about 1260 and 1610 

seconds. Both networks took about the same time to process a single recording (2.27 hours long), 

about 225 seconds. However, while all three of our networks performed similarly, they had slightly 

different classification characteristics. Overall, annotating and training the 2020 data set took about 

four weeks (150 2.27-hour recordings), while classifying, verifying, and training the 2019 

recordings took about three days (32 2.27-hour recordings). Consequently, establishing the initial 

data set took longer than collecting the annotations for the 2020 network. 

 When we compare the networks trained on the 2020 data, the 50-epoch network was 

slightly more accurate and classified fewer false negatives but slightly more false positives on files 

that contained individuals it was trained on (Table 3). When we compare the performance metrics 

of vocalization classifications on files that contained individuals not included within the 2020 

training batch, the network trained over 50 epochs performed better than that trained over ten 

epochs. Consequently, the 50-epoch network was better at classifying and collecting vocalizations 

of untrained individuals than the 10-epoch network. Thus, it would be a better tool for researchers 

wanting to collect additional vocalizations. Overall, the 50-epoch network was more sensitive but 

more likely to identify vocalizations falsely (Table 3). Consequently, this network will require the 

removal of more false positives but require the addition of fewer false negatives. Both networks 

performed better when the recordings contained more intentional noises. For example, when we 

compare recordings containing 200 reindeer grunts versus 20, both had comparable false positive 
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and false negative counts. However, in the recordings containing 20 vocalizations, these false 

readings disproportionately affected the performance metrics.  

 When we compare the 50-epoch model to the ‘combined’ 25-epoch model, the 25-epoch 

model’s performance metrics were, on average, 4.8  1.4% (mean  SE) higher than the 50-epoch 

model (Table 3). While the recall rate, precision and F1 scores were only slightly higher for the 

25-epoch model, the accuracy was markedly better (Table 3). Across the same 12 files, the 25-

epoch network had five fewer false positives and 49 fewer false negative classifications. However, 

both networks had a disproportionate number of false positive and false negative classifications 

originating from a subset of the files. Moreover, some recorders had higher incidents of false 

positive and false negative classifications across all their recordings compared to some of the other 

individuals' audio recordings. Overall, when classifying upon recordings with individuals the 

networks were trained upon (i.e., ‘trained’ audio subsets), the network trained across both years' 

recordings performed better than those trained on the 2020 recordings (Table 3). Finally, training 

models for more than 25 epochs did not appear to have any noticeable effects; it only increased 

computation time (Figure A1). 

ii. Rutting Behaviour: 

Between males, rutting activity varied by individual, with the trends suggesting larger 

males grunted more (Table 1, Figure 4, and Figure 5). When males were dominant and in control 

of a harem, they spent, on average, 14.2 ± 31.6 minutes per hour grunting more than subdominant 

males (HGAM; z-value = -10.68, p < 0.001, n=2213; Figure 6). The HGAM model accounted for 

83.2% of the deviance within the data with an adjusted r-squared of 0.608. Among the males, the 

younger and older males had very distinct activity patterns, respective to their age groups (Table 
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1, Figure 4, and Figure 5). However, among the 3.5-year-old males, age, weight, and activity 

patterns differed more by individual (Figure 4 and Figure 5). 

The 1.5- and 2.5-year-old males, who weighed 83 and 96 kilograms, respectively, spent 

almost none of their time in dominant positions, 0% and 3.5%. Conversely, the 4.5- and 5.5-year-

old males, who weighed 150 and 140 kilograms, respectively, spent most of their time in dominant 

positions, 100% and 66.9%. There was more variation between the time spent vocalizing for the 

3.5-year-old males and their time spent in dominant positions. Their pre-rut weights were 100, 135 

and 155 kilograms. The lightest among them spent nearly no time in a dominant position, 4.0%, 

while the other two spent about half their time in dominant positions, 51.1% and 53.0%, 

respectively. However, these data were uncertain due to the recorders' inconsistent recording 

lengths. Furthermore, there was considerable variety in the grunting patterns of the males, even 

when dominant. When the activity of each male was divided by status, there was a significant 

difference between the proportion of time spent grunting in dominant and subdominant positions, 

8.85  0.19 minutes versus 1.14  0.05 (Wilcoxon rank sum test, W= 1137461, p < 0.001; Figure 

6). 

 For the hourly data, the males had several consistent patterns. Males were more active 

during the daylight hours, from about 9:00 to 21:00 (Figure 4 A, C-G), and most were less active 

overnight, with most being the least active just before dawn, at about 06:00 (Figure 4 A, C-G). 

The 1.5-year-old’s hourly pattern was the only inconsistency; however, he was subdominant for 

the entirety of the rut (Figure 4 B).  

Generally, based on the hourly patterns, males were more active during the day than at 

night (Figure 4). Though the males were more active during the day, there were still many hours 

when the males displayed next to no vocal activity (e.g., Figure 4 A). This led to the day hours 
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having larger 95% confidence intervals than the night hours (Figure 4). However, the males were 

still somewhat active overnight. On average, the males spent about 4.42  1.81 hours at rest (n=7 

[three days for each male were analyzed]) each day (Table 4), and each time they took a break, 

they spent about 21.2  19.3 minutes at rest (Table 4). When the hourly patterns were subdivided 

into dominant and subdominant categories, there was only a slight difference between the trends 

(Figure 7). Like the males’ hourly trends, the dominant and subdominant trends indicated that the 

males were more active during the day than at night (Figure 7). However, the activity of 

subdominant males was more consistent, while dominant males had increased activity patterns 

between the hours of 09:00 and 22:00 (Figure 7). 

 For the daily patterns, there was more variation among males (Figure 5). Older males 

(Figure 5 A, E-G) tended to have elevated activity trends compared to younger males (Figure 5 

B-D). The oldest male (Figure 5 A) was dominant most of the rut and was more active before the 

peak than after. For dominant males, activity typically increased until the peak, slightly decreasing 

after (Figure 6). The second 3.5-year-old was the exception (Figure 5 E). He had an uptick in 

activity about a week before the 2020 peak, and then his activity declined for 2.5 days. The activity 

of the two remaining males (Figure 5 F & G) increased as they approached the peak. However, 

because their recorders failed prematurely, only so much information could be gleaned from their 

audio. Furthermore, because there was so much variation in activity from one hour to the next, 

there was considerable variability in the males’ daily activity, especially among dominant males, 

as they approached the peak (e.g., Figure 5 A). Overall, as the peak of the rut approached, 

dominant males vocalized more than subdominant males (Figure 5). 
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Discussion 

 The activity patterns extracted from our male reindeer indicated variability between males 

and between hours and days of the rut. The data suggested a trend by age class, with older, heavier 

males vocalizing more than younger, lighter males and spending more time in dominant positions. 

However, this was only the case with some of our males, as displayed with the 3.5-year-old males. 

Nonetheless, the best predictor of acoustic activity was male status. Dominant males vocalized 

more than subdominant males. Despite that, there was still much uncertainty within the activity 

patterns, as all the recorders recorded for varying lengths. Consequently, not all the males’ activity 

patterns may have been fully explored. Nevertheless, our results align with our predictions that 

older, heavier males will grunt more than younger, light males and spend more of the rut in a 

dominant position.   

Overall, collecting acoustics data may only partially explain reindeer rut behaviour. While 

their acoustic activities can be taken as an inference of their activity, these activity patterns also 

need to be taken with some skepticism, as there are likely a host of behaviours that are not covered 

accurately with sound alone. However, by combining both on-animal acoustic recorders and 

machine learning applications, researchers can delve into behavioural questions that span greater 

spatial and temporal scales. With recent developments in machine learning, performance metrics 

continue to improve, and with the inclusion of methods like transfer learning, methodologies 

continue to simplify. Conversely, on-animal recorders are the greatest hindrance to performing 

long-term analysis. They are liable to failure, and their performance over longer time scales is 

inconsistent. Thus, improving their reliability must be an essential research component moving 

forward. However, there is still much promise in these emerging technologies; with improvements, 

they could prove to be incredible tools for researchers. 
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i. On-animal acoustic recorders 

This study, along with several other preliminary studies that used acoustic recorders to 

record the behaviour of species, have already demonstrated their utility (e.g., Casoli et al., 2022; 

Insley et al., 2008; Lynch et al., 2013; Stowell et al., 2017; Studd et al., 2019, 2021; Thiebault et 

al., 2021; Wijers et al., 2018). They remove the human impact on the species and allow researchers 

to study species over longer temporal scales. Plus, they allow researchers to interpret the activities 

of species through unintentional sounds. For example, Insley et al. (2008) reported they could 

differentiate between various behaviours of northern fur seals (Callorhinus ursinus) using on-

animal recorders. We used a similar approach to document the resting activity of our male reindeer, 

and we could differentiate males at rest from those walking around or engaged in rut-associated 

activities. 

With the appropriate expertise and observational data, researchers can often differentiate 

between the audible behaviours of their species. Lynch et al. (2013) listed several behaviours they 

documented using sounds captured from mule deer (Odocoileus hemionus). It should be noted, as 

mentioned by both Lynch et al. (2013) and Wijers et al. (2018), that while most behaviours are 

discernable using acoustics, some periods of ambiguous sound signals will likely be recorded, and 

depending on the objective of the study, may require observational data to confirm. In our case, it 

would have been difficult to discern the status of males with only sound. In some cases, inferences 

from other sound sources may make it challenging to determine behaviour (Wijers et al., 2018). 

These conclusions may be made from vocalizations emitted from the species or other species, 

anthropogenic sources, and environmental sources (Wijers et al., 2018). Consequently, pairing 

audio recordings with observations can help researchers confirm behaviour and build appropriate 

auditory profiles. Additionally, researchers using on-animal recorders should also consider the 
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behaviour of their species. If a species of interest is not sufficiently audible, it may not be suitable 

for acoustic analysis. 

On their own, the inferences made from acoustic recorders are often limited, but when 

paired with observations and other tools, the limitations of recorders are often minimized. As 

context is vital, an essential first step should be to categorize acoustic behaviours using 

observations or cameras. However, after such a step is complete, it becomes far easier to classify 

the auditory behaviours of species using sound. When paired with other tools, acoustic analysis 

can be a powerful tool for researchers. For instance, Wijers et al. (2018) used acoustic recorders 

and bio-loggers to document the activity patterns of lions (Panthera leo), and they noted a high 

precision of activity classification using the two methods. Similarly, Studd et al. (2019) used 

accelerometers and audio recorders to document the kill rates and hunting behaviour of Canadian 

lynx (Lynx canadensis). In both cases, two devices allowed the researchers to make better 

inferences from their data and, in combination, allowed them to use acoustics data for ground-truth 

calibration. On their own, on-animal acoustic recorders provide researchers with a promising 

avenue to pursue new research and, for behavioural ecologists, a new lens through which to study 

their species of interest. However, there are still several issues that plague on-animal acoustic 

recorders. 

As other researchers have reported, the failure rate of on-animal recorders is high, and 

because no commercial on-animal recorders have been produced, they often require significant 

troubleshooting, especially during initial deployments (Studd et al., 2021). Also, because the 

devices can be deployed for a significant amount of time, they can accumulate damage, and if they 

fail, it can be challenging to discern their cause of failure. Because of this, a recorder’s audio 

quality can change throughout its deployment, and thus, the performance of a network is affected. 
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Further, the weight of these recorders’ power packs often limits their deployment and thus, 

researchers must consider their use against the species they are studying. Consequently, research 

questions are relegated to larger or smaller species over shorter times. As such, the number of 

studies that have employed on-animal recorders is only a few, but interest in them is increasing 

(Casoli et al., 2022; Lynch et al., 2013; Stowell et al., 2017; Studd et al., 2019, 2021; Thiebault et 

al., 2021; Wijers et al., 2018).  

Because of these issues, few studies have studied terrestrial species over longer temporal 

scales, but of the few that have, they have only deployed recorders for several days or weeks 

(Casoli et al., 2022; Lynch et al., 2013; Stowell et al., 2017; Studd et al., 2019, 2021; Thiebault et 

al., 2021; Wijers et al., 2018). Even our study was limited to only one month, and of our eight 

recorders, one had a malfunctioning microphone, another failed after three days, and of the eight, 

only one recorded for longer than 20 days. For our study, the recorders were constantly exposed 

to varying weather (rain, snow, slush, and wind) and kinetic damage. As such, the units’ cause of 

failure could originate from several sources. However, if the listed issues can be rectified, on-

animal recorders could be a valuable tool for researchers. 

ii. Machine learning methodology and transfer learning 

As interest in machine learning methods increases, especially within the ecology realm, so 

does their performance. Likewise, as there continue to be advances in machine learning and speech 

recognition, there continue to be opportunities for bioacoustics research. However, as Dufourq et 

al. (2022) outlined, acoustic classifiers are proving to be powerful tools for researchers, but 

creating and training a model is challenging for machine learning novices. 

Creating a CNN from scratch, optimizing it, and fine-tuning hyper-parameters is 

challenging; thus, they would be adopted by more users if they were easier to build and train 
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(Dufourq et al., 2022). However, when CNNs are created using transfer learning, hyper-parameter 

tuning and optimizing are easier, and fewer network design decisions are required (Dufourq et al., 

2022). One of the most challenging choices a researcher may face is choosing a suitable pre-trained 

model. For us, ResNet152V2 (He et al., 2016) was the most appropriate model, but this may only 

be the case for some practitioners due to the stochastic nature of neural network classifiers. As 

Dufourq et al. (2022) found, some models perform better than others for some applications; 

consequently, practitioners must find an appropriate pre-trained model. Overall, when used in 

combination with recorders and when adequately trained, acoustic classifiers can significantly 

decrease the processing time of data sets, and when implemented with transfer learning, the process 

is made simpler. 

One benefit of using transfer learning is that it decreases the number of examples needed 

to train a network. Dufourq et al. (2022) demonstrated that as few as 25 vocalization annotations 

could achieve an F1 score of 82%. This indicates that even with a few examples, practitioners can 

begin to automate the process of collecting additional vocalizations. However, with a wide range 

of individuals and environments, gathering as many annotations as possible is recommended to 

build a robust classifier (Dufourq et al., 2021, 2022).  

This also raises some issues when paired with on-animal acoustic recorders. The quality of 

our recordings varied considerably between devices and individuals over time. As a result, to 

maintain the network's performance, we gathered vocalizations throughout the rut. Unfortunately, 

due to hardware limitations, we were limited with the number of spectrograms our CNN could be 

trained upon; thus, we could not capture every sound within the environment. Consequently, this 

led to errors in our classification and generated additional false positive classifications in some of 

our recordings. Studd et al. (2021) reported similar findings when they used an automated event 
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classification model to classify the hunting activity of Canadian lynx. Despite this, these issues 

can be rectified by manually verifying classifications. Accordingly, it is in a practitioner’s best 

interest to collect as many presence and absence annotations as possible to improve the 

performance of a classifier across individuals, deployments, and recorders. This is especially true 

when using on-animal recorders, as they record across environments and individuals and are 

readily damaged.  

As these methodologies continue to develop and additional practitioners adopt them, their 

performance will improve. Recent uses of machine learning for acoustic classification have 

achieved high performance metrics. For example, Studd et al. (2021) reported F1 scores of 79 to 

90% for Canadian lynx feeding event classifications using CNNs. Additionally, using a Random 

Forest classification method, Wijers et al. (2018) achieved an average per-class behaviour 

classification rate of 98.5% with a combination of audio, accelerometers and magnetometers. 

Thus, as these technologies continue to develop and more practitioners adopt them, their 

performance and ease of use will increase. Altogether, when used for acoustic classification, 

classifiers can decrease the processing time of acoustic data sets. However, despite these 

considerable advantages, there are still several drawbacks of which practitioners should be aware. 

While utilizing transfer learning can simplify the network fabrication process, having 

knowledge of a species and machine learning will help optimize networks and hyper-parameters. 

Creating or adapting a network for a user's application still requires knowledge of the two to create 

a methodology and select appropriate hyper-parameters. While transfer learning simplifies the 

process, pre-trained models may only be suitable for some applications, and practitioners may need 

to develop a model suitable for their data set. There will always be limitations when we marry 

numerous technologies, especially when considering on-animal recorders and machine learning.  
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The issues associated with using on-animal recorders are again brought up while 

considering machine learning. As recorders are liable to damage throughout a deployment, the 

performance of a classifier may be impacted the longer a recorder is deployed, especially over 

numerous deployments. Furthermore, the classification performance between 

individuals/recorders may differ as units are damaged or because individuals may have slight 

differences in acoustic characteristics. It is in a practitioner's best interest to add a collection of 

new annotations every deployment for new individuals and environments, as differences in a 

recorder’s audioscape and individuals can affect the performance of a classifier. Even if a 

preliminary model is built, collecting additional vocalizations is far easier using a prior network 

trained for a similar application, as demonstrated by the time difference required to build our two 

networks. Our preliminary network took about four weeks to train, while it only took about three 

days to collect the vocalizations and train the second network. Once a classifier is built, updating 

a classifier over time becomes relatively easy. The most challenging part of using a classifier is 

acquiring the knowledge to build one suitable for a particular application. 

Finally, while using a classifier can expedite the data processing phase, the process is yet 

to be reliable enough to be automated. As a result, classifications still require validation, and 

practitioners thus need to inspect their classifier's classifications to verify its performance. While 

machine learning accelerates the analysis of bioacoustics data, the process is not yet automated 

nor reliable enough to use without human validation. Despite these drawbacks, however, the 

advantages of using machine learning are numerous. 

iii. Rut activity 

The activity patterns described herein illustrate the hourly and daily patterns of several age 

and weight classes of semi-domesticated reindeer. While our results do not disagree with previous 
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research, it describes their activity in better detail. Moreover, it is one of the first studies to try and 

illustrate the hourly activity pattern of reindeer. As described by past research (Body et al., 2014; 

Espmark, 1964; Mossing & Damber, 1981; Tennenhouse et al., 2012), the age and weight of male 

reindeer are the best predictors of their activity. These studies noted that the activity of older males 

is higher than younger males (Kojola, 1991; Mysterud et al., 2004; Skogland, 1989; Tennenhouse 

et al., 2012). However, as described by Tennenhouse et al. (2012), the activity of older males 

declines during the late rut compared to the early and peak. This corroborates this study’s findings, 

as the activity of our males increased towards the peak and then declined following it. This is 

generally described as males having used up most of their energy reserves during the early and 

mid-rut (Leader-Williams, 1980; Tennenhouse et al., 2012). By the final weeks of the rut, older 

males have used up most of their energy reserves and thus cannot compete with other males for 

access to females (Bobek et al., 1990; Tennenhouse et al., 2012). This describes the decrease in 

daily activity seen in our 5.5-year-old male past the peak. This is also reflected in the pattern of 

his calves born the following spring. Of the 14 offspring he sired, 13 were conceived in the ten 

days preceding the 2019 peak. However, given our small sample size, especially with this fitness 

data, I would take this comparison with some skepticism.  

Likewise, such patterns help describe the smaller males' patterns. The patterns of younger 

males are described as opportunistic, wherein they gain access to females whenever possible. Older 

males are more polygynous, have a better fighting ability, begin the rut earlier than younger males, 

and are more active during the peak (Espmark, 1964; Mysterud et al., 2008; Tennenhouse et al., 

2012). In comparison, younger males are more active during pre-rut than peak-rut weeks 

(Tennenhouse et al., 2012). There are a couple of possible reasons for this activity pattern. First, 

during the peak, the reproductive output of older males is highest, so young males may avoid 
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pursuing females during this time to avoid the aggression of older males. Second, Singer and 

Zeigenfuss (2002) found that young Dall sheep (Ovis dalli) increase their mating activity when 

older males are absent or scarce. Thus, younger males may increase their activity when competition 

from older males is absent. Another explanation may be that younger males cannot time their 

reproductive output like older males (Mysterud et al., 2008; Tennenhouse et al., 2012). 

Tennenhouse et al. (2012) postulated that this mating naivety in young males might manifest as 

underdeveloped social rutting behaviour. Perhaps the timing of reproductive effort is a learned skill 

that improves with age (Tennenhouse et al., 2012). Whether it be learned or situational, the timing 

of these increased reproduction periods can be seen in the activity of our males as described by 

their vocal activity. 

When males were dominant, they vocalized more often than when they were subdominant. 

Conversely, while young males were occasionally dominant, they spent more time in subdominant 

positions than heavier males. However, occasionally, smaller males became dominant and larger 

males subdominant. For instance, the 2.5-year-old became dominant six days before the peak, and 

one of the 3.5-year-olds became subdominant on the peak. In both cases, the activity of the two 

males significantly increased or decreased during these switching events. The 2.5-year-old took 

control of a small harem for a couple of days, and the 3.5-year-old was displaced by a larger male 

for four days. In each case, the males’ status was a significant determinant of activity, with 

dominant males vocalizing more than subdominant males, and overall, dominant states coincided 

more with heavier, older males than younger, lighter males. Whatever the reason, the activity 

patterns of younger males were less than those of older males, and the exact mechanisms of this 

difference are still not completely understood. 
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However, in our acoustic data, this manifested differently in the two age groups. Younger 

males spent less time at rest than older males. While not engaged in rut-associated activities, they 

spent considerable time on the move, constantly walking, potentially searching for free-roaming 

females. Additionally, during audio playback, it was noted that younger males spent much time as 

satellite males, hanging around the periphery of larger harems, as the vocalizations of other males 

could be heard in the background of younger males’ recorders. This could be seen as a learning 

mechanism for the young males so they could learn to be better competitors in the future, or it 

could be seen as opportunistic behaviour. Perhaps the younger males were not interested in 

confronting older males but instead were on the periphery in the event of herd fission. Furthermore, 

in addition to older males spending more time at rest, when they did rest, their rests were longer. 

For all age groups, males spent the most time at rest between 22:00 and 06:00, but there was no 

consistent time the males were at rest during these hours. While Espmark (1964) noted that most 

rut activities occurred at dusk and dawn, which disagrees with our findings, he also noted that the 

males partook in little to no rut activities overnight. Interestingly, while this part of the day was 

associated with decreased activity, our data suggests that males still participated in rut activities 

overnight. 

While the males' hourly patterns were all somewhat similar, there were still slight 

differences between them. The early morning hours, from 00:00 to 06:00, were the males' least 

active, with activity increasing during the morning and early afternoon, then decreasing again 

during the later afternoon, 15:00 to 18:00, then increasing again towards dusk, 19:00 to 21:00, 

followed by decreased activity. The exception was with our 1.5-year-old but given that we only 

have 3.4 days of data for him during the early rut, this individual's pattern should be taken with 

some skepticism. Unlike the older, heavier males, the smaller males appeared more active towards 
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dusk during the latter part of the day. In contrast, our heavier males were more active throughout 

the day. Where Espmark (1964) noted that most copulations occur at dawn and dusk, especially 

the former, our study did not document much rutting behaviour during the early morning hours. 

However, our study did document the uptick in activity at dusk. Further, their activity decreased 

from 12:00 to 14:00, aligning with similar research on other Cervidae. Zeng et al. (2011) noted 

that male Eld's deer (Rucervus eldii) activity peaked during the day. They noted that males were 

willing to mate at any point of the day but that fewer copulation attempts were observed before 

09:00 and between 12:00 and 14:00 (Zeng et al., 2011). They postulated that increased 

temperatures from 12:00 to 14:00 reduced the mating activity of their deer (Zeng et al., 2011). 

Similarly, Mellado et al. (2000) noted that buck goats (family: Bovidae) were most sexually active 

at milder temperatures—consequently, male reindeer may display similar activity patterns for 

similar reasons. Further, male Eld's deer mating attempts displayed an activity pattern similar to 

the vocal activity patterns of our males (Zeng et al., 2011). So, the activity of reindeer may be like 

that of other Cervidae and goats. 

The hourly activity of younger males again took on an opportunistic approach, with their 

activity increasing later in the day, perhaps after older males had already expended much of their 

energy. However, this pattern differed among males; only the uptick of activity later in the day, 

compared to older, heavier males, was consistent. Likewise, the overnight activity of all our males 

differed by the individual. Unlike Espmark's (1964) remarks, wherein he said activity is 

comparatively rare during the night and reindeer rest during most of this time, we found that males 

were still somewhat active. While their activity was diminished, dominant males were still alert 

and ready to ward off potential competitors overnight. Similarly, subdominant males were also 

quite active overnight. While this was not reflected in their vocal activity, it was determined 



 35 

through recorder playback that they often spent much of the night walking around. While we 

cannot know why they do this, it can be postulated that they may be looking for lone females or 

smaller harems that a less dominant male controls. However, there is much variability between 

days and individuals, so the smoothed terms may only partially depict differences between 

individuals and times of the rut. Due to the limitations of our data and the issues caused by our 

failed recorders, a complete depiction of the males’ activity over the entirety of the rut could not 

be represented. Consequently, the patterns represented herein should be scrutinized and not taken 

as a complete depiction of each age or weight class. Future research should focus on depicting a 

more complete picture of the activity of each age class.  

Considering the above, the activity patterns of reindeer depicted through on-animal 

acoustic recorders should be taken with some skepticism, as the vocal activity of reindeer may not 

entirely depict their rutting behaviour (Lynch et al., 2013; Wijers et al., 2018). It is often in a 

researcher's best interest to pair their vocal recordings with in-person observations and other means 

of data collection. Further, practitioners can only deploy a few recorders due to data collection and 

hardware limitations. As a result, they may only capture a partial image of their species’ behaviour, 

especially across sexes, ages, and weights. Consequently, depicting a complete image of a species’ 

behaviour may require more than audio. For our application, using only the vocalizations of male 

reindeer was enough, though our inferences are also somewhat limited. However, even with just 

audio, researchers can use their species’ intentional and unintentional sounds to explore many 

questions concerning them. Nevertheless, as is the problem with audio, classifying and processing 

audio takes time and effort.  

Also, due to the variability of unintentional sounds, using machine learning networks to 

recognize the unintentional sounds emitted by a species is difficult. For example, in our case, if 
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we had used a network to classify the sounds of two males fighting, the sound would have likely 

been confused with the sound of branches rattling against a pair of antlers, for instance, as they 

walked under a tree. Therefore, using networks to categorize unintentional sounds may be difficult. 

However, as technology advances, these issues may be rectified. For now, practitioners must 

manually verify and listen to their recordings to answer more complex questions. However, as 

demonstrated, machine learning and on-animal acoustic recorders are suitable technologies for 

simple applications, such as describing the vocal activity of male reindeer.
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Conclusion  

 Based on our study’s findings, our research suggests that reindeer vocalizations play an 

important role in regulating their rut behaviour. The trends suggest that males who grunt more are 

often older and heavier. Further, based on our limited reproductive data, those males who grunt 

more are in control of a harem and, thus, likely have more chances to copulate. Consequently, 

reindeer vocalizations likely play an important role in regulating sexual selection, and males use 

these vocalizations for a few reasons, from organizing their harem to antagonizing potential 

competitors. Subdominant males cannot fully compete with dominant males, which is reflected in 

their vocal activity, resulting in them vocalizing less than dominant males. This is also reflected in 

the general hierarchy of the males and the size of the males’ harems, with larger males controlling 

more females than smaller males. Thus, because much of their rut activity is regulated through 

vocalizations, using on-animal acoustic recorders and machine learning to describe their vocal 

activity was a good application of the technology. However, there are still some limitations with 

the two technologies.  

           With machine learning and on-animal recorders, most issues are related to using on-animal 

recorders. This arises from their high rate of failure and reliability issues. Thus, future endeavours 

should strive to rectify their failure rates. A prefabricated, commercially produced on-animal 

recorder may be the best solution. Deploying commercial units would hopefully remove many of 

the reliability issues and increase the use of these technologies by additional practitioners, enabling 

researchers to have more trust in deploying recorders for longer. Moreover, creating a suitable 

commercial recorder might bring the added benefit of creating some ubiquity among researchers. 

If most of the recorders deployed by researchers are the same, with similar recording 

characteristics, it will help to create similar databases with comparable qualities. This could create 
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further collaboration between researchers and allow for the increased uptake of pre-trained 

networks for similar applications and similar species or for the sharing of databases to explore 

different research questions. 

After collecting the recordings, neural networks are reliable enough to process large data 

sets. Further, when researchers use transfer learning to build their networks, the process is 

simplified, and the ease of training preliminary models is higher as they require fewer annotations. 

Thus, researchers with little machine learning knowledge can more efficiently train models; this 

enabled us to train a CNN to describe the reindeer activity with a high degree of accuracy. 

While researchers can trust machine learning for future studies, precautions must be taken 

when using on-animal acoustic recorders. Nevertheless, the two technologies hold much promise, 

and the breadth of applications they can be applied to increases as the technologies develop. For 

future studies, researchers should focus further on exploring the rutting behaviour of reindeer with 

larger sample sizes. Further, researchers using machine learning should focus on exploring the 

performance of models for classifying the unintentional noises of animals. As with such sound 

profiles, researchers can likely illustrate a broader image of a species’ behaviour. However, even 

now, the utility of these technologies is expansive, and practitioners can use them to explore 

species through a new lens. 
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

Figure 1. The on-animal acoustic recorder used to record the rutting vocalizations of the reindeer. 
The orange case is the 3D-printed weatherproof housing containing the Soroka-15E recorder. The 
four panels represent the (A) interior, (B) top, (C) side, and (D) front. The ruler denotes units in 
centimetres. 
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Figure 2. Various spectrograms of noises captured by the on-animal acoustic recorder. The 
different spectrograms represent (A) a series of reindeer grunts, (B) a single reindeer grunt, (C) 
the sound captured by the recorder as it scratched against some branches and (D) the sound of the 
wind as it blew against the recorder. The y-axis represents frequency (Hz), and each spectrogram 
is exactly four seconds long. 
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Figure 3. A binary data set was created in the above process. For each file, the data set was made 
by reading a given audio file and applying the above pre-processing steps. Segment duration and 
spectrogram parameters are detailed in Table 2 (Dufourq et al., 2022).  
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Figure 4 A-G. Estimated smooth curves of the 24-hour rut patterns of seven reindeer according to 
their acoustic recordings represented as grunting behaviour taken as a proportion of time for each 
hour. (A) represents the estimated smooth curve of a 5.5-year-old and its complete data set to serve 
as an example for the data gathered. (B-G) represent six smooth curves of six individuals ranging 
from 1.5-years-old to 4.5-years-old. Black lines represent the mean, and shaded areas represent the 
95% confidence interval. Models were fit using ten basis functions, and edf represents effective 
degrees of freedom. Days of observation represent the number of days the smooth curves were 
estimated. 2019 and 2020 represent the year the data were gathered. 1.5-5.5 represent the age of 
the reindeer, and 1-3 represent different individuals of the same age class.  
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Figure 5 A-G. Estimated smooth curves of the daily patterns of seven reindeer according to their 
acoustic recordings represented as grunting behaviour taken as a proportion of time for each hour. 
(A) represents the estimated smooth curve of a 5.5-year-old and its complete data set to serve as 
an example for the data gathered (note that the scale for this figure differs from the other six). (B-
G) represent six smooth curves of six individuals ranging from 1.5-years-old to 4.5-years-old. 
Black lines represent the mean, shaded areas represent the 95% confidence interval, and the dotted 
vertical line represents the peak rutting day. Models were fit using 22 basis functions, and edf 
represents effective degrees of freedom. Days in relation to peak rut refer to the estimated peak rut 
date of that year’s cohort. The peak ruts for the 2019 and 2020 males were estimated to be October 
5th and October 6th, respectively. 2019 and 2020 represent the year the data were gathered. 1.5-5.5 
represent the age of the reindeer, and 1-3 represent different individuals of the same age class.
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Figure 6  Comparison of hourly grunt proportions when an individual is in dominant or subdominant positions. 2019 and 2020 represent 
the year the data were gathered. 1.5-5.5 represent the age of the reindeer, and 1-3 represent different individuals of the same age class. 
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Figure 7 A & B. Estimated smooth curves of the 24-hour rut patterns of seven reindeer according 
to their acoustic recordings represented as grunting behaviour taken as a proportion of time for 
each hour comparing (A) subdominant behaviour to (B) dominant behaviour. Black lines represent 
the mean, and shaded areas represent the 95% confidence interval. Models were fit using ten basis 
functions, and edf represents effective degrees of freedom.



 46 

Table 1. Individual reindeer sampling details, physical rut characteristics and grunting activity patterns (mean  SE). The 2019 male 
pre-rut weights were measured on September 11th, 2019, and their post-rut weights were measured on November 26th, 2019. The 2020 
male pre-rut weights were measured on September 21st, 2020, and their post-rut weights were measured on November 9th, 2020. 
Reproductive success denotes the number of offspring born to a male the following spring.  

 
 
 
 
 
 
 
 

Individual Age 
(Years) 

Year 
sampled 

Recording 
date start 

Recording 
date end 

Number of 
hourly 

observations 
(n) 

Starting 
rut 

weight 
(kg) 

Weight 
loss at 
end of 

rut 
(kg) 

Reproductive 
success 

Percent of each 
hour spent 
grunting 

1.5 1.5 2020 Sept 22 Sept 25 82 83 -5 NA 0.38  0.47 

2.5 2.5 2019 Sept 11 Sept 30 464 96 5 0 1.59  0.07 

3.5 - 1 3.5 2020 Sept 21 Sept 28 173 100 1 NA 1.80  0.22 

3.5 - 2 3.5 2020 Sept 22 Oct 9 419 135 30 NA 9.89  0.47 

3.5 - 3 3.5 2020 Sept 21 Sept 28 164 155 35 NA 7.06  0.53 

4.5 4.5 2020 Sept 21 Sept 30 224 150 39 NA 15.01  0.76 

5.5 5.5 2019 Sept 18 Oct 18 744 140 28 14 10.64  0.40 
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Table 2. Pre-processing hyper-parameters used while training and analyzing the rut vocalizations 
of reindeer from the Kutuharju field research station and the number of testing files used. 

Parameters Units 
Low pass filter cut-off (Hz) 1000 
Downsampling rate (Hz) 8000 
Nyquist rate (Hz) 4000 
Segment duration (seconds) 4 
Hann window length (samples) 1024 
Spectrogram hop size (samples) 256 
Number of spectrogram mel frequency bins 128 
Spectrogram minimum frequency (Hz) 0 
Spectrogram maximum frequency (Hz) 4000 
Number of testing files (n) 12 
Testing time (minutes) 1638.4 
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Table 3. The recall rate, precision, accuracy and F1 average values of three convolutional neural 
networks trained on a series of sound files containing reindeer vocalizations and unintentional 
sounds.  

*The trained subset refers to eight testing files from individuals from the 2020 cohort, while the 
untrained subset refers to four testing files from the 2019 cohort (from two individuals, 
those audio files were not included in the training audio file batch). The total subset refers 
to the average values from a combination of the trained and untrained subsets (in the case 
of the combined model, the total subset represents the average of 12 testing files that came 
from individuals from both the 2019 and 2020 sampling periods, both of which were used 
to train this model). The 2020 - 10 Epoch Model and 2020 - 50 Epoch Model were trained 
on 37 2.27-hour audio files from five individuals from the 2020 sample period. These two 
models were trained on 28000 presence and absence segments. The combined - 25 Epoch 
Model was trained on 55, 2.27-hour audio files from seven individuals from the 2019 and 
2020 sample periods. This model was trained on 10778 presence segments and 11546 
absence segments. Testing files are audio samples that were not used during the training 
process. 

* Recall rate indicates how well a model detects sounds of interest (the proportions of true positives 
to actual positives). Precision indicates the detector's reliability (what proportion of 
positive identifications were correct). Accuracy measures the proportion of classifications 
a model correctly classifies. Finally, F1 score measures the harmonic precision and 
accuracy mean. Refer to equations A1-4 for a formula of each metric. 

 
 
 
 
 
 
 
 
 
 
 
 

Model Audio file subset Recall rate Precision Accuracy F1 
2020 - 10 Epoch Model Trained (n=8) 91.9 94.6 79.0 93.2 

Untrained (n=4) 81.2 96.7 87.5 88.1 
Total (n=12) 88.3 95.3 84.6 91.5 

2020 - 50 Epoch Model Trained (n=8) 95.5 92.8 82.6 94.1 
Untrained (n=4) 84.2 98.1 89.1 90.4 

Total (n=12) 91.8 94.6 86.9 92.9 
Combined - 25 Epoch Model Total (n=12) 97.8 95.8 93.6 96.7 
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Table 4. The average rest per day (mean   SE), the average number of breaks per day (mean  
SE),  and the average time spent at rest per break (mean  SE) across our seven individuals. Three 
days per individual were analyzed via audio playback across the range of the days we had recorded 
for each male reindeer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Individual Average rest per day 
(hh:mm) 

Number of rests 
per day 

(n) 

Average time spent at rest 
per break 
(mm:ss) 

1.5 3:28  00:44 6.0   0.9 34:44  06:23 
2.5 1:50  00:52 11.3  0.2 09:27  02:36 
3.5 - 1 4:39  01:02 14.0   0.7 19:57  02:57 
3.5 - 2 6:32  00:49 16.7   0.4 23:33  02:51 
3.5 - 3 4:00  00:17 9.7   0.9 25:45  02:21 
4.5 5:01  00:44 15.7   2.0 19:14  01:09 
5.5 5:26  00:40 14.0   0.9 23:18  03:27 
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Appendix 
Table A1. The following Python packages were used to train the convolutional neural networks 
and classify the rutting audio of the male reindeer. The following files were run on Python 3.10.7 
on a 2021 Apple Macbook Pro with an Apple M1 pro processor with 16 GB of unified LPDDR5 
RAM running MacOS Ventura 13.1. 

Python Package Version 

Jupyter 1.0.0 
Keras 2.10.0 
Librosa 0.9.2 
Matplotlib 3.6.0 
Numpy 1.23.3 
Pandas 1.5.0 
Pickle 0.7.5 
Scikit-learn 1.1.2 
Scipy 1.9.1 
Soundfile 0.10.3.post1 
Tensorflow 2 2.7.0 
Yattag 1.14.0 
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Figure A1 A-F. Figures demonstrating the three networks' accuracy, loss, validation, and 
validation loss over numerous epochs during the training process. (A, C & E) relate to the networks 
during the output-layer optimization, and (B, D & F) relate to the networks during the feature 
extractor optimization. (A & B) relate to the network trained over ten epochs on the 2020 data, (C 
& D) relate to the network trained over 50 epochs on the 2020 data, and (E & F) relate to the 
network trained over 25 epochs on both the 2019 and 2020 data. 
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Equations A1-4. The following four equations were used to measure our three networks' 
performance based on their classifications. True positives (TP) occur when a grunt presence is 
correctly classified, false negatives (FN) occur when an absence of a grunt is classified in a 
segment that contains a grunt, and false positives (FP) occur when a grunt is classified in a segment 
when there is no grunt (Do Nascimento et al., 2021; Mesaros et al., 2016). 

(𝐴. 1)   𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (𝐴. 2)   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(𝐴. 3)   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                     (𝐴. 4)   𝐹1𝑠𝑐𝑜𝑟𝑒 =

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 53 

References  

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, 

G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., 

Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: A 

system for large-scale machine learning. Proceedings of the 12th USENIX Conference on 

Operating Systems Design and Implementation, 265–283. 

https://doi.org/10.48550/arXiv.1605.08695 

Albert, A., & Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic 

regression models. Biometrika, 71(1), 1–10. JSTOR. https://doi.org/10.2307/2336390 

Andersson, M. (1994). Sexual selection. Princeton University Press. 

Arak, A. (1983). Sexual selection by male–male competition in natterjack toad choruses. Nature, 

306(5940), 261–262. https://doi.org/10.1038/306261a0 

Baker, R. R., & Parker, G. A. (1979). The evolution of bird coloration. Philosophical Transactions 

of the Royal Society B Biological Sciences, 287(1018), 63–130. JSTOR. 

https://doi.org/10.1098/rstb.1979.0053 

Bermant, P. C., Bronstein, M. M., Wood, R. J., Gero, S., & Gruber, D. F. (2019). Deep machine 

learning techniques for the detection and classification of sperm whale bioacoustics. Scientific 

Reports, 9(1), 12588. https://doi.org/10.1038/s41598-019-48909-4 

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., 

Krakauer, A. H., Clark, C., Cortopassi, K. A., Hanser, S. F., McCowan, B., Ali, A. M., & 

Kirschel, A. N. G. (2011). Acoustic monitoring in terrestrial environments using microphone 



 54 

arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 

48(3), 758–767. https://doi.org/10.1111/j.1365-2664.2011.01993.x 

Boake, C. R. B., & Capranica, R. R. (1982). Aggressive signal in “courtship” chirps of a gregarious 

cricket. Science, 218(4572), 580–582. https://doi.org/10.1126/science.218.4572.580 

Bobek, B., Perzanowski, K., & Weiner, J. (1990). Energy expenditure for reproduction in male red 

deer. Journal of Mammalogy, 71(2), 230–232. https://doi.org/10.2307/1382171 

Body, G., Weladji, R. B., Holand, Ø., & Nieminen, M. (2014). Highly competitive reindeer males 

control female behavior during the rut. PLOS ONE, 9(4), e95618. 

https://doi.org/10.1371/journal.pone.0095618 

Bowyer, R. T., McCullough, D. R., Rachlow, J. L., Ciuti, S., & Whiting, J. C. (2020). Evolution of 

ungulate mating systems: Integrating social and environmental factors. Ecology and Evolution, 

10(11), 5160–5178. https://doi.org/10.1002/ece3.6246 

Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). 

Sinauer Associates. 

Bravo Sanchez, F. J., Hossain, M. R., English, N. B., & Moore, S. T. (2021). Bioacoustic 

classification of avian calls from raw sound waveforms with an open-source deep learning 

architecture. Scientific Reports, 11(1), 15733. https://doi.org/10.1038/s41598-021-95076-6 

Browning, E., Gibb, R., Glover-Kapfer, P., & Jones, K. E. (2017). Passive acoustic monitoring in 

ecology and conservation. WWF Conversation Technology Series, 1(2), 1–75. 

https://doi.org/10.25607/OBP-876 



 55 

Cannam, C., Landone, C., & Sandler, M. (2010). Sonic visualiser: An open source application for 

viewing, analysing, and annotating music audio files. ACM Multimedia 2010 International 

Conference, 1467–1468. https://doi.org/10.1145/1873951.1874248 

Casoli, M., Johnson, M., McHugh, K. A., Wells, R. S., & Tyack, P. L. (2022). Parameterizing 

animal sounds and motion with animal-attached tags to study acoustic communication. 

Behavioral Ecology and Sociobiology, 76, 59. https://doi.org/10.1007/s00265-022-03154-0 

Cassini, M. H. (2020). Sexual size dimorphism and sexual selection in primates. Mammal Review, 

50(3), 231–239. https://doi.org/10.1111/mam.12191 

Charlton, B. D., & Reby, D. (2011). Context-related acoustic variation in male fallow deer (Dama 

dama) groans. PLOS ONE, 6(6), e21066. https://doi.org/10.1371/journal.pone.0021066 

Charlton, B. D., Reby, D., & McComb, K. (2007). Female red deer prefer the roars of larger males. 

Biology Letters, 3(4), 382–385. https://doi.org/10.1098/rsbl.2007.0244 

Cooper, I. A., Brown, J. M., & Getty, T. (2016). A role for ecology in the evolution of colour 

variation and sexual dimorphism in Hawaiian damselflies. Journal of Evolutionary Biology, 

29(2), 418–427. https://doi.org/10.1111/jeb.12796 

Cvikel, N., Levin, E., Hurme, E., Borissov, I., Boonman, A., Amichai, E., & Yovel, Y. (2015). On-

board recordings reveal no jamming avoidance in wild bats. Proceedings of the Royal Society 

B: Biological Sciences, 282(1798), 20142274. https://doi.org/10.1098/rspb.2014.2274 

Darras, K., Batary, P., Furnas, B., Grass, I., Mulyani, Y., & Tscharntke, T. (2019). Autonomous 

sound recording outperforms human observation for sampling birds: A systematic map and 

user guide. Ecological Applications, 29(6), e01954. https://doi.org/10.1002/eap.01954 



 56 

Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of 

favoured races in the struggle for life. John Murray. 

Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray. 

Do Nascimento, L. A., Pérez-Granados, C., & Beard, K. H. (2021). Passive acoustic monitoring 

and automatic detection of diel patterns and acoustic structure of howler monkey roars. 

Diversity, 13(11). https://doi.org/10.3390/d13110566 

Dufourq, E., Batist, C., Foquet, R., & Durbach, I. (2022). Passive acoustic monitoring of animal 

populations with transfer learning. Ecological Informatics, 70, 101688. 

https://doi.org/10.1016/j.ecoinf.2022.101688 

Dufourq, E., Durbach, I., Hansford, J. P., Hoepfner, A., Ma, H., Bryant, J. V., Stender, C. S., Li, 

W., Liu, Z., Chen, Q., Zhou, Z., & Turvey, S. T. (2021). Automated detection of Hainan gibbon 

calls for passive acoustic monitoring. Remote Sensing in Ecology and Conservation, 7(3), 475–

487. https://doi.org/10.1002/rse2.201 

Enari, H., Enari, H., Maruyama, T., Okuda, K., & Okuda, K. (2019). An evaluation of the 

efficiency of passive acoustic monitoring in detecting deer and primates in comparison with 

camera traps. Ecological Indicators, 98, 753–762. 

https://doi.org/10.1016/j.ecolind.2018.11.062 

Enari, H., Enari, H., Okuda, K., Yoshita, M., Kuno, T., & Okuda, K. (2017). Feasibility assessment 

of active and passive acoustic monitoring of sika deer populations. Ecological Indicators, 79, 

155–162. https://doi.org/10.1016/j.ecolind.2017.04.004 

Espmark, Y. O. (1964). Rutting behaviour in reindeer (Rangifer tarandus L.). Animal Behaviour, 

12(1), 159–163. https://doi.org/10.1016/0003-3472(64)90117-4 



 57 

Espmark, Y. O. (1971). Individual recognition by voice in reindeer mother-young relationship. 

Field observations and playback experiments. Behaviour, 40(3–4), 295–301. 

https://doi.org/10.1163/156853971X00438 

Fairbrass, A. J., Rennert, P., Williams, C., Titheridge, H., & Jones, K. E. (2017). Biases of acoustic 

indices measuring biodiversity in urban areas. Ecological Indicators, 83, 169–177. 

https://doi.org/10.1016/j.ecolind.2017.07.064 

Farina, A., Pieretti, N., & Piccioli, L. (2011). The soundscape methodology for long-term bird 

monitoring: A Mediterranean Europe case-study. Ecological Informatics, 6(6), 354–363. 

https://doi.org/10.1016/j.ecoinf.2011.07.004 

Feighny, J. A., Williamson, K. E., & Clarke, J. A. (2006). North American elk bugle vocalizations: 

Male and female bugle call structure and context. Journal of Mammalogy, 87(6), 1072–1077. 

https://doi.org/10.1644/06-MAMM-A-079R2.1 

Frey, R., Gebler, A., Fritsch, G., Nygrén, K., & Weissengruber, G. E. (2007). Nordic rattle: The 

hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus). 

Journal of Anatomy, 210(2), 131–159. https://doi.org/10.1111/j.1469-7580.2006.00684.x 

Gammon, D. E., Baker, M. C., & Tipton, J. R. (2005). Cultural divergence within novel song in 

the black-capped chickadee (Poecile atricapillus). The Auk, 122(3), 853–871. 

https://doi.org/10.1093/auk/122.3.853 

Garcia, M., Charlton, B. D., Wyman, M. T., Fitch, W. T., & Reby, D. (2013). Do red deer stags 

(Cervus elaphus) use roar fundamental frequency (F0) to assess rivals? PLoS ONE, 8(12), 

e83946. https://doi.org/10.1371/journal.pone.0083946 



 58 

Gottlander, K. (1987). Variation in the song rate of the male pied flycatcher Ficedula hypoleuca: 

Causes and consequences. Animal Behaviour, 35(4), 1037–1043. 

https://doi.org/10.1016/S0003-3472(87)80160-4 

Habib, L., Bayne, E. M., & Boutin, S. (2007). Chronic industrial noise affects pairing success and 

age structure of ovenbirds Seiurus aurocapilla. Journal of Applied Ecology, 44(1), 176–184. 

https://doi.org/10.1111/j.1365-2664.2006.01234.x 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. 

https://doi.org/10.1109/CVPR.2016.90 

Holt, M. M., Hanson, M. B., Emmons, C. K., Baird, R. W., Hogan, J., Foster, J., Giles, D., & 

Balcomb, K. C. (2011). Investigating acoustics, behavior and vessel noise exposure in 

endangered killer whales (Orcinus orca) using digital acoustic recording tags. The Journal of 

the Acoustical Society of America, 129(4), 2606–2606. https://doi.org/10.1121/1.3588644 

Ilany, A., Barocas, A., Kam, M., Ilany, T., & Geffen, E. (2013). The energy cost of singing in wild 

rock hyrax males: Evidence for an index signal. Special Issue: Behavioural Plasticity and 

Evolution, 85(5), 995–1001. https://doi.org/10.1016/j.anbehav.2013.02.023 

Insley, S. J., Robson, B. W., Yack, T., Ream, R. R., & Burgess, W. C. (2008). Acoustic 

determination of activity and flipper stroke rate in foraging northern fur seal females. 

Endangered Species Research, 4(1), 147–155. https://doi.org/10.3354/esr00050 

Johnson, J., & Bayne, E. (2022). Bioacoustically derived migration arrival times in boreal birds: 

Implications for assessing habitat quality. Avian Conservation and Ecology, 17(2), 13. 

https://doi.org/10.5751/ACE-02224-170213 



 59 

Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response 

of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28(1), 3–12. 

https://doi.org/10.1109/JOE.2002.808212 

Kingma, D. P., & Ba, J. (2014). Adam: A Method for stochastic optimization. 

http://arxiv.org/abs/1412.6980 

Knight, E. C., Hannah, K. C., Foley, G. J., Scott, C. D., Brigham, R. M., & Bayne, E. (2017). 

Recommendations for acoustic recognizer performance assessment with application to five 

common automated signal recognition programs. Avian Conservation and Ecology, 12(2), 14. 

https://doi.org/10.5751/ACE-01114-120214 

Kojola, I. (1991). Influence of age on the reproductive effort of male reindeer. Journal of 

Mammalogy, 72(1), 208–210. https://doi.org/10.2307/1382001 

Krebs, J., Ashcroft, R., & Webber, M. (1978). Song repertoires and territory defence in the great 

tit. Nature, 271(5645), 539–542. https://doi.org/10.1038/271539a0 

Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. 

Conservation Planning within Emerging Global Climate and Economic Realities, 143(7), 

1635–1645. https://doi.org/10.1016/j.biocon.2010.03.025 

Laiolo, P., & Tella, J. L. (2007). Erosion of animal cultures in fragmented landscapes. Frontiers in 

Ecology and the Environment, 5(2), 68–72. https://doi.org/10.1890/1540-

9295(2007)5[68:EOACIF]2.0.CO;2 

Landau, H. L. (1967). Sampling, data transmission, and the Nyquist rate. Proceedings of the IEEE, 

55(10), 1701–1706. https://doi.org/10.1109/PROC.1967.5962 



 60 

Leader-Williams, N. (1980). Population dynamics and mortality of reindeer introduced into South 

Georgia. The Journal of Wildlife Management, 44(3), 640–657. JSTOR. 

https://doi.org/10.2307/3808011 

Lent, P. C. (1975). A review of acoustic communication in Rangifer tarandus. In Luick, J.R, Lent, 

P.C, Klein, D.R, & White, R.G (Eds.), Proceedings of the First International Reindeer and 

Caribou Symposium (pp. 398–408). 

L’Italien, L., Weladji, R. B., Holand, Ø., Røed, K. H., Nieminen, M., & Côté, S. D. (2012). Mating 

group size and stability in reindeer Rangifer tarandus: The effects of male characteristics, sex 

ratio and male age structure. Ethology, 118(8), 783–792. https://doi.org/10.1111/j.1439-

0310.2012.02073.x 

Liu, N., Jiang, Z., Zhang, L., Zhong, Z., Ping, X., Xu, H., & Li, C. (2016). Bioacoustic cues and 

their relations to dominance rank in Père David’s deer stags. Animal Production Science, 56(6), 

971–977. https://doi.org/10.1071/AN15048 

Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S., & Bello, J. P. (2019). Robust sound event 

detection in bioacoustic sensor networks. PLOS ONE, 14(10), e0214168. 

https://doi.org/10.1371/journal.pone.0214168 

Lynch, E., Angeloni, L., Fristrup, K., Joyce, D., & Wittemyer, G. (2013). The use of on-animal 

acoustical recording devices for studying animal behavior. Ecology and Evolution, 3(7), 2030–

2037. https://doi.org/10.1002/ece3.608 

McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs as repositories 

of social knowledge in African elephants. Science, 292(5516), 491–494. 

https://doi.org/10.1126/science.1057895 



 61 

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. (2020). 

Librosa: Audio and music signal analysis in python (0.8.1). 

https://doi.org/10.5281/zenodo.4792298 

Mcloughlin, M. P., Stewart, R., & McElligott, A. G. (2019). Automated bioacoustics: Methods in 

ecology and conservation and their potential for animal welfare monitoring. Journal of The 

Royal Society Interface, 16(155), 20190225. https://doi.org/10.1098/rsif.2019.0225 

Mellado, M., Cárdenas, C., & Ruíz, F. (2000). Mating behavior of bucks and does in goat 

operations under range conditions. Applied Animal Behaviour Science, 67, 89–96. 

https://doi.org/10.1016/S0168-1591(99)00109-4 

Mesaros, A., Heittola, T., & Virtanen, T. (2016). Metrics for polyphonic sound event detection. 

Applied Sciences, 6(6). https://doi.org/10.3390/app6060162 

Mitani, J. C. (1985). Sexual selection and adult male orangutan long calls. Animal Behaviour, 

33(1), 272–283. https://doi.org/10.1016/S0003-3472(85)80141-X 

Mossing, T., & Damber, J-E. (1981). Rutting behavior and androgen variation in reindeer (Rangifer 

tarandus L.). Journal of Chemical Ecology, 7, 377–389. https://doi.org/10.1007/BF00995760 

Mukharji, P. B. (2021). Darwin’s bulbuls: South Asian cultures of bird fighting and Darwin’s 

theory of sexual selection. BJHS Themes, 6, 1–17. https://doi.org/10.1017/bjt.2021.3 

Mysterud, A., Bonenfant, C., Loe, L. E., Langvatn, R., Yoccoz, N., & Stenseth, N. C. (2008). The 

timing of male reproductive effort relative to female ovulation in a capital breeder. The Journal 

of Animal Ecology, 77(3), 469–477. https://doi.org/10.1111/j.1365-2656.2008.01365.x 

Mysterud, A., Langvatn, R., & Stenseth, N. C. (2004). Patterns of reproductive effort in male 

ungulates. J Zool, 264(2), 209–215. https://doi.org/10.1017/S0952836904005618 



 62 

Mysterud, A., Røed, K. H., Holand, Ø., Yoccoz, N. G., & Nieminen, M. (2009). Age-related 

gestation length adjustment in a large iteroparous mammal at northern latitude. Journal of 

Animal Ecology, 78(5), 1002–1006. https://doi.org/10.1111/j.1365-2656.2009.01553.x 

Navarro, P. J., Fernández, C., Borraz, R., & Alonso, D. (2017). A machine learning approach to 

pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors, 

17(1). https://doi.org/10.3390/s17010018 

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. ArXiv e-prints, 

1511.08458, https://doi.org/10.48550/arXiv.1511.08458 

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge 

and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191 

Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive 

models in ecology: An introduction with mgcv. PeerJ, 7, e6876. 

https://doi.org/10.7717/peerj.6876 

R Core Team. (2018). R: A language and environment for statistical computing (4.1.3). R 

Foundation for Statistical Computing. https://www.r-project.org/ 

Reby, D., & McComb, K. (2003a). Anatomical constraints generate honesty: Acoustic cues to age 

and weight in the roars of red deer stags. Animal Behaviour, 65(3), 519–530. 

https://doi.org/10.1006/anbe.2003.2078 

Reby, D., & McComb, K. (2003b). Vocal communication and reproduction in deer. Advances in 

The Study of Behavior, 33, 231–264. https://doi.org/10.1016/S0065-3454(03)33005-0 



 63 

Robertson, J. G. M. (1986). Female choice, male strategies and the role of vocalizations in the 

Australian frog Uperoleia rugosa. Animal Behaviour, 34(3), 773–784. 

https://doi.org/10.1016/S0003-3472(86)80061-6 

Rognan, C., Szewczak, J., & Morrison, M. (2012). Autonomous recording of great gray owls in 

the Sierra Nevada. Northwestern Naturalist, 93, 138–144. https://doi.org/10.2307/23259690 

Shonfield, J., & Bayne, E. M. (2017). Autonomous recording units in avian ecological research: 

Current use and future applications. Avian Conservation and Ecology, 12(1), 14. 

https://doi.org/10.5751/ACE-00974-120114 

Silva, T. L., Mooney, T. A., Sayigh, L. S., Tyack, P. L., Baird, R. W., & Oswald, J. N. (2016). 

Whistle characteristics and daytime dive behavior in pantropical spotted dolphins (Stenella 

attenuata) in Hawai‘i measured using digital acoustic recording tags (DTAGs). The Journal of 

the Acoustical Society of America, 140(1), 421–429. https://doi.org/10.1121/1.4955081 

Simpson, G. L. (2021). Gratia: Graceful ‘ggplot’-based graphics and other functions for GAMs 

fitted using ‘mgcv.’ R Package Version 0.3. 0. 

Singer, F. J., & Zeigenfuss, L. C. (2002). Influence of trophy hunting and horn size on mating 

behavior and survivorship of mountain sheep. Journal of Mammalogy, 83(3), 682–698. 

https://doi.org/10.1644/1545-1542(2002)083<0682:IOTHAH>2.0.CO;2 

Skogland, T. (1989). Comparative social organization of wild reindeer in relation to food, mates 

and predator avoidance. Parey. http://lib.ugent.be/catalog/rug01:000184320 

Sousa-Lima, R. S., Norris, T. F., Oswald, J. N., & Fernandes, D. P. (2013). A review and inventory 

of fixed autonomous recorders for passive acoustic monitoring of marine mammals. Aquatic 

Mammals, 39(1), 23–53. https://doi.org/10.1109/RIOAcoustics.2013.6683984 



 64 

Stein, P. J. (2011). Active acoustic monitoring systems for detecting, localizing, tracking, and 

classifying marine mammals and fish. The Journal of the Acoustical Society of America, 

129(4), 2369. https://doi.org/10.1121/1.3587669 

Stevens, S. S., Volkmann, J., & Newman, E. B. (2005). A scale for the measurement of the 

psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–

190. https://doi.org/10.1121/1.1915893 

Stimpert, A. K., Au, W. W. L., Parks, S. E., Hurst, T., & Wiley, D. N. (2011). Common humpback 

whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. The Journal of 

the Acoustical Society of America, 129(1), 476–482. https://doi.org/10.1121/1.3504708 

Stowell, D., Benetos, E., & Gill, L. F. (2017). On-bird sound recordings: Automatic acoustic 

recognition of activities and contexts. IEEE/ACM Transactions on Audio, Speech, and 

Language Processing, 25(6), 1193–1206. https://doi.org/10.1109/TASLP.2017.2690565 

Studd, E. K., Boudreau, M. R., Majchrzak, Y. N., Menzies, A. K., Peers, M. J. L., Seguin, J. L., 

Lavergne, S. G., Boonstra, R., Murray, D. L., Boutin, S., & Humphries, M. M. (2019). Use of 

acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses 

to moonlight in free-ranging snowshoe hares. Frontiers in Ecology and Evolution, 7, 154. 

https://doi.org/10.3389/fevo.2019.00154 

Studd, E. K., Derbyshire, R. E., Menzies, A. K., Simms, J. F., Humphries, M. M., Murray, D. L., 

& Boutin, S. (2021). The purr-fect catch: Using accelerometers and audio recorders to 

document kill rates and hunting behaviour of a small prey specialist. Methods in Ecology and 

Evolution, 12(7), 1277–1287. https://doi.org/10.1111/2041-210X.13605 



 65 

Tennenhouse, E. M., Weladji, R. B., Holand, Ø., & Nieminen, M. (2012). Timing of reproductive 

effort differs between young and old dominant male reindeer. Annales Zoologici Fennici, 

49(3), 152–160. JSTOR. https://doi.org/10.5735/086.049.0303 

Thiebault, A., Huetz, C., Pistorius, P., Aubin, T., & Charrier, I. (2021). Animal-borne acoustic data 

alone can provide high accuracy classification of activity budgets. Animal Biotelemetry, 9(1), 

28. https://doi.org/10.1186/s40317-021-00251-1 

Vannoni, E., & McElligott, A. G. (2008). Low frequency groans indicate larger and more dominant 

fallow deer (Dama dama) males. PLOS ONE, 3(9), e3113. 

https://doi.org/10.1371/journal.pone.0003113 

Vannoni, E., Torriani, M. V. G., & McElliogott, A. G. (2005). Acoustic signaling in cervids: A 

methodological approach for measuring vocal communication in fallow deer. Cognition, 

Brain, Behavior, 9(3), 551–566. 

Volodin, I. A., Matrosova, V. A., Volodina, E. V., Garcia, A. J., Gallego, L., Márquez, R., Llusia, 

D., Beltrán, J. F., & Landete-Castillejos, T. (2015). Sex and age-class differences in calls of 

Iberian red deer during the rut: Reversed sex dimorphism of pitch and contrasting roars from 

farmed and wild stags. Acta Ethologica, 18(1), 19–29. https://doi.org/10.1007/s10211-013-

0179-8 

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big 

Data, 3(1), 1–40. https://doi.org/10.1186/s40537-016-0043-6 

Wijers, M., Trethowan, P., Markham, A., du Preez, B., Chamaillé-Jammes, S., Loveridge, A., & 

Macdonald, D. (2018). Listening to lions: Animal-borne acoustic sensors improve bio-logger 



 66 

calibration and behaviour classification performance. Frontiers in Ecology and Evolution, 6, 

171. https://doi.org/10.3389/fevo.2018.00171 

Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic 

recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428. 

https://doi.org/10.1890/12-2088.1 

Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman & 

Hall/CRC Press. 

Wyman, M. T., Mooring, M. S., McCowan, B., Penedo, M. C. T., Reby, D., & Hart, L. A. (2012). 

Acoustic cues to size and quality in the vocalizations of male North American bison, Bison 

bison. Animal Behaviour, 84(6), 1381–1391. https://doi.org/10.1016/j.anbehav.2012.08.037 

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: 

An overview and application in radiology. Insights into Imaging, 9(4), 611–629. 

https://doi.org/10.1007/s13244-018-0639-9 

Yen, S. C., Shieh, B. S., Wang, Y. T., & Wang. Y. (2013). Rutting vocalizations of Formosan sika 

deer Cervus nippon taiouanus—Acoustic structure, seasonal and diurnal variations, and 

individuality. Zoological Science, 30(12), 1025–1031. https://doi.org/10.2108/zsj.30.1025 

Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 

53(1), 205–214. https://doi.org/10.1016/0022-5193(75)90111-3 

Zeng, Z., Song, Y.L., & Zhang, Q. (2011). Copulatory pattern and behavior in a semi-captive 

population of Eld’s deer. Current Zoology, 57(3), 284–292. 

https://doi.org/10.1093/czoolo/57.3.284 



 67 

Zhong, M., LeBien, J., Campos-Cerqueira, M., Dodhia, R., Lavista Ferres, J., Velev, J. P., & Aide, 

T. M. (2020). Multispecies bioacoustic classification using transfer learning of deep 

convolutional neural networks with pseudo-labeling. Applied Acoustics, 166, 107375. 

https://doi.org/10.1016/j.apacoust.2020.107375 

Zuur, A. F., & Ieno, E. N. (2016). A protocol for conducting and presenting results of regression-

type analyses. Methods in Ecology and Evolution, 7(6), 636–645. 

https://doi.org/10.1111/2041-210X.12577 

Zwart, M. C., Baker, A., McGowan, P. J. K., & Whittingham, M. J. (2014). The use of automated 

bioacoustic recorders to replace human wildlife surveys: An example using nightjars. PLOS 

ONE, 9(7), e102770. https://doi.org/10.1371/journal.pone.0102770 

 
 
 
 
 


