
Building Cross-Cluster Security Models for Edge-Core

Environments Involving Multiple Kubernetes Clusters

Mahmood GholipourChoubeh

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

August 2023

© Mahmood GholipourChoubeh, 2023

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mahmood GholipourChoubeh
Entitled: Building Cross-Cluster Security Models for Edge-Core Environ-

ments Involving Multiple Kubernetes Clusters

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Mohsen Ghafouri
Chair and Examiner

Dr. Jun Yan
Examiner

Dr. Lingyu Wang
Co-supervisor

Dr. Suryadipta Majumdar
Co-supervisor

Approved by
Dr. Jun Yan, Graduate Program Director

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Building Cross-Cluster Security Models for Edge-Core Environments
Involving Multiple Kubernetes Clusters

Mahmood GholipourChoubeh

With the emergence of 5G networks and their large scale applications such as IoT and au-

tonomous vehicles, telecom operators are increasingly offloading the computation closer

to customers (i.e., on the edge). Such edge-core environments usually involve multiple

Kubernetes clusters potentially owned by different providers. Confidentiality and privacy

concerns could prevent those providers from sharing data freely with each other, which

makes it challenging to perform common security tasks such as security verification and

attack/anomaly detection across different clusters. In this work, we propose CCSM, a so-

lution for building cross-cluster security models to enable various security analyses, while

preserving confidentiality and privacy for each cluster. We design a six-step methodology

to model both the cross-cluster communication and cross-cluster event dependency, and

we apply those models to different security use cases. We implement our solution based

on a 5G edge-core environment that involves multiple Kubernetes clusters, and our experi-

mental results demonstrate its efficiency (e.g., less than 8 s of processing time for a model

with 3,600 edges and nodes) and accuracy (e.g., more than 96% for cross-cluster event

prediction).

iii

Acknowledgments

I would like to express my deepest gratitude to my thesis co-supervisors, Dr. Lingyu Wang

and Dr. Suryadipta Majumdar. Their endless guidance and assistance significantly con-

tributed to this journey, and their support was indispensable for its accomplishment.

I would like to extend my special thanks to my friend and fellow labmate Hugo Kermabon-

Bobinnec for his invaluable assistance and support throughout this journey. Special appre-

ciation to Dr. Yosr Jarraya for her invaluable guidance and advice.

As well as that, I would like to extend profound gratitude to my parents, brother, and

sister and my dear friends, Sajjad and Behrooz for their unwavering support and love,

shaping my path with their presence and encouragement.

I dedicate this thesis to my wife, Rokhsar, my unwavering source of love and inspi-

ration. This thesis symbolizes our shared dreams and your constant support. Grateful for

your presence in every step of this journey.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Context and Problem Statement . 1

1.2 Research Gap . 2

1.3 Motivating Example . 2

1.4 Our solution . 5

1.5 Thesis Contribution . 6

1.6 Related Publications . 7

1.7 Authors’ Contribution . 8

1.8 Outline . 9

2 Background and Preliminaries 10

2.1 5G Edge-Core Model . 10

2.2 Confidentiality in Private 5G . 11

2.3 Communication and Event Models . 12

2.3.1 Communication Model . 12

2.3.2 Event Dependency Model . 12

2.4 Threat Model . 13

v

2.4.1 In-scope Threats . 13

2.4.2 Out-of-scope Threats . 13

3 Related Work 15

3.1 Cloud Security . 15

3.2 Event Dependency . 16

3.3 Federated Learning . 17

4 CCSM 18

4.1 Overview . 18

4.2 Example . 21

4.3 Security Applications . 21

5 CCSM Approach for Communication Model 23

5.1 Building Local Communication Models 23

5.2 Building Global Communication Model 29

6 CCSM Approach for Event Dependency Model 35

6.1 Building Local Event Dependency Models 35

6.2 Building Global Event Dependency Model 41

7 Implementation 43

7.1 Overview . 43

7.2 Local Model Builder . 45

7.3 Global Model Builder . 46

7.4 Challenges . 46

8 Evaluation 49

8.1 Experimental Settings and Datasets . 49

vi

8.2 Experiment Results . 50

9 Use Cases 58

9.1 Cross-Cluster Security Verification . 58

9.2 Anomaly/Attack Detection . 60

10 Other Contributions 62

10.1 ProSPEC . 62

10.2 Predictive Model . 62

10.3 Experimental Evaluation . 63

11 Conclusion 66

Bibliography 68

Appendix A List of Abbreviations 73

vii

List of Figures

1 Motivating example. 4

2 An example of 5G edge-core architecture [16]. 11

3 Excerpt of communication and event dependency models of a 5G core net-

work. 14

4 Overview of the CCSM approach. 20

5 Running example: illustrating steps of the building local models phase for

edge 1. 28

6 Running example: Output of global builder module on core cluster 32

7 Running example: Output of local builder module for Edge 1 cluster 40

8 Running example: Output of global builder module on core cluster 41

9 CCSM implementation . 44

10 CCSM Execution time . 50

11 Pruning efficiency evaluation . 53

12 Performance metrics measurement in comparison with the ground truth . . 54

13 Performance metrics measurement in comparison with the ground truth for

various prediction depths (frequency threshold = 70%) 56

14 Cross-cluster network slice isolation by CCSM 59

15 CCSM can help detect anomalies in cross-cluster level 61

16 ProSPEC predictive models . 63

viii

17 Learning time and rate of correct predictions of our predictive model (dashed

vertical line shows peak rate) . 64

ix

List of Tables

1 An example of format-preserving encryption using Crypto-PAn. 26

x

Chapter 1

Introduction

1.1 Context and Problem Statement

Cloud and Kubernetes clusters have become standard and commonplace solutions to enable

more cost-effective deployment of 5G applications. At the same time, to support large-scale

applications such as IoT and autonomous vehicles, telecom operators are increasingly of-

floading the computation closer to customers (i.e., on the edge) in order to satisfy the la-

tency and throughput requirements [30, 16]. While these strategies improve the overall

performance and quality of service, security is often an afterthought: the distribution of

workload among multiple clusters may increase the attack surface, the offloading or ex-

tending of the cloud may potentially involve less trusted or less protected edge providers.

Moreover, confidentiality and privacy concerns of the providers may prevent them from

sharing data freely with each other [29], particularly in scenarios where data sovereignty

and cross-border data transfers are involved or when no prior trust relationship has been

established.

1

1.2 Research Gap

There exist various security solutions for clouds and Kubernetes clusters, such as security

verification [33], security impact prediction [48], and attack/breach detection [4] (a more

detailed review of related work is given in Chapter 3). However, most such solutions are

designed for enforcing security locally at each cluster, and they cannot be easily extended

across multiple (edge and core) clusters. Furthermore, as mentioned above, the providers

of those clusters would be reluctant to disclose confidential or private information about

their infrastructure and users. This makes it infeasible to apply those existing security

solutions on a central copy of data from all the clusters, which is necessary for many se-

curity analyses, such as verifying cross-cluster security breaches, detecting cross-cluster

attacks, or predicting events across multiple clusters. To make things worse, as containers

and cloud-native computing [15] are widely adopted due to their clear advantages in terms

of less overhead and better performance, these also suffer from buggy images and weaker

isolation compared to full-fledged VMs. For this reason, container environments and con-

tainer orchestrators (such as Kubernetes) have become attractive targets of various security

attacks [47]. Considering that more and more providers of critical services, including 5G

core network functions [1], are moving to the cloud, addressing those limitations becomes

a pressing concern.

1.3 Motivating Example

To make our discussions more concrete, we present a motivating example in the context of

5G networks. Specifically, Fig. 1 depicts a typical 5G edge-core environment, where the

core cluster is owned by a mobile network operator who provides private 5G services [39,

42] to two different vertical industries, Company 1 and Company 2, who own the two

edge clusters. The two GDPR [41] icons attached to the two edge clusters indicate privacy

2

concerns about leaking user information, which prevent Company 1 and Company 2 from

sharing their data freely with the mobile network operator. On the other hand, they have

to rely on the operator to provide necessary 5G core services and functionalities, including

security solutions.

3

Fi
gu

re
1:

M
ot

iv
at

in
g

ex
am

pl
e.

4

In particular, suppose the administrators of the two edge clusters would like to verify

a given security policy that their services are completely isolated from each other. For

this purpose, as demonstrated by the call-outs, the administrators build graphic models

about communications inside each cluster. Looking at each such local model alone, each

administrator is convinced that the policy is satisfied since all the communications are

limited to be between network functions inside the cluster. Similarly, the core administrator

also sees nothing wrong in his/her local model (note the two network functions shown in

gray color are not a concern as it is quite normal for some resources in the core to be

shared [25]).

However, as demonstrated in the call-out at the bottom, relying solely on local models

is insufficient to capture potential cross-cluster security breaches. Specifically, both edge

administrators fail to see the fact that one of the network functions in Edge 1 can actually

reach another network function in Edge 2 through the core (e.g., due to a misconfiguration

in the AUSF and SMF2 network functions). This represents a violation of the given security

policy, which cannot be identified based on the local models alone, and is only visible in

a global model comprising information across all three clusters, as shown in the figure.

Nonetheless, the aforementioned privacy concerns mean that such a global model cannot

be trivially built by collecting data from all clusters. Instead, a solution must carefully

balance between the need for building the global model to enable security solutions and the

need for preserving confidentiality and privacy for each cluster.

1.4 Our solution

We propose an approach to build a Cross-Cluster Security Models (CCSM) to address the

aforementioned challenge. Specifically, we design a methodology to (i) construct local

security models at each edge cluster, and extend them to establish external links to other

5

clusters, (ii) prune and anonymize the local models to avoid unnecessary information shar-

ing before sending them to the core cluster, and (iii) construct and prune the global model

at the core cluster before sending it back to each edge cluster. While this general method-

ology can potentially be applied to many different security models (encompass a range of

models designed to portray a system’s behavior from a particular perspective, intended for

utilization by security mechanisms), we demonstrate such applicability through instantiat-

ing it to capture two complementary 5G security perspectives, namely, the communication

among 5G network functions and the dependency among 5G events. Furthermore, we show

how those security models may enable verifying cross-cluster security breaches, detecting

cross-cluster attacks/anomalies, and predicting cross-cluster security impacts. As a proof

of concept, we implement the solution and integrate it with Kubernetes and Free5GC (a

popular open-source 5G network implementation [23]), and evaluate its effectiveness and

efficiency through experiments.

1.5 Thesis Contribution

In summary, our main contributions are as follows:

- This work could enable a wide range of cross-cluster security solutions. Specifi-

cally, the proposed methodology can construct a global view of multi-cluster envi-

ronments while preserving the confidentiality and privacy of each cluster. Such a

global view contains important cross-cluster information (which are invisible at each

cluster) that could enable various security solutions to identify cross-cluster security

breaches, cross-cluster attacks/anomalies, and cross-cluster security impacts, which

would otherwise be hidden if examined locally at each individual cluster.

- The proposed methodology consists of six steps for integrating clusters’ local views

in a confidential/private and scalable manner, and distributing the constructed global

6

view back to each cluster on a “need to know” basis. This general methodology is

instantiated to capture both the communication among 5G network functions and the

dependency among 5G events, which complement each other to provide more secu-

rity perspectives. To demonstrate the applicability of our solution, we describe three

potential applications of our solution including security verification, attack/anomaly

detection, and security impact prediction.

- To evaluate our solution, we generate the first multi-cluster dataset covering both

communications among 5G core network functions and 5G control plane events in an

edge-core testbed environment involving multiple inter-connected Kubernetes clus-

ters. We implement our solution based on Privacy Set Intersection (PSI), anonymiza-

tion (Crypto-PAn for communications and FF3 for events), and custom pruning tech-

niques. We integrate our solution into Free5GC, an open-source 5G core implemen-

tation, and Kubernetes clusters. We evaluate our solution through experiments, and

and our experimental results demonstrate its efficiency (e.g., less than 8 s of process-

ing time for a model with 3,600 edges and nodes) and accuracy (e.g., more than 96%

for cross-cluster event prediction).

1.6 Related Publications

Conference Paper. Our work for proactive security policy enforcement for containers has

been published as an article in a peer-reviewed conference’s proceedings:

ProSPEC: Proactive Security Policy Enforcement for Containers. Hugo Kermabon-

Bobinnec, Mahmood GholipourChoubeh, Sima Bagheri, Suryadipta Ma-

jumdar, Yosr Jarraya, Makan Pourzandi and Lingyu Wang. Proceedings of the

7

Twelveth ACM Conference on Data and Application Security and Privacy (CO-

DASPY’22), Apr 25-27, 2022, Baltimore-Washington DC Area, USA. (Accep-

tance ratio 30/111≈27%)

Conference Paper. Our work related to building cross-cluster security models for edge-

core environments will shortly be submitted to a peer-reviewed conference:

Building Cross-Cluster Security Models for Edge-Core Environments Involv-

ing Multiple Kubernetes Clusters. Mahmood GholipourChoubeh, Hugo Kermabon-

Bobinnec, Suryadipta Majumdar, Yosr Jarraya and Lingyu Wang. To be sub-

mitted at ACM ASIACCS 2024.

1.7 Authors’ Contribution

The student co-authors’ contributions to the aforementioned articles are as follows:

ProSPEC. Mahmood GholipourChoubeh contributed to the experiments on learning time

and model accuracy. Hugo Kermabon-Bobinnec contributed to the motivation, approach

and design, implementation as well as experiments on the impact of cluster size, threshold

and predictions on response time (whose corresponding sections have been excluded from

this thesis).

Cross-Cluster Security Models. Mahmood GholipourChoubeh contributed to the motiva-

tion, approach and design, implementation as well as experiments on execution time, effi-

ciency of pruning modules and performance in different use-cases. Mahmood Gholipour-

Choubeh and Hugo Kermabon-Bobinnec contributed to the deployment of the testbed.

8

1.8 Outline

The remainder of the thesis is organized as follows. Preliminaries, background, and threat

model are presented in Chapter 2. Chapter 4 gives an overview of our solution in terms

of methodology and security benefits. Chapter 5 and 6 present the proposed methodology

to build a global model for a communication graph and for an event dependency graph,

respectively. Chapter 7 presents the implementation, and Chapter 8 discusses our evalua-

tion results. In Chapter 9, we demonstrate different use-cases and applications of CCSM.

Chapter 10 presents additional contribution that were made during this work. Finally, we

conclude in Chapter 11.

9

Chapter 2

Background and Preliminaries

In this chapter, we provide necessary background and define our threat model.

2.1 5G Edge-Core Model

In the context of 5G networks, the edge-core model is a distributed architecture allowing

a provider to move some resources and services closer to the user (i.e., at the edge of the

network) while keeping core functions in a central place (i.e., at the core). This allows

better throughput and latency for certain applications, and can also address privacy and

confidentiality concerns by allowing companies to deploy some part of the network on

their own premises.

For instance, the Mobile Edge Computing (MEC) standard [27] suggests placing the

User Plane Function (UPF) at the edge and the control plane network functions (e.g.,

Access and Mobility Management Function (AMF) and Session Management Function

(SMF)) on the core, which can improve the response time and performance. Other use

cases such as private 5G [39, 42] and inter-operator roaming [17]) require more flexibility

in distributing network functions between the core and the edge. Therefore, recent works

(e.g, [16, 39, 42]) propose different edge-core architectures, such as deploying AMF and

10

SMF on the edge next to the UPF [16] (as depicted in Fig. 2), while the core provides au-

thentication, authorization, and other control plane functionalities. Such an approach can

considerably reduce signaling between the edge and core. Our work does not assume a

specific 5G edge-core splitting configuration and instead can support different edge-core

architectures.

Figure 2: An example of 5G edge-core architecture [16].

2.2 Confidentiality in Private 5G

Private 5G is a concept encompassing the provision of tailor-made network applications

and services to private businesses and third-party service providers [53]. Due to the high

costs associated with deploying a standalone private 5G network on-premises for busi-

nesses, they can benefit from the private 5G services provided by mobile network operators.

In such a scenario, the edge cluster is usually deployed on each business’s own premise,

where some of the operator’s services and resources will be shared among tenants (e.g.,

Radio Access Network and control plane [3]). Consequently, confidentiality concerns may

inevitably emerge due to potential conflict of interest between the tenants, and leakage of

data, configurations, or network architecture [39] to third parties. Our work addresses such

concerns by leveraging privacy-preserving, anonymization, and pruning mechanisms.

11

2.3 Communication and Event Models

We briefly review two existing models used to capture the communications and event de-

pendencies, respectively. We will apply our methodology to build such models across

multiple clusters later.

2.3.1 Communication Model

A communication model depicts the existence of communications between network func-

tions (NFs) or between an NF and another network element (e.g., gateway). Communi-

cation models are usually represented as directed graphs including two types of nodes,

namely, internal nodes representing NFs belonging to the local cluster, and external nodes

representing nodes belonging to other clusters (which can be either the source or destination

of communications with internal nodes). The presence of an edge between two nodes in-

dicates a directed network communication between those two nodes, while no edge means

no communication exists between them. Communication models capture the connectivity

dependency between entities (e.g., reachability) and can be used to detect network breaches

and anomalous communications [18, 50]. As an example, Fig. 3a shows the communica-

tion model (as a graph) for NFs inside one cluster. For instance, SMF initiates a connection

with several other NFs, while it only accept a connection initiated by AMF. .

2.3.2 Event Dependency Model

An event dependency model depicts the occurrence dependency (e.g., precedence or suc-

cession) between two events. Event dependency models are represented with directed

graphs where nodes represent events and directed edges represent dependencies between

events. Event dependency models are well studied (e.g., [21, 26, 24]) and used in dif-

ferent security solutions, such as event prediction [28, 33] and anomaly detection [13].

12

The models can be constructed through gathering application events (e.g., from logs, API

calls, and messages) and establishing dependencies between such events based on differ-

ent metrics (e.g., frequency and closeness) or techniques (e.g., Bayesian learning, LSTM,

and n-gram). Fig. 3b depicts an excerpt of event dependency model from a 5G core net-

work. For instance, the event “AUSF-HandleUeAuthPostRequest” depends on the event

“AMF-HandleRegistrationRequest”, with the latter further depending on “AMF-Handle-

InitiateUEMessage”.

2.4 Threat Model

2.4.1 In-scope Threats

We focus on security breaches and attacks that involve multiple clusters (i.e., cross-cluster

threats). Such breaches and attacks may originate from misconfigurations, user mistakes, or

exploits of vulnerabilities by either insiders or external attackers. We assume the breaches

and attacks may be identified based on the communications or event dependency mod-

els using existing security solutions including (but not limited to) offline security audit-

ing, runtime security monitoring, and security impact prediction (as demonstrated later in

Chapter 9). Like most existing privacy-preserving solutions, we assume honest-but-curious

providers who follow the proposed methodology.

2.4.2 Out-of-scope Threats

We do not consider breaches or attacks that are contained inside a single cluster (as these

can be tackled using existing solutions [28, 7, 18, 50, 13]) or those that cannot be identified

based on the communications or event dependency models (e.g., container or OS-level at-

tacks). We do not consider malicious providers who deviate from our methodology. In the

other words, For correct deployment of CCSM and its integrity, we rely on the providers.

13

(a) Communication model.

(b) Event dependency model.

Figure 3: Excerpt of communication and event dependency models of a 5G core network.

Indeed, we assume the integrity of our solution itself, Kubernetes, and the underlying in-

frastructure (including the data sources, such as network traffic and application logs, used

to be build our models), and hence attacks that can temper with these are out-of-scope.

14

Chapter 3

Related Work

In this Chapter, we review related work in the domain of 5G security as well as federated

learning efforts that contribute to the same objective.

3.1 Cloud Security

There are several works addressing different aspects of cloud security, including security

verification and attack detection.

The authors in [18] proposes to detect breaches in software-defined networks (SDN)

based on network topology and forwarding rule observation and analysis. Unlike our so-

lution, it is not designed for distributed and multi-tenant aspects (such as the edge-core

model and private 5G) and does no take into account the privacy challenges brought by

these. In [59], authors present a survey on network services anomaly in NFV environments.

Our current solution can subscribe to the Topology anomalies detection category, but addi-

tionally encompasses topology anomalies happening over multiple infrastructures. There

are several proactive security compliance verification works (e.g., [9, 37, 32, 31, 28]) for

OpenStack clouds. For instance, Weatherman [9] and Congress [37] verify security poli-

cies in clouds using graph-based and Datalog-based models, respectively. LeaPS [32] and

15

Proactivizer [33] are proactive security auditing solutions for cloud environments, while

ProSPEC [28]. They use management events to learn a management event dependency

model and predict future management events. In contrast to our solution, those works are

not designed for application-level events, and to tackle the complexity and privacy chal-

lenges of multi-cluster environments.

In [14], the authors propose a framework to predict advanced persistent threats (APT)

in a distributed 5G environment, while ensuring privacy. Our approach additionally aims

at creating global models for different purposes (including attack detection, security veri-

fication and security impact prediction). The authors in [52] propose a federated-learning

approach to detect network attacks in 5G distributed systems using packet traffic analysis.

Our approach additionally encompasses application events to model the cloud at a higher

level and discover different, and potentially stealthier attacks. WARP [7] propose to proac-

tively mitigate attacks in Kubernetes cluster by predicting the attacker’s next more and mi-

grating vulnerable resources accordingly. All these work could benefit for the cross-cluster

dimension of our solution to extend their scope.

3.2 Event Dependency

In [60], the authors propose an advanced approach to correlate events. This approach can

be used to increase the reliability of our event dependency model. In this work, we add

a federated and distributed approach to correlate events from different sources and envi-

ronment, potentially enabling the discovery of otherwise invisible breaches and attacks.

[24, 21, 26] propose approaches to match events. [26, 24] follows a frequency based metric

to assess the dependency of events.

16

3.3 Federated Learning

Federated learning (FL) is used to collaboratively train a global model. A server node

orchestrates multiple client nodes by sending them a global model. Each client node locally

trains the model using its local data without the need to share it with the server. Su et

al. [45] applied edge federated learning in a smart grid environment to share the private

energy data of users. The edge-cloud collaboration helps in training global models with

minimum communication overhead while ensuring data privacy.

Multiple devices can collaboratively train a security model using FL to learn for the

security appliances (e.g., anomaly detection). For instance, Rasha et al. [40] studied the

application of federated learning in smart cities (e.g., transportation, healthcare, communi-

cation) aiming at improving security and privacy. The authors further provided a few re-

search issues and future directions to improve data protection and performance. Although

FL might train a model without sharing user’s data, it might lead to multiple iterations

that in consequence impact the network performance. FL solutions might also suffer from

distributed data and model poisoning [44]. In addition, none of those efforts focus on

addressing 5G-specific challenges that involve cross-cluster security verification.

17

Chapter 4

CCSM

This chapter presents an overview of the CCSM approach, along with its example and

potential security applications.

4.1 Overview

Fig. 4 illustrates an overview of the CCSM approach to build cross-cluster security models

for edge-core environments involving multiple Kubernetes clusters. The inputs to CCSM

are network traffic and event logs collected from from the 5G edge and core networks

hosted on multiple Kubernetes clusters. CCSM comprises two phases: Building Local

Models and Building Global Model.

The Building Local Models phase is to create local models for each cluster including all

the edges and core by following Steps 1 to 4. (1) CCSM constructs local models for both

communication and event dependencies from network traffic and event logs, respectively.

(2) It extends the local model by identifying external nodes that interacts with the core.

(3) It prunes the other nodes in the local model that do not interact with the core. (4) It

anonymizes all the sensitive information in the model (e.g., IP addresses, network function

names) to protect the confidentiality of an edge (typically owned by different tenants) and

18

share on a “need to know” principle. The Building Global Models phase is to combine local

models to encompass a global view of the security posture across all clusters by following

Steps 5 and 6. (5) CCSM constructs the global model for both communication and event

dependencies by aggregating local models for all edges and core. (6) It prunes the global

model from the edges’ perspectives to enable the creation of edge-wise global views that

are sent back to respective edges. We further detail these steps in Sections 5 and 6.

19

Fi
gu

re
4:

O
ve

rv
ie

w
of

th
e

C
C

SM
ap

pr
oa

ch
.

20

4.2 Example

Using Fig. 4, we show a simplified example with the outputs of CCSM. (1) The con-

structing local model step forms the communication model with the IP addresses for net-

work functions (NFs) (2.2.2.2 for the NF AMF) as the nodes and their communication

as the edges as well as the event dependency model with the event names as the nodes

(registration) and their transitions as the edges; where internal nodes are indicated

as unfilled and external nodes as filled. (2) The extending step identifies external nodes be-

longing to the core (indicated as horizontally stripped) that belongs to the core and (3) the

pruning step removes the other external and internal nodes that are not directly connected

with the core. (4) The anonymization step anonymizes the NF name (AMF), IP address

(2.2.2.2), and event name (registration) to (QqrTeyui), (192.168.26.5) and

(QqEfGKlmn), respectively, using privacy-preserving algorithms (e.g., Crypto-PAn [43]).

(5) The constructing global model aggregates three local models for Edge 1, Edge 2 and the

core (where nodes are indicated using no-pattern, angular strips, horizontal strips, respec-

tively). (6) The final step prepares the global views specific to Edge 1 and Edge 2, while

pruning the part of model that belongs to other edge. We further elaborate on this example

in Examples 1-4.

4.3 Security Applications

By building cross-cluster security models and providing edge-specific global views, CCSM

enables several security applications. First, constructing a global model allows individual

clusters to detect and predict security issues in them that would not be completely possible

using only local models. From the observation that clusters can interact with external en-

tities but their vision is limited to their own scope, and that 5G environments are naturally

multi-tenant and distributed, we claim that extending security model across clusters can

21

help understanding, detecting, and predicting security issues. Second, global views offer

the possibility to audit other (potentially untrusted) tenants of the cloud environments. By

revealing the impact of local activities outside the cluster, one is able to assess whether

security policies are enforced (e.g., if physical or logical boundaries isolation are effec-

tively respected). Third, our global model and views can help administrators represent and

assess the state of complex, distributed cloud environments. For instance, global model

can be used to plan maintenance or change in the environment and prevent once unpre-

dictable “cascading” effects (i.e., a small change in one cluster might have large, disastrous

consequences in the other clusters that depend on it). We detail use-cases inspired from

real-world scenarios in Chapter 9.

22

Chapter 5

CCSM Approach for Communication

Model

This chapter presents our methodology for building local and global communication mod-

els.

5.1 Building Local Communication Models

For each edge as well as the core cluster, we detail in the following how CCSM constructs

a local communication model.

Data Collection and Processing. To build communication models, our approach requires

to capture network traffic between NFs. To later aggregate the local models, our approach

relies on the external communications each model shares with other clusters. Therefore,

network traffic logs are processed to identify two types of communications: internal com-

munication which refers to communication between two internal IP addresses and external

communication which refers to communication between an external and an internal IP ad-

dresses. A single communication entry comprises the IP addresses of the source and the

destination of a communication, additionally it also stores the name of the corresponding

23

NF for internal IP addresses. The obtained communications logs are stored in a CSV file

and serve as input for the next steps.

Constructing. This step consists of building the communication model from the collected

data. For communication models, this process is deterministic, as we construct a directed

graph with one node per unique IP address involved in the communication, and a directed

edge between two given nodes based on the existence of at least one communication record

between source and destination nodes in the network traffic/in the application log. Nodes

are labeled with the associated IP address (and with the name of the corresponding NF, for

internal IP addresses). Step a in Fig. 5 depicts a sample graph representing a communi-

cation model, with internal nodes (i.e., NFs belonging to the local cluster, in white) and

external nodes (i.e., a source or destination node external to the cluster, in black).

Extending. This step is to distinguish those external nodes shared with the core cluster

from other external nodes (e.g., public IP addresses on the Internet) in a confidential man-

ner. To that end, our approach is to identify external nodes in the edges’ local model that in

fact belong to the core cluster (and therefore virtually extend the reach of the edges’ local

models to the core). Specifically, the edge and the core clusters share their respective exter-

nal communications with each other and identify those in common without disclosing any

sensitive data. More precisely, to verify common connections between a given edge cluster

and the core cluster without disclosing any sensitive data (i.e., the NF name or IP address),

we utilize a privacy-preserving intersection (PSI) algorithm [38], a cryptographic method

for secure multiparty computation [12]. PSI enables two entities to compute and find the

shared elements between their sets while keeping the non-shared items confidential. Once

common communications are identified, each edge tags the corresponding external nodes

as belonging to the core cluster. Step b in Fig. 5 depicts a communication model sharing

three of its external nodes with the core cluster (striped diagonally).

24

Pruning. Local models can have a sheer size and therefore would require intensive com-

putational resources during later steps. Additionally, the network architecture that can be

inferred from the model may still reflects potentially sensitive information (e.g., single

points of failure) that individual clusters might be reluctant to share. To address both these

challenges, our idea is to prune the local models and only preserve nodes and edges that are

relevant to the global model. Specifically, we remove nodes (and corresponding edges) that

have no path from/to an external nodes belonging to the core cluster. Our pruning technique

allows to greatly reduce the size of the local models (as evaluated in Chapter 8) while pre-

serving confidentiality by removing nodes that are irrelevant for the security analysis (i.e.,

on a “need to know” basis).

Anonymizing. While confidentiality is partially achieved during extending (using PSI) and

pruning (confidentiality of the network architecture) steps, anonymization aims at com-

pletely decorrelating the edge cluster from its communication model. Therefore, our ap-

proach anonymizes any sensitive data before sending the local model for aggregation in the

core cluster. In fact, the NF’s names and IP addresses (which are sensitive data as they can

be traced back to that particular edge cluster) are anonymized using format-preserving en-

cryption (FPE) algorithms [8] so that the ciphertext is in the same format as corresponding

plaintext. Particularly, for IP addresses, we leverage Crypto-PAn [56, 57], an FPE algo-

rithms specifically designed for anonymizing IP addresses while preserving their subnet

structures (which might be useful for later investigations). Table 1 shows several examples

of IP addresses anonymized using Crypto-PAn in a prefix-preserving manner. For exam-

ple, as first and second IPs in the table belong to the same subnet, after anonymization their

corresponding anonymized IP addresses will belong to the same subnet again. In the same

way, as the third one has 16 bits in common with two previous ones, after anonymization

the corresponding anonymized IP address will have the same first 16 bits.

It is worth mentioning that, even though we utilized Crypto-PAn as an example here for

25

Table 1: An example of format-preserving encryption using Crypto-PAn.

Original IP IP anonymized by Crypto-PAn
192.168.1.13 223.87.156.185
192.168.1.14 223.87.156.187
192.168.5.23 223.87.155.187
192.130.3.54 223.125.128.117
10.10.10.25 29.21.233.153

anonymization, other more secure alternatives such as the approach proposed by Moham-

mady et al. [34] can be used to strengthen potential weaknesses against inference attacks

by fingerprinting and injection [11, 10, 58]. More generally, format-preserving encryption

can be also used for other attributes based on necessity, type of application, and customer’s

requirements. For other applications, CCSM can anonymize different types of attributes

(e.g., timestamps, owner, namespace, etc.) using more general methods such as a general-

ized framework which are provided by Xie et al. in [55]. Similarly, the FF3 standard [20]

is used to anonymize NF names. By utilizing those anonymization algorithms, we allow

local clusters to hide sensitive information before sending their local models for the central-

ized global model building. As well as that, For the confidentiality guarantee, we rely on

the state-of-the-art approaches, such as PSI [38], Crypto-PAn [56, 57], and thus, ensure the

same confidentiality level as those works or their alternatives based on the aforementioned

discussion.

Example 1. Fig. 5 depicts an example of local communication model building. First, in

Fig. 5.a, CCSM constructs the initial version of the local model (as a graph) based on

the collected data, which represents communications between 4 NFs (e.g., AMF, NRF,

SMF, and UPF) and 4 external IPs which are shown in the Captured Connections and

Kubernetes Pods IPs tables. The first two entries of the captures connections are used to

create an edge for the external communication between the AMF (address 192.168.1.12)

and an external IP 4.4.4.8, and for the internal communication between AMF and the NRF.

Then, in Fig. 5.b, CCSM identifies three of those external IPs (4.4.4.7, 4.4.4.8 and 4.4.4.9)

26

as belonging to the core cluster (through the use of PSI, not depicted in the figure) and

marks them accordingly. In Fig. 5.c, the nodes corresponding to NRF, UPF, and external

IP 3.3.3.7 are pruned because none of those can reach or can be reached from any nodes in

the core. Conversely, SMF and AMF can reach the core IPs, therefore these nodes are kept.

Finally, in Fig. 5.d, the name and IP addresses of remaining internal nodes such as AMF are

replaced with the anonymized name QqrTeyui, and anonymized IP address 223.87.156.187

by using FF3 and Cryto-PAn respectively.

27

Fi
gu

re
5:

R
un

ni
ng

ex
am

pl
e:

ill
us

tr
at

in
g

st
ep

s
of

th
e

bu
ild

in
g

lo
ca

lm
od

el
s

ph
as

e
fo

re
dg

e
1.

28

Algorithm for Building Local Models. Algorithm 1 shows our pseudo-code for build-

ing local models. There are four functions for the four steps of the Building local models

phase. First, the Constructing local model function (Line 4) parses a connections.csv

file and converts its content in a graph. Then, this graph is processed by the second function

Extending local model (Line 14) to extract external connections and find common connec-

tions with the core cluster (or with other edges, for the core). To do so, the core and edges

use the PSI algorithm to find common connections without endangering their own privacy.

Third, the graph is processed by the Pruning local model function (Line 31) to check the

reachability of nodes and edges between the edges and the core cluster. This function keeps

those that are reachable and remove others. Finally, the Anonymization local model func-

tion (Line 47) applies anonymization techniques (e.g., PSI and FF3) to prepare the local

model for aggregation (in the core cluster) while preserving confidentiality.

5.2 Building Global Communication Model

During this phase, CCSM receives local models from all edges and the core clusters, then

aggregates them to build a global model. The edge clusters communicate directly with the

core cluster, but not with each other, thus this global model aims at revealing all those com-

munications between edges which are not otherwise easily identifiable. The aggregation

phase happens in a centralized manner (e.g., in the core cluster) in two steps, detailed as

follows.

Constructing the Global Model. In this step, we collect and aggregate all local models

(edges’ and core’s) based on their shared nodes (previously identified in the extending

step). The core cluster takes local models (including its own) as graphs and computes their

mathematical union. It is made possible to find common nodes between graphs since the

external nodes (belonging to the core) are not anonymized in the previous step; instead,

29

only internal nodes are. Because the graph union is commutative, aggregating local models

can be done iteratively and in any order. The obtained global communication model reflects

how the edge clusters potentially interact with each other through the shared nodes in the

core.

Pruning to Generate Global Views. Once the global model is built, it captures all cross-

cluster relationships. However, following the “need to know” principle, each edge cluster

Algorithm 1 Building Local Model.
1: Input: Collected data Connections.csv (SRC(IP, Name),DST(IP, Name))
2: Output: Local model G
3:
4: function CONSTRUCTING_LOCAL_MODEL(Connections.csv)
5: //Build local model from input file (Deterministic)
6: Temp Variable LocalModel(G = (E, V))
7: for each (SRC, DST) in Connection.csv do
8: G.V .add(SRC)
9: G.V .add(DST)

10: G.E.add(SRC, DST)
11: end for
12: Return G
13: end function
14:
15: function EXTENDING_LOCAL_MODEL(G)
16: for edge e in G.E do
17: if e is an external connection then
18: ExternalEdges.add(e)
19: end if
20: end for
21: //Find common edges between edge cluster and core
22: CommonEdges = PSI(ExternalEdges)
23: for e in CommonEdges do
24: if SRC is external IP then
25: G.V (SRC).isCommon = 1
26: else
27: G.V (DST).isCommon = 1
28: end if
29: end for
30: Return G
31: end function
32:

30

33: function PRUNING_LOCAL_MODEL(G)
34: Temp Variable LocalModel(G

′
= (E, V))

35: for node n in G.V do
36: if n.isCommon == 1 then
37: G

′
.V .add(ancestors(n))

38: G
′
.V .add(descendants(n))

39: end if
40: end for
41: for edge e in G.E do
42: if e.SRC is in G

′
.V and e.DST is in G

′
.V then

43: G
′
.E.add(e)

44: end if
45: end for
46: Return G

′

47: end function
48:
49: function ANONYMIZING_LOCAL_MODEL(G)
50: for node n in G.V do
51: n.SRC.IP = Crypto-PAn(n.SRC.IP)
52: n.DST.IP = Crypto-PAn(n.DST.IP)
53: n.SRC.Name = FF3(n.SRC.Name)
54: n.DST.Name = FF3(n.DST.Name)
55: end for
56: Return G
57: end function

is only entitled to view the fraction of the global communication model that is related to

it. Therefore, we apply multiple times the same pruning process as in the pruning local

model step to the global model while considering a different edge’s point of view at a

time. Specifically, for each edge, we create a restricted view of the global communication

model by removing any node that cannot be reached from, or cannot reach an internal

node of the original local model. This ensures that each edge cluster receives only the

relevant information needed to improve their local security view, based on sharing the

least required information without unnecessary overhead. Finally, once the global views

have been constructed, each global view is securely transmitted to the corresponding edge

cluster. This may involve encrypting the model, use secure communication channels, to

ensure that only authorized parties can access the global views (these are not studied in this

31

work).

Example 2. Fig. 6 depicts an example of building a global model from local models from

Edge 1 (at the bottom; following Example 1) and Edge 2 (at the top) and the Core (in the

middle). First, in Fig. 6.e, three local models belonging to Edge 1, Edge 2, and Core re-

spectively, are aggregated into a global model based on common external nodes previously

identified (i.e., AUSF, SMF and UPF for Edge 1; UDM and AUSF for Edge 2). Then,

in Fig. 6.f, the global model is pruned from each Edge’s point of view to provide global

views. From the point of view of Edge 1, its internal nodes AMF and SMF are related to

the node (anonymized) VbnMsdFj in Edge 2 through the Core’s SMF and UDM. Addition-

ally they are related to the node ErThjKLe by transitivity, however the last node of Edge 2

YLlmHReO is not included as it has no relationship with Edge 1 (it cannot be reached, nor

can reach any node from Edge 1). Similar logic can be applied from the point of view of

Edge 2.

Figure 6: Running example: Output of global builder module on core cluster

Algorithm for Building Global Model. Algorithm 2 details the process of constructing

the global model. First, the Constructing global model function (Line 4) merges all local

32

models depending on their connections with the core. To do so, it constructs the set inter-

section between each edge’s local model and its own local model using the PSI algorithm.

Progressively, local models are merged with the core’s local model to form a global model.

Then, CCSM shares a version of the global model to each edge, containing only the in-

formation related to that edge. To that end, the Pruning global model for edge function

(Line 21) removes all edges and nodes that are not reachable from that specific edge cluster

or can not get reached by any one node from that edge cluster.

33

Algorithm 2 Building Global Model.
1: Input: LocalModels, Edge number j
2: Output: Global model Gi pruned for Edge number j
3:
4: function CONSTRUCTING_GLOBAL_MODEL(LocalModels)
5: Temp Variable GlobalModel(G = (E, V))
6: for Graph Gi in LocalModels do
7: for edge e in G

′
i.E do

8: if e.SRC.isCommon == 1 or e.DST.isCommon == 1 then
9: if verify_by_PSI_result(e) then

10: Continue
11: else
12: Alarm for anomaly
13: end if
14: end if
15: end for
16: G.merge(G

′
i)

17: end for
18: Return G
19: end function
20:
21: function PRUNING_GLOBAL_MODEL_FOR_EDGE(G, j)
22: Temp Variable GlobalModel(G

′
= (E, V))

23: for node n in G.V do
24: if n is a node from local model of edge j then
25: G

′
.V .add(ancestors(n))

26: G
′
.V .add(descendants(n))

27: end if
28: end for
29: for Edge e in G.E do
30: if e.SRC is in G

′
.V and e.DST is in G

′
.V then

31: G
′
.E.add(e)

32: end if
33: end for
34: Return G

′

35: end function

34

Chapter 6

CCSM Approach for Event Dependency

Model

In this chapter, we describe how CCSM constructs a local event dependency model for

each cluster, and then aggregates them across multiple clusters. Our methodology can be

seen similar to the one in the previous chapter however, it is more elaborative as there is no

straightforward approach to identify dependency relationships between various application

events. Therefore, we first describe our approach to determine such dependencies, and then

explain how we utilize it to build local and the global models, and generate the global views

subsequently.

6.1 Building Local Event Dependency Models

First, our solution builds local dependency models encompassing the relationship between

local events (i.e., events generated by applications and NFs deployed in the edges and

the core separately). Then, it identifies events which have a cross-cluster dependency and

finally anonymizes the model before sending it for aggregation.

Data Collection. To build the event dependency model, we first collect 5G event logs

35

at the application level. This collection process occurs at the NF level using Kubernetes’

Pods and containers logging. Then, event logs from all 5G applications are subsequently

merged and sorted based on timestamp. Following this, the logs are parsed to extract the

event name (usually in the form of <NF name>-<associated 5G procedure>.

The sorted events entries are stored and used to build the local model.

Identifying Event Dependencies. Unlike communication models, where dependency rela-

tionships can be assessed based on a clear factor (i.e., the presence or not of a network com-

munication), the dependency between two application events cannot be identified straight-

forwardly. Instead, our key idea is to rely on two properties for ordered pair of events,

namely, their temporal closeness and their occurrence frequency. We compute those prop-

erties for each ordered pair of events in the cluster and compare them to their respective

user-defined thresholds to determine whether they have a dependency relationship or not.

We present here our methodology to identify event dependencies, and utilize it to construct

the local event dependency models and the global cross-cluster event dependencies models

(implementation details in next chapter). More formally, given a set of collected events

E = {e1, e2, · · · , en} where event ei happens at time ti, and j > i means event ei happens

before event ej , we define event dependency between two events in a given ordered pair

(ei,ej) as a Boolean function that captures the existence (or not) of a dependency between

those events as follows:

Dependency(ei, ej, Tc, Tf) = true ⇐⇒ |{(ei, ej) | (tj − ti) ≤ Tc}|
NumberOf(ei)

> Tf (1)

where Tc ≥ 0 is a user-defined threshold for the temporal closeness, which is defined as

tj − ti and Tf ∈ [0, 1] is the user-defined threshold for the occurrence frequency of ordered

pair of (ei,ej) when its temporal closeness is less than or equal to Tc. The occurrence

frequency is expressed using the left term of the inequality in the second term of the above

equation. Note that |_| means the set size and NumberOf(ei) counts the total number of

36

occurrences of the event ei independently of the event ej .

Thus, only a subset of the possible dependencies of the form ei->ej will be considered in

the event dependency model, which satisfy the closeness threshold and frequency threshold

chosen by the user. In Chapter 8, we show how the choice of these thresholds impacts the

dependency model generated by CCSM and provide guidelines on how they can be chosen

depending on the use case.

Constructing. As mentioned earlier, we use the aforementioned event dependencies iden-

tification method to build local dependency models. To do so, CCSM constructs a local

model based on the two aforementioned parameters, namely, the occurrence frequency

(named frequency in the remaining for brevity) and the closeness between ordered pairs

of events. More specifically, for any given ordered pair of events (ei, ej), we count the

number of times that event ei is followed by event ej within a time interval smaller than

or equal a predefined closeness threshold. Subsequently, the frequency of occurrence of

event ej after event ei satisfying the temporal closeness condition, is computed and com-

pared with the frequency threshold. If the computed value is larger than the threshold the

dependency is considered, otherwise it is discarded. This probabilistic approach provides

flexibility to users in defining the dependency relationship between events and allows them

to customize these two parameters to identify the best values for their specific application

(i.e., anomaly detection applications might benefit from smaller frequency thresholds, as

anomalies happen in a non-regular and local manner). This flexibility is later discussed in

Chapter 8.

Extending. To extend the scope of the local models and further consider cross-cluster de-

pendencies, we apply our dependency identification method between events from different

models. First, event names are anonymized, then the events logs are shared with the core

cluster. Event timestamps are not anonymized as their exact values are needed by the core

cluster to establish further event dependencies. Unlike for communication models where

37

PSI is used to identify common nodes in a privacy-preserving manner, the same reason-

ing cannot be applied since cross-cluster event dependencies have to be assessed based on

parameters, particularly occurrence frequency of ordered pairs consisting of both edge’s

events and core’s events. Therefore, it is necessary that edge clusters share their entire

anonymized event logs with the core for a centralized processing.

The core cluster employs our dependency identification approach based on user-defined

thresholds, and the closeness and frequency for each pair of events A and B belonging to

the edge and core clusters, respectively. Following this, the core cluster returns to the edge

the list of events that are involved in cross-cluster dependencies (i.e., events that have a

dependency with at least one event on the core cluster, striped diagonally in Fig 7).

Pruning. In this step, the event dependency model is pruned by removing non-essential

nodes and edges while ensuring that important events (i.e., that play a role in the global

model) are retained. This is achieved by pruning nodes that have no path from or to any

nodes identified during the extending step.

Anonymizing. The final step in the building local models process is to anonymize the

local model before sending it for aggregation in the core cluster. In this step, we utilize

FF3, a Format-Preserving Encryption algorithm, to anonymize event names in the model,

similarly to how we anonymize NF names for the communication model.

Example 3. Fig. 7 depicts an example of building a local event dependency graph model.

Closeness and frequency threshold values are 2.5 s and 80%, respectively. First, in Fig. 7.a,

CCSM constructs a local model as a graph by finding dependencies based on event logs

and processing tables which are shown in the figure. For instance, there is no edge from

AMF-Handle Registration Request to AMF-Handle Initial UE Message in the event de-

pendency local model since its frequency (50%) is lower than threshold, even though it

meets closeness threshold. Then, in Fig. 7.b, the graph is extended by tagging nodes which

have cross-cluster dependency (shown with striped patterns). For instance, AMF-Handle

38

Initial UE Message and AMF-Handle Registration Request) are found to have dependen-

cies with event in the core cluster based on the closeness and frequency they have with

certain core events (not shown in this figure). After that, in Fig. 7.c, the extended model

is pruned by removing irrelevant nodes and edges which are not essential for the analysis.

For instance, the node AMF-Handle Mobility Updating is pruned as it cannot reach any

node in the core, and cannot be reached from any node in the core. Finally, in Fig. 7.d,

event names are anonymized by using FF3 in order to address privacy and confidential-

ity concerns. For example, AMF-Handle Registration Request is anonymized by FF3 to

Er4Qfg67kjlsdfBmNcdsEP.

39

Fi
gu

re
7:

R
un

ni
ng

ex
am

pl
e:

O
ut

pu
to

fl
oc

al
bu

ild
er

m
od

ul
e

fo
rE

dg
e

1
cl

us
te

r

40

6.2 Building Global Event Dependency Model

In this phase, CCSM collects all local models from edges and core clusters and integrate

them to construct global model. Then, it generates global views from global model. These

two steps are explained in detail in the following.

Constructing the Global Model. In this step, we integrate all local models (edges’ and

core’s) based on the cross-cluster dependencies previously identified. Since cross-cluster

event dependencies are identified in the core only, a consequence of this is that edge clusters

are not aware of the core-side of their dependencies. Based on the cross-cluster dependen-

cies identified during the extending step, the core is able to connect the prune version of

local models with its own model, effectively constructing a global model.

Pruning to Generate Global Views. Once the global model is built, we apply our pruning

method from each edge’s point of view. For each edge, we create a restricted view of

the global model by removing any node that cannot be reached from, or cannot reach an

internal node of the edge’s original local model. At the end of this step, each edge receives

only the necessary information to improve their local security (i.e., each edge sees a specific

view from global model). This approach to generate and send a specific view each edge

completely addresses privacy and confidentiality concerns of individual clusters.

Figure 8: Running example: Output of global builder module on core cluster

41

Example 4. Fig. 8 depicts an example of building global event dependency model from

three local models (Edge 1’s and Edge 2’s and Core’s). In Fig. 8.e, the model of Edge

1 (left), Edge 2 (top right) and the Core (middle) are aggregated together. To that end,

CCSM uses the closeness and frequency of events to find cross-cluster dependencies be-

tween edge and core nodes. From this step, it finds three new dependencies between events

of Edge 1 and the Core: Er4...→AUSF-HandleUeAuth..., Er4...→UDM-HandleGenerate

..., and Wx34...→UDM-HandleGenerate... (the corresponding event logs are not shown).

Similarly, it find one additional event dependency between AUSF-HandleUeAuth... (in the

Core) and Rr4Q... (in Edge 2). Then, in step Fig. 8.f, CCSM prunes the global model

from the point of view of Edge 1, by removing core events that cannot be reached from (or

cannot reach) any event from Edge 1 (for instance, UDM-HandleGetAmData). As a result,

the obtained model and view shows a potential event dependency from events in Edge 1

(Er4... and Wx34...) to an event in Edge 2 (Rr4...), indicating a potential breach which

might be examined by experts. We will further demonstrate the applicability of such model

in Chapter 9.

42

Chapter 7

Implementation

This chapter details the implementation of CCSM, then describes some challenges and

technical issues we faced and how we overcame them.

7.1 Overview

We deploy a multi-cluster containerized 5G core network based on Towards5GS-Helm [49],

an open-source initiative based on Free5GC [23]. We use Helm charts to automate the de-

ployment of a 5G core network on Kubernetes. We use UERANSIM [5] to simulate the

5G Radio Access Network and generate events and traffic in the 5G core (e.g., register and

de-register UEs). Fig. 9 describes the architecture of CCSM and the different technologies

employed to realize each component. CCSM is implemented in a distributed manner in-

cluding the local model builder module instances deployed on all individual clusters (i.e.,

edges and core), and the global model builder module deployed as a centralized manager

on the core cluster. In the following, we detail on how we implement the local model

builder and the global model builder.

43

Fi
gu

re
9:

C
C

SM
im

pl
em

en
ta

tio
n

44

7.2 Local Model Builder

First, we collect and save data required to build local models on each edge cluster and in the

core cluster. To build the communication graphs, we first collect the control plane traffic on

each cluster by deploying a DaemonSet of Pods running TShark [51] to capture network

trace on each node. We enable the Kubernetes hostNetwork option and run the pod as

privileged to collect the traffic on the host interface. We send all collected traffic to the

master Node of the cluster. To avoid using bandwidth, each collection agent filters out traf-

fic unrelated to Kubernetes before sending it. A server on the master node receives all traffic

logs as .pcap files and extracts the each connection (i.e., source and destination IP). Then,

we map the IP addresses to Kubernetes Pods by querying the Kubernetes API, or marks the

communication as external if no mapping is known (i.e., one of the communicants belongs

to the core cluster). Communication are saved in a .csv file, where each entry is a commu-

nication between two NFs. On the other hand, to build the event dependency graphs, we

first collect all logs using the Kubernetes API (kubectl logs command) directly from

the master node, and keep only event logs. Then, we aggregate and sort all event logs by

timestamp (regardless of their node or function of origin) and a custom Python script finds

the event dependencies as described in Chapter 6. We save event dependencies in a .csv

file, each entry being a relationship identified between two events according to user-defined

closeness and frequency thresholds.

We use the Python library Pandas [54] to process the .csv file and generate the initial

communication or event dependency graph. Then, we extend each local model and identify

external connection or events belonging to the core cluster. Specifically, we first set up an

open-source implementation of the PSI algorithm based on [38] as a server on the core

cluster. For communication graph, we identify common IP addresses between each edge’s

communication and the core’s NFs. For event dependency graph, dependencies between

core and edge events are assessed using the same threshold parameters with the script

45

previously mentioned.

To prune local models, we utilize the Pandas [54] and NetworkX [36] Python libraries.

First, the graphs are converted to a Network object, then we call the descendants (or an-

cestors) functions of NetworkX to assess nodes that are reachable from (or can reach to,

respectively) nodes marked as external (i.e., belonging to the core cluster), and remove

others. Finally, we anonymize IP addresses using an implementation of Crypto-PAn [43].

On the other hand, events of NF names are anonymized with FF3 [22], a NIST-approved

Format-Preserving Encryption (FPE) algorithm.

7.3 Global Model Builder

On the core cluster, we aggregate local models and build a global model. The anonymized

local models are securely sent to the core cluster. Global models are constructed by iden-

tifying common nodes (for communication graph) or new event dependencies (for event

dependency graph). For these, we employ PSI, the Networkx and the Pandas Python li-

brary.

7.4 Challenges

Log Precision. To precisely determine relationship and order between events logs, we rely

on timestamp measurement output from each application’s logger. However, using the de-

fault logs of Free5GC led to several inconsistencies as the default timestamp precision is at

the second scale. Although this did not pose challenge within a single NF’s logs (as logs are

written sequentially to standard output, in the correct order), reliably determining the order

of appearance of multiple events from different NFs was made impossible when all had the

same timestamp. This behaviour is frequent since events in the 5G core happen at a rapid

pace (e.g., a complete UE registration can take less one second and involve a dozen events).

46

Free5GC does not offer runtime options to modify and increase the precision of their logs,

therefore, we modify the source code of the NF applications (in Go) to instead print logs

at the nanosecond scale (i.e., changing TimestampFormat from time.RFC3339 to

time.RFC3339Nano). The change was officially merged into the vendor’s official code

base.

Multi-cluster 5G Core Kubernetes. We implement CCSM in a realistic environment

composed of multiple Kubernetes. Although default Kubernetes environment allow multi-

ple users (tenants) to share one same cluster, tenants still share (e.g., the physical network

links, the nodes). For this reason, using different user accounts to represent the core and

the edges is not realistic. Instead, we deploy multiple real Kubernetes clusters, each inde-

pendently managed by one entity (e.g., edge, core). Similarly to real MEC deployment,

we connect those different clusters with a backhaul network and the corresponding net-

work routing rules. To allow services and NFs from different clusters to communicate

together, we leverage Submariner [46]. In particular, we deploy a service broker on the

core cluster, a gateway on each cluster’s master node, and a Submariner tunnel between

each edge’s gateway and the core cluster’s gateway. For security reasons, we deploy our

clusters in an internal network, using only private interfaces. However, Submariner requires

public interfaces (specifically, the interface for the default route) to automatically discover

gateway. To solve this issue, we temporary trick Submariner into using our private inter-

faces for the gateway discovery by setting them as default for the time of the discovery

only. To avoid overcomplexity, we ensure that Pods and Services CIDR do not overlap

between each clusters, even though Submariner offers a solution (GlobalNet) to overcome

this issue. Additionally, we set up Free5GC to work across our multi-cluster Kubernetes

environment. We export all Kubernetes services involved in cross-cluster communication

depending in the core-edge configuration user (i.e., if UPF is deployed in Cluster A and

SMF is in Cluster B, we export both UPF-PFCP, and SMF services IP address, so those

47

can communicate according the 3GPP standard). To that end, we use Submariner subctl

export service command.

48

Chapter 8

Evaluation

In this chapter, we present our experimental setup and dataset, then we evaluate CCSM

execution time, the efficiency of its pruning module. Finally, we present an evaluation of

our event dependency graph through different performance metrics.

8.1 Experimental Settings and Datasets

We first describe the implementation of the testbed in which we deploy and evaluate our

solution, and then we describe the dataset we collected and used as part of our evaluation.

Experimental Settings. CCSM is deployed across two Kubernetes clusters, each com-

posed of one master Node and two worker Nodes. Each Node is a virtual machine with 4

vCPUs and 8GB memory, running Ubuntu 20.04. We use VirtualBox as hypervisor, and we

create an internal network for each cluster and an internal network for the communication

between clusters (backhaul). We deploy Kubernetes v1.23.14 on top of Containerd v1.4.6

using Kubeadm and the recommended installation steps. For the deployment of 5G core,

we use a version of Free5GC for Kubernetes [49].

Dataset. We collect data in a real-world 5G core network deployed in Kubernetes using

Free5GC. To obtain communication graphs, we use a local model as obtained in Fig. 3 as

49

a seed to generate multiple clusters configuration, each with different NF splitting between

edge and core. For the event dependency graphs, we deploy a multi-cluster 5G core network

in Kubernetes and add several UEs to trigger 5G network procedures (e.g., registration,

de-registration, mobility), then we collect the Free5GC application level logs by running

Kubectl logs command for each Pods.

8.2 Experiment Results

400 1200 2000 2800 3600
Size of local model (|V| + |E|)

0

2

4

6

8

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.1

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(a) Time to build communication
models as a function of the size
of local models

6000 12000 18000 24000 30000 36000
Number of event instances

0

5

10

15

20

25

30

Ex
ec

ut
io

n
tim

e
(s

)

Number of event types = 60

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(b) Time to build event depen-
dency models as a function of
the total number of events

20 40 60 80 100
Number of event types

0

10

20

30

40

Ex
ec

ut
io

n
tim

e
(s

)

Number of event instances = 10000

Construction
Extension
Pruning

Anonymization
Global model construction
Global model pruning

(c) Time to build event depen-
dency models as a function of
the number of unique events

Figure 10: CCSM Execution time

50

Execution Time. In this experiment, we measure the execution time of our solution.

Specifically, we measure the time needed by CCSM to perform each steps depending on

parameters that are representative. For these experiments, we only consider one core cluster

and one edge cluster.

Fig. 10a shows the time required for building communication models depending on the

size of the local models (i.e., the sum of edges and vertices: |V| + |E|), ranging from 400 to

3600 (before pruning). Overall, the execution time of CCSM including local model build-

ing and global model building appears to grow linearly. Some specific steps (e.g., pruning)

are almost not impacted by the size of the local models, while others (e.g., anonymization,

performed by a third party tools) are more impacted, however all steps are performed in

complexity at most linear.

On the other hand, Fig. 10b and 10c show the time required by CCSM to build local

and global event dependency models. Because the size of the model is not representative

of different types of clusters (i.e., a large cluster can generate very few events, or a small

cluster can generate a vast amount of events), we instead study the impact of two other

parameters specific to the event dependency models, namely, the number of event instances

and the number of unique event types. Fig. 10b presents the execution time of each step

for event instances ranging from 6,000 to 36,000 while the number of unique event type

is fixed to 60 (This value is number of event types we collected in on our testbed for a

common scenario). It can be observed that the trend is linear and the local model extension

step if the most time-consuming, as it requires to find cross-cluster dependencies between

the edge and core. Additionally, Fig. 10c shows the effect of increasing the number of

unique event types, while the number of event instances is fixed to 10,000. The execution

time of CCSM appears quadratic, ranging from around 8 s to almost 40 s when the number

of event types grows from 20 to 100. This is natural since each new unique event type

might form dependency with the n existing event types, therefore going from n to 2n event

51

types creates at most n2 new dependencies.

We conclude that using CCSM in a real-world environment is possible and scalable

since our approach is offline and local models are to be built only periodically (i.e., one

model can be constructed offline and used at runtime for various use cases). Therefore,

we consider an execution time in the range of seconds to be acceptable. It is to be noted

that CCSM is by design scalable across multiple clusters, since, the building local models

steps can be executed in parallel on each individual clusters. On the other hand, although

the steps to build global models cannot be executed in parallel, our results show that these

scale linearly, thus ensuring our approach is practical even for large clusters.

Efficiency of Pruning. In this experiment, we evaluate the efficiency of pruning techniques

utilized to remove the non-necessary nodes and edges. To that end, we measure the size

of models before and after pruning, and compare them. Fig. 11 depicts the percentage of

original model that was pruned as a function of the local models’ beta index [19]. The

beta index is a measure of a graph’s connectivity and is calculated as the ratio between the

number of edges (|E|) and the number of nodes (|V|) in the graph.

Fig. 11a depicts our results for communication model. As beta indices ranging from

0.7 to 2.5, the efficiency of pruning diminishes exponentially. For a beta indices of 1 and

lower, models are sparse, and pruning efficiently removes nodes and edges that do not

have an impact on the global model. Therefore, the complexity of local models is greatly

reduced, and the final size of local models average only 50% of their initial sizes. On the

other hand, as models become more and more connected (beta index > 1.5), more nodes

and edges are taken into account, and the pruning is less efficient. It is to be noted that

this is not a limitation of our model, but rather a consequence of the complexity of models:

CCSM carefully considers all possible dependency between clusters and only prunes nodes

that won’t have an impact on the final results at all. As a guideline, one can skip the pruning

steps if dealing with complex, highly connected models (high beta index).

52

Fig. 11b shows our results with event dependency models. Even though no clear trend

can be identified, results show that our approach usually prunes between 10% and 60% of

the local model, regardless of its connectivity.

1.0 1.5 2.0 2.5
Beta index = |E| / |V|

0

20

40

60

80

100

%
 o

f o
rig

in
al

 m
od

el
 p

ru
ne

d

r2 = 0.88

(a) Communication

1.0 1.5 2.0
Beta index = |E| / |V|

0

20

40

60

80

100

%
 o

f o
rig

in
al

 m
od

el
 p

ru
ne

d
(b) Event

Figure 11: Pruning efficiency evaluation

Performances of Event Model. In this experiment, we measure the accuracy of our event

dependency model. Because these are built in a non-deterministic manner (i.e., based on

temporal closeness and frequency of observation), we assess the quality of our method

by comparing our event dependency models to a ground truth of event dependency in a

5G core environment (i.e., following the 3GPP standard [2]). For generating the ground

truth manually, we analyze and compare the sequence of event logs which was collected on

testbed with sequence diagrams, as well as other process interactions and activities outlined

in the technical specifications provided by 3GPP in order to find event dependencies. It’s

important to note that while this approach isn’t flawless and perfect but it is the best possible

option, considering that practical implementations might deviate from the defined standards

or even extend beyond them.

Our goal is to measure to what extent CCSM is able to reconstruct the event depen-

dencies across multiple clusters using closeness and frequency as a way to extend and

53

aggregate local models (as detailed in Chapter 6). Fig. 12 shows the accuracy, the preci-

sion, the recall and the F1 score of global model built by CCSM for different closeness

and frequency threshold values. We perform these measurements on the cross-cluster event

dependencies identified by our solution (i.e., we ignore the dependencies happening within

the same cluster as they are trivial to identify, even though such dependencies are also

useful for CCSM to extend local models). We measure accuracy, precision and recall as

standard criterion’s to measure performance of models.

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

101 10260

70

Frequency threshold
10% 30% 50% 70% 90%

(a) Accuracy

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)
90
95

Frequency threshold
10%
30%

50%
70%

90%

(b) Precision

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

R
ec

al
l (

%
)

Frequency threshold
10%
30%

50%
70%

90%

(c) Recall

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

F1
 sc

or
e

(%
)

Frequency threshold
10%
30%

50%
70%

90%

(d) F1

Figure 12: Performance metrics measurement in comparison with the ground truth

Results show that the overall accuracy of CCSM reaches a peak at slightly over 70%

with a frequency threshold of 50% and a closeness threshold of 500 ms (i.e., two events

54

are considered dependent if and only if they happen within less than 500 ms at least 50%

of the time). Decreasing the frequency threshold overall results in a lower precision (i.e.,

higher false positive, as we consider two close events to be dependent even if they happen

only sparsely over time) but higher recall (i.e., lower false negatives, as we do not miss

dependent but rare events). Conversely, increasing the frequency threshold results in higher

precision of our approach, but lower recall.

We observe similar behaviour when varying the closeness threshold: increasing it past

1,000 ms suddenly drops the accuracy of our solution since Free5GC procedure (e.g., UE

registration/de-registration) typically happen within one second according to our observa-

tions. Considering low closeness threshold generally increases the precision (i.e., we solely

consider events closely related in time, thus more likely to be really related) but decrease

the recall (i.e., events indirectly related are missed if they happen on the long run), whereas

high closeness threshold results in more false positives but less false negatives.

We conclude that there exist optimal closeness and frequency threshold values that

maximize accuracy, precision or recall. Users can choose the closeness and threshold val-

ues that fits the best their requirements. For instance, users interested in event prediction

might benefit more from higher recall (i.e., less false negatives) since the increased rate

of false positives (i.e., wrong predictions) would only add delay, and might therefore be

acceptable. On the other hand, anomaly detection applications might benefit from higher

precision (i.e., less false positives) to reduce alert fatigue. We present use cases in more

details in Chapter 9.

Event Prediction Evaluation. We extend the evaluation of CCSM event dependency graph

model to predict events more or less close in the future. Specifically, we fix the frequency

threshold of our solution at 70%, and evaluate the performance of our learned model to

predict events at depth 1 (i.e., the immediate next event), 4 (i.e, the next four events), 10,

and without prediction depth. Fig. 13 shows that the peak accuracy of 99% is reached when

55

predicting the immediate next event with a short closeness threshold (10 ms). However, in

similar conditions, our solution correctly predicts the four next events with 96% accuracy,

the 10 next events with 88% accuracy, and finally all future events with 68% accuracy

(similarly to Fig. 12). We can observe that CCSM has better precision at predicting events

to unlimited depths (i.e., predicted events are more likely to effectively happen within a

very large sequence of events, reducing the false positive rate) at the cost of recall (i.e.,

predicting more events results in larger false negatives).

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Prediction depth
1 4 10 Unlimited

(a) Accuracy

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)

Prediction depth
1 4 10 Unlimited

(b) Precision

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

R
ec

al
l (

%
)

Prediction depth
1 4 10 Unlimited

(c) Recall

100 101 102 103

Closeness threshold (ms)

0

20

40

60

80

100

F1
 sc

or
e

(%
)

Prediction depth
1 4 10 Unlimited

(d) F1

Figure 13: Performance metrics measurement in comparison with the ground truth for
various prediction depths (frequency threshold = 70%)

Overall, results emphasizes the impact of user parameters on the performance of our

models, depending on the use case. For instance, users willing to predict immediate next

56

events with high accuracy would prefer a closeness threshold comprised between 10 ms and

100 ms, whereas users wanting a sensitive solution over long period (i.e., predict events in

the far future with high recall) would prefer a closeness threshold higher than 1,000 ms.

57

Chapter 9

Use Cases

There are numerous security applications that can benefit from accessing a global view to

achieve their objectives. In this chapter, we present major three use cases related to security

(namely, cross-cluster security verification, cross-cluster security impact prediction and

attack detection) and how CCSM can help addressing them.

9.1 Cross-Cluster Security Verification

Security verification refers to the process of verifying if the application deployed across dis-

tributed clusters under different domains complies with policies or predefined rules using

the global models. The latter allows validation of properties impacting network communi-

cation, and the communication patterns across different NFs in the same or different clus-

ters in different domains while preserving the confidentiality and privacy of information

shared between domains. An example of properties could be cross-cluster network isola-

tion, cross-cluster communication pattern, and/or cross-cluster event-based properties. An

illustrative example which is shown in Fig. 14 is the verification of isolation of 5G network

slices at the cross-cluster level. it shows how CCSM is able to address this challenge to

verify network slice isolation at the cross-cluster level.

58

Fi
gu

re
14

:C
ro

ss
-c

lu
st

er
ne

tw
or

k
sl

ic
e

is
ol

at
io

n
by

C
C

SM

59

9.2 Anomaly/Attack Detection

CCSM can also be used to detect anomalies across multiple clusters, that would other-

wise go undetected. Fig. 15 depicts an example of scenario inspired from [42] involving

a central cloud and two private 5G networks. The private cloud provides connectivity to

user on-site, while central cloud (e.g., mobile network operator) provides roaming for pri-

vate cloud users off-site. Following the authentication procedure in the private cloud, the

authentication function (AUSF) of each private cloud transmits cryptographic keys to the

management function (AMF) at the public cloud in order to secure the UE’s communi-

cations while roaming. These extended authentication protocol (EAP)-based procedures

are detailed in the 3GPP specifications and can be represented as a global model depicting

the ground truth (at the top right corner). CCSM can be used to detect anomalies (e.g., a

potential isolation breach) by first constructing the local models in each core cluster, then

assembling the global view (depicted in the cloud callout). By observing the difference

between the ground truth and the effective models, the three tenants can identifies anoma-

lies. In this example, the collected global model shows that the AMF UpdateKeys and

UDR-QuerySMFRegList events are unexpectedly related to UDR and AUSF events in

the second private cloud, potentially indicating a leak of data from the public cloud to

private cloud 2 (e.g., cryptographic keys).

60

Fi
gu

re
15

:C
C

SM
ca

n
he

lp
de

te
ct

an
om

al
ie

s
in

cr
os

s-
cl

us
te

rl
ev

el

61

Chapter 10

Other Contributions

.

10.1 ProSPEC

This section presents earlier contributions made to the paper “Proactive Security Policy

Enforcement for Containers” (ACM CODASPY 2022), including collecting audit logs and

building an event predictive model in a single Kubernetes cluster. These contributions were

an inspiration towards building the cross-cluster dependency models that were presented in

the previous chapters. In the following, we quickly introduce such predictive models and

present experiment results regarding their learning time and accuracy. More details about

how such models are built and used can be found in [28].

10.2 Predictive Model

Fig. 16 shows an example of an event predictive model constructed from historical Kuber-

netes audit logs collected from our testbed. The model learning was done using a Bayesian

network [35]. A predictive model is represented as a directed graph where nodes indicate

62

Figure 16: ProSPEC predictive models

container events, edges indicate their transitions, and labels on edges indicate the probabil-

ities of a transition. For instance, a Kubernetes Service has 68% chance of being created

after a Pod has been created.

10.3 Experimental Evaluation

The experimental environment is set up on our Kubernetes testbed described in [28]. For

both experiments, ProSPEC is running on the master VM and OPA/Gatekeeper inside a

container on a worker Node. In the following, we report the evaluation results of the offline

learning time and rate of correct predictions of the predictive models.

Offline Learning Time. We measure the offline learning time, i.e., the time required for

63

(a) Measured time for different learning steps:
sequence building and model learning

(b) The correct predictions rates of our model
for different thresholds and # of sequences

Figure 17: Learning time and rate of correct predictions of our predictive model (dashed
vertical line shows peak rate)

deriving the predictive model from event logs. The measured time in this experiment in-

cludes the time to build the event sequences as well as the time to learn the predictive

model using the Bayesian network library pgmpy [6]. A preliminary log processing task,

performed by Logstash, is not considered in this experiment as in practice it is supposed to

be performed in parallel (i.e., while the audit logs are collected from the container environ-

ment) and therefore does not impact the learning time.

Fig. 17a shows the time required by the predictive model building module of ProSPEC

to sequence the logs and build a predictive model while the number of event sequences

varies from 2,000 to 10,000. We can see that the time required to perform both of those

offline learning steps shows an upward linear trend. The linear trend is less pronounced

for the predictive model learning than for the sequence building, as the time needed for the

former is much less than that is needed for the latter.

For instance, the time required for model learning increases almost linearly from 248 ms

64

to 337 ms with the increasing number of sequences, whereas the time required for sequence

building is increasing from 801 ms to 3,950 ms under similar numbers of sequences. This

has a practical implication since the more expensive sequence building only needs to be

performed once for each event sequence, while the less expensive model learning may

need to be repetitively performed (e.g., when new event sequences are added to the training

data). Finally, the overall time reaches about 4 seconds for 10,000 event sequences, which

is reasonable especially considering this is an offline step performed only periodically.

Rate of Correct Predictions at Runtime. This experiment is to assess the relation between

the rate of correct predictions of our models, user-defined threshold values, and the size of

the training set.

During the ProSPEC runtime phase, the chosen threshold for the critical events dictates

if a pre-computation will be triggered or not. As the model accuracy will rely on whether

we correctly predict critical events or not, it is thus important to show that the chosen

threshold has an impact on the overall rate of correct predictions of the model. Note that the

best accuracy and corresponding threshold may vary based on different predictive models.

The rate of correct predictions is measured for different datasets by varying the number of

event sequence from 2,000 to 10,000. 80% of each dataset is used during the training and

the remaining is used for testing. For each threshold value, we define the rate of correct

predictions as the number of successful predictions over the number of total predictions.

Fig. 17b shows the rate of correct predictions as a function of threshold values for

different datasets. We find that the best rate for the used model (as in Fig. 16) reaches

98.4% for a threshold value of 0.78 and a training dataset of 4,000 sequences. However,

small differences between different training sets are observed; specifically, it shows that a

training set larger than 2,000 sequences does not significantly improve the rate of correct

predictions.

65

Chapter 11

Conclusion

In this dissertation, we presented CCSM, a solution for building cross-cluster security mod-

els to enable various security analyses, while preserving confidentiality and privacy for each

cluster. Our solution uses models that are employed for security purpose (e.g., communi-

cation model and event dependency model) and aggregates them into a global model and

global views, respectively, in a confidentiality-preserving manner. The global models and

views created can help detecting breaches or attacks happening across multiple clusters that

would otherwise be invisible to local models. We apply our solution to a cloud-native 5G

core in Kubernetes. Our experiments show that CCSM can learn and aggregate commu-

nication models rapidly (8 s for large clouds up to 3,600 edges and nodes), and can adapt

to various use cases with high accuracy, precision and recall (up to 99% accuracy, 96%

precision and 92.5% recall with different parameters).

Limitations and Future Work. There are a few limitations in our work as follows. First,

although our evaluation shows that our approach is theoretically scalable, more experi-

ments can be run to assess the performance of our solution over a large number of edge

clusters. Additionally, a larger number of security models can be investigated to extend the

security applications of our solution. For instance, communication models presented in this

dissertation can be enriched (e.g., with the frequency, or the amount of data exchanged) in

66

order to provide more information to the models’ users based on their requirements, and

potentially increase their accuracy.

67

Bibliography

[1] 5G cloud native. https://www.ericsson.com/en/cloud-
infrastructure. [Accessed 4-7-2023].

[2] 3GPP Technical Specification (TS) 23.502 version 16.7.0 Release 16. MITRE
ATT&CK Framework. https://www.etsi.org/deliver/etsi_ts/
123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf.
[Accessed 30-3-2023].

[3] 5G-ACIA. 5G non-public networks for industrial scenarios. 5G-ACIA white paper,
2019.

[4] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov. 5g
security: Analysis of threats and solutions. In 2017 IEEE Conference on Standards
for Communications and Networking (CSCN), pages 193–199. IEEE, 2017.

[5] Ali Güngör. UERANSIM, 2023.

[6] A. Ankan and A. Panda. pgmpy: Probabilistic graphical models using python. In
SCIPY. Citeseer, 2015.

[7] S. Bagheri, H. Kermabon-Bobinnec, S. Majumdar, Y. Jarraya, L. Wang, and
M. Pourzandi. Warping the defence timeline: Non-disruptive proactive attack mit-
igation for kubernetes clusters. 2023.

[8] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryption.
In Selected Areas in Cryptography: 16th Annual International Workshop, SAC 2009,
Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers 16, pages
295–312. Springer, 2009.

[9] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of
changes in virtualized infrastructures. In ACSAC, 2015.

[10] T. Brekne and A. Årnes. Circumventing ip-address pseudonymization. In CCN, 2005.

[11] T. Brekne, A. Årnes, and A. Øslebø. Anonymization of ip traffic monitoring data: At-
tacks on two prefix-preserving anonymization schemes and some proposed remedies.
In Privacy Enhancing Technologies: 5th International Workshop, PET 2005, Cavtat,

68

https://www.ericsson.com/en/cloud-infrastructure
https://www.ericsson.com/en/cloud-infrastructure
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf

Croatia, May 30-June 1, 2005, Revised Selected Papers 5, pages 179–196. Springer,
2006.

[12] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic
encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1243–1255, 2017.

[13] L. Cheng, K. Tian, D. D. Yao, L. Sha, and R. A. Beyah. Checking is believing: Event-
aware program anomaly detection in cyber-physical systems. IEEE Transactions on
Dependable and Secure Computing, 18(2):825–842, 2019.

[14] X. Cheng, Q. Luo, Y. Pan, Z. Li, J. Zhang, and B. Chen. Predicting the apt for cyber
situation comprehension in 5g-enabled iot scenarios based on differentially private
federated learning. Security and Communication Networks, pages 1–14, 2021.

[15] CNCF. CNCF Annual Survey 2022., 2022.

[16] M. Corici, P. Chakraborty, and T. Magedanz. A study of 5g edge-central core network
split options. Network, 1(3):354–368, 2021.

[17] M. Corici, P. Chakraborty, T. Magedanz, A. S. Gomes, L. Cordeiro, and K. Mahmood.
5g non-public-networks (npn) roaming architecture. In 2021 12th International Con-
ference on Network of the Future (NoF), pages 1–5, 2021.

[18] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. Sphinx: detecting security attacks
in software-defined networks. In Ndss, volume 15, pages 8–11, 2015.

[19] C. Ducruet and J.-P. Rodrigue. Graph theory: Measures and indices. The geography
of transport systems, 2013.

[20] M. Dworkin et al. Recommendation for block cipher modes of operation: methods
for format-preserving encryption. NIST Special Publication, 800:38G, 2016.

[21] D. R. Ferreira and D. Gillblad. Discovering process models from unlabelled event
logs. In Business Process Management: 7th International Conference, BPM 2009,
Ulm, Germany, September 8-10, 2009. Proceedings 7, pages 143–158. Springer,
2009.

[22] FF3, 2023.

[23] Free5GC, 2023.

[24] Y. Gao, S. Song, X. Zhu, J. Wang, X. Lian, and L. Zou. Matching heterogeneous event
data. IEEE Transactions on Knowledge and Data Engineering, 30(11):2157–2170,
2018.

69

[25] B. Han, A. DeDomenico, G. Dandachi, A. Drosou, D. Tzovaras, R. Querio, F. Mog-
gio, O. Bulakci, and H. D. Schotten. Admission and congestion control for 5g network
slicing. In 2018 IEEE Conference on Standards for Communications and Networking
(CSCN), pages 1–6. IEEE, 2018.

[26] J. Kang and J. F. Naughton. On schema matching with opaque column names and
data values. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 205–216, 2003.

[27] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin, et al. Mec in 5g networks. ETSI white paper,
28(2018):1–28, 2018.

[28] H. Kermabon-Bobinnec, M. Gholipourchoubeh, S. Bagheri, S. Majumdar, Y. Jarraya,
M. Pourzandi, and L. Wang. Prospec: Proactive security policy enforcement for
containers. In Proceedings of the Twelfth ACM Conference on Data and Application
Security and Privacy, pages 155–166, 2022.

[29] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage. A survey on security
and privacy of 5g technologies: Potential solutions, recent advancements, and future
directions. IEEE Communications Surveys & Tutorials, 22(1):196–248, 2019.

[30] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani. Edge and
fog computing for iot: A survey on current research activities & future directions.
Computer Communications, 180:210–231, 2021.

[31] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi. Proactive verification of security compliance for clouds through
pre-computation: Application to openstack. In ESORICS. Springer, 2016.

[32] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi. LeaPS: Learning-based proactive security auditing for clouds. In
ESORICS. Springer, 2017.

[33] S. Majumdar, A. Tabiban, M. Mohammady, A. Oqaily, Y. Jarraya, M. Pourzandi,
L. Wang, and M. Debbabi. Proactivizer: Transforming existing verification tools into
efficient solutions for runtime security enforcement. In ESORICS. Springer, 2019.

[34] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and M. Debbabi. Pre-
serving both privacy and utility in network trace anonymization. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
459–474, 2018.

[35] R. E. Neapolitan et al. Learning Bayesian networks, volume 38. Pearson Prentice
Hall Upper Saddle River, NJ, 2004.

[36] NetworkX, 2023.

70

[37] OpenStack Congress, 2015. https://wiki.openstack.org/wiki/
Congress/.

[38] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on {OT}
extension. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages
797–812, 2014.

[39] W. Y. Poe, J. Ordonez-Lucena, and K. Mahmood. Provisioning private 5g networks
by means of network slicing: Architectures and challenges. In 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops), pages 1–6.
IEEE, 2020.

[40] A.-H. Rasha, T. Li, W. Huang, J. Gu, and C. Li. Federated learning in smart cities:
Privacy and security survey. Information Sciences, 2023.

[41] G. D. P. Regulation. General data protection regulation (gdpr). Intersoft Consulting,
Accessed in October, 24(1), 2018.

[42] P. Schneider, C. Mannweiler, and S. Kerboeuf. Providing strong 5g mobile network
slice isolation for highly sensitive third-party services. In 2018 IEEE Wireless Com-
munications and Networking Conference (WCNC), pages 1–6. IEEE, 2018.

[43] K. SHIMA. Crypto-PAn, 2015.

[44] M. Song, Z. Wang, Z. Zhang, Y. Song, Q. Wang, J. Ren, and H. Qi. Analyzing user-
level privacy attack against federated learning. IEEE Journal on Selected Areas in
Communications, 38(10):2430–2444, 2020.

[45] Z. Su, Y. Wang, T. H. Luan, N. Zhang, F. Li, T. Chen, and H. Cao. Secure and efficient
federated learning for smart grid with edge-cloud collaboration. IEEE Transactions
on Industrial Informatics, 18(2):1333–1344, 2021.

[46] Submariner, 2023.

[47] S. Sultan, I. Ahmad, and T. Dimitriou. Container security: Issues, challenges, and the
road ahead. IEEE access, 7:52976–52996, 2019.

[48] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang. Data-driven cyber-
security incident prediction: A survey. IEEE communications surveys & tutorials,
21(2):1744–1772, 2018.

[49] Towards5Gs, 2023.

[50] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang. Sfc-checker:
Checking the correct forwarding behavior of service function chaining. In 2016
IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), pages 134–140. IEEE, 2016.

71

https://wiki.openstack.org/wiki/Congress/
https://wiki.openstack.org/wiki/Congress/

[51] TShark, 2023.

[52] Y. Wei, S. Zhou, S. Leng, S. Maharjan, and Y. Zhang. Federated learning empowered
end-edge-cloud cooperation for 5g hetnet security. IEEE Network, 35(2):88–94, 2021.

[53] M. Wen, Q. Li, K. J. Kim, D. López-Pérez, O. A. Dobre, H. V. Poor, P. Popovski, and
T. A. Tsiftsis. Private 5g networks: Concepts, architectures, and research landscape.
IEEE Journal of Selected Topics in Signal Processing, 16(1):7–25, 2021.

[54] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, SCIPY, 2010.

[55] S. Xie, M. Mohammady, H. Wang, L. Wang, J. Vaidya, and Y. Hong. A generalized
framework for preserving both privacy and utility in data outsourcing. IEEE Trans-
actions on Knowledge and Data Engineering, 35(1):1–15, 2021.

[56] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of prefix-
preserving ip traffic trace anonymization. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pages 263–266, 2001.

[57] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based scheme.
In 10th IEEE International Conference on Network Protocols, 2002. Proceedings.,
pages 280–289. IEEE, 2002.

[58] T.-F. Yen, X. Huang, F. Monrose, and M. K. Reiter. Browser fingerprinting from
coarse traffic summaries: Techniques and implications. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 6th International Conference, DIMVA
2009, Como, Italy, July 9-10, 2009. Proceedings 6, pages 157–175. Springer, 2009.

[59] M. Zoure, T. Ahmed, and L. Réveillère. Network services anomalies in nfv: Survey,
taxonomy, and verification methods. IEEE Transactions on Network and Service
Management, 19(2):1567–1584, 2022.

[60] M.-A. Zöller, M. Baum, and M. Huber. Framework for mining event correlations and
time lags in large event sequences. 07 2017.

72

Appendix A

List of Abbreviations

3GPP Third-Generation Partnership Project
5G Fifth Generation of broadband cellular network
MEC Mobile Edge Computing
GDPR General Data Protection Regulation
API Application Programming Interface
NF Network Function
PSI Private Set Intersection
FL Federated Learning
DAG Directed Acyclic Graph
ETSI European Telecommunications Standards Institute
NIST National Institute of Standards and Technology
FPE Format-Preserving Encryption
AMF Access and Mobility Management Function
SMF Session Management Function
AUSF Authentication Server Function
UPF User plane function
NRF NF Repository function
NSSF Network Slice Selection Function
PCF Policy Control Function
AF Application Function
UDM Unified Data Management
UDR Unified Data Repository
PFCP Packet Forwarding Control Protocol
SDN Software Defined Networks
UE User Equipment
VM Virtual Machine

73

	List of Figures
	List of Tables
	Introduction
	Context and Problem Statement
	Research Gap
	Motivating Example
	Our solution
	Thesis Contribution
	Related Publications
	Authors' Contribution
	Outline

	Background and Preliminaries
	5G Edge-Core Model
	Confidentiality in Private 5G
	Communication and Event Models
	Communication Model
	Event Dependency Model

	Threat Model
	In-scope Threats
	Out-of-scope Threats

	Related Work
	Cloud Security
	Event Dependency
	Federated Learning

	CCSM
	Overview
	Example
	Security Applications

	CCSM Approach for Communication Model
	Building Local Communication Models
	Building Global Communication Model

	CCSM Approach for Event Dependency Model
	Building Local Event Dependency Models
	Building Global Event Dependency Model

	Implementation
	Overview
	Local Model Builder
	Global Model Builder
	Challenges

	Evaluation
	Experimental Settings and Datasets
	Experiment Results

	Use Cases
	Cross-Cluster Security Verification
	Anomaly/Attack Detection

	Other Contributions
	ProSPEC
	Predictive Model
	Experimental Evaluation

	Conclusion
	Bibliography
	Appendix List of Abbreviations

