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Abstract

Automated Data Preparation using Semantics of Data Science Artifacts

Shubham Vashisth

Data preparation is critical for improving model accuracy. However, data scientists often work

independently, spending most of their time writing code to identify and select relevant features, en-

rich, clean, and transform their datasets to train predictive models for solving a machine learning

problem. Working in isolation from each other, they lack support to learn from what other data

scientists have performed on similar datasets. This thesis addresses these challenges by present-

ing a novel approach that automates data preparation using the semantics of data science artifacts.

Therefore, this work proposes KGFarm 1, a holistic platform for automating data preparation based

on machine learning models trained using the semantics of data science artifacts, captured as a

knowledge graph (KG). These semantics comprise datasets and pipeline scripts. KGFarm seam-

lessly integrates with existing data science platforms, effectively enabling scientific communities to

automatically discover and learn from each other’s work. KGFarm’s models were trained on top of a

KG constructed from the top-rated 1000 Kaggle datasets and 13800 pipeline scripts with the highest

number of votes. Our comprehensive evaluation uses 130 unseen datasets collected from different

AutoML benchmarks to compare KGFarm against state-of-the-art systems in data cleaning, data

transformation, feature selection, and feature engineering tasks. Our experiments show that KG-

Farm consumes significantly less time and memory compared to the state-of-the-art systems while

achieving comparable or better accuracy. Hence, KGFarm effectively handles large-scale datasets

and empowers data scientists to automate data preparation pipelines interactively.

1https://github.com/CoDS-GCS/kgfarm
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Chapter 1

Introduction

1.1 Overview

Data preparation is a fundamental step for data science (Peng, Wu, Lockhart, & et al, 2021;

Rezig, Bhandari, Fariha, & et al., 2021). It aims to construct the most informative version of a

dataset to help train an accurate and reliable model. Data preparation is conducted to ensure data

quality and quantity. Specifically for machine learning, data preparation involves operations such as

feature identification, data enrichment, data cleaning, data transformation, and feature selection. In

order to prepare data, data scientists devote a substantial amount of time and effort to meticulously

code data preparation pipelines. They often work in isolation, with no support from previous work

performed by fellow data scientists on similar datasets. The knowledge gained by data scientists

from developing Data Science Pipelines (DSPs) is often not shared, which leads to a phenomenon

called ªtribal knowledgeº, as illustrated in Figure 1.1. Therefore, there is a need to establish a cul-

ture of collaboration and knowledge-sharing to improve the efficiency and effectiveness of different

aspects of DSPs through automation (Mansour, Srinivas, & Hose, 2021).

The DSPs created by data scientists in each enterprise are valuable assets for future projects.

Furthermore, open ML portals, such as Kaggle 1 and OpenML 2 provide access to public repositories

containing thousands of datasets and hundreds of thousands of DSPs. The wealth of knowledge

1https://www.kaggle.com
2https://www.openml.org
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1.2 Contributions

This thesis proposes KGFarm, a comprehensive platform built on top of the KGLiDS system,

aiming to automate data preparation holistically. KGFarm leverages task-specific trained models to

automate various stages of the data preparation process, including data cleaning, data transforma-

tion, feature selection, and feature engineering. These models provide valuable assistance to data

scientists when working with new datasets or encountering novel data science challenges by sug-

gesting the most suitable operations for the task at hand. Moreover, to identify relevant features

for a specific entity in a machine learning task, we employ ML for primary-key foreign-key (PK-

FK) discovery (Rostin, Albrecht, Bauckmann, Naumann, & Leser, 2009), to estimate the physical

representation of an abstract entity through column embeddings. This physical representation also

serves as a basis for data enrichment, enabling the recommendation of join keys over schema-less

data in data lakes (Helal, Helali, Ammar, & Mansour, 2021; Helali et al., 2021). In KGFarm data

preparation operations such as data cleaning and data transformation are formalized as multiclass

classification where the goal is to predict the most appropriate cleaning or transformation opera-

tions from a predefined set of operations. Additionally, feature selection is formalized as a binary

classification task, where the model is used to infer the probability with which a feature should be

selected to predict the given target variable.

Training and inference of these task-specific models is done using content embeddings of the

datasets i.e. a table or columns instead of raw data values to improve generalization and scalabil-

ity of this approach. These embeddings are computed using a deep learning approach presented in

(Helali et al., 2021) inspired from (Mueller & Smola, 2019). The quality of these models depends on

the performance of pipeline scripts and the diversity of datasets used in constructing the KG. In this

work, we constructed a data science KG from top-rated 1000 Kaggle datasets and 13800 pipeline

scripts with the highest number of votes. We trained our models based on the semantics captured in

this KG. We conducted a comprehensive evaluation using 130 unseen datasets collected from dif-

ferent open data portals and AutoML benchmarks (Dua & Graff, 2017; Helali, Mansour, Abdelaziz,

& et al, 2022). These datasets demand different kinds of data preparation, where each dataset is

associated with an ML task i.e. binary classification, multiclass classification, or regression.
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We use these datasets to compare KGFarm against the state-of-the-art (SOTA) systems in data

cleaning (Biessmann, Rukat, Schmidt, & et al, 2019; Rekatsinas, Chu, Ilyas, & et al, 2017), data

transformation (Nargesian, Samulowitz, Khurana, & et al., 2017), feature selection and feature en-

gineering (Kaul, Maheshwary, & Pudi, 2017) tasks. Our experiments show that KGFarm achieves

comparable accuracy to the SOTA while significantly outperforming them in terms of processing

time and memory usage. In addition, we compared KGFarm’s PK-FK discovery approach which

makes use of light-weight column embeddings to computationally expensive inclusion dependen-

cies (Rostin et al., 2009). Furthermore, we present a real-world use case of KGFarm deployed in

preparing data for a mechanical engineering research team working on a smart city project that

aims to address stability challenges in hybrid power systems. Thereby, illustrating KGFarm’s capa-

bility in automating different aspects of data preparation as a holistic platform while dealing with

large-scale diverse datasets.

In summary, the contributions of this thesis are:

• a fully-fledged platform (KGFarm 3) automating different aspects of data preparation in an

interactive and scalable manner.

• a novel formalization of data cleaning, transformation, and feature selection as classification

tasks based on the semantics of data science artifacts and column embeddings. This formal-

ization enables KGFarm to scale to large datasets.

• a novel approach for feature identification by estimating abstract entities over physical columns.

This estimation leverages machine learning to efficiently discover PK-FK relationships in

schema-less data sources.

• a real-world use case of KGFarm deployed in the mechanical engineering sector of a smart

city project to address stability challenges in hybrid power systems, showcasing KGFarm’s

capability in automating data preparation with respect to simulated data.

• a comprehensive evaluation using 130 unseen datasets from AutoML benchmarks and SOTA,

such as HoloClean (Rekatsinas et al., 2017) and DataWig (Biessmann et al., 2019) for data

3https://github.com/CoDS-GCS/kgfarm
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cleaning, LFE (Nargesian et al., 2017) for data transformation and AutoLearn (Kaul et al.,

2017) for feature engineering. Our experiments show the superiority of KGFarm over SOTA

in terms of time and memory performance while achieving comparable or better accuracy.

1.3 Outline

This thesis consists of six chapters that delve into the details behind the approach followed to au-

tomate the problem of data preparation using the KGFarm platform. Chapter 2 provides an overview

of related literature, focusing on the concept of human-in-the-loop for data science and various sys-

tems employed in the space of automated data preparation. Chapter 3 establishes the necessary

background by discussing the semantics of data science artifacts, the concept of linked data science,

and the motivation behind automated data preparation techniques leveraging linked data science. In

Chapter 4, the KGFarm platform is presented, highlighting its system architecture, and supported

data preparation operations including feature identification, data enrichment, data cleaning, data

transformation, feature selection, and feature engineering. This is followed by an exploration of the

key characteristics of KGFarm such as taylor-stitched recommendations, scalability, and integration

with existing data science workflows. Chapter 5 showcases a use case that demonstrates KGFarm’s

seamless integration into a typical data science pipeline followed by a thorough evaluation of the

KGFarm versus state-of-the-art systems in automating data preparation for machine learning tasks.

Finally, in Chapter 6, the thesis concludes with a discussion on future work and its potential impact

on data science innovation, and knowledge sharing for enterprises.
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Chapter 2

Literature Review

2.1 Human-in-the-loop for Data Science

Existing data discovery systems and data science platforms do not automate data preparation and

feature engineering based on the knowledge extracted from the data science repositories (Mansour

et al., 2021). There are several systems that utilize human-in-the-loop to accelerate data science

workflow. These systems can be bifurcated into three categories based on the environment they

support, mainly spreadsheet environments, workflow environments, and notebook environments.

For example, Trifacta (Trifacta, 2023) is a software that assists data scientists to prepare data

by enabling them to visually explore and interact with their data by providing profiled data statis-

tics in a spreadsheet environment. In the category of workflow environment, there are systems and

platforms such as Einblick (Einblick, 2023) and Alteryx (Alteryx, 2023) that provide a canvas GUI

with drag-and-drop functionality to add several configurable data preparation operations such as

join, visualization, etc. without writing explicit code. Finally, the notebook environment includes

libraries and packages such DataPrep (Peng et al., 2021) that are easy to integrate into existing ma-

chine learning and data science pipelines. DataPrep is an open-source library that aims to accelerate

the data preparation process by automating Exploratory Data Analysis (EDA) through simple APIs

that offer profiled data statistics and visualizations for data preparation in a scalable fashion.

As these complex machine learning pipelines are often developed by data scientists and ma-

chine learning practitioners, a notebook environment is highly preferred in these scenarios due to

6



the fact that 1) ML pipeline generation process is highly iterative in nature (Peng et al., 2021). 2) ML

pipelines involve the application of several other libraries like PyTorch (Paszke et al., 2017), Tensor-

Flow (TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, n.d.), and Theano

(Al-Rfou et al., 2016) while modeling. 3) Notebook environment allows more freedom to the data

scientists in designing their custom pipelines, unlike spreadsheet and workflow environments.

2.2 Related Systems

Systems automating the EDA process such as DataPrep (Peng et al., 2021) do try to accelerate

the pipeline generation process by automating the data profiling and visualizations in data prepa-

ration however, the core problems described in 1.1 including 1) High-time consumption, 2) Code-

intensiveness 3) Lack of scalability 4) Repetitiveness and 5) Isolated development are minimized to

some extent but not addressed completely.

Numerous systems have been developed to address specific aspects of data preparation, includ-

ing data cleaning, data transformation, and feature engineering. Among these, HoloClean (Rekatsi-

nas et al., 2017) stands out as a comprehensive framework that unifies qualitative and quantitative

data repairing approaches. It integrates integrity constraints, external data sources, and statistical

properties of the input data to automatically generate a probabilistic program for data repair. The

core idea of HoloClean is to consider the input dataset as a noisy version of an underlying clean

dataset and leverage all available signals to propose data repairs. The framework employs statistical

learning and probabilistic inference techniques to perform data repairs effectively.

Another promising system within the scope of data cleaning is DataWig (Biessmann et al., 2019)

which is an open-source Python library that specializes in missing value imputation for tables with

heterogeneous data types. It offers a wide range of feature extractors, including advanced deep

learning techniques, and adopts an end-to-end learning approach using the symbolic API of Apache

mxnet (Chen et al., 2015), ensuring efficient execution on both CPUs and GPUs environments. The

imputation model in DataWig is inspired by well-established methods such as MICE (Multivari-

ate Imputation by Chained Equations) (van Buuren & Groothuis-Oudshoorn, 2011), allowing it to

perform imputations in a chained manner while considering the relationships between variables.

7



For data transformations and feature engineering, there has been extensive research over the past

decade. Work by (Waring, Lindvall, & Umeton, 2020) discusses several systems that make use of

unique learning methods for automating data transformation and feature engineering. Frameworks

such as (Kanter & Veeramachaneni, 2015; Katz, Shin, & Song, 2016; Kaul et al., 2017; Lam et

al., 2017) make use of an expand-reduce learning approach. ExploreKit (Katz et al., 2016) is one

of the feature engineering frameworks designed for automated feature generation and selection in

machine learning tasks. It leverages an expand-reduce learning approach, wherein it generates a

large set of candidate features by combining information from the original features to maximize

predictive performance based on user-selected criteria. To handle the exponential growth of the

feature space, ExploreKit introduces a learning-based feature selection approach. This method

efficiently predicts the utility of new candidate features, allowing for the identification of relevant

features while outperforming traditional feature selection techniques. ExploreKit’s iterative process

involves candidate feature generation, ranking, evaluation, and selection, allowing it to choose a

subset of features that minimize the learning algorithm’s error.

Subsequently in data transformation and feature engineering, AutoLearn (Kaul et al., 2017)

demonstrated superior performance as compared to ExploreKit. AutoLearn uses a regression-based

approach to automate feature engineering. AutoLearn exhibited enhanced capabilities in generating

highly predictive and domain-generalizable features. A key feature of AutoLearn is its utilization

of distance correlation to mine significant pairwise associations between features, both linear and

non-linear, without relying on domain-specific heuristics. Moreover, it incorporates a measure to

assess the extent of forecast deviation concerning the independent variable. To enhance model

generalization and prevent overfitting, AutoLearn employs a two-step process comprising stability

selection and information gain. Through these steps, AutoLearn ensures the creation of robust and

informative features, contributing to improved performance of machine learning models.

Concurrently, techniques like Nargesian et al. (2017) were also proposed that used meta-learning

to automate data transformation and feature engineering process. Concurrently, techniques like LFE

Nargesian et al. (2017) were also proposed, utilizing a meta-learning approach to automate the data

transformation and feature engineering process. LFE employs past feature engineering experiences

8



to learn the effectiveness of applying transformations on numerical features. Unlike traditional ap-

proaches, LFE does not rely on model evaluation or explicit feature expansion and selection. It

recommends a set of useful transformations for features, considering ten unary and four binary

transformations, such as log, square-root, frequency, square, round, tanh, sigmoid, isotonic regres-

sion, zscore, normalization, sum, subtraction, multiplication, and division. To represent numerical

feature characteristics, LFE uses Quantile Sketch Array (QSA), a non-parametric representation that

summarizes data into a small number of buckets, effectively capturing the approximate Probability

Distribution Function of values. LFE has been evaluated over several open datasets from UCI and

OpenML, showcasing its effective and efficient performance in optimizing the data transformation

and feature engineering process.

Feature stores are being widely adopted for storing and managing reusable features by serving

as centralized repositories. However, most existing feature stores, such as Feast (Feast: Feature

Store for Machine Learning, 2022; Kakantousis, Kouzoupis, Buso, & et al., 2019), require manual

maintenance. Other data preparation systems such as Auto-Suggest (Yan & He, 2020) learns from

a collection of data science notebooks to recommend operations, such as Join, Pivot, Unpivot, and

GroupBy but lacks the crucial data preparation operations. Additionally, AutoML systems, such as

KGpip(Helali et al., 2022) have been proposed that learn to predict mainly a classifier and perform

hyperparameter tuning. They may include data prepossessing by analyzing the raw data. Unlike

these systems, our proposed approach automates data preparation pipelines for operations, such as

data cleaning, transformation, and feature selection, based on the semantics of data science artifacts.

At the same time, KGLiDS (Helali et al., 2021) is a scalable platform we developed to construct

a data science KG, called LiDS graph Helali et al. (2021) as shown in Figure 3.1. This system does

not provide models to automate data preparation and feature engineering pipelines. Hence, there is

a need for systems that automate data preparation and feature engineering based on the this highly

interconnected linked data science knowledge graph, which contains the semantics of vast pipelines

and datasets available at the public or enterprise level.
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Chapter 3

Semantics of Data Science Artifacts

In the realm of data science, the notion of the semantics of data science artifacts holds paramount

importance in facilitating effective collaboration, reproducibility, and knowledge exchange. Data

scientists, as they engage in the analysis of vast amounts of data, generate a plethora of artifacts,

ranging from datasets to pipeline scripts, which form the foundation of their work.

However, the intricate nature of these artifacts often poses challenges for individuals who are not

intimately involved in their creation. It is at this juncture that understanding the semantics of these

artifacts becomes pivotal. By comprehending the underlying meaning, relationships, and function-

alities encoded within these artifacts, data scientists can transcend the barriers of complexity and

ensure their work is accessible and comprehensible to a wider audience. By establishing a shared

understanding of the semantics, data scientists foster a collaborative environment wherein the ex-

change of ideas, methodologies, and insights becomes seamless. This, in turn, spurs innovation and

promotes the efficient utilization of existing work. For instance, when faced with similar problems,

teams can leverage pre-existing artifacts’ semantics to expedite their problem-solving process. This

not only saves time and effort but also facilitates the accumulation of knowledge within data science.

In the context of machine learning, the interplay between data science artifacts directly impacts

the performance and effectiveness of the models developed. The semantics of these artifacts, such

as the data preparation steps, feature engineering techniques, and model configuration, dictate the

behavior and outcomes of the machine learning models. Understanding these semantics is essential

for interpreting and reproducing the results obtained, thereby ensuring transparency and reliability in
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the field. Moreover, the semantics of data science artifacts serve as the bedrock for reproducibility.

By documenting and communicating the semantics of their artifacts, data scientists enable others

to validate and replicate their findings. This not only strengthens the scientific rigor of the field but

also encourages the building of trust and confidence among researchers and practitioners.

This chapter introduces an innovative approach to effectively utilize the semantics of data sci-

ence artifacts in a systematic fashion. The sections within this chapter delve into a comprehensive

exploration of the adopted approach, which aims to facilitate the concept of ªlinked data scienceº

and automation of data preparation as one of its evident applications.

3.1 Linked Data Science & KGLiDS

In the pursuit of advancing data science practices, the concept of linked data science (Helali et

al., 2021) emerges as a visionary approach (Mansour et al., 2021) that seeks to establish a com-

prehensive navigational structure, seamlessly connecting diverse data science artifacts. Linked data

science represents a paradigm shift, wherein datasets, pipeline scripts, and code libraries are not

seen as isolated entities but rather as interconnected components of a larger ecosystem. By cap-

turing the semantics of these artifacts, linked data science unlocks a deeper understanding of their

interdependencies and establishes a cohesive network that transcends disciplinary boundaries.

One of the key benefits of linked data science lies in its ability to foster cross-domain col-

laborations. By bridging the gaps between disparate fields and domains, this approach facilitates

the exchange of knowledge, methodologies, and best practices. Data scientists from different dis-

ciplines can seamlessly navigate through the linked structure, discovering relevant artifacts, and

leveraging their insights to tackle complex challenges that require multidisciplinary expertise. The

interconnected nature of linked data science empowers researchers to explore artifacts, uncover

novel insights, and drive innovation at the intersection of various domains.

Furthermore, linked data science acts as a catalyst for knowledge sharing and dissemination

across platforms, enterprises, and institutions. Through the establishment of standardized semantic

relationships, data scientists can effectively communicate the purpose, structure, and applicability

of their artifacts. This enables practitioners to discover, understand, and build upon existing work,

11



fueling the collective intelligence of the data science community.

Another significant advantage of linked data science lies in its potential to automate and stream-

line data science workflows. By harnessing the interconnectivity and semantic richness of the arti-

facts, automated systems can intelligently navigate through the linked structure, retrieving relevant

datasets, discovering relevant pipeline scripts, and leveraging code libraries. This automation not

only enhances efficiency but also ensures consistency and reproducibility in data science endeavors,

reducing manual errors and enabling faster iterations in the development and deployment of models.

Creating and maintaining a scalable structure that enables linked data science poses significant

challenges in the field. The complexity arises from the need to capture, organize, and interconnect a

diverse range of data science artifacts, including datasets, pipeline scripts, and code libraries while

ensuring the coherence and integrity of the underlying semantics. Establishing meaningful relation-

ships and interdependencies among these artifacts, especially in large-scale and rapidly evolving

data science environments, requires careful design and robust infrastructure.

The challenges lie not only in the technical aspects of building and managing the structure but

also in fostering a collaborative and sustainable ecosystem. Data science artifacts are constantly

evolving, and new artifacts are continuously being created. Thus, ensuring the longevity and adapt-

ability of the linked data science structure becomes a crucial concern. Additionally, accommodating

heterogeneous data sources (Helal et al., 2021), addressing data quality and consistency issues, and

handling the evolving nature of data science methodologies further compound the challenges.

In response to these challenges, we have developed KGLiDS 1 (Knowledge Graph-based Linked

Data Science) (Helali et al., 2021), a pioneering platform that addresses the complexities of enabling

linked data science in a scalable manner. KGLiDS employs knowledge graph technologies to cap-

ture and represent the semantics of data science artifacts in a structured manner. By leveraging

machine learning techniques, it extracts valuable insights from these artifacts and populates the

knowledge graph, forming the backbone of the linked data science framework.

Two fundamental components in KGLiDS are Data Profiling and Pipeline Abstraction. The Data

Profiling component focuses on analyzing datasets, generating insights about their characteristics,

and enriching the knowledge graph with detailed information about the datasets and their attributes.

1https://github.com/CoDS-GCS/kglids
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It employs scalable deep learning-based data profiling techniques and fine-grained type inference

methods to construct a global representation of datasets, including column embeddings that capture

similarities between column values. The Pipeline Abstraction component analyzes data science

pipelines, capturing their structure and flow, and enriches the knowledge graph with insights about

the data science workflow. It helps in understanding the structure and flow of data processing in

pipelines, which is essential for constructing the LiDS graph. By extracting relevant information

from pipelines, this component enhances the knowledge graph’s representation of the data science

artifacts and their interconnections.

These two components, Data Profiling, and Pipeline Abstraction, play vital roles in enhanc-

ing the knowledge graph’s richness and comprehensiveness. They provide valuable insights into

datasets and pipelines, enabling data scientists to explore and navigate interconnected resources

effectively. By incorporating these insights into the knowledge graph, KGLiDS empowers data sci-

entists to uncover meaningful relationships, automate tasks, and unlock the full potential of linked

data science in a scalable and efficient manner. Through the seamless integration of Data Profiling

and Pipeline Abstraction, KGLiDS enables data scientists to explore, analyze, and share knowledge

within the data science community. By leveraging the capabilities of these components, data scien-

tists can gain deeper insights into datasets, understand the flow of data processing in pipelines, and

harness the power of linked data science for improved decision-making and innovation.

3.2 Capturing Data Semantics with Column Embeddings

Capturing the semantics of data is a fundamental aspect of the linked data science approach.

In linked data science, one of the key challenges is to capture the similarities between column val-

ues and leverage them to enhance data understanding and automate various data science tasks. To

address this challenge, the concept of column embeddings was adopted in KGLiDS, providing a

powerful mechanism to capture data semantics and facilitate efficient data profiling. The primary

motivation behind utilizing column embeddings in KGLiDS is to capture column similarity. By rep-

resenting columns as embeddings, we can quantify the similarity between their values and establish
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meaningful connections between related columns. This enables more accurate predictions of col-

umn content similarities and facilitates data discovery without exposing the raw content of datasets.

This is particularly valuable in enterprise settings where access to raw data may be restricted, but

insights derived from column-level similarities can still be leveraged.

To generate column embeddings, KGLiDS incorporates a technique known as the column learned

representation (CoLR). The CoLR approach builds upon the concept of deep embeddings of dis-

tributions, inspired by (Mueller & Smola, 2019) which aims to identify high-confidence variable

matches by leveraging learned vector embeddings of datasets. By adaptively accounting for nat-

ural forms of data variation encountered in practice, CoLR produces fixed-size models capable of

generating column embeddings. The data profiling component in KGLiDS plays a crucial role in

generating the CoLR embeddings for each column. It takes into account the fine-grained type infor-

mation and raw column values, leveraging pre-trained embedding models to capture the underlying

semantics. By considering both the type and values, the CoLR approach ensures a more compre-

hensive representation of the column, enabling a more accurate capture of column similarities.

Notably, capturing data semantics using column embeddings provides several benefits. Firstly,

it offers a compact representation of fixed-size embeddings, reducing storage requirements while

maintaining the essential information about column similarities. Additionally, KGLiDS decom-

poses datasets into independent tables and further decomposes each table into columns. This de-

composition allows for scalable profiling and provides deeper insights into the data structure, facil-

itating more granular analysis.

In conclusion, the utilization of column embeddings in KGLiDS to capture the underlying se-

mantics of data plays a crucial role. These embeddings provide a solid foundation for automating

several applications in data science by leveraging the LiDS graph and KGLiDS platform.

3.3 Knowledge Graph for Linked Data Science

KGLiDS utilizes graph technology to generate the LiDS (Linked Data Science) graph, which

captures the semantics of data science artifacts and represents them in a structured and navigable

14





that depict various relationships, including the codeFlow between pipeline statements, columnSimi-

larity between distinct columns, isPartOf relations between artifacts, and more. Figure 3.1 provides

an example of a LiDS graph, illustrating the holistic view of different data science artifacts and their

interactions. For instance, it showcases the columnSimilarity between the country and territory

columns belonging to different tables. The graph also captures the hierarchical relationships among

artifacts, such as the country column being isPartOf the seismic log.csv table, which in turn is is-

PartOf the earthquake dataset, and so on. Furthermore, the graph captures the application of various

data science operations to columns and datasets, such as the sqrt operation from the numpy library

applied to the shift column. Overall, the LiDS graph provides an effective navigational structure and

establishes meaningful connections among physical data science artifacts, enabling data scientists

to explore, exchange, and learn from them more effectively.

3.4 An Augmented LiDS Graph for Data Preparation

Linked Data Science enabled by KGLiDS system opens the scope of automation over typical

data science and machine learning workflows. It also creates opportunities to address several non-

trivial problems in data science. For example, KGpip is the state-of-the-art (Helali et al., 2022) meta-

learning system that leverages graph neural networks (Zhou et al., 2020) and column embeddings

on top of pipeline graphs to optimize AutoML tasks. In a similar fashion, the work in this thesis

exploits the KGLiDS system and LiDS graph to address the time-consuming, hard-to-scale, code-

intensive and isolated problem of data preparation efficiently and effectively.

In machine learning, the problem of feature identification over large data lakes for modeling

(Hai, Kang, Koutras, Ionescu, & Katsifodimos, 2022) is addressed by augmenting the LiDS knowl-

edge graph. This augmentation includes the addition of abstract concepts like entity and feature

view beside the physical data science artifacts like datasets and pipeline scripts. An entity (Feast:

Feature Store for Machine Learning, 2022) here is a distinct object or concept which is physically

represented by a column. Identifying the physical representation of an entity is the key to discov-

ering features. Figure 3.2 illustrates an instance of such an augmented LiDS graph where an entity

quake is physically representedBy column quake id and feature view 01 is physically represented
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which isAppliedTo the magnitude column. This direct relationship between the operation and fea-

tures creates a lucrative opportunity to train machine learning models that are capable of predicting

data preparation operations while dealing with ad-hoc datasets by benefiting from the knowledge

previously accumulated by other data scientists.

Therefore to incorporate the above-discussed methodologies so as to solve the problem of data

preparation and feature discovery effectively, this thesis proposes the KGFarm system which aug-

ments the LiDS knowledge graph with abstractions that are critical for data preparation. KGFarm

uses machine learning to predict primary-key foreign-key PK-FK column relationships that are

capable of uniquely representing and integrating data and therefore serve as the physical representa-

tion of an entity. Moreover, KGFarm exploits the CoLR embeddings and uses the augmented LiDS

graph to generate labeled data to train task-specific recommendation models to automate data clean-

ing, data transformation, and feature selection tasks. Chapter 4 presents the in-depth architecture

and methodology adopted in the KGFarm system to prepare data automatically by augmenting the

LiDS graph with high accuracy and efficiency.

18



Chapter 4

KGFarm: A Holistic Platform for

Automating Data Preparation

The previous chapter provided an overview of linked data science and introduced the motiva-

tion behind leveraging the KGLiDS system and the LiDS graph to address the problem of automated

data preparation. Building upon these ideas, this chapter presents the KGFarm system, a compre-

hensive platform designed specifically for automated data preparation using the semantics of the

data science artifacts captured in the LiDS graph. KGFarm further enhances the LiDS graph by

augmenting abstract concepts such as entities and feature views, which play a crucial role in the

process of feature identification and data enrichment (Feast: Feature Store for Machine Learning,

2022; Kakantousis et al., 2019). This augmentation enables KGFarm to create a more comprehen-

sive and enriched knowledge graph tailor-made for automating data preparation in machine learning

tasks. By utilizing this augmented knowledge graph, KGFarm generates labeled data that can be

used to train machine learning models capable of recommending task-specific data preparation oper-

ations on ad-hoc datasets. One of the key advantages of KGFarm is its seamless integration within

conventional data science or machine learning workflows. It assists data scientists in automating

the tedious process of data preparation, eliminating the need for time-consuming exploratory data

analysis. With KGFarm, data scientists can focus on higher-level tasks and leverage the platform’s

recommendations for efficient and effective data preparation.
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In this chapter, we will delve into the architecture of the KGFarm system, providing a thorough

understanding of its different components. This chapter will also explore the underlying method-

ology behind several data preparation operations supported by KGFarm. By examining each op-

eration in detail, we aim to provide comprehensive insights into how KGFarm automates these

critical tasks by exploiting the accumulated knowledge of data scientists in the past. Finally, the

chapter concludes by highlighting the core characteristics of the KGFarm system. These character-

istics encompass KGFarm’s ability to provide taylor-stitched recommendations, ensuring accurate

and tailored suggestions for data preparation. Additionally, KGFarm boasts scalability, allowing

it to handle large-scale datasets efficiently. It also incorporates leakage-aware data transformation

techniques, ensuring data integrity throughout the process. Lastly, we will emphasize how KG-

Farm seamlessly integrates with existing data science workflows, making it a valuable tool for data

scientists seeking to automate the data preparation process.

4.1 KGFarm Overview

The architecture of the KGFarm system is depicted in Figure 4.1. The system consists of four

core components that collectively offer comprehensive data preparation capabilities. These compo-

nents include the (A) KG Augmentor, (B) Training Manager, (C) Inference Manager, and (D) APIs

& Interface Library. Each component plays a vital role in enabling the end-to-end automation of the

data preparation phase in the data science workflow.

First and foremost, the KG Augmentor component is fundamental to the system as it augments

the LiDS graph by introducing abstract entities and feature views that complement the physical

columns and tables. This augmentation enhances the graph’s knowledge representation, making

it a valuable resource for identifying relevant features within the data. By incorporating these ab-

stractions, the augmented graph becomes an invaluable tool for discovering meaningful insights

crucial for data preparation. Secondly, The Training Manager component focuses on generating la-

beled data using the augmented LiDS graph to train task-specific data preparation recommendation

models. These models leverage the rich information present in the graph to provide targeted recom-

mendations for data preparation operations on ad-hoc datasets. By learning from the accumulated
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into their existing tooling and processes. This integration simplifies the adoption of KGFarm within

established data science environments, allowing data scientists to leverage its automated data prepa-

ration capabilities without disruption. The upcoming sections will delve deeper into each of these

components, providing a comprehensive understanding of their roles and contributions to the auto-

mated data preparation process.

4.2 KG Augmentation

The KG Augmentor is a crucial component of the KGFarm system that is responsible for aug-

menting the LiDS knowledge graph. Its primary function is to identify entities within the data and

create corresponding feature views that encapsulate the characteristics of these entities across phys-

ical columns and tables. Enriching the LiDS graph with additional nodes and edges (as shown in

Figure 3.2), expands its knowledge representation. The KG Augmentor adheres to the principles

of the LiDS ontology and utilizes the Web Ontology Language (OWL) to preserve interoperabil-

ity and data sharing. This augmentation process enhances the graph’s ability to capture complex

relationships and seamlessly integrates new abstracted information into the existing structure.

To identify the physical representation of an entity, the KG Augmentor leverages a PK-FK

(primary-key foreign-key) classifier inspired by (Rostin et al., 2009) which can predict column pairs

with a primary-key foreign-key relation for schema-less datasets in data lakes (Bogatu, Fernandes,

Paton, & Konstantinou, 2020; Khatiwada et al., 2023). By identifying such columns that uniquely

represent entities and serve as join keys, the KG Augmentor establishes connections between ab-

stract entities and their corresponding physical artifact i.e. column in the graph.

In addition to enriching the LiDS graph with abstract entities and feature views, the KG Aug-

mentor incorporates data preparation operations from the pipeline graph into the LiDS knowledge

graph. This incorporation addresses three key motivations. Firstly, data preparation operations in

pipelines can be expressed as classes or methods, making their relationship with columns and tables

ambiguous. By establishing a direct link between the operations and the columns or tables to which

they are applied, the KG Augmentor accurately captures and represents these operations within the

augmented graph. Secondly, not all methods in the pipeline script contribute to data preparation.
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Some methods, such as read csv, are used for other purposes such as reading data rather than per-

forming any data preparation operation. By selectively including relevant operations that contribute

to data preparation, the KG Augmentor focuses on meaningful data preparation steps within the

augmented graph. Thirdly, there is no direct link between data preparation operations and columns

or tables in the LiDS graph. The absence of this connection hinders the overall understanding of

the data and the relationships between operations and specific data elements. By establishing a re-

lationship between operations and corresponding columns and tables, the KG Augmentor bridges

this gap and improves the graph’s representation concerning the data preparation workflow.

By augmenting the LiDS graph with abstract entities, feature views, and data preparation oper-

ations, the KG Augmentor enhances the system’s understanding of the underlying data preparation

workflow. This information empowers subsequent components, such as the Training Manager, to

leverage these relationships when building task-specific data preparation recommendation models.

The approach used by the KG Augmentor to 1) discover PK-FK for identifying the physical repre-

sentation of an entity and 2) augmenting the LiDS graph are described in the subsection below.

4.2.1 PK-FK Discovery

To estimate the physical representation of an entity, the KG Augmentor incorporates a PK-FK

classifier. This classifier aims to identify PK-FK column pairs within the dataset, which is valuable

in scenarios where columns have low cardinality or when multiple columns exhibit high uniqueness.

The PK-FK classifier is motivated by the observation that a table’s primary key or foreign key is the

most probable candidate to represent the entity when no column in the table is unique. For example,

the augmented instance of the LiDS graph illustrated in figure 3.2 shows that the entity quake is

represented by the physical column quake id. In cases where there are multiple columns with high

uniqueness, the frequency with which a column is referenced as a primary key or a foreign key in

other datasets serves as a tiebreaker to identify the column representing the entity physically.

The task of PK-FK classifier discovery is formalized as a binary classification problem. A set

of column pairs with high column similarity provided by the CoLR embeddings is compiled by

querying the LiDS graph. Column similarity enabled by embeddings is preferred over Inclusion
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Table 4.1: Features used in the PK-FK classifier for estimating Primary-key (C1) and Foreign-key

(C2) relationships.

Feature # Feature Relationship used for feature implementation

F1 Content Similarity (C1, C2) data:hasContentSimilarity

F2 Semantic Similarity (C1, C2) data:hasSemanticSimilarity

F3 Range Discrepancy (C1, C2) data:hasMinValue, data:hasMaxValue

F4 Table size ratio (C1, C2) data:hasTotalValueCount

F5 Cardinality (C1) data:hasDistinctValueCount

F6 Cardinality (C2) data:hasDistinctValueCount

F7 Name Suffix (C1) schema:name

F8 Name Suffix (C2) schema:name

Dependencies (Rostin et al., 2009) as it demands less computation in comparison to inclusion de-

pendencies which require analyzing the raw column content.

The classifier used in this approach is random forest, which employs 5-fold cross-validation for

training and evaluation. The PK-FK Classifier utilizes eight distinct features which are similar to

several hand-crafted features proposed by (Rostin et al., 2009). In this work, we modified a few

of these features so that they can be easily queried using the LiDS graph and computed on the fly

in order to identify PK-FK relationships in an efficient manner. All eight employed features along

with the relationship (predicate) used to query information concerning that feature are summarized

in table 4.1. Each feature plays a crucial role in assessing the relationship between the candidate’s

Primary Key (C1) and Foreign Key (C2). Here’s a breakdown of each feature and its significance

in the classification process:

F1: Content Similarity (C1, C2): This feature measures the content similarity between columns

(C1) and (C2) using the <data:hasContentSimilarity> relationship in the LiDS graph 1. The

content similarity is computed by calculating the cosine distance between the CoLR embed-

ding representations of the two columns. By evaluating the content similarity, this feature

provides insights into the potential relationship and resemblance in the data patterns repre-

sented by the columns. Specifically, when identifying PK-FK relationships, capturing the

content similarity between candidate columns is essential as it offers valuable information

1Prefix data: <http://kglids.org/ontology/data/>
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about their data content alignment and potential connection. The high content similarity sug-

gests a higher likelihood of a PK-FK relationship between the columns.

F2: Semantic Similarity (C1, C2): This feature evaluates the semantic similarity between columns

(C1) and (C2) using the <data:hasSemanticSimilarity> relationship in the LiDS graph. The

semantic similarity is measured in a similar fashion to content similarity, however, it calcu-

lates the cosine distance between the word embedding (Goikoetxea, Agirre, & Soroa, 2016)

representation of the two columns. By capturing the semantic resemblance, this feature pro-

vides insights into the potential semantic relationship and correspondence in the data patterns

represented by the columns. Specifically, in the context of identifying PK-FK relationships,

capturing the semantic similarity between candidate columns can be particularly useful, as

PK-FK column names often follow similar semantic patterns.

F3: Range Discrepancy (C1, C2): This feature assesses the range discrepancy between columns

(C1) and (C2) using the <data:hasMinValue> and <data:hasMaxValue> relationships in

the LiDS graph. It calculates whether the maximum and minimum values of the foreign key

column (C2) fall within the range of the maximum and minimum values of the primary key

column (C1) to produce a binary output of 0 or 1. In PK-FK relationships, it is expected

that the dependent values in the foreign key column are distributed more or less evenly over

the referenced values in the primary key column. By comparing the range of the foreign

key column with the range of the primary key column, this feature provides insights into the

distribution patterns and alignment between the referenced and dependent values.

F4: Table size ratio (C1, C2): This feature calculates the ratio of the number of tuples in the

foreign key column (C2) to the number of tuples in the primary key column (C1) using the

<data:hasTotalValueCount> relationship in the LiDS graph. The feature examines the pro-

portion of tuples in (C2) relative to (C1) and captures how dependent attributes typically do

not reference only a very small subset of their primary keys. In the context of identifying

PK-FK relationships, this feature provides insights into the relative sizes of the primary key

column and the foreign key column. In a PK-FK relationship, the foreign key column is ex-

pected to have a comparable or larger number of tuples compared to the primary key column.
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Algorithm 1 Classification of Primary-key Foreign-key pairs

Input: LiDS Knowledge Graph KG,

Primary-key foreign-key classifier PC
Output: Primary-key Foreign-key pairs P

1: Query KG to retrieve column pairs S = {(C1, C2) |C1, C2 ∈KG ∧ sim(C1, C2)≥ θ} where sim(C1, C2)
is the content similarity measure between columns C1 and C2, and θ is the content similarity threshold.

2: Calculate Primary-key Foreign-key feature set F = {(f1C1C2
, f2C1C2

, ..., f8C1C2
) | C1, C2 ∈ S} where

f1C1C2
, f2C1C2

, ..., f8C1C2
are the features for candidate columns C1 and C2.

3: Classify Primary-key Foreign-key column pairs P by applying PC on F such that P ⊂ S .

F5: Cardinality (C1): This feature captures the cardinality of the primary key column (C1) using

the <data:hasDistinctValueCount> relationship in the LiDS graph. It counts the number of

distinct values present in (C1). In the context of identifying PK-FK relationships, the cardi-

nality of the primary key column is an important consideration. Higher cardinality indicates

a larger number of unique values in (C1), which suggests a stronger likelihood of it being a

primary key. PK-FK relationships typically involve a primary key column with higher cardi-

nality, as it serves as a reference for multiple foreign key values.

F6: Cardinality (C2): This feature captures the cardinality of the foreign key column (C2) sim-

ilarly to F5 by using the <data:hasDistinctValueCount> relationship in the LiDS graph. It

counts the number of distinct values present in (C2). In the context of identifying PK-FK

relationships, foreign key columns typically exhibit some level of diversity in their values, as

they reference primary key values from other tables.

F7: Name Suffix (C1): This feature examines the suffix of the column name in the candidate

primary key column (C1). It returns 1 if the column name ends with specific sub-strings that

are commonly associated with join keys, such as ‘id’, ‘num’, ‘key’, ‘ref’, or ‘code’ else 0.

The presence of these suffixes can suggest in favor of the column representing a primary key.

F8: Name Suffix (C2): This feature examines the suffix of the column name in the candidate

foreign key column (C2). Similarly to Feature 7, it returns 1 if the column name ends with

specific sub-strings else 0.

Algorithm 1 outlines the process for classifying PK-FK column pairs using the PK-FK classifier
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Algorithm 2 Abstracting Entities and Feature Views in LiDS Knowledge Graph

Input: LiDS Knowledge Graph KG,

Primary-key foreign-key pairs P
Output: Augmented LiDS Graph KG′

1: for table ∈ KG do

2: Create a feature view node ▷ Abstract feature view

3: Link the feature view node to its physical table: add edge(table.uri, farm:hasFeatureView, feature-

View.uri)

4: for column ∈ table do

5: if column ∈ P then

6: Create an entity node ▷ Abstract entity

7: Link the entity node to its physical column: add edge(entity.uri, farm:representedBy, col-

umn.uri)

8: Link the entity node to its feature view: add edge(featureView.uri, farm:hasEntity, en-

tity.uri, column.uniqueness)

9: end if

10: end for

11: end for

and the computed features. Given a LiDS Knowledge Graph (KG) and the Primary-key foreign-

key classifier (PC), the algorithm proceeds as follows. First, the KG is queried to retrieve column

pairs (C1, C2) where the content similarity measure sim(C1, C2) between the columns exceeds a

specified threshold θ. These column pairs form the set S . Next, the feature set F is computed for

each candidate column pair (C1, C2) in S , consisting of the eight features f1C1C2
, f2C1C2

, ..., f8C1C2
.

Finally, the PK-FK classifier (PC) is applied to classify the primary-key foreign-key column pairs

P using the feature set F , resulting in P being a subset of S . By utilizing this classifier and

computing these features dynamically, PK-FK column pairs can be efficiently classified, aiding in

the identification of physical representations of entities.

4.2.2 LiDS Graph Augmentation

LiDS graph augmentation aims to expand its knowledge representation and improve its ability to

capture complex relationships concerning data preparation. By enriching the graph with 1) abstract

entities, feature views, and 2) labeled data preparation operations, the LiDS graph Augmentation

facilitates a more comprehensive understanding of the underlying data preparation workflow and

enables the generation of precise and context-aware recommendations for data scientists.

One of the key steps in the LiDS Graph augmentation is the abstraction of entities and feature

views, as outlined in Algorithm 2. This algorithm leverages the insights provided by the PK-FK
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classifier (explained in Algorithm 1) to estimate the physical representation of entities. Algorithm

2 starts by iterating through each table in the LiDS knowledge graph. For each table, a feature

view node is created, representing an abstract view of the features associated with the table. This

feature view node is then linked to its corresponding physical table, establishing the relationship

between the abstract and physical representations. Next, the algorithm iterates through each column

in the table and checks if the column is part of the identified primary-key foreign-key pairs (P).

If it is, an abstract entity node is created to represent the column. This entity node is then linked

to its corresponding physical column, indicating the relationship between the abstract and physical

representations. Additionally, the entity node is linked to the feature view, capturing the association

between the entity and the abstract view of features.

One of the key highlights of the abstraction approach, which leverages the PK-FK classification,

is its ability to capture join keys. Unlike relying solely on factors like column uniqueness, the ap-

proach considers the relationships between columns in PK-FK pairs. For instance, in a rides dataset

with columns such as ‘ride amount’, ‘ride duration’, and ‘driver id’, the approach correctly identi-

fies the driver as an entity, even when the same driver has multiple trips. Conversely, columns like

‘ride duration’ or ‘ride amount’, despite potentially having high uniqueness, are not considered as

they do not serve as join keys. Another advantage of this approach is its ability to handle datasets

with multiple entities. By extracting both primary and foreign keys, the approach captures multiple

entities within a dataset. In the rides dataset with columns such as ‘driver id’ and ‘passenger id’,

both the passenger and driver are captured as foreign keys, with ‘passenger id’ and ‘driver id’

serving as their respective physical representations. Furthermore, the abstraction approach effec-

tively handles situations where there may be multiple potential physical representations for an en-

tity. In a students dataset with columns like ‘student id’, ‘student social insurance number’, and

‘student email’, multiple candidates may arise for representing the entity student. The approach

determines the most appropriate representation by considering the frequency of appearance in the

list of identified PK-FK pairs (P). Typically, the column that appears more frequently, such as ‘stu-

dent id’, is selected as the physical representation of the entity over other potential representations.

Labeling data preparation operations is a critical aspect of the LiDS graph augmentation pro-

cess. As LiDS graph utilizes static code analysis to capture various classes, packages, and functions
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offers transformation operations through classes like StandardScaler and OneHotEncoder, etc. Ad-

ditionally, NumPy provides useful functions like Sqrt, log, etc. Using the LiDS ontology, we define

data preparation operations DP , which encompass these classes and functions contributing to data

preparation. By querying the LiDS graph, we can identify the operation nodes within DP and

by using predicates like pipeline:callsClass and pipeline:callsFunction 2, as well as the affected

columns (features) using the pipeline:readsColumn predicate. These nodes are then linked using

the farm:isAppliedTo 3 relationship, as depicted in Figure 3.2 of the augmented LiDS graph and

labeled by a node representing the data preparation operation type like data transformation or data

cleaning.

The augmented LiDS graph (Figure 3.2) incorporates four additional classes: entity, feature

view, data transformation, and data cleaning, along with four object properties that play vital roles

in the graph’s structure and semantics:

• The relationship between a physical table and an abstract feature view is denoted by the

predicate http://kgfarm.com/ontology/hasFeatureView.

• The relationship between an abstract entity and a physical column is represented by the pred-

icate http://kgfarm.com/ontology/representedBy.

• The relationship between an abstract feature view and an abstract entity is captured by the

predicate http://kgfarm.com/ontology/hasEntity.

• The relationship between a pipeline class/function and a physical column is expressed through

the predicate http://kgfarm.com/ontology/isAppliedTo.

The augmented LiDS knowledge graph serves as a valuable resource for discovering features

and enriching the profiled datasets by estimating the primary-key foreign-key (PK-FK) column

pairs. Furthermore, it labels operations such as data cleaning and transformation within the pipelines

that contribute to the data preparation phase. This graph can be efficiently utilized by employing

SPARQL queries on profiled datasets, enabling users to retrieve valuable insights and perform data-

driven analyses. Additionally, the augmented LiDS graph is leveraged by the Training Manager

2Prefix pipeline: <http://kglids.org/ontology/pipeline/>
3Prefix farm: <http://kgfarm.com/ontology/>
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To derive valuable insights and knowledge, the Training Manager performs queries on the LiDS

graph, extracting relevant details about specific types of data preparation operations. For example,

when training data transformation recommendation models, the Training Manager searches for fre-

quently used transformation techniques within the augmented LiDS graph. This approach enables

the identification of popular operations, such as the OneHotEncoder for categorical feature transfor-

mation or the Sqrt function for numerical feature transformation. By exploring historical patterns

and trends, the Training Manager gains a deep understanding of how these operations have been

applied to features in various datasets.

Once the relevant information is gathered, the Training Manager proceeds to map the extracted

features, along with their corresponding CoLR embeddings, to numerical representations. This

mapping process ensures that the features can be effectively processed and analyzed by machine

learning algorithms. By transforming the features into a numerical format, the Training Manager

facilitates the subsequent stages of recommendation model development, enabling them to leverage

the extracted insights and patterns to provide accurate and meaningful recommendations. To train

the recommendation models, the Training Manager employs various machine learning techniques,

including deep neural network classifiers. These models are trained using the processed information,

treating the task of recommending data preparation operations as a multiclass classification problem.

By leveraging the historical patterns and correlations captured in the labeled datasets, the Training

Manager enables the models to learn and generalize from the training data, empowering them to

provide task-specific recommendations for data cleaning, data transformation, and feature selection.

A notable advantage of the recommendation models generated by the Training Manager is their

ability to handle unseen datasets. This adaptability is achieved by drawing upon the collective

knowledge and expertise of data scientists who have previously worked with similar datasets. By

leveraging the experiences and insights gained from past datasets, the recommendation models can

generalize and provide accurate recommendations for new and diverse datasets. This capability is

particularly valuable in dynamic data science environments, where data scientists encounter a wide

range of datasets with varying characteristics.

The trained recommendation models developed by the Training Manager are utilized by other

components within the KGFarm system, namely the Inference Manager and the API and Interface
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Library. These components leverage the models to provide real-time, task-specific recommenda-

tions for data preparation operations on the fly. By seamlessly integrating the recommendation

models into the data science workflow, the Training Manager enhances the efficiency and effective-

ness of the entire data preparation process. This automation, efficiency, and accuracy in the data

preparation phase empower data scientists to make informed decisions and achieve high-quality

data preparation outcomes.

In the field of data science, encountering unseen or ad-hoc datasets is a common occurrence.

These datasets have not been previously profiled or analyzed within the LiDS graph, making it hard

to directly retrieve information about the data preparation operations performed on them. To ad-

dress this challenge, KGFarm introduces a solution for recommending data preparation operations,

such as data cleaning, data transformations, feature selection, and feature engineering, for these

unprofiled datasets using machine learning techniques.

The approach taken by KGFarm is rooted in the principle that similar data often requires similar

data preparation operations. By leveraging the vast repository of data science artifacts, including

datasets and pipelines, KGFarm’s Training Manager builds task-specific machine learning models

that efficiently recommend the most suitable data preparation operations. These operations en-

compass a range of tasks, from cleaning the data and transforming it into suitable representations to

selecting informative features. The recommendation models formalize these tasks as a classification

problem, allowing for accurate and context-aware recommendations.

In the following subsections, we delve into the detailed methodology employed by KGFarm’s

Training Manager to generate these task-specific recommendation models. By understanding the

underlying approach and techniques, we can gain insights into how KGFarm effectively addresses

the challenge of recommending data preparation operations for unseen or ad-hoc datasets, empower-

ing data scientists and ML practitioners to make informed decisions in their data science workflows.

4.3.1 Data Cleaning

Data cleaning is a critical step in ensuring the quality and reliability of datasets used for machine

learning tasks (Xu et al., 2015). In KGFarm, the task of data cleaning recommendation is formalized

as a multiclass classification problem. The goal is to predict the most suitable cleaning operation
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Table 4.2: Supported Data Cleaning Techniques for Handling Missing Values in KGFarm

Operation Library Application

Drop Pandas Remove rows and columns with missing values.

Fillna Pandas Fill missing values with statistics such as mean, median, or mode.

Imputation Scikit-learn Replacing missing values using machine learning.

Interpolation Pandas Estimating missing values based on existing values within a range.

for a given dataset with missing values, in order to improve the accuracy of the associated machine

learning task. Data cleaning in KGFarm is specifically concentrated towards handling missing val-

ues and outliers, as these are common challenges that can adversely impact the performance and

reliability of machine learning models. By leveraging the knowledge and insights captured in the

LiDS graph, KGFarm equips data scientists with robust recommendation models for effectively

addressing missing values and identifying outliers in their datasets.

Problem Definition

Given a dataset D with missing values M = {m1,m2, ...,mn} and a machine learning task L,

the recommendation task in KGFarm is to predict the most suitable cleaning operation cr ∈ C that

can handle M, resulting in improved accuracy for L based on the cleaning techniques applied by

data scientists on other datasets similar to D. Additionally, KGFarm incorporates outlier detection

as an integral part of its data cleaning process. To handle the missing values M, KGFarm consid-

ers a range of commonly used cleaning techniques C provided in Pandas and NumPy, which are

summarized in Table 4.2 including operations such as Drop, Fillna, Imputation, and Interpolation.

Training

The training process for data cleaning recommendation is performed using the Training Man-

ager component of KGFarm. It begins by querying the LiDS graph to retrieve datasets that contain

missing values and the corresponding applied data cleaning operations. CoLR embeddings are gen-

erated and mapped to represent the independent variables, while the cleaning operation is treated

as the target variable. To train the recommendation model, a deep neural network is employed to
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classify the most suitable data cleaning operation among Drop, Fillna, Imputation, and Interpola-

tion techniques, enabling effective handling of missing values. Additionally, an independent outlier

detection model is trained using a similar approach. The LiDS graph is queried to identify datasets

on which outlier detection has been performed. By incorporating these datasets along with those

where outlier detection is not applied, a balanced classification model is created. The average CoLR

embeddings for all datasets in the training set are computed, and a random forest classifier is trained

to determine whether there is a need for outlier detection in a given dataset. This training process

equips KGFarm with the capability to detect the presence of outliers, further enhancing the data

cleaning functionality of the system.

Inference

The Inference Manager component of KGFarm utilizes the trained models during the inference

phase to provide data cleaning recommendations. The first step in the inference process is to check

for the presence of outliers in the dataset. If outliers are detected, the local outlier factor technique

(Alghushairy, Alsini, Soule, & Ma, 2021) is applied to convert the outlier values to missing values

(represented as NaN). This ensures that the subsequent data cleaning operations are performed on

a dataset that is free from outlier influences. Once the dataset is prepared by handling outliers,

the pre-trained data cleaning model comes into play. For a given dataset D with missing values

M = {m1,m2, ...,mn}, the input to the data cleaning model is the averaged embeddings of the

features that contain missing values M. The model then predicts the recommended data cleaning

operation cr ∈ C. This prediction can be expressed using the following logic:

cleaning operation for D :















cr, if pr > α1

none, otherwise

(1)

In Equation 1, pr represents the probability score assigned by the data cleaning model to rec-

ommend the cleaning operation cr, and α1 is the confidence threshold, which is determined empir-

ically. The threshold ensures that only recommendations with high confidence scores are applied to

the dataset.
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Table 4.3: Supported Data Transformations Techniques in KGFarm

Transformation

type

Feature

type

Transformation Library Application

Scaling Numerical

StandardScaler Scikit-learn Removes mean and scales to unit

variance.

MinMaxScaler Scikit-learn Normalizes feature values.

RobustScaler Scikit-learn Scales respecting outliers.

MaxAbsScaler Scikit-learn Scales by maximum absolute

value.

Unary Numerical

Log NumPy Applies natural logarithm.

Sqrt NumPy Computes square root.

Square NumPy Computes square.

Tanh NumPy Applies hyperbolic tangent.

OrdinalEncoder Scikit-learn Encodes ordinal feature.

OneHotEncoder Scikit-learn Encodes nominal features.

Categorical
OrdinalEncoder Scikit-learn Encodes ordinal feature.

OneHotEncoder Scikit-learn Encodes nominal features.

Furthermore, it is important to consider the type of feature, whether categorical or numerical,

when applying the recommended cleaning operation. For example, if the recommended operation is

Fillna and the feature is categorical, it is filled with the mode value. On the other hand, if the feature

is numerical, it is filled with the mean value. Similar considerations are made for other cleaning

methods based on the nature of the feature.

4.3.2 Data Transformation

Data transformation plays a crucial role in preparing datasets for machine learning tasks (V. G. Raju,

Lakshmi, Jain, Kalidindi, & Padma, 2020). In KGFarm, the task of data transformation recommen-

dation is formalized as a classification problem. The goal is to predict a set of transformations

that can enhance the accuracy of the machine learning task based on the transformation techniques

applied by data scientists on similar datasets and features in the past.
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Problem Statement

Given a dataset D with features F = {f1, f2, ..., fn} and a machine learning task L, the rec-

ommendation task is to predict a set of transformations T = {t1, t2, ..., tm} that can improve the

accuracy of L based on the transformation techniques applied by data scientists on other datasets

and features similar to D and F , respectively. The problem of data transformation recommendation

in KGFarm is subdivided into two primary steps: 1) recommending scaling transformations applied

to the entire dataset and recommending 2) unary feature transformations applied to individual fea-

tures. To transform the features F , KGFarm considers a wide range of frequently used scaling and

unary transformation techniques T that are provided in the Scikit-learn and NumPy libraries, which

are summarised in Table 4.3. These transformations include several scaling techniques such as Stan-

dardScaler, MinMaxScaler, etc., and unary transformations such as Log, Sqrt, OneHotEncoder, etc.

Unary transformations are valuable for manipulating data in machine learning (Nargesian et al.,

2017). However, to maximize their effectiveness, applying scaling transformation beforehand can

improve the performance of unary transformations, leading to an overall improved model effective-

ness. The primary motivation behind this lies in addressing the challenges posed by varying data

magnitudes. For instance, algorithms like KNN and SVM rely on measuring the distance between

data points. Without proper scaling, features with larger values tend to dominate the feature similar-

ity measurement, leading to suboptimal or inadequate model performance (V. N. G. Raju, Lakshmi,

Jain, Kalidindi, & Padma, 2020). By scaling the data, we ensure that all features are treated on

an equal footing which further prevents certain features from overshadowing others due to their

inherent scale, thus facilitating a balanced and unbiased unary transformation. Another compelling

reason for utilizing scaling transformation is its efficacy in handling outliers. Outliers, characterized

by extreme values, can significantly impact unary transformations by causing distortion in the trans-

formation process and hindering accurate modeling. By scaling the data, we effectively reduce the

influence of outliers, enabling the unary transformations to exhibit greater robustness and resilience.

Thus incorporating scaling transformations prior to unary transformations offers a range of benefits

that positively impact the performance.
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Training

The training process for data transformation recommendation is facilitated by the Training Man-

ager, which orchestrates the necessary steps to train the models. It begins by querying the LiDS

graph to retrieve the features and the applied data transformation operations. This process is re-

peated three times, once for scaling transformations and twice for unary feature transformations

(numerical and categorical). After querying the graph, the Training Manager maps the retrieved

features and transformations to their respective CoLR embeddings. This mapping enables the mod-

els to capture the inherent relationships and patterns between the features and transformations by

serving as the independent variables and the transformation technique serving as the target variable.

For scaling transformations, the CoLR embeddings of numerical features are averaged to gener-

ate a holistic representation of the dataset. In the case of unary transformations, the CoLR embed-

dings of individual transformed features are retained, preserving their distinct characteristics. Once

the features and transformations are mapped to their embeddings, the training process commences.

For scaling transformations, a deep neural network model is trained using a multiclass classification

approach. The model is trained on four classes: StandardScaler, MinMaxScaler, RobustScaler, and

MaxAbsScaler, representing the most commonly used scaling transformation techniques.

Similarly, for unary feature transformations, two separate deep neural network models are

trained. The numerical unary transformation model is trained on six classes: Log, Sqrt, Square,

Tanh, OrdinalEncoder, and OneHotEncoder, covering a wide range of numerical unary transforma-

tion techniques. The categorical unary transformation model, on the other hand, is trained on two

classes: OrdinalEncoder and OneHotEncoder, encompassing the commonly used categorical unary

transformation methods.

Inference

During the inference phase, the trained models are utilized by the Inference Manager to provide

data transformation recommendations. The inference process begins by checking for the presence of

categorical columns in the dataset. If categorical columns exist, the categorical unary transformation

model is first employed to recommend the appropriate transformation techniques. Next, scaling
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transformations are applied to the dataset, followed by unary transformations if recommended.

For a given dataset D with features F = {f1, f2, ..., fn}, the scaling transformation model

predicts the recommended scaling technique sr ∈ T . This can be expressed as follows:

scaling transformation for D :















sr, if pr > α2

none, otherwise

(2)

Similarly, for numerical and categorical unary transformations, the input is the embedding of the

individual numerical and categorical features, respectively. The output is the recommended unary

transformation technique ur ∈ T . This can be expressed as follows:

Unary transformation for f ∈ F :















ur, if pr > α3

none, otherwise

(3)

In equations 2 and 3, pr represents the confidence score of the classifier to recommend the

scaling transformation sr and the unary transformation ur, respectively. The thresholds for confi-

dence, denoted as α2 and α3, are determined empirically for each of the three data transformation

recommendation models.

4.3.3 Feature Selection

Feature selection plays a crucial role in machine learning by identifying the most relevant and

predictive features for a given task (Kumar & Minz, 2014). In KGFarm, the task of feature selection

is formulated as a binary classification problem, where the goal is to predict a subset of features

from a dataset that have high relevance or predictive power in predicting a target class for a specific

machine learning task. This selection process leverages the similarity to previously chosen features

that have demonstrated effectiveness in predicting similar target classes.

Problem Statement

Given a dataset D with features F = {f1, f2, ..., fn}, a target class k, and a machine learning

task D, the problem of feature selection in KGFarm is to predict a subset of features F ′ that have
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high relevance in predicting target class k for task L. The selection of features in F ′ is based on the

similarity to previously selected features that have shown effectiveness in predicting similar targets.

The LiDS graph provides information about the selected and discarded features associated with

the target variable. Techniques such as train test split and SelectKBest are employed to mine the tar-

get, selected, and discarded variables from the dataset. The LiDS ontology offers predicates such as

pipeline:hasTarget, pipeline:hasSelectedFeature, and pipeline:hasNotSelectedFeature to efficiently

query these relationships directly from the graph.

Training

The training process for feature selection is facilitated by the Training Manager, which orches-

trates the necessary steps to train the models. Similar to the approach followed in data cleaning

and data transformation, the LiDS graph is queried to retrieve the features F ′ that were selected

for a given target class k in each pipeline. The selected features are labeled as selected, while the

discarded features F − F ′ are labeled as discarded. CoLR embeddings are then computed for the

selected and discarded features along with their target variables. This results in labeled modeling

data, where the feature embeddings of the selected or discarded features represent the independent

variables, and the target variable is represented by the binary classes selected or discarded. These

steps are repeated for three different machine learning tasks: 1) binary classification, 2) multiclass

classification, and 3) regression, to accommodate the nature of the target variable. Three indepen-

dent deep neural network classifiers are trained per machine learning task to recommend the subset

of features that should be selected for predicting the target class k.

Inference

During the inference phase, the trained models are utilized by the Inference Manager to recom-

mend the subset of features to be selected. Given a dataset D with features F = f1, f2, ..., fn, a

target class k, and a machine learning task L, the input to these models is the feature embeddings

of the features in F and the target class k. The output is the probability pr indicating the predicting
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illustrated by figure 4.4 that integrates statistical data preprocessing and sophisticated predefined

data preparation operations such as data transformation and feature selection. This comprehensive

approach aims to maximize the accuracy and efficiency of machine learning tasks, particularly when

dealing with diverse and ad-hoc datasets. By combining these operations, KGFarm empowers data

scientists to leverage the full potential of feature engineering in an efficient way.

Data Preprocessing

In the data preprocessing step, various lightweight statistical techniques are employed to handle

the challenge of evaluating all candidate features in the original feature space, especially in the case

of high-dimensional datasets. KGFarm leverages efficient statistical methods, such as information

gain and feature correlation, to prune the set of candidate features and improve the computational

efficiency and scalability of the overall feature engineering pipeline (Kaul et al., 2017). The infor-

mation gain technique is used to estimate the relevance and influence of each candidate feature in

predicting the target class. For datasets with a small number of features (less than 500), all fea-

tures with an information gain value greater than 0 are selected. However, for datasets with a larger

number of features (500 or more), only the top 10% of features, ranked by their information gain,

are selected. This approach allows for a more focused analysis of the most informative features

while effectively managing the computational complexity. Additionally, Pearson correlation is em-

ployed to address the issue of multicollinearity among features. When highly correlated features

are present, which can lead to overfitting, KGFarm eliminates the feature with the lower informa-

tion gain to mitigate the negative effects of redundancy and improve the overall feature distribution

within the feature set.

Data Transformation and Feature Selection

After the data preprocessing step, the pruned set of features is passed to KGFarm for data trans-

formation and feature selection. The data transformation phase involves applying appropriate tech-

niques, as described in subsection 4.3.2, to enhance the quality and representation of the features.

This step enables the features to capture more meaningful patterns and relationships in the data,

improving the overall predictive performance. Following the data transformation, KGFarm applies
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Training Manager, enabling them to efficiently perform data preparation tasks. Figure 4.5 provides

an illustration of the Interface Manager in action.

When an unseen dataset is provided as a DataFrame, the Interface Manager initiates the data

preparation process by calculating the Column Learned Representation (CoLR) embedding for each

column in the dataset. These embeddings capture essential information about the columns, facilitat-

ing subsequent data preparation decisions. CoLR embeddings represent a compact and informative

representation of the columns, enabling efficient storage, processing, and analysis. The next cru-

cial step for the Interface Manager is to leverage the task-specific pre-trained models generated by

the Training Manager. These models encapsulate the knowledge and insights acquired during the

training process, enabling them to provide accurate and context-aware recommendations for data

cleaning, data transformation, and feature selection tasks. By utilizing the CoLR embeddings of the

columns, the Interface Manager employs these pre-trained models to predict the most relevant oper-

ation to be applied to the unseen dataset. This recommendation process empowers data scientists to

efficiently perform data preparation tasks on ad-hoc or previously unseen datasets without the need

for manual exploration or analysis (EDA), saving valuable time and effort.

Scalability and efficiency are key strengths of the Interface Manager. To achieve scalability, the

Interface Manager leverages Dask (Dask Development Team, 2016), a parallel computing frame-

work that efficiently handles datasets with a significant number of features. By distributing the com-

putation across multiple cores or machines, the Interface Manager can process large-scale datasets

in a highly efficient manner. This parallelization ensures quick and responsive recommendations,

enabling the system to handle the computational demands of data-intensive tasks. Additionally, the

use of CoLR embeddings further contributes to scalability by providing a concise and informative

representation of the columns. The fixed-size embeddings compress the essential characteristics

of the columns, enabling efficient storage and processing even for datasets with a large number of

rows. The Interface Manager operates through a two-step process. Firstly, it computes the CoLR

embeddings of the ad-hoc dataset using Dask to parallelize the computation and efficiently handle

datasets with a high number of features. Once the embeddings are obtained, the Interface Man-

ager applies the recommendation models developed by the Training Manager to provide precise and

task-specific data preparation recommendations. These recommendations are delivered in real-time,
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allowing data scientists to streamline their workflow and make informed decisions regarding data

cleaning, data transformation, and feature selection.

The interface Manager seamlessly couples the output of recommended data preparation opera-

tions with the API and Interface Library, facilitating intuitive and user-friendly interactions between

data scientists and the recommendation models. Serving as a vital bridge between data scientists

and the recommendation models generated by the Training Manager, the API and Interface Library

provide a convenient and efficient means for data scientists to apply the recommended data prepa-

ration operations and obtain the desired outcomes. This integration streamlines the data scientists’

workflow and empowers them to make informed decisions, achieving high-quality data preparation

outcomes. Leveraging CoLR embeddings and scalable computing techniques, the Interface Man-

ager enables efficient data preparation on ad-hoc datasets, enhancing the productivity and effective-

ness of data scientists. By seamlessly integrating with the API and Interface Library, the Interface

Manager ensures a smooth and intuitive user experience, enabling data scientists to navigate the

data preparation process with confidence and achieve their data science goals effectively.

The APIs and Interface Library within KGFarm serve as a fundamental component, facilitating

seamless integration with popular Python-based data science platforms such as Jupyter Notebook

or Google Colab. This integration empowers users to leverage the powerful capabilities of KGFarm

interactively or programmatically while writing their pipeline scripts. The APIs are designed to

provide a smooth workflow experience, allowing users to input a Pandas dataframe and obtain a

Pandas dataframe as output, ensuring compatibility with widely-used data manipulation tools.

The APIs and Interface Library play a crucial role in assisting users with both seen and unseen

datasets. For unseen datasets, the Interface Manager is utilized to provide recommendations for

data preparation operations. By capitalizing on the knowledge captured by the recommendation

models, the APIs enable efficient and precise application of the recommended operations, eliminat-

ing the need for users to possess explicit knowledge of data preparation techniques. This seamless

integration streamlines the data preparation process, enabling users to quickly apply cherry-picked

recommendations from the Inference Manager to their datasets, saving valuable time and effort.

Moreover, these APIs can be used for real-time querying of the LiDS knowledge graph when
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dealing with profiled (seen) data. Each API encapsulates a specific data preparation task and uti-

lizes SPARQL queries to retrieve up-to-date and accurate information from the LiDS graph. By

leveraging the comprehensive knowledge captured in the graph, the APIs empower users with rec-

ommendations based on the experiences of other data scientists in the past, guiding them through

the data preparation process effectively.

Designed as a Python package, the KGFarm APIs seamlessly integrate into typical data sci-

ence workflows, accelerating the overall development and execution of data science pipelines. The

user-friendly and efficient interface of the APIs and Interface Library enhances the usability and ac-

cessibility of KGFarm, making it a valuable tool for data scientists striving for efficient and effective

data preparation in their endeavors. To illustrate the practical use of the KGFarm APIs, we highlight

their application in solving a machine learning task related to earthquake magnitude prediction.

Feature Identification

Identifying the right set of features for a machine learning task can be a challenging and time-

consuming process. KGFarm addresses this problem by providing an API for feature identification:

identify features(entity=‘earthquake’,target=‘magnitude’)

This API takes the entity and target names associated with the machine learning task as input. It queries

the LiDS graph to fetch the feature view linked to the entity (‘earthquake’) that includes the target (‘mag-

nitude’) as a feature. The API then returns all the columns, excluding those representing the entity and the

target, as the potential features describing the entity.

Data Enrichment

Data enrichment is crucial for enhancing the base modeling data by augmenting the initial set of features

with information from different data sources. KGFarm provides the following APIs to efficiently address this

problem:

enrichment info = search enrichment options(df)

This API requires the base dataframe as input and returns a dataframe containing information about all

possible tables that can be used to enrich the base dataframe. KGFarm leverages the physical representation

of entities to recommend the most accurate set of joinable tables. The obtained information can then be

directly used to perform enrichment using the following API:
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enrich(df, enrichment info.iloc[0])

The enrich API takes the base dataframe and the enrichment information obtained from the

search enrichment options API as input. KGFarm returns the enriched dataframe by applying the provided

enrichment information. When working with time-series data, the presence of stale features can impact the

predictiveness of the model. To address this issue, KGFarm offers an additional parameter to handle stale

features:

enrich(df, enrichment info.iloc[0], freshness=365)

This API accepts the base dataframe, enrichment information from the search enrichment options API,

and a freshness parameter that defines the time window of the features (365 days in the provided example).

KGFarm performs the join using the provided information and eliminates records that do not fall within the

freshness time window. This ensures that outdated records are filtered out, preventing the introduction of

noise into the model.

Data Cleaning

Data cleaning in KGFarm focuses on visualizing, fixing, and removing incomplete or corrupted data. To

support this task, KGFarm provides the following API:

cleaning info = recommend cleaning operations(df)

The recommend cleaning operations API takes a raw dataframe as input and uses the data cleaning

recommendation model to return the most suitable cleaning operations as a dataframe. Users can then directly

apply the recommended cleaning techniques using the following API:

clean(df, cleaning info.iloc[0])

The clean API accepts the cleaning operation obtained from the recommend cleaning operations API,

along with the raw dataframe. It returns the cleaned dataframe after applying the provided cleaning operation.

Data Transformation

KGFarm simplifies the transformation of numerical and categorical features in a dataset. Users can

leverage the following API to perform data transformation:

transform info = recommend data transformations(X train)

This API takes the untransformed dataframe as input and uses the data transformation recommendation

model to return the most probable transformation techniques as a dataframe. Similarly, users can apply the

recommended transformation of their choice without writing dedicated code using the following API:

apply transformation(X train,transform info.iloc[0])
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The apply transformation API accepts the transformation technique obtained from the

recommend data transformations API, along with the untransformed dataframe. It returns the transformed

dataframe along with the transformation model after applying the provided transformation technique.

Feature Selection

After preparing the data, it is essential to select the most relevant features for predicting the target vari-

able. This helps avoid overfitting and reduces training time by creating a more concise dataset for modeling.

KGFarm offers the following API for feature selection:

recommend top k features(X train,y train)

The recommend top k features API expects the independent variables (features) as a dataframe and the

target as a Pandas series object as input. It returns a dataframe with the features and their corresponding

relevance scores with respect to the target variable. This enables data scientists to sub-select features based

on their specific requirements.

The KGFarm APIs and Interface Library provide a comprehensive set of tools to assist data scientists in

various data preparation tasks. By seamlessly integrating with existing Python-based data science platforms

and offering intuitive and user-friendly interfaces, these APIs empower data scientists to efficiently explore,

clean, transform, enrich, and select features from their datasets. Through their versatile functionality and

smooth integration, the KGFarm APIs enhance the overall data preparation process, enabling data scientists

to make informed decisions and achieve high-quality outcomes in their machine learning tasks.

4.5 KGFarm Characteristics

In this section, we delve into the core characteristics of KGFarm that establish it as a powerful and effi-

cient tool for automated data preparation. We explore key aspects such as taylor stitched recommendations,

scalability, leakage-aware data transformation, and integration with existing data science workflows. These

characteristics exemplify the unique capabilities of KGFarm and underscore its potential to enhance the ef-

ficiency and effectiveness of the data preparation process for machine learning tasks. By leveraging these

features, data science practitioners can tap into the collective wisdom and experience of their peers, enabling

a high level of automation and driving optimal outcomes in their machine learning endeavors.
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4.5.1 Taylor Stitched Recommendations

In KGFarm, the KG Augmentor can be extended to label specific data preparation operations (referred

to as DP in subsection 4.2.2), enabling the training of predictive models for recommending tailored opera-

tions. This augmentation process requires two essential components: 1) the implementation of operation(s)

of interest, such as the CountEncoder transformation offered in the category encoders library 4, provided as a

class/function, and 2) pipelines that incorporate these operation(s). By fulfilling these conditions, enterprises

can generate and build custom ML models using the Training Manager, which can predict data preparation

operations inspired by their own code repositories and pipelines.

These recommendations leverage machine learning to analyze the implementations of data preparation

operations within ML pipelines. By training models on labeled data that capture the relationships between

data transformations, feature selections, and other preparatory operations, KGFarm can provide tailored rec-

ommendations to data science practitioners.

Recognizing the significance of similar data demanding similar operations, KGFarm has been developed

to generate custom models capable of recommending operations inspired by previously seen code reposito-

ries and pipelines. By harnessing the collective intelligence within an organization, KGFarm enables data

scientists and practitioners to extract valuable insights from their existing ML pipelines. By examining the

historical usage patterns and performance of data preparation operations, KGFarm identifies effective and

efficient combinations of operations for specific machine learning tasks, empowering data scientists to make

informed decisions and leverage the best practices established within their organization.

By incorporating Taylor Stitched Recommendations into their data science workflow, enterprises can

enhance the efficiency and effectiveness of their data preparation process. The ability to generate custom

ML models that predict relevant operations based on their own code repositories and pipelines provides a

powerful tool for automating and optimizing data preparation. This feature streamlines the overall machine

learning pipeline and promotes the adoption of best practices within the organization, leading to improved

model performance and accelerated pipeline development.

4.5.2 Scalability

Scalability is a crucial characteristic of KGFarm that enables accelerated and efficient data preparation

for machine learning tasks, even with large and complex datasets. KGFarm achieves scalability through

various components and techniques integrated into its framework.

As discussed in section 4.4, KGFarm addresses the challenge of handling large datasets during data

4https://github.com/scikit-learn-contrib/category encoders
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cleaning, data transformations, and feature selections by utilizing CoLR embeddings instead of raw column

values. CoLR embeddings compress and represent column information in a more compact form, facilitating

efficient processing and analysis. This approach proves particularly effective when dealing with a large

number of rows, as it reduces memory requirements and speeds up computations.

To parallelize computations on the level of features, KGFarm leverages the Dask framework. Dask

enables distributed computing and parallel execution of tasks, significantly enhancing the scalability of KG-

Farm. By dividing the computation across multiple cores or machines, Dask enables faster processing of

large datasets with numerous columns.

During the feature engineering phase, KGFarm incorporates statistical pruning techniques to achieve

greater scalability. These techniques employ lightweight statistical methods, such as information gain and

feature correlation, to prune candidate features. By eliminating irrelevant or redundant features early in the

process, KGFarm reduces the computational burden and enhances the scalability of subsequent operations.

In terms of identifying physical representations of entities, KGFarm adopts a scalable approach by uti-

lizing content similarity, which is a superset of inclusion dependencies (Fernandez et al., 2018; Helal et al.,

2021). Classification is performed on top of content similarity to identify PK-FK relationships (as described

in subsection 4.2.1). This approach enables the efficient handling of large and complex datasets with numer-

ous entities.

By incorporating these scalability-enhancing techniques, KGFarm empowers data scientists and practi-

tioners to address data preparation challenges associated with large-scale datasets. The ability to efficiently

and effectively clean and transform data at different levels, from rows to columns, ensures that KGFarm can

meet the demands of real-world enterprise-scale data scenarios.

4.5.3 Leakage-aware Data Transformation

Data leakage refers to the inadvertent inclusion of information from the test set or the target class through-

out the data preparation phase (specifically during the data transformation process), leading to overfitting,

overestimated performance, and potentially biased models (Samala, Chan, Hadjiiski, & Koneru, 2020). KG-

Farm has been designed with a focus on mitigating the problem of leakage during data transformations,

ensuring accurate model evaluation and unbiased predictions.

In many machine learning tasks, scaling the data is a common preprocessing step. However, if scaling

transformations, such as StandardScaler or MinMaxScaler, are naively applied on the entire dataset without

considering the issue of leakage, it can introduce data leakage. These scaling transformations utilize statistical

properties of the feature space, such as mean, standard deviation, minimum, and maximum values, including
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information from the test set. As a result, the transformed feature may contain direct information about the

test set, leading to an overestimation of the model’s performance during evaluation.

KGFarm recognizes the potential for leakage in certain types of transformations, while others are con-

sidered relatively safer. The scaling transformations described in table 4.3 are prone to leakage whereas

unary transformations such as encoding techniques: one-hot encoding or ordinal encoding, typically do not

introduce leakage as they perform a mapping of categories to numerical representations.

To address the issue of leakage during scaling transformations, KGFarm adopts a leakage-aware ap-

proach. When scaling transformations are applied using KGFarm’s APIs and Library Interface (presented in

section 4.4), it returns the transformed training dataframe along with the transformation model fitted on the

training data. This transformation model can then be utilized to transform the test data in an isolated manner,

preventing leakage. For example, the following API can be used to transform data:

X train, scaler = apply transformation(X train, transform info.iloc[0])

Here, along with the transformed train set, the user is also returned with the scaler model, which can be used

to transform the test set isolatedly as follows:

X test = scaler.transform(X test)

By adopting this leakage-aware strategy, KGFarm ensures that the accuracy and performance of the

model are not overpromised during evaluation. It promotes a more realistic and unbiased assessment of the

model’s generalization capabilities, allowing for more reliable predictions on unseen data. Incorporating

leakage-aware data transformation techniques in KGFarm provides data scientists with greater confidence in

the performance and reliability of their machine learning models.

4.5.4 Integration with Existing Data Science Workflow

KGFarm is designed to seamlessly integrate with the existing data science workflow, providing data

scientists with a higher level of automation in the data preparation process. It eliminates the need for time-

consuming exploratory data analysis (EDA) and offers a comprehensive solution for efficient data preparation.

As an open-source Python library 5, KGFarm is easily accessible and can be integrated into various

data science environments. Its APIs are designed to work on top of dataframes, enabling smooth integration

with popular Python frameworks such as Pandas, Dask, PySpark, etc. This compatibility ensures that data

scientists can leverage their existing tools while benefiting from the advanced capabilities of KGFarm.

Not only does KGFarm recommend the most appropriate data preparation operations for ad-hoc datasets,

but it also provides APIs that allow data scientists to apply those operations without writing explicit code.

5https://github.com/CoDS-GCS/kgfarm
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This simplifies the implementation process and reduces the time and effort required for data preparation tasks.

By offering a holistic platform for data preparation, KGFarm empowers data scientists to streamline their

workflow and focus on the core aspects of their machine learning projects. The automation and integration

capabilities of KGFarm contribute to a more efficient and productive data science process, ultimately leading

to improved and accelerated model performance. In summary, KGFarm serves as a valuable addition to the

data science ecosystem, providing data scientists with a comprehensive solution for automated data prepara-

tion. Its open-source nature, dataframe-based APIs, and seamless integration with existing frameworks make

it a powerful tool for enhancing the efficiency and effectiveness of data science workflows.
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Chapter 5

Use Case & Evaluation

This chapter presents the practical application and evaluation 1 of KGFarm in real-world scenarios,

demonstrating its efficiency and effectiveness in addressing data preparation challenges and enhancing the

performance of machine learning tasks.

The chapter begins with a use case study showcasing the utilization of KGFarm by a mechanical engi-

neering research team working on a smart city project. The team’s focus is on the stability of hybrid power

systems, with the objective of identifying instability, designing controllers, and developing recommender sys-

tems to effectively address disruptions. KGFarm plays a crucial role in assisting the team by recommending

data transformation operations, eliminating the need for manual code writing and iterative exploratory data

analysis (EDA), thereby accelerating the machine learning pipeline curation process.

Furthermore, the chapter includes an experimental evaluation that compares KGFarm with state-of-the-

art systems. The evaluation encompasses data cleaning, data transformation, feature selection, and feature

engineering tasks, using 130 unseen datasets obtained from AutoML benchmarks. It assesses the effective-

ness and efficiency of KGFarm by evaluating the impact of the recommended data preparation operations on

machine learning tasks. Additionally, the evaluation includes a comparison of KGFarm’s approach for deter-

mining primary key-foreign key PK-FK relationships using content similarity as an alternative to inclusion

dependencies, which serves as the basis for feature discovery and data enrichment.

Through the use case study and experimental evaluation, this chapter provides valuable insights into

the practical utilization and evaluation of KGFarm in real-world workloads. It highlights the benefits of

employing KGFarm in various scenarios and emphasizes its ability to automate the data preparation phase,

enhancing the efficiency and effectiveness of data science workflows.

1All experiments have been executed on a machine running Ubuntu 20.04.4 LTS, with a 2.40 GHz Intel Core Proces-

sor CPU with 16 cores and 88.5 GB of RAM within a time budget of 3 hours.

53



5.1 Use Case

This section presents a use case study that demonstrates the application of KGFarm in the mechanical

engineering sector of a smart city project. The use case focuses on addressing the stability challenges in

hybrid power systems for developing data-driven controllers to effectively manage disruptions.

Ensuring stability in hybrid power systems is crucial as we transition to more sustainable energy sources.

Conventional power systems with fossil fuel-based generators exhibit stability due to the electrical inertia of

their components. However, hybrid systems integrating renewable energy sources lack this inertia, making

it difficult to maintain a consistent frequency and prevent disruptions. Therefore, this use case leverages

machine learning techniques to detect component faults and disruptions in hybrid power systems.

In the initial step of the project, the mechanical engineering research team focuses on performing fault

detection in hybrid power systems. Simulations are conducted using PowerFactory 2, a power system simu-

lation software, to replicate the behavior of an IEEE nine-bus power system when a fault (short-circuit event)

occurs in one of the system elements for a specific duration. The data generated from these simulations is

utilized to train deep learning models for predicting the stability of hybrid power systems. The objective is to

identify the faulty component out of the 24 components present in the power system, formulating the task as

a multiclass classification problem.

The mechanical engineering research team has developed their own ML pipeline in two weeks’ time

specifically tailored to address the fault detection problem in hybrid power systems. Within their pipeline,

they incorporate various manual data transformation techniques guided by exploratory data analysis (EDA)

processes and trial and error. For modeling, the team implements a deep learning architecture comprising 8

hidden layers, each containing 256 nodes. The activation function utilized in these hidden layers is the Leaky

ReLU (Rectified Linear Unit), and the optimization of the model’s performance is achieved using the Adam

optimizer. The architecture also includes a dropout layer with a rate of 0.5 to prevent overfitting. The output

layer consists of 24 nodes, representing the different classes or labels corresponding to the components. To

ensure robust model performance and mitigate overfitting, the team employs k-fold cross-validation, splitting

the dataset into training and validation sets. During training, the model minimizes the categorical cross-

entropy loss for the multiclass classification tasks of classifying the faulty component in the hybrid power

systems.

The ML pipeline incorporates three unique, hand-curated data transformation techniques including:

(1) Z-score Normalization

Xzscore =
X − µX

σX

(5)

2https://www.digsilent.de/en/
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Integrating KGFarm in this use case provided significant advantages for the mechanical engineering

research team. KGFarm offers a seamless and efficient solution for automating the data preparation phase.

By leveraging KGFarm, the team can streamline the data transformation process without the need for manual

EDA or writing explicit code. This automation enables the team to accelerate the data preparation stage

and focus on modeling the fault detection problem. KGFarm serves as a valuable tool, facilitating the data

preparation tasks required for their machine learning models.

To measure the value that KGFarm adds to this problem, we implemented the same pipeline with the

exact deep learning model, but instead of manual EDA-based data transformations, we used KGFarm to

recommend and apply data transformations on this unseen data for modeling. KGFarm recommended the

following transformations: StandardScaler, which corresponds to the Z-score Normalization technique shown

in equation 5; followed by Sqrt and Log transformations on specific features. In this study, we compared

the accuracy, F1 score, and time consumption of the manual data transformation techniques versus those

recommended by KGFarm. Figure 5.1 (a) shows the comparative accuracy, and Figure 5.2 (b) shows the

F1 score of the different techniques. It can be observed that KGFarm outperforms DT #1, DT #2, and DT

#3, achieving an accuracy of 0.94 and an F1 score of 0.938, which is comparable to DT #4. DT #5, which

relies solely on differential shift, achieves the highest effectiveness with an accuracy of 0.995 and an F1 score

of 0.994. Applying no transformation or using Min-Max Normalization leads to the lowest effectiveness.

However while observing the time consumption (shown in Figure 5.2), running the pipeline with KGFarm

for recommending and applying the most suitable data transformations took 34.6 minutes, while applying all

five data transformation techniques guided by EDA took 130.3 minutes, more than 3 times the time taken by

the pipeline using KGFarm.

Therefore, this use case proves KGFarm’s capability in handling diverse datasets like the simulated

dataset. By automating the data preparation, KGFarm enables users to efficiently transform their data while

maintaining comparable accuracy. It offers a valuable solution for streamlining the data preparation phase by

eliminating the need for manual exploratory data analysis, trial and error, and explicit coding.

5.2 Experimental Evaluation

We evaluate KGFarm to several related systems including the SOTA data preparation systems. For data

cleaning, we compare KGFarm against HoloClean (Rekatsinas et al., 2017), a data cleaning system that uses

statistical learning and inference to unify a range of data repairing methods, and DataWig (Biessmann et al.,

2019), an open-source library that uses deep learning feature extractors to perform missing value imputations.

For data transformation and feature engineering, we compare KGFarm against AutoLearn (Kaul et al., 2017),
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5.2.1 Data Cleaning

In this set of experiments, we used the eight datasets from the AutoML benchmarks (Helali et al., 2022)

that contained missing values and supplemented them with five datasets from the UCI repository (Dua &

Graff, 2017). Our evaluation consisted of cleaning these datasets using KGFarm, DataWig, and HoloClean.

Our evaluation metric includes the F1 scores of a random forest classifier trained using cross-validation over

ten folds on the cleaned datasets.

In Figure 5.3 (a), it can be observed that KGFarm consistently occupies the outer edge of the radar graph,

which serves as a visual representation of its consistently high F1 scores. Regarding efficiency, KGFarm is

outperforming DataWig and HoloClean in 85% and 77% of datasets concerning time and in 69% and 62% of

datasets w.t.o the memory usage respectively.

HoloClean faced memory constraints while attempting to clean datasets 4, 6, and 8, resulting in an

inability to complete the cleaning process for these datasets. These datasets are given an F1 score of 0

in Figure 5.3 (a) and marked with an ‘x’ on the x-axis in Figure 5.3 (b), indicating that no time values

were obtained for these datasets and an ‘x’ on top of the bar in Figure 5.3 (c), indicating that the memory

capacity of the machine used was exceeded. DataWig exceeded the time budget of 3 hours while cleaning

dataset 4, resulting in an ‘x’ on top of the bar in Figure 5.3 (b) and an ‘x’ on the x-axis in Figure 5.3 (c).

We also consider a baseline method that performs modeling without data cleaning. The baseline method

faced challenges with datasets, whose IDs are 9, 11, and 13. One notable advantage of KGFarm is its

ability to successfully complete the cleaning process on larger datasets, such as datasets whose IDs are 4, 6,

and 8, where HoloClean encountered memory limitations. As a result, KGFarm utilizes comparatively less

memory compared to HoloClean, which generates multiple tables containing dataset information throughout

its cleaning process. KGFarm balances between efficiency and cleaning effectiveness, allowing users to clean

their datasets effectively with little time and memory constraints.

5.2.2 Data Transformation

This set of experiments compared KGFarm to LFE and AutoLearn using the open datasets used in LFE’s

experimental evaluation (Nargesian et al., 2017) to facilitate the direct comparison between these systems.

Our evaluation procedure involved applying the data transformation recommended by KGFarm, LFE, and Au-

toLearn to each dataset. Subsequently, we trained a random forest classifier using a 10-fold cross-validation

approach. Finally, we computed the F1 score for each system, as depicted in Figure 5.4 (a). In Figure 5.4 (b),

KGFarm outperformed LFE on approximately 69% and AutoLearn on 62% of the datasets in the F1 score

3https://github.com/CoDS-GCS/kgpip-public/tree/master/benchmark datasets
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5.2.5 PK-FK Discovery

In the experiment, we conducted a comparative analysis between our novel PK-FK discovery approach,

utilizing computationally efficient content similarity, and the traditional inclusion dependency method (Ros-

tin et al., 2009) using the spider algorithm (Bauckmann, Leser, Naumann, & Tietz, 2007). To evaluate the

performance of the PK-FK discovery, we trained an ensemble model on eight features as explained in table

4.1, using data from the LiDS graph that captures content similarity through CoLR embeddings. We em-

ployed a leave-one-out evaluation approach on six databases from diverse domains, including life sciences

(SCOP, MSD, UniProt), movies (Movielens, Filmdienst), and TPC-H benchmark. During the evaluation,

we recorded various metrics such as accuracy, precision, recall, and F1 score. This entire process was then

repeated using inclusion dependency column pairs instead of column similarity.

The results, as shown in Table 5.1, demonstrate the efficacy of the content similarity approach in PK-

FK discovery. The model utilizing content similarity achieved comparable scores to the computationally

heavy inclusion dependency method. Specifically, both approaches resulted in the same F1 score of 0.87 and

comparable accuracy, precision, and recall. These findings highlight the efficiency and effectiveness of our

PK-FK discovery approach, showcasing its potential to replace the more computationally expensive inclusion

dependency method without compromising on accuracy.
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Chapter 6

Conclusion & Future Work

This thesis presents KGFarm, a fully-fledged platform for automating data preparation using the seman-

tics of data science artifacts captured as a knowledge graph. To construct this knowledge graph, we utilized

an existing system, which collected data from top-rated 1000 Kaggle datasets and 13800 pipeline scripts

with the highest number of votes. Within KGFarm, data cleaning, data transformation, and feature selection

tasks are formulated as machine learning classification tasks, trained on the knowledge graph. Additionally,

KGFarm augments this knowledge graph to abstract physical data science artifacts by discovering PK-FK

column relations using machine learning.

Additonally, this thesis presents a practical use case demonstrating the effectiveness of KGFarm in solv-

ing real-world challenges faced by data scientists. Furthermore, we conducted a comprehensive evaluation

using 130 ad-hoc datasets, which were not part of the training data for our models. To assess the performance

of KGFarm, we compared it with state-of-the-art data preparation systems. The experimental results reveal

that KGFarm outperforms other systems, achieving significant reductions in time and memory usage, up to

two orders of magnitude, while simultaneously improving accuracy, particularly with large-scale datasets.

Looking ahead, KGFarm holds several promising future directions to further enhance its capabilities and

impact in the field of data science automation. One significant direction involves exploring the use of Graph

Neural Network (GNN) (Abdallah, Nguyen, Nguyen, & Mansour, 2021; Zhou et al., 2020) models directly

on the LiDS knowledge graph. Currently, KGFarm extracts labeled information from the graph to train

machine learning models for data preparation tasks. By leveraging GNNs, which are specifically designed to

handle graph-structured data, KGFarm can benefit from the inherent graph structure and consider information

propagated through neighboring nodes and various relationships within the graph. This integration of GNNs

could potentially improve KGFarm’s ability to capture complex patterns and dependencies within data science
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artifacts, leading to more accurate data preparation recommendations.

Addressing feature bias detection is another crucial aspect for the future development of KGFarm. Fea-

ture bias refers to the presence of biased features in datasets, which can have significant implications in

sensitive domains, such as shortlisting job applications or insurance (Bellamy et al., 2018). To tackle this

issue, KGFarm aims to develop models that can identify biased features based on the context of a specific

data science task. By detecting and mitigating biased features, KGFarm can contribute to the development

of fair and ethical data science pipelines (Nargesian, Asudeh, & Jagadish, 2021), ensuring that data-driven

decisions are free from unfair biases.

Furthermore, KGFarm envisions automating the creation of data science pipelines from a concise descrip-

tion of a data science task (Einblick, 2023). This ambitious direction involves developing models capable of

understanding the given task description in terms of dataset topics and related pipelines similar to large lan-

guage models (Kasneci et al., 2023). These models would then link the data topics to actual datasets, tables, or

columns in the data science knowledge graph. By effectively identifying relevant datasets, KGFarm can use

them as input for an Automated Machine Learning (AutoML) system to generate a full data science pipeline

automatically. This automation would enable users to express their data science tasks in natural language and

receive fully automated and optimized pipelines as output, streamlining the entire data science workflow and

minimizing manual efforts.
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Appendix A

Benchmark

Table A.1: 130 Open Datasets used for Evaluating KGFarm against State-Of-The-Art Systems for Data Preparation

Dataset

ID
Dataset

Size

(MB)
# Rows # Columns

# Categorical

Features

# Numerical

Features

# Missing

Columns
Target

ML

Task
Source

1 jm1 1.754 10885 22 5 17 5 defects binary OpenML

2 hepatitis 0.008 155 20 0 20 0 Class binary UCI

3 cleveland heart disease 0.012 303 15 0 15 2 condition binary UCI

4 albert 256.302 425240 79 25 54 45 class binary AutoML

5 adult 5.59 48842 15 9 6 2 class binary AutoML

6 higgs 21.694 98050 29 9 20 9 class binary AutoML

7 titanic 0.082 891 12 5 7 4 Survived binary Kaggle

8 APSFailure 99.152 76000 171 170 1 169 class binary AutoML

9 credit-g 0.16 1000 21 14 7 3 class binary AutoML

10 credit 0.031 690 16 9 7 7 A16 binary UCI

11 horsecolic 0.019 300 28 0 28 21 surgery binary UCI

12 housevotes84 0.017 435 17 17 0 16 Class binary UCI

13 breastcancerwisconsin 0.02 699 11 0 11 1 diagnosis binary UCI

14 Pima-indians-subset 0.023 768 9 0 9 0 Outcome binary UCI

15 Diabetes 0.023 768 9 0 9 0 Outcome binary UCI

16 Madelon 4.969 2600 501 0 501 0 Class binary UCI

17 Spectf-heart 0.01 80 45 0 45 0 OVERALL-

DIAGNOSIS

binary UCI

18 Sonar 0.082 208 61 0 61 0 Class binary UCI

19 AP-omentum-ovary 19.148 275 10936 0 10936 0 Tissue binary UCI

20 Credit-a 0.044 690 6 0 6 0 Class binary UCI

21 AP-omentum-lung 14.171 203 10936 0 10936 0 Tissue binary UCI

22 Hepatitis 0.008 155 20 0 20 0 Class binary UCI

23 Labor 0.003 60 18 0 18 0 ªclassº binary UCI

24 Spambase 0.671 4601 58 0 58 0 Class binary UCI

25 Ionosphere 0.078 351 35 0 35 0 column ai binary UCI

26 Gisette 121.912 13500 5000 0 5000 0 labels binary UCI

27 ozone-level-8hr 1.411 2534 73 0 73 0 Class binary OpenML

28 eeg-eye-state 1.714 14980 15 0 15 0 Class binary OpenML

29 guillermo 655.67 20000 4297 0 4297 0 class binary AutoML

30 kc1 0.34 2109 22 0 22 0 defects binary AutoML
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31 blood-transfusion-

service-center

0.029 748 5 0 5 0 Class binary AutoML

32 mc1 2.754 9466 39 0 39 0 c binary OpenML

33 pc4 0.413 1458 38 0 38 0 c binary OpenML

34 pollen 871 0.176 3848 6 1 5 0 binaryClass binary OpenML

35 numerai28.6 16.167 96320 22 0 22 0 attribute 21 binary AutoML

36 delta ailerons 0.326 7129 6 1 5 0 binaryClass binary OpenML

37 Hill Valley with noise 0.934 1212 101 0 101 0 target binary PMLB

38 airlines 32.921 539383 8 3 5 2 Delay binary AutoML

39 Hill Valley without noise 0.934 1212 101 0 101 0 target binary PMLB

40 quake 0.067 2178 4 1 3 0 binaryClass binary OpenML

41 mammography 0.597 11183 7 1 6 0 class binary OpenML

42 puma32H 752 2.063 8192 33 1 32 0 binaryClass binary OpenML

43 christine 67.667 5418 1637 0 1637 0 class binary AutoML

44 ailerons 4.301 13750 41 1 40 0 binaryClass binary OpenML

45 sylvine 0.821 5124 21 0 21 0 class binary AutoML

46 space ga 737 0.166 3107 7 1 6 0 binaryClass binary OpenML

47 MiniBooNE 49.74 130064 51 0 51 0 signal binary AutoML

48 kin8nm 807 0.563 8192 9 1 8 0 binaryClass binary OpenML

49 puma8NH 816 0.563 8192 9 1 8 0 binaryClass binary OpenML

50 phoneme 0.247 5404 6 0 6 0 Class binary AutoML

51 waveform-5000 1.564 5000 41 1 40 0 binaryClass binary OpenML

52 jasmine 3.301 2984 145 0 145 0 class binary AutoML

53 Australian 0.079 690 15 0 15 0 A15 binary AutoML

54 electricity 3.111 45312 9 1 8 0 class binary OpenML

55 delta elevators 0.508 9517 7 1 6 0 binaryClass binary OpenML

56 bank32nh 833 2.063 8192 33 1 32 0 binaryClass binary OpenML

57 cpu small 735 0.813 8192 13 1 12 0 binaryClass binary OpenML

58 wind 847 0.752 6574 15 1 14 0 binaryClass binary OpenML

59 fri c1 1000 25 0.198 1000 26 1 25 0 binaryClass binary OpenML

60 cpu act 761 1.375 8192 22 1 21 0 binaryClass binary OpenML

61 breast cancer wisconsin 0.135 569 31 0 31 0 target binary PMLB

62 spambase 2.036 4601 58 0 58 0 target binary PMLB

63 ionosphere 0.094 351 35 0 35 0 target binary PMLB

64 nomao 31.291 34465 119 0 119 0 Class binary AutoML

65 kr-vs-kp 0.902 3196 37 37 0 0 class binary AutoML

66 Amazon employee-

access

2.5 32769 10 0 10 0 target binary AutoML

67 OVA Breast 128.919 1545 10937 1 10936 0 Tissue binary OpenML

68 analcatdata supreme 0.247 4052 8 1 7 0 binaryClass binary OpenML

69 page-blocks 0.459 5473 11 1 10 0 binaryClass binary OpenML

70 riccardo 655.67 20000 4297 0 4297 0 class binary AutoML

71 MagicTelescope 1.741 19020 12 1 11 0 class: binary OpenML

72 abalone 0.287 4177 9 1 8 0 Class number-

of rings

multiclass OpenML

73 fabert 50.338 8237 801 0 801 0 class multiclass AutoML

74 robert 549.393 10000 7201 0 7201 0 class multiclass AutoML

75 helena 13.927 65196 28 0 28 0 class multiclass AutoML

76 kropt 1.498 28056 7 4 3 0 game multiclass OpenML

77 volkert 80.522 58310 181 0 181 0 class multiclass AutoML

78 dilbert 152.664 10000 2001 0 2001 0 class multiclass AutoML

79 Fashion-MNIST 419.235 70000 785 0 785 0 class multiclass AutoML

80 wine quality white 0.449 4898 12 0 12 0 target multiclass PMLB

81 wine quality red 0.147 1599 12 0 12 0 target multiclass PMLB

82 jannis 35.136 83733 55 0 55 0 class multiclass AutoML
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83 vehicle 0.123 846 19 1 18 0 Class multiclass AutoML

84 connect-4 22.163 67557 43 0 43 0 class multiclass AutoML

85 cnae-9 7.062 1080 857 0 857 0 Class multiclass AutoML

86 glass 0.016 205 10 0 10 0 target multiclass PMLB

87 mnist 784 419.235 70000 785 0 785 0 class multiclass OpenML

88 jungle chess 2pcs raw-

endgame complete

2.394 44819 7 1 6 0 class multiclass AutoML

89 satimage 1.815 6430 37 0 37 0 class multiclass OpenML

90 shuttle 4.425 58000 10 0 10 0 class multiclass AutoML

91 dionis 193.691 416188 61 0 61 0 class multiclass AutoML

92 covertype 243.802 581012 55 0 55 0 class multiclass AutoML

93 splice 1.509 3190 62 62 0 1 Class multiclass OpenML

94 segment 0.353 2310 20 1 19 0 class multiclass AutoML

95 car evaluation 0.29 1728 22 0 22 0 target multiclass PMLB

96 mfeat-factors 3.311 2000 217 0 217 0 class multiclass AutoML

97 optdigits 2.787 5620 65 0 65 0 class multiclass OpenML

98 pendigits 1.426 10992 17 0 17 0 class multiclass OpenML

99 debutanizer 0.146 2394 8 0 8 0 y regression OpenML

100 witmer census 1980 0.002 50 6 1 5 1 HSPerc regression OpenML

101 bng breastTumor 8.899 116640 10 0 10 0 target regression PMLB

102 puma32H 308 2.063 8192 33 0 33 0 thetadd6 regression OpenML

103 kin8nm 189 0.563 8192 9 0 9 0 y regression OpenML

104 poker 86.022 1025010 11 0 11 0 target regression PMLB

105 pollen 529 0.176 3848 6 0 6 0 DENSITY regression OpenML

106 bng lowbwt 2.373 31104 10 0 10 0 target regression PMLB

107 bank32nh 558 2.063 8192 33 0 33 0 rej regression OpenML

108 space ga 507 0.166 3107 7 0 7 0 ln(VOTES-

/POP)

regression OpenML

109 bng echomonths 1.335 17496 10 0 10 0 target regression PMLB

110 house 16H 2.955 22784 17 0 17 0 target regression PMLB

111 mercedes-benz-greener-

manufacturing

12.139 4209 378 8 370 0 y regression Kaggle

112 bng pbc 144.959 1000000 19 0 19 0 target regression PMLB

113 bng pwLinear 14.867 177147 11 0 11 0 target regression PMLB

114 puma8NH 225 0.563 8192 9 0 9 0 thetadd3 regression OpenML

115 house 8L 1.565 22784 9 0 9 0 target regression PMLB

116 rainfall bangladesh 0.511 16755 4 2 2 1 Rainfall regression OpenML

117 houses 1.417 20640 9 0 9 0 target regression PMLB

118 wind 503 0.752 6574 15 0 15 0 MAL regression OpenML

119 socmob 0.053 1156 6 4 2 2 counts for-

sons current-

occupation

regression OpenML

120 bng pharynx 83.923 1000000 11 0 11 0 target regression PMLB

121 sulfur 0.539 10081 7 0 7 0 y1 regression OpenML

122 fried 3.422 40768 11 0 11 0 target regression PMLB

123 bank8FM 0.563 8192 9 0 9 0 rej regression OpenML

124 2dplanes 3.422 40768 11 0 11 0 target regression PMLB

125 weather izmir 0.112 1461 10 0 10 0 Mean temp-

erature

regression OpenML

126 stock 0.073 950 10 0 10 0 company10 regression OpenML

127 cpu small 227 0.813 8192 13 0 13 0 usr regression OpenML

128 cpu act 573 1.375 8192 22 0 22 0 usr regression OpenML

129 pol 5.608 15000 49 0 49 0 target regression PMLB

130 mv 3.733 40768 12 0 12 0 target regression PMLB
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Appendix B

Master’s Coursework and Contributions

B.1 Master Coursework

Course Course Code Semester Grade

DISTRIBUTED SYSTEM DESIGN COMP 6231 Winter 2021 A

ADV. PROG. PRACTICES SOEN 6441 Winter 2021 A-

FOUNDATIONS/SEMANTIC WEB COMP 6531 Fall 2021 A+

BIG DATA ANALYTICS SOEN 6111 Winter 2022 A+

B.2 Awards and Contributions

• Best Poster - A Feature Discovery Platform for Data Science Across the Enterprise, DSDS

Workshop, 2022, Montreal, Canada.

• Best Poster - KGFarm: Automated Data Preparation using Semantics of Data Science Arti-

facts, VLDB Summer School, 2023, Cluj-Napoca, Romania.

• Helali, M., Vashisth, S., Carrier, P., Hose, K. and Mansour, E., 2023. Linked Data Science

Powered by Knowledge Graphs∗ (to be submitted at SIGMOD 2024).
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