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ABSTRACT 

Modelling, Design Optimization, and Experimental 

Characterization of Miniaturized Pneumatic Artificial Muscles By 

Shakila Zabihollah 

 

Miniaturized pneumatic artificial muscles (MPAMs) are actuators designed to replicate the 

actuation behaviour of natural muscles. Their unique characteristics, including a high power-to-

weight ratio, flexibility, compatibility with the human environment, and compact size, make them 

widely used in diverse applications. However, MPAMs face a significant challenge in terms of 

their low force output, which hinders their overall performance. Enhancing their force generation 

capability while maintaining their compact dimensions is crucial for improving their efficiency.  

The present thesis focuses on the design optimization, fabrication, and modelling of an MPAM to 

maximize its force output while ensuring compatibility with small-scale applications. To this end, 

a formal design optimization problem is formulated to determine the optimal sizes of MPAMs, 

with the objective of maximizing their blocked force under geometrical constraints. A 

comprehensive force model is derived, considering key parameters that influence the response 

behaviour of MPAMs, which serves as the objective function for maximization. To investigate the 

importance of various correction terms added to the simple force model of the MPAMs, two 

optimization formulations varying in their objective functions and vectors of design variables have 

been defined. One formulation considers the effects of energy stored in the braided sleeving and 

optimizes the parameters related to braid strands, while the other excludes these factors. To identify 

the optimal design, a hybrid optimization algorithm is employed, combining a stochastic-based 

algorithm with gradient-based algorithms. This approach allows for the identification of the global 

optimum while also examining the effects of different optimization algorithms on the results.  

Next, two MPAMs are fabricated using the dimensions obtained from the optimization procedure. 

The first sample utilizes Ecoflex-50 as the bladder material, while the second sample incorporates 

a mixture of PDMS and Ecoflex-30. The aim is to compare the performance of the MPAMs 
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fabricated with different materials for their bladders. An experimental setup is subsequently 

designed to conduct quasi-static tests on each sample to measure their generated blocked force and 

contraction under various pressures as well as validate the theoretical results obtained from the 

optimization process.   

Finally, the hysteresis loops obtained from loading and unloading each sample under specific 

pressures are analyzed to derive correction terms that account for the nonlinear behaviour of 

MPAMs and the friction between their components. Different theoretical and empirical approaches 

are assessed to determine the most accurate correction terms. The resulting force model enables 

accurate predictions of force and contraction outputs under various inlet pressures.  

Overall, this study contributes significantly to the design optimization of MPAMs, offering 

potential applications in diverse fields, including soft robotics and medical devices. The 

combination of theoretical modelling, optimization techniques, fabrication, and experimental tests 

provides essential guide for the comprehensive understanding of MPAM’s performance and its 

potential for practical implementation.  
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Chapter 1: Introduction, Literature Review, and Objectives 

1.1 Introduction 
Actuators, serving as mechanisms to convert energy from diverse sources into mechanical motion, 

are vital components in all robotic systems. The rapid progress in robotics has expanded its 

application areas to encompass human welfare, medical services, entertainment, and agriculture 

[1]. Surgical robots, in particular, operate in dynamic and unpredictable environments where 

contact stability is essential. As a result, these state-of-the-art robotic systems necessitate actuation 

systems that are safe, reliable, self-repairing, bonding, and physically flexible. Moreover, there is 

a growing demand for small-scale mechanical systems in robotic applications, requiring compact, 

lightweight, and power-efficient actuators capable of generating significant forces and strains 

while fitting within miniaturized systems [2].  

Conventional actuators like electric motors exhibit limitations, including safety concerns, high 

costs, friction losses, impedance mismatch, and design complexity when applied to millimeter-

scale designs. Hence, there is a need for novel actuators that can emulate organic characteristics, 

securely interact with humans, regulate conformity, and tolerate rotational or lateral misalignments 

while still preserving the advantages of traditional engineering actuators (i.e. high power-to-weight 

ratio, high force-to-weight ratio, and good positional and force control) [3]. One promising type 

of actuator meeting these requirements is the pneumatic artificial muscle (PAM), which replaces 

the cylinder/piston structure with a compliant braided shell drive while maintaining excellent 

power-to-weight performance and simplicity [1]. PAMs are designed to closely mimic the 

actuation behaviour of natural muscles, which are biological actuators with remarkable driving 

power. Different types of PAMs have emerged based on distinct design principles and applications, 

which can be categorized into four primary groups: braided muscles (also known as McKibben 

muscles), pleated muscles, netted muscles, and embedded muscles [4].  

The earliest example of a braided pneumatic actuator can be traced back to Pierce’s patent 

application in 1936 [5-6], employed in the coal mining business as an alternative to dynamite. 

When the air was supplied to the device, the expansion in diameter and the radial expansion of the 

cover exerted force on the coal. In 1949, De Haven [7] invented a device comprising a double 
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helically woven tube with an inflatable inner tube, capable of generating a maximum force of 

approximately 7 kN and contracting by 30% when pressurized to 3 MPa. By 1958, Gaylord [8] 

had patented an externally powered “Fluid Actuated Motor System and Stroking Device”. He also 

performed a mathematical analysis of the system and presented the first equations describing the 

force produced by PAMs. Schulte [9] published an article outlining the applications and 

mathematical analysis of PAMs, while Joseph McKibben [10] suggested using this actuation 

approach in prosthetics and orthotics. Irrespective of the great potential of this new actuation 

system, it was not extensively explored due to control difficulties, the absence of suitable power 

sources for prosthetics, and the complexity of required electrical systems. However, Bridgestone 

later worked on a commercial version of the braided pneumatic actuators, named Rubbertuators 

[11]. Finally, in 2002, Festo® patented a fluidic muscle featuring a braided double helix material 

encased in a rubber bladder [12], which functioned similarly to the other actuators of this type but 

with enhanced durability. Presently, several corporations (namely Shadow Robot Company, 

Merlin Systems Corporation, Hitachi Medical Corporation, and Festo) manufacture and market 

McKibben muscles [13]. They have become essential components in biologically inspired robots, 

rehabilitation devices, exoskeletons, and various other applications [14–18]. 

With the growing significance of PAMs in small-scaled bio-robotic applications, numerous 

researchers have attempted to address the challenges associated with miniaturized PAMs and 

enhance their performance. However, there still remains a substantial gap in designing a 

miniaturized PAM with compact dimensions capable of delivering substantial force and 

contraction outputs. Thus, the principal objective of this thesis is to formulate a design 

optimization method for maximizing the force output of a small-scaled PAM. The results are 

experimentally validated through quasi-static tests conducted on PAM prototypes fabricated based 

on the optimal parameters. Furthermore, an accurate force model is derived from hysteresis test 

results to minimize discrepancies between predicted and actual force generated by the PAM. In 

this chapter, the fabrication, modelling, characteristics, and applications of the PAMs are first 

reviewed. Subsequently, various methodologies for enhancing their design and performance are 

discussed. Lastly, the motivation and objectives behind the present work are presented, followed 

by a description of the organization of this thesis. 
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1.2 Characteristics and Applications of PAMs 
PAMs serve as indispensable components of a variety of robotic applications. Particularly 

intriguing are the smaller versions of PAMs, known as MPAMs (Miniaturized Pneumatic Artificial 

Muscles), with diameters of less than 10 mm. Owing to their compact size, these actuators find 

application in wearable hand exoskeletons [19], cardiac compression devices, tool manipulation 

in surgical equipment [20-22], and haptic force sensing for laparoscopic surgery [23]. PAMs have 

been extensively studied in robotic research as actuators for arms, legs, and hands [1-2,24-26], 

primarily due to their ability to imitate the properties and functionalities of human muscles. The 

distinctive and advantageous characteristics of PAMs that position them as the preferred choice 

among other actuating mechanisms are outlined below [25]: 

• High power to weight ratio: When activated, PAMs can contract by 40-50% and may 

generate significant forces. The 6 kg ‘Rubbertuator”, one of the firstly designed PAMs, 

could move a mass of almost 2 kg [11,27]. The output force and weight of the newly 

commercialized PAMs by Festo [28] are up to 6 kN and around 800 g, respectively. This 

is much more effective than electric drives which typically provide roughly 100 W/kg.   

• Flexibility and compliance: PAMs have similar flexibility to a bladder when unpressurized, 

but when pressured, they stiffen while maintaining a high degree of compliance. This 

characteristic is essential for developing medical equipment such as minimally invasive 

surgical tools [22,29-30] and rehabilitation robots [11,31-32]. 

• Compatibility with the human environment: PAMs are safer than other actuators because 

they employ pressured air instead of electricity, heat, or chemically active substances. The 

only relevant safety concern with PAM is the risk of an inner bladder rupture at high 

pressure, which can be prevented by adjusting the volume flow rate of air into PAMs.  

• Reduced fabrication cost: PAMs might be made using low-cost prefabricated materials, 

making them more cost-effective than other actuators with comparable functions. 

Moreover, although PAMs necessitate pneumatic circuitry which may raise the initial cost, 

they can handle lateral and rotational misalignments, allowing for a quick production 

process.  
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• Widely accessible, low-cost, and light working fluids: PAMs can be powered by a range 

of fluids, including gaseous and liquid options, without the risk of explosion or fire 

associated with hydraulics [33]. 

• Diversity of sizes: PAMs come in a variety of lengths and diameters, with larger diameter 

muscles generating more contractile force.  

• Comparable displacement to biological muscles: Displacement (contraction) varies 

depending on the structure but is usually 30–35% of the initial length, which is comparable 

to biological muscles [34]. 

• The ability to function in an antagonist mode: Both biological muscles and PAMs possess 

this ability, which is not common in traditional actuators, making them capable of 

controlling stiffness and compliance [34]. 

1.3 Fabrication and Functioning of PAMs 
Elastic tubes and structural constraints make up the majority of the structure of PAMs. A flexible 

inner cylindrical containment layer is surrounded by an outside cylindrical braided woven layer 

and two end-caps, with one being sealed to close the cylinder and the other serving as an air intake 

channel (Fig. (1.1)). The sealed chamber of the inner layer contains pressurized gas required to 

power the muscle. The flexible nature of this structure allows for stretching or compression without 

causing damage. The outer braided layer acts as a critical component that defines many of the 

actuator’s characteristics. It serves as a restraint layer, preventing the compressed muscle from 

over-inflating and rupturing. Additionally, it converts radial expansion into axial contraction, 

generating the necessary force for actuation. Moreover, the limits of extension and contraction are 

established by the braid angle. On the other hand, the friction between the braid fibers introduces 

energy loss, resulting in hysteresis, which reduces the contractile force and increases control 

complexity [24].  
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Figure 1.1: Various components of a PAM [35] 

The elastomeric chamber and structural constraints can be made out of a variety of materials. While 

woven and knitted fabrics can be utilized as the braid in PAMs, nylon is the common material for 

braided sleeving because fabrics have a significant delay and friction loss despite withstanding 

hundreds of kilopascals and producing more than 100% strains. The bladder, on the other hand, is 

mainly made from latex or silicone. For example, the actuators developed by Davis et al. [1] 

featured an inner layer made of butyl rubber tubing, with two end-caps serving as terminal 

connectors to close the muscle cylinder. The end-caps could be composed of nylon, aluminum, 

brass, steel, or any material suited to the specific operational needs.  

PAM can have several sizes, with variable force potential and displacement ranges. Muscle lengths 

range from under 10 cm up to 400 cm and diameters vary from less than 10 mm up to 70 mm [1]. 

It is worthwhile to note that for reducing energy loss resulting from the initial expansion of the 

rubber liner, the rubber layer is designed with a diameter comparable to the rest diameter of the 

flexible wall.  

This combined rubber–braided nylon actuator exactly replicates the same actuation behaviour as 

biological muscles, working as a transmission mechanism to convert radial expanding forces to 

axial forces. Natural muscles are biological actuators with exceptional driving powers. Skeletal 

muscles, for instance, are made up of myofibrils, which are composed of myosin and actin 

filaments (Fig. (1.2)). When the neurons deliver an electrical signal to the muscle from the brain 

(controller), the release of 𝐶𝑎2+ triggers the hydrolysis of ATP (adenosine triphosphate) (rise in 

the inlet pressure), which energizes the movement of actin filaments along the myosin filaments 

(radial expansion of the bladder). Myosin is a protein that is a prototype of a molecular motor that 
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converts the chemical energy (ATP) to mechanical energy producing force and movement by 

contracting the myofibrils (axial contraction of the braid). This movement is transmitted to the 

bones through the tendons at the end of the skeletal muscles. When the concentration of 𝐶𝑎2+ falls 

(drop in the inlet pressure), the interaction between the actin and myosin filaments stops, resulting 

in a relaxation process [37]. In the same manner, the radial expansion of the elastic bladder causes 

a radial expansion of the surrounding braided sleeve as the pressure inside it changes. However, 

since the braided sleeve fibers are stiffer than the bladder material, they are unable to extend like 

the bladder and instead contract axially, allowing for an increase in diameter. The structural 

constraints restrict the deflection of the actuator to a single dimension to create extension, 

contraction, bending, or torsion under control. Contractile and extensile PAMs are two of the most 

common types of artificial muscles, which are differentiated based on the initial braid angle; if the 

initial braid angle is higher than 54.74°, a compressive force would be created, while in the braid 

angles lower than 54.74°, the PAM would be extensile [9]. In contractile PAMs, the constrained 

bladder radially expands, leading to axial shortening and the generation of compressive forces. A 

pulling force is created when an axial contraction occurs [2]. Conversely, in extensile PAMs, the 

constrained bladder radially contracts to generate an axial elongation and tensile force. Pillsbury 

et al. [36] fabricated and tested contractile and extensile PAMs in order to make a comparison 

between their performance. The results revealed that contractile PAMs with the same initial outer 

diameter produce more work and are more efficient. However, they have a lower stroke than the 

same extensile PAMs. When large strokes are needed in an application, such as continuum 

robotics, extensile PAMs would be chosen. On the other hand, contractile PAMs are mostly used 

in prosthetics, like robotic arms and legs due to their crucial characteristics, namely a high power-

to-weight ratio, adjustable compliance, and a straightforward design. Since the main focus of this 

thesis is to design a miniaturized PAM suitable for bio-mechanical applications, the investigations 

are conducted on a contractile PAM.  
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Figure 1.2: Structure of skeletal muscles [37] 

1.4 Mathematical Modelling of PAMs 
The extensive use and fast-speed advancements of PAMs and MPAMs in robotics have 

necessitated a precise mathematical description of their underlying mechanics. Such models with 

sufficient parameters enable the efficient selection or construction of an actuator with optimized 

properties for certain purposes. Various force models, ranging in sophistication, have been 

developed to find out how to improve PAMs. These models are either based on the virtual work 

theorem or the force balance equations. Additional correction terms can also be included to 

improve the accuracy of the ideal force models by considering the effects of non-cylindrical tips, 

friction, the elasticity of the bladder, and the properties of the braid. The necessity of using each 

correction term is dependent on the application of the PAM.  

The first and simplest force model was proposed by Gaylord [8] and did not consider any of the 

correction terms or even the thickness of the bladder. This model was further modified by various 

researchers in order to improve its preciseness and make the estimated forces closer to the real 

results. Hocking et al. [2] proposed an analytical modelling and experimental characterization of 

MPAMs, which identified three main nonlinear behaviours: nonlinear PAM stiffness as a result of 

stiffening in the bladder at high strains, hysteresis due to friction between the actuator components, 

and a pressure dead-band. The stiffening and hysteresis are both functions of actuation pressure. 

To address each of the nonlinearities mentioned, a nonlinear elastic model expressing the stress as 

a quadratic polynomial of strain was added to the Gaylord model. Additionally, an empirical 

friction factor, which was linearly dependent on pressure, was used to model the hysteresis, while 

a pressure offset term accounted for the pressure dead-band. Finally, a length correction term was 

introduced to account for the non-cylindrical tip shape of the PAM. Experimental results showed 
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that the length correction term had no considerable impact on the accuracy of the force model. A 

comparison between theoretical and experimental force values revealed that while the nonlinear 

model proposed for the behaviour of the bladder was perfectly accurate with an approximate error 

of 0.17%, the linear elastic model over-predicted the force produced by the PAM due to 

considering a linear relationship between the stress and the strain over the full range of motion in 

the bladder. The same results were derived through the experiments carried out by Wang et al. 

[38], who developed a hyper-elastic model to predict the force-contraction response at different 

pressures. The findings of the experiments by Kothera et al. [39] again showed that the corrected 

term considering the elastic energy in the bladder and the braid improves the model. This term did 

not affect the blocked force, while it influenced the calculation of the free contraction. Using the 

correction term regarding the nonlinearity of the bladder, the error in calculating the free 

contraction was reduced by more than 40%.  

It is worthwhile to mention that the extent of the improvements in the predictions of the amounts 

of force after adding the correction terms is dependent on the size and the geometry of the PAMs. 

When considering the elastic energy of the rubber bladder, smaller PAMs benefit more due to the 

elastic energy being dependent on the volume percent of the rubber. On the other hand, the 

elasticity of the braid is more significant at higher pressures and for larger actuators. The results 

of the experiments by Kothera et al. [39] revealed that the correction term for the non-cylindrical 

tips did not affect the blocked force, but improved the free contraction calculations by almost 20%.  

Li et al. [40] compared three models in terms of their error and accuracy. These models were 1. 

the force model by Chou and Hannaford [41] which was the basic force model; 2. the model by 

Davis and Caldwell [1], in which the contact area of strands was calculated to consider the friction 

between them, and 3. the model by Ganguly et al. [42] which used a fourth-degree polynomial 

obtained by the least-square fitting of the experimental data. The least accuracy was related to the 

model proposed by Chou and Hannaford [41] due to neglecting friction. Their results revealed that 

adding the correction term addressing the nonlinearity of the bladder material to the ideal force 

model results in an adequately accurate force model, especially when the hysteresis is neglected. 

For high-precision calculations, the friction terms and the elastic energy stored in the braid can 

also be considered.  Fig. (1.3) compares the importance of all compensatory terms in the force 

model.  
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Figure 1.3: Percentage of various force terms constituting the whole force produced by a PAM 

1.5 Design Improvement and Miniaturization of PAMs 
The increasing demand for small-scale bio-robotic systems has led to a need for compact and 

efficient actuation systems capable of generating significant forces. Researchers have been 

focusing on improving the design and efficiency of PAMs to meet these requirements. 

To reduce the size and weight of conventional PAMs, various strategies have been explored. For 

example, Park et al. [43] developed a PAM that detects its contraction length through hyper-elastic 

strain sensing with embedded microchannels containing a liquid conductor, eliminating the need 

for external measurement devices. Another approach by Wakimoto et al. [44] involved integrating 

a pressure sensor into a smart McKibben actuator using a conductive material in one of the braid 

fibers, allowing for pressure monitoring and control. Kanno et al. [45] designed a self-sensing 

PAM that measured capacitance to determine the actuator length and deformation using a dielectric 

elastomer sensor (DES). Fu et al. [46] introduced a multi-sensory yarn capable of detecting force, 

displacement, and vertical pressure variations in PAMs. Carvalho et al.[47] focused on innovative 

end-fittings to reduce overall length and weight while maintaining optimal muscle contraction. 

Miniaturized pneumatic artificial muscles (MPAMs) possess the same benefits as PAMs but come 

in a significantly reduced size and weight, which is why they have found applications in various 

bio-robotic systems. Lathrop et al. [48] investigated the use of MPAMs in flexible instruments for 

minimally invasive surgery (MIS), while Markus et al. [49] utilized MPAMs to actuate fingers in 

a robotic hand prosthesis. Ashwin and Ghosal [50] developed an endoscopic end-effector actuated 
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by three MPAMs to manipulate the catheter tip. However, the fabrication and modelling 

difficulties are heightened for MPAMs due to their small size. Studies have indicated that these 

actuators exhibit lower force and contraction outputs [51,52]. Considering the wide range of 

applications for MPAMs, it is critical to improve their design and efficiency.  

To enhance the design and efficiency of MPAMs, it is essential to quantify their performance using 

two key parameters: blocked force and free contraction. Blocked force refers to the force generated 

by a PAM when its length is held constant at its initial free length, while free contraction represents 

the state in which the PAM is pressured while not being constrained, thus producing no actuation 

force. These parameters are also significantly influenced by the geometric and material properties 

of these actuators. Researchers have conducted experimental studies and developed models to 

understand the behaviour of PAMs. Doumit and Leclair [53] developed a stiffness model which 

can accurately interpret the nonlinear behaviour of PAMs, considering elasticity and friction 

factors. Salahuddin et al. [54] proposed a characterization approach for measuring force, 

displacement, and free contraction for hydraulic McKibben muscles. Pillsbury et al. [55] 

investigated the effects of bladder thickness and material performance characteristics of PAMs, 

revealing that the blocked force and free contraction both decrease when the thickness of the 

bladder is increased. Subsequently, they conducted a comparison of three different bladder 

materials and observed that the PAM with a V-330 bladder exhibited the least amount of dead-

band pressure while generating higher levels of force [55]. Kothera et al. [39] examined how 

different geometrical parameters affect the generation of blocked force, demonstrating that the 

length of the PAM does not impact the blocked force significantly, but increasing the braid angle 

and bladder diameter leads to higher force output. Similar findings were reported by Gentry et al. 

[33] and Joe et al. [56]. Sangrian et al. [57] proposed corrected force models for studying the 

effects of bladder stiffness, pressure, and length of a small hydraulic McKibben muscle, which 

used water or oil as the working fluid. They concluded that as the bladder stiffness increases, the 

blocked force and contraction decrease. Therefore, it is crucial to develop an accurate force model 

that allows for a comprehensive investigation of the effects of all key parameters on the force and 

contraction outputs of MPAMs. 

In addition to understanding performance characteristics, researchers have focused on designing 

MPAMs with improved performance. It has been reported that small-scale hydraulic actuators 
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produce greater free contraction ratios [58] but at the expense of substantially higher actuation 

pressures, which could be hazardous in close proximity to humans. Sangrian et al. [57] used a 

finite element model to design an ultralight hybrid PAM with a high contraction ratio, blocked 

force, and axial stiffness. Yang et al. [59] developed a high displacement PAM using soft materials. 

Tomori et al. [60] explored extending the lifetime of straight-fiber artificial muscles (SFPAM) and 

emphasized the repairability of rubber bladder. Xiao et al. [61] optimized bending pneumatic 

artificial muscles (BPAMs) for finding the optimized parameters resulting in the maximized 

bending angle and force production. Diteesawat et al. [62] proposed optimal bubble artificial 

muscles (BAMs) to assist patients with mobility issues. The BAM’s contraction was improved by 

optimizing the length and radius of the actuator. The produced torsion was also increased by 

utilizing high strength materials.  Lathrop et al. [63] designed an MPAM with a concentric dual 

chamber to deliver greater force and contraction for applications in MIS. However, the maximum 

force produced by their proposed actuator is only 15.25 N, representing an improvement of 

approximately 2 N over prior MPAMs. Kwon et al. [64] developed a flat PAM with rigid planes 

as external constraints for a larger force and contraction ratio. Kim et al. [65] introduced a flat 

fabric PAM (ffPAM) with a maximum force of 118 N at 172 kPa and a maximum contraction ratio 

of 23% to be used in wearable applications. Nevertheless, the ffPAM exhibited a nonlinear force-

contraction relationship, resulting in challenging length controls, and lacked a significant free 

contraction. Thin McKibben muscles with diameters in ranges between 1-3 mm have been also 

proposed to be utilized in miniaturized applications. Kurumaya et al. [66] introduced a novel 

approach to overcome the limitations of conventional PAMs by presenting a multifilament muscle 

composed of a bundle of thin McKibben muscles with outer diameters of 1.8 mm. This alternative 

system aims to address the stiffness issues and improve the deformation capabilities observed in 

traditional PAMs. In a subsequent study [67], they used 60 thin McKibben muscles to create a 

multifilament muscle for a musculoskeletal robot capable of mimicking the function of lower limb 

muscles. However, despite finding applications in various fields, thin McKibben muscles exhibit 

certain drawbacks compared to MPAMs, including lower force output, reduced life span, reduced 

reliability, reduced range of motion, and increased sensitivity to external forces. Therefore, 

ongoing research and further developments are necessary to overcome these challenges and further 

enhance the design and efficiency of MPAMs. 
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1.6 Current Study and Contributions 
The motivation behind this thesis stems from the importance of MPAMs in various applications, 

particularly in bio-robotics. Previous research has identified limitations in the force and contraction 

capabilities of MPAMs, prompting the need for further investigation. The objective of this thesis 

is thus to develop an accurate design optimization strategy and conduct experiments to identify an 

MPAM that can generate higher blocked force and free contraction compared to other PAMs of 

similar size. While previous research has focused on the design optimization of full-sized PAMs, 

such as SFPAM, BPAM, and BAM, no study has been found on the design optimization of 

MPAMs within the millimeter scale to address their low force outputs. Consequently, existing 

attempts have resulted in bulky actuators that are unsuitable for small-scale applications. The 

present thesis attempts to fill this gap by formulating a formal design optimization problem to 

maximize the generated blocked force of MPAMs within a given volume.  

To achieve this, a force equation is first derived based on the force balance equations, and 

correction terms are subsequently introduced to account for the bladder thickness and braided 

sleeving properties. The force model is used as the objective function when formulating a standard 

optimization formulation to maximize the blocked force of the MPAM under volume constraints. 

Two cases of optimization formulation are compared, providing insights into the importance of 

the braid correction and optimizing the braid strand parameters. The optimized MPAM is 

fabricated using commercially available materials and the dimensions identified through the 

optimization process. Customized bladders are created using a 3D-printed mold, and two different 

materials are used to investigate the effect of bladder material on the performance of the MPAM. 

The fabricated MPAMs are then tested to evaluate their force actuation performance under varying 

inlet pressure. The tests are conducted quasi-statically using an MTS servo-hydraulic machine, 

measuring the blocked force at different inlet pressures (ranging from 0 kPa to 300 kPa, with 20 

kPa increments). The performance of the optimized MPAMs are compared with other MPAMs 

proposed in the literature to demonstrate their superior performance. Additionally, contraction tests 

are conducted on each MPAM under various pressures to measure their force-contraction output. 

The resulting data is used to derive the correction terms considering the nonlinearities of the 

MPAMs and the friction between their components.  
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1.7 Thesis Organization 
This research dissertation is structured into five chapters, which systematically detail the research 

process and findings. Chapter 1 provides an introduction to the thesis, covering the historical 

background of PAMs, their properties, and their significant applications across various fields. It 

also discusses different modelling approaches and conducts a literature review of previous 

attempts to enhance the design and performance of PAMs. The motivations behind the present 

thesis are also included in this chapter. 

Chapter 2 focuses on the mathematical modelling of PAMs, presenting a detailed description of 

various methods proposed for deriving correction terms. These correction terms are incorporated 

into the force equation to enhance its accuracy. The refined force equation serves as the objective 

function used in the standard optimization formulation developed in Chapter 3, which compares 

two distinct optimization cases in order to identify a simplified and optimized design for MPAMs. 

Furthermore, the optimization results are presented, along with a comparison of various 

optimization algorithms and a sensitivity analysis.  

Chapter 4 outlines the fabrication process and test setup designed for conducting quasi-static tests 

on the MPAM. The results obtained from the blocked force experiments conducted on both MPAM 

samples are used to validate the optimization results and determine the dead-band pressure of each 

sample. Additionally, different empirical and theoretical methods are presented for deriving 

correction terms to account for the nonlinearity of the MPAMs and the friction between their 

components. The accuracy of the refined force model, incorporating various correction terms, is 

investigated by comparing the theoretically calculated force and contraction values with the 

experimental data under different pressures. Furthermore, a comparison is made between the 

outputs and the behaviour of each sample fabricated with different bladder materials. 

Finally, Chapter 5 provides a summary of the major findings and contributions of this thesis, along 

with future remarks for potential research studies. 
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Chapter 2: Mathematical Modelling of PAMs 

2.1 Introduction 
Developing a precise force model plays an important role in the accurate prediction of the actuation 

behaviour of the PAMs. The force model should incorporate all geometrical parameters of the 

bladder and the braid that can greatly influence the performance of the PAMs. This is of great 

importance, particularly when aiming to optimize the design of these actuators and improve their 

performance. Various force models were proposed in previous studies to relate the geometrical 

parameters of PAMs to their outputs. These models are either based on the force balance 

equilibrium or the energy balance principle and can be enhanced by introducing a number of 

correction terms to yield more accurate results. These correction terms account for the nonlinearity 

of the bladder, friction between the actuator components, dead-band pressure, energy stored in the 

braid, and changes in length caused by the non-cylindrical tips of the PAM [39, 68-72]. 

In this thesis, the force balance equilibrium is used to derive the force equation of the PAM as 

proposed by Ferrasi et al. [70] and Kothera et al. [39]. Then, a nonlinear term is presented using 

two different approaches to take the elasticity of the bladder’s material into account. The braid 

strand parameters are also integrated into the force model through a refining term regarding the 

energy stored in the braid. Furthermore, while the PAM is mostly considered a cylinder, it is known 

that it does not have cylindrical tips close to the end-fittings, therefore, another correction term is 

also defined to consider the effect of these non-cylindrical tips. Finally, the static friction between 

the strands of the braided sleeving is studied, which causes hysteresis in the force loops of the 

PAM. The final force equation including the mentioned refining terms can predict the behaviour 

and outputs of a PAM with high accuracy.  

2.2 Mathematical Formulation of the Output Force  

The hollow elastomeric cylinder used as the bladder has some important properties, which are its 

initial outer radius (𝑅0 = 𝐷0/2), initial length (𝐿0), and initial thickness (𝑡0) as illustrated in Fig. 

(2.1). The braided sleeving is also characterized by its initial braid angle (𝛼𝑜), the length of one of 

its strands before being woven around the bladder (𝐵), and the number of turns this strand makes 
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from one end of the bladder to another (𝑁) [73]. As depicted in Fig. (2.2), these parameters are 

related to each other as follows: 

 

(a)                                            (b) 

Figure 2.1: The geometry of the bladder and the braided strand woven around it at (a) initial state (b) 
instantaneous state 

 
Figure 2.2: Geometrical characterization of the braid at the initial and instantaneous states 

 

𝐵 =
𝐿𝑜

s 𝑖𝑛(𝛼𝑜)
=

𝐿
sin(𝛼)

 (2.1) 

𝑁 =
𝐵 cos(𝛼𝑜)

𝜋𝐷𝑜
=

𝐵 cos(𝛼)
𝜋𝐷

 
(2.2) 

tan(𝛼𝑜) =
𝐿0

𝜋𝐷𝑜𝑁
  and  tan(𝛼) = 

𝐿
𝜋𝐷𝑁

 (2.3) 

In which 𝑅, 𝐿, and 𝑡 represent the instantaneous outer radius, length, and thickness of the bladder 

respectively, and 𝛼 is the instantaneous angle of the braid. Referring to the free body diagram 
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illustrated in Fig. (2.3), the geometrical parameters are related to the force output of the PAM using 

the force balance principle. The force equilibrium in x and z directions yield: 

x-direction: 

𝑃(𝑅 − 𝑡)𝐿 = 𝜎𝑥𝑡𝐿 + 𝑁𝑇𝑐𝑜𝑠𝛼 (2.4) 

z-direction: 

𝐹 + 𝑃(𝑅 − 𝑡)2𝜋 = 𝜎𝑧𝐴𝑏𝑙 + 𝑇𝑠𝑖𝑛𝛼 (2.5) 

where 𝜎 denotes the stress in the bladder, 𝑇 is the tension in the braid, 𝐹 is the generated force by 

the actuator, and 𝐴𝑏𝑙 is the cross-sectional area of the annular bladder. Assuming that the bladder 

has a constant volume, 𝑉𝑏𝑙,  one can write: 

𝑉𝑏𝑙 = 𝜋𝐿(𝑅0
2 − (𝑅0 − 𝑡0)2) = 𝜋𝐿(𝑅2 − (𝑅 − 𝑡)2) =  𝜋𝐿(2𝑅𝑡 − 𝑡2) (2.6) 

 

Figure 2.3: Free-body diagram of the MPAM (representing only one braid fiber) 

 

Also, the bladder cross-sectional area, 𝐴𝑏𝑙, is related to the bladder volume as: 

𝐴𝑏𝑙 =
𝑉𝑏𝑙

𝐿
  (2.7) 

Substituting tension T from Eq. (2.4) in Eq. (2.5) yields: 
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𝐹 = −𝑃(𝑅 − 𝑡)2𝜋 + 𝜎𝑧𝐴𝑏𝑙 +
𝑃(𝑅 − 𝑡)𝐿 − 𝜎𝑥𝑡𝐿

𝑁
tan(𝛼) 

(2.8) 

Substituting for tan(𝛼) and 𝐴𝑏𝑙 from Eqs. (2.3) and (2.7) into Eq. (2.8) yield: 

𝐹 = 𝑃 (
𝐿2

2𝜋𝑁2 − 𝜋𝑅2) + 𝑃 (
𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) + 𝜎𝑧

𝑉𝑏𝑙

𝐿
−

𝜎𝑥𝑡𝐿2

2𝜋𝑁2𝑅
 

(2.9) 

Considering Eqs. (2.1) and (2.2), one can obtain the following relation: 

(
2𝑁𝜋𝑅

𝐵
)2 + (

𝐿
𝐵

)2 = 1 (2.10) 

Finally, substituting for 𝑅2 from Eq. (2.10) into (2.9) yields: 

𝐹 =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝐵2) + 𝑃 (

𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) + 𝜎𝑧

𝑉𝑏𝑙

𝐿
−

𝜎𝑥𝑡𝐿2

2𝜋𝑁2𝑅
 

(2.11) 

It should be emphasized that the first term in Eq. (2.11) corresponds to the renowned Gaylord force 

model [8], which neglects the impact of nonlinearity and thickness of the bladder. The second term 

in Eq. (2.11) introduces a correction factor that considers the effect of the bladder thickness on the 

produced force and the last two terms represent the nonlinear behaviour of the PAM when the 

length and radius of the bladder change after contraction or extension. 

2.3 Refined Force Equation for the PAM 

As previously indicated, to enhance the accuracy of the anticipated amounts of force, it is necessary 

to refine the equation obtained in Eq. (2.11) by incorporating additional correction terms. These 

correction terms account for various factors, including the nonlinearity of the bladder’s material, 

non-cylindrical tips, energy stored in the braid, pressure dead-band, and friction. In this section, 

the derivation of the aforementioned correction terms is discussed. 

2.3.1 Nonlinearity of the Bladder  

As outlined in section 1.4, previous studies have shown that the stiffening effect that occurs within 

the bladder during higher levels of contractions is one of the primary causes of the nonlinear 

behaviour of the PAM. This behaviour results in a rapid decrease in force with increased 
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contraction under constant pressure. This effect is particularly prominent in miniaturized PAMs, 

where the bladder’s volume is relatively large compared to the internal volume of the actuator. 

Consequently, the bladder constitutes a significant portion of the whole PAM and its elasticity has 

a profound impact on the overall performance of the actuator. To incorporate the nonlinearity of 

the PAM, stress values can be substituted into the force model derived in Eq. (2.11) by employing 

force balance equations based on the free-body diagram of the actuator. To achieve this, the 

bladder is assumed to exhibit nonlinear elastic behaviour, where stress is a polynomial function of 

strain, as described in Eq. (2.12) [2]: 

𝜎 = ∑ 𝐸𝑘𝜀𝑘
𝑀

𝑘=1

 
(2.12) 

Where “M” denotes the order of the material and is selected to ensure the robustness of the model 

to capture the full behaviour of the actuator, and the modulus values (𝐸𝑘) are empirically identified 

from the tensile tests of the material at each operating pressure. Considering the free-body diagram 

of the PAM depicted in Fig. (2.3), the circumferential and axial strains are defined as follows: 

𝜀𝑥 =
∆𝑅
𝑅0

 (2.13) 

𝜀𝑧 =
∆𝐿
𝐿0

 (2.14) 

The circumferential and axial stresses can be subsequently obtained by substituting Eqs. (2.13), 

and (2.14) into Eq. (2.12):  

𝜎𝑥 = ∑ 𝐸𝑘(
∆𝑅
𝑅0

)𝑘
𝑀

𝑘=1

 
(2.15) 

𝜎𝑧 = ∑ 𝐸𝑘(
∆𝐿
𝐿0

)𝑘
𝑀

𝑘=1

 
(2.16) 
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Substituting Eqs. (2.15) and (2.16) into the force equation derived for PAMs based on the force 

balance equilibrium in Eq. (2.11) yields a more precise force model, enabling a better 

representation of the elasticity of the bladder and the nonlinear behaviour of the PAM as: 

𝐹 =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝐵2) + 𝑃(

𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) +

𝑉𝑏𝑙

𝐿
∑ 𝐸𝑘(

𝐿
𝐿0

− 1)𝑘
𝑀

𝑘=1

−
𝑡𝐿2

2𝜋𝑁2𝑅
∑ 𝐸𝑘(

𝑅
𝑅0

− 1)𝑘
𝑀

𝑘=1

 
(2.17) 

In the case where the bladder is assumed to be a linear elastic material (M=1), Eq. (2.17) can be 

simplified by utilizing the modulus of elasticity specific to the material of the bladder. However, 

as indicated previously, having an accurate prediction of the outputs of a PAM necessitates 

considering higher orders for the bladder material. This enhanced model improves the calculation 

of free contraction; however, it does not have any impact on the blocked force predictions as no 

contraction takes place at this condition. 

2.3.2 Energy Stored in the Braided Sleeving 

To account for the small amounts of strain that may be present in the braid, which contribute to 

smaller blocked force measurements, the elastic energy storage in the braid can be verified using 

the virtual work theorem based on the energy balance. This method involves calculating the tensile 

force generated by the MPAM by getting the derivative of the potential energy of the pressurized 

air (U) with respect to the length of the actuator [74]. In order to derive the correction term 

regarding the braid strand parameters, it is assumed that the generated force by the MPAM can be 

represented solely by the Gaylord term. Considering that the potential energy of the air depends 

on its pressure and volume, the tensile force of the actuator (Gaylord force term) can be calculated 

as: 

𝐹 =
𝑑𝑈
𝑑𝐿

= 𝑃
𝑑𝑉
𝑑𝐿

 
(2.18) 

Assuming that the PAM is a cylinder with a volume of 𝑉 = 𝐴𝐿 , we can write:  

𝐹 =
𝑑𝑈
𝑑𝐿

= 𝑃
𝑑𝑉
𝑑𝐿

=  𝑃𝐴 + 𝑃𝐿
𝑑𝐴
𝑑𝐿

 
      (2.19) 
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Under the assumption that no load is taken by the bladder, the first term in Eq. (2.19) denotes the 

force taken by the air, leaving the remaining force (second term) to be supported by the braid.  If 

the braid consists of 𝑛 fibers, the load carried by each individual fiber can then be expressed as 

follows: 

𝐹𝑏𝑟 =  
𝑃𝐿

𝑛𝑠𝑖𝑛𝛼
𝑑𝐴
𝑑𝐿

=
𝑃𝐵
𝑛

𝑑𝐴
𝑑𝐿

=
2𝜋 𝑃𝐵

𝑛
𝑅

𝑑𝑅
𝑑𝐿

 
(2.20) 

in which 𝐴 = 𝜋𝑅2. Finally, the strain energy per unit volume in the braid can be formulated as: 

𝑊𝑏𝑟 =
1
2

𝜎𝑏𝑟 𝜀𝑏𝑟 =
1
2

𝐹𝑏𝑟

𝐴𝑏𝑟

𝐹𝑏𝑟

𝐸𝑏𝑟𝐴𝑏𝑟
=

𝐹𝑏𝑟
2

2𝐸𝑏𝑟𝐴𝑏𝑟
2  

(2.21) 

with “𝐸𝑏𝑟” representing the Young’s modulus of the braid and “𝐴𝑏𝑟” denoting its cross-sectional 

area. The elastic force term associated with the braid can also be determined by applying 

Castigliano’s theorem and Eq. (2.21), yielding: 

𝐹𝑏𝑟 = 𝑉𝑏𝑟
𝑑𝑊𝑏𝑟

𝑑𝐿
= 𝑉𝑏𝑟

2𝐹𝑏𝑟

2𝐸𝑏𝑟𝐴𝑏𝑟
2

𝑑𝐹𝑏𝑟

𝑑𝐿
= 𝑉𝑏𝑟

(2𝜋)2

𝐸𝑏𝑟𝐴𝑏𝑟
2 (

𝑃𝐵
𝑛

)
2

𝑅
𝑑𝑅
𝑑𝐿

[(
𝑑𝑅
𝑑𝐿

)
2

+ 𝑅
𝑑𝑅2

𝑑𝐿2 ] 
(2.22) 

Considering Eq. (2.10), the radius, 𝑅, can be obtained as:  

𝑅2 =
(𝐵2 − 𝐿2)

(2𝜋𝑁)2  
(2.23) 

Getting first and second derivatives from both sides of Eq. (2.23) yields: 

𝑅
𝑑𝑅
𝑑𝐿

=
−𝐿

(2𝜋𝑁)2     ;     (
𝑑𝑅
𝑑𝐿

)
2

+ 𝑅
𝑑𝑅2

𝑑𝐿2 =
−1

(2𝜋𝑁)2                                                         
(2.24) 

Finally substituting the relations in Eq. (2.24) into Eq. (2.22) and considering that  𝑉𝑏𝑟 = 𝐵𝑛𝐴𝑏𝑟,  

yields: 

𝐹𝑏𝑟 =  
𝐿

𝐸𝑏𝑟𝐴𝑏𝑟𝑛
4𝜋2𝑃2𝐵3

(2𝜋𝑁)4  
(2.25) 
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By subtracting the force in the braid (Eq. (2.25)) from the force equation derived in Eq. (2.17), the 

modified blocked force incorporating the effect of the nonlinearity of the bladder and stored energy 

in the braid can be obtained as:  

𝐹 =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝐵2) + 𝑃(

𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) +

𝑉𝑏𝑙

𝐿
∑ 𝐸𝑘(

𝐿
𝐿0

− 1)𝑘
𝑀

𝑘=1

−
𝑡𝐿2

2𝜋𝑁2𝑅
∑ 𝐸𝑘(

𝑅
𝑅0

− 1)𝑘
𝑀

𝑘=1

−
𝐿

𝐸𝑏𝑟𝐴𝑏𝑟𝑛
4𝜋2𝑃2𝐵3

(2𝜋𝑁)4  

(2.26) 

2.3.3 Friction Between the Components 

2.3.3.1 Theoretically Driven Friction Force 

The total static friction in the PAM can be determined using the following equation, where 𝑓𝑠 

represents the friction coefficient between the strands of the braided sleeving, and 𝑓𝑠−𝑏𝑙 denotes 

the friction coefficient between the braid strands and the bladder [68, 73].  

|𝐹𝑓| = (𝑓𝑠 + 𝑓𝑠−𝑏𝑙). 𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡. 𝑃 (2.27) 

The PET nylon strands can slip against each other due to the force transmitted to them by the inner 

tube, but they cannot slip against the inner tube since there are no other acting forces. As stated in 

various references, the braid strands in contact with the inner tube remain tightly locked with it to 

effectively transfer the pressure from the inner tube to the braided shell. Hence, there is no 

movement or friction between the braid and the inner tube. Additionally, the friction coefficient 

between the strands and the inner tube is greater than that between the strands themselves, and as 

a result, due to the high static rubber friction coefficient, the strands stick against the inner tube 

while slipping against each other. Consequently, it can be assumed that static friction only consists 

of strand-on-strand friction as [73]. 

|𝐹𝑓| = 𝑓𝑠. 𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡. 𝑃 (2.28) 

The typical range of 𝑓𝑠 for nylon-on-nylon contact is usually between 0.15 to 0.25 [71]. To 

determine the contact surface between the strands, it is assumed that the contact surface is flat, and 

the surface of the cylindrical bladder is entirely covered by the braid. Therefore, at the initial state 
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when the muscle is not contracted, the total contact surface would be equal to the lateral surface 

area of the bladder, which is 2𝜋𝑅0𝐿0. Fig. (2.4) illustrates one braid crossover point using the 

geometrical characteristics of the pantograph network structure of the braided sleeving. It can be 

seen that: 

𝑠𝑖𝑛𝛼 =
𝐷𝑠

2𝑥
→ 𝑥 =

𝐷𝑠

2𝑠𝑖𝑛𝛼
 (2.29) 

𝑡𝑎𝑛𝛼 =
𝑦
𝑥

=
𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼

→ 𝑦 =
𝐷𝑠

2𝑐𝑜𝑠𝛼
 (2.30) 

Using Eqs. (2.29) and (2.30), the initial contact surface of one crossover point is calculated as: 

𝑆0 = 2𝑥𝑦 =
𝐷𝑠

2

2𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛼0
= 2𝜋𝑅0𝐿0 

(2.31) 

When the actuator is contracted and the braid angle changes from 𝛼0 to 𝛼, the contact surface 

decreases and is calculated as: 

𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝐷𝑠

2

2𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼
 

(2.32) 

  
 

Figure 2.4: Contact surface between the braid strands 

 

Considering that side c remains constant after the contraction, using Eqs. (2.31) and (2.32), the 

contact surface can be calculated as: 
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𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 2𝜋𝑅0𝐿0
𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛼0

𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼
 (2.33) 

Using Eqs. (2.1) and (2.2), we can write: 

𝑐𝑜𝑠𝛼 =
𝜋𝐷𝑁

𝐵
=  

2𝜋𝑅𝑁
𝐵

;  𝑐𝑜𝑠𝛼0 =
𝜋𝐷0𝑁

𝐵
=  

2𝜋𝑅0𝑁
𝐵

 ;  𝑠𝑖𝑛𝛼 =
𝐿
𝐵

 ;  𝑠𝑖𝑛𝛼0 =
𝐿0

𝐵
 (2.34) 

Therefore, Eq. (2.33) can be written as: 

𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 2𝜋𝑅0𝐿0
𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛼0

𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼
= 2𝜋𝑅0𝐿0

𝑅0

𝑅
𝐿0

𝐿
 (2.35) 

Substituting for contraction ratio (𝛾 = ∆𝐿
𝐿0

) in 𝑅0
𝑅

 and 𝐿0
𝐿

 in Eq. (2.35) yields: 

𝐿0

𝐿
=

𝐿0

𝐿0 − ∆𝐿
=

𝐿0

𝐿0 − 𝛾𝐿0
=

1
1 − 𝛾

 (2.36) 

𝑅0

𝑅
=

2𝜋𝐵𝑁𝑐𝑜𝑠𝛼0

2𝜋𝐵𝑁𝑐𝑜𝑠𝛼
=

𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼
 (2.37) 

Knowing that  𝐿
𝑠𝑖𝑛𝛼

= 𝐿0
𝑠𝑖𝑛𝛼0

 , one can write 𝑠𝑖𝑛𝛼 = 𝐿𝑠𝑖𝑛𝛼0
𝐿0

, hence: 

𝑅0

𝑅
=

𝑐𝑜𝑠𝛼0

√1 − (𝐿2𝑠𝑖𝑛2𝛼0
𝐿0

2 )

=
𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼0(1 − 𝛾)2
 (2.38) 

Substituting Eqs. (2.36) and (2.38) into Eq. (2.35) yields: 

𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 2𝜋𝑅0𝐿0
𝑅0

𝑅
𝐿0

𝐿
= 2𝜋𝑅0𝐿0

𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼0(1 − 𝛾)2
×

1
1 − 𝛾

 (2.39) 

Eq. (2.39) is obtained under the assumption that the contact surface is completely flat. However, 

the braid is comprised of cylindrical strands, the elastic deformation of which is the result of the 

fact that only a limited portion of the apparent contact surface is really in contact. Hence, a 

correction factor is introduced to take the actual strand-on-strand contact surface into account:  
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|𝐹𝑓| = 𝑓𝑠.
𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑆𝑠𝑐𝑎𝑙𝑒
. 𝑃      (2.40) 

Various approaches have been suggested to obtain the scale factor, which are mostly empirically 

driven factors based on the results of the experiments conducted on a particular PAM [72]. Davis 

et al [24] proposed an approach based on the Hertz’s contact theory to determine the actual contact 

area between two elastic spheres, as shown in Fig. (2.5). Based on this theory, when two spheres 

are in contact, their deformation depends on the modulus of elasticity of their materials. 

Furthermore, the contact surface is a function of the normal contact force, the radius of both 

spheres, and the modulus of elasticity of the material of each sphere. By applying this hypothesis, 

the contact force is represented as  𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑃𝐷𝑠
2, in which 𝐷𝑠 is the diameter of the braid strands 

and P is the contact pressure. Utilizing the standard Hertz formula, the radius of the real contact 

area, which is considered a circle of radius 𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡, is calculated as [75]: 

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = (
3
8

)1/3(
𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝐷𝑠

2 )
𝐸∗ )1/3       ;             𝐸∗ =

𝐸𝑏𝑟

2(1 − 𝜈𝑠
2)

 
(2.41) 

Where 𝐸𝑏𝑟 represents the modulus of elasticity of the braid strands, and 𝜈𝑠 denotes their Poisson’s 

ratio. Finally, the scale factor is defined as [73]: 

 

 

Figure 2.5: Finding the contact area between two spheres using the Hertz theory [73] 
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𝑆𝑠𝑐𝑎𝑙𝑒 =
𝐷𝑠

2𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡
= (𝐷𝑠/2)/ (

3
8

)
1
3

(
𝑃𝐷𝑠

2 (𝐷𝑠
2 )

𝐸𝑏𝑟
2(1 − 𝜈𝑠

2)

)

1
3

 ≈ 0.69 × (
𝐸𝑏𝑟

𝑃(1 − 𝜈𝑠
2)

)1/3 

(2.42) 

Finally, substituting the scale factor from Eq. (2.42) and the contact surface from Eq. (2.39) into 

Eq. (2.40), the friction force which should be included in the force equation of the PAM to 

anticipate the hysteresis can be calculated as: 

|𝐹𝑓| = 𝑃 × (𝑓𝑠) ×  2𝜋𝑅0𝐿0
𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼0(1 − 𝛾)2
×

1
1 − 𝛾

×
1

0.69
× (

𝑃(1 − 𝜈𝑠
2)

𝐸𝑏𝑟
)1/3 

 

(2.43) 

2.3.3.2 Experimentally Driven Friction Force 

An alternative to the previously defined theoretical friction term is the Coulomb friction term, 

which can be evaluated based on the experimental data obtained for a PAM contracted under a 

specific pressure. Since friction always opposes the motion of the actuator, this term should be 

subtracted from the calculated force of the PAM during contraction, and it should be added to the 

force equation during extension. The experimental results in the literature have shown that the 

magnitude of the friction is proportional to the magnitude of the axial force, hence the Coulomb 

friction term can be described as [2]: 

𝐹𝑓 = −𝐾𝑓𝐹𝑠𝑔𝑛(𝑉) (2.44) 

The friction factor, 𝐾𝑓, which relates the friction force to the nominal force calculated using Eq. 

(2.26), is not constant and must be obtained through an empirical fit to the hysteresis loops of each 

specific PAM while it is being loaded (or unloaded) under a specific pressure. The term Sgn (V), 

where V is the velocity of the PAM, incorporates the direction of the motion of the PAM into the 

friction term.  

2.3.4 Pressure Dead-band  

Pressure dead-band refers to the minimum pressure required for the bladder to come into contact 

with the surrounding braid and initiate inflation of the PAM.  As a result, the PAM does not start 
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producing force immediately when the inlet pressure is increased. To take this effect into account, 

the pressure should be corrected in all force equations using the following formula [2]: 

𝑃́ = 𝑃 − 𝑃𝐷𝐵 (2.45) 

𝑃𝐷𝐵  represents the dead-band pressure, which is generally related to the material utilized for 

fabricating the bladder and the braid, hence it is determined through experimental tests conducted 

on each particular PAM.  

2.3.5 Non-cylindrical Tips 
When deriving the force models for a PAM, an assumption is made that its entire length is 

cylindrical, which may not be valid.  As illustrated in Fig. (2.6), the regions near the end fittings 

of a real PAM are rounded, leading to a reduction in the effective length.  

 

Figure 2.6: a) PAM in the middle part b) and at the endings [73] 

 

Studies have demonstrated that the reduction in diameter near each end-fitting decreases the force 

response of the PAM. One of the simple approaches to correct the force model considering the 

non-cylindrical tips of a PAM into account is to consider the shape of the endings as a 90° circular 

arc [73]. Hence, the length reduction term is acquired as: 

∆𝐿 = (
𝜋
2

− 1)(𝑅 − 𝑅0) (2.46) 

As a result, L should be replaced with 𝐿́ to correct the length in the force equation as: 

𝐿́ = 𝐿 − 2∆𝐿 = 𝐿 − 2(
𝜋
2

− 1)(𝑅 − 𝑅0) (2.47) 
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2.4 Summary and Conclusion 

This chapter presents a comprehensive force model for PAMs, incorporating various terms to 

accurately capture their behaviour. The force model considers the effects of the elasticity of the 

PAM, energy stored in the braid, friction between the components, non-cylindrical tips, and dead-

band pressure. First, an ideal force equation is derived based on the force balance equilibrium, 

known as the Gaylord model. To refine this model, a term regarding the effects of the thickness of 

the bladder is added, enhancing its accuracy. Then, the derivation of various correction terms is 

described. To investigate the nonlinearity of the PAM, a polynomial stress-strain function with the 

empirically determined moduli of elasticity is defined. For the effects of friction, a theoretical term 

is derived based on the static friction between the braid strands, which can be included in the force 

equation of any PAM. Alternatively, an experimental friction term proportional to the calculated 

force can be obtained using a friction factor determined through empirical fitting to the force-

contraction graph of the PAM. This friction factor is not constant and must be determined for each 

specific PAM under various pressures.  

Once the preferred method for addressing the effects of friction is selected, the force model 

including all the correction terms defined for a PAM can be expressed as follows: 

𝐹 = {
|𝐹𝑖𝑑𝑒𝑎𝑙| − |𝐹𝑏𝑟𝑎𝑖𝑑| − |𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦| − |𝐹𝑓|, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

|𝐹𝑖𝑑𝑒𝑎𝑙| − |𝐹𝑏𝑟𝑎𝑖𝑑| − |𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑎𝑟𝑖𝑡𝑦| + |𝐹𝑓|, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛
          (2.48) 
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Chapter 3: Design Optimization of MPAMs 
3.1 Introduction  
The increasing demand for compact actuators capable of generating high forces and contraction 

has prompted extensive efforts to improve the performance of PAMs and MPAMs. However, 

previous research has predominantly focused on the development of full-sized PAMs, leaving a 

gap in the design of miniaturized PAMs that offer enhanced force and contraction outputs. This 

thesis aims to address this gap specifically for MPAMs, given their expanding applications in 

various fields, particularly in the bio-medical domain.  

Parametric studies conducted in previous research studies have revealed that the force output and 

contraction of MPAMs are significantly affected by their dimensional parameters and the material 

of their components [2,25,38-40]. As a result, optimizing these parameters can directly impact the 

performance of MPAMs. In this chapter, a design optimization methodology has been formulated 

to determine the optimal dimensional parameters of an MPAM, with the objective of maximizing 

the blocked force under geometrical and volume constraints. The objective function is basically 

the force model derived in Chapter 2, which has been modified to accurately represent the blocked 

force generated by the MPAM. The optimization problem incorporates geometric constraints, 

including a nonlinear constraint and a set of side constraints, defining the allowable ranges for the 

design variables. These constraints are based on the characteristics and dimensions of previously 

designed MPAMs.  

Two optimization formulations are presented, varying in their objective functions and design 

variables. The first formulation employs an objective function that includes the correction term 

regarding the energy stored in the braid and the braid strand parameters are considered as design 

variables. However, the second optimization formulation employs a simplified objective function, 

neglecting the braid strand parameters and braid correction term. A comparison between the 

optimized variables obtained from the two formulations enables an assessment of the importance 

of optimizing braid strand parameters in maximizing the output force of the MPAM, as well as the 

influence of considering the energy stored in the braid on the accuracy of the force equation. The 

optimization problems are solved in MATLAB®, employing a hybrid optimization method that 

combines a genetic algorithm (GA) with either the sequential quadratic programming (SQP) or the 
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interior-point (IP) algorithms. By comparing the optimized values obtained from various 

algorithms, the most efficient algorithm is identified, and the consistency of the optimum values 

is determined across different cases. Finally, a post-optimality analysis is conducted on the optimal 

blocked force to evaluate its sensitivity to each optimization variable.  

3.2 Optimization Formulation 
In this section, two distinct optimization problems are formulated in the formal optimization 

format to maximize the blocked force of an MPAM. Some assumptions can be made to simplify 

the complete force equation (Eq. (2.48)) derived in Chapter 2, while still accounting for all 

important dimensional variables that influence the performance of the MPAM.  These assumptions 

are based on the definition of the blocked force, being the generated force when the actuator is 

maintained at its initial length, and are as follows: 

1. There are no changes in the length and radius of the rubber tube, implying that no strain is 

generated in the bladder: 

𝜀𝑧 = 𝜀𝑥 = 0 (3.1) 

Therefore, the terms representing the nonlinear behaviour of the PAM are neglected, being 

the third term in Eq. (2.48). 

2. In the absence of any changes in the shape of the actuator, there are no frictional or 

hysteretic losses being the last term in Eq. (2.48). 

3. Due to a constant length, the length correction term does not affect the calculations and 

would be omitted from the force equation. 

4. The dead-band pressure term can only be determined experimentally for each MPAM with 

the specific materials used in its fabrication. Hence, although the force output of the 

actuator is affected by this term, it is neglected in the objective function. 

5. The only correction term that may improve the predictions of the blocked force is the elastic 

energy stored in the braid. Despite the constant length of the actuator, small amounts of 

strain may exist in the braid, contributing to smaller blocked force measurements.  

The derivation of each design optimization formulation is presented in the subsequent sections.  
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3.2.1 Design Optimization Formulation: Case I 

The present study aims at optimizing all geometrical parameters that affect the force output of an 

MPAM. To achieve this goal, the objective function must establish a direct correlation between 

the generated force and the geometric parameters of the MPAM that are being optimized 

(optimization variables). For that purpose, first, Eq. (2.1) is substituted in Eq. (2.2) as: 

𝑁 =
𝐵 cos(𝛼𝑜)

𝜋𝐷𝑜
=

𝐿𝑜

sin(𝛼𝑜)
×

cos(𝛼𝑜)
𝜋𝐷𝑜

=
𝐿𝑜 cot(𝛼𝑜)

𝜋𝐷𝑜
=

𝐿 cot(𝛼)
𝜋𝐷

 
(3.2) 

Knowing that 𝐷 = 2𝑅: 

𝑁 =
𝐿𝑜 cot(𝛼𝑜)

2𝜋𝑅𝑜
=

𝐿 cot(𝛼)
2𝜋𝑅

 (3.3) 

Moreover, assuming a cylindrical shape for the MPAM, the following formulations can be used 

for the volume of the bladder and the cross-sectional area of the braid strands: 

𝑉𝑏𝑙 = 𝜋𝐿(𝑅0
2 − (𝑅0 − 𝑡0)2) = 𝜋𝐿(𝑅2 − (𝑅 − 𝑡)2) =  𝜋𝐿(2𝑅𝑡 − 𝑡2)       (3.4) 

𝐴𝑏𝑟 = 𝜋𝑅𝑏𝑟
2  (3.5) 

Considering the list of assumptions that are made based on the blocked force state, we can conclude 

that the force equation of the MPAM is simplified as follows: 

∑ 𝐸𝑘( 𝐿
𝐿0

− 1)𝑘𝑀
𝑘=1 = ∑ 𝐸𝑘( 𝑅

𝑅0
− 1)𝑘𝑀

𝑘=1 = 0 ; hence: |𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦| = 0 (3.6) 

|𝐹𝑓| = 0 (3.7) 

∆𝐿 = 0  ;   𝐿́ = 𝐿 − 2∆𝐿 = 𝐿 (3.8) 

𝑃𝐷𝐵 = 0  ;  𝑃́ = 𝑃 − 𝑃𝐷𝐵 = 𝑃 (3.9) 

Hence, the final blocked force equation formulated in Chapter 2 can be written as: 

𝐹𝑏 = |𝐹𝑖𝑑𝑒𝑎𝑙| − |𝐹𝑏𝑟𝑎𝑖𝑑| =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝐵2) + 𝑃 (

𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) −

𝐿
𝐸𝑏𝑟𝐴𝑏𝑟𝑛

4𝜋2𝑃2𝐵3

(2𝜋𝑁)4  
(3.10) 

 

Substituting 𝐵, 𝑁, and 𝑉𝑏𝑙 from Eqs. (2.1), (3.3) and (3.4) in Eq. (3.10) yields:  
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𝐹𝑏 =
𝑃

4(𝐿 cot(𝛼)
2𝜋𝑅 )2𝜋

(3𝐿2 − (
𝐿

sin (𝛼)
)2) + 𝑃 (

𝜋𝐿(𝑅2 − (𝑅 − 𝑡)2)
𝐿

−
𝑡𝐿2

2𝜋(𝐿 cot(𝛼)
2𝜋𝑅 )2𝑅

)

−
𝐿

𝐸𝑏𝑟𝜋𝑅𝑏𝑟
2 𝑛

4𝜋2𝑃2( 𝐿
sin (𝛼))3

(2𝜋 𝐿 cot(𝛼)
2𝜋𝑅 )

4

=
𝑃𝜋𝑅2

𝑐𝑜𝑡2(𝛼)
(3 − (

1
sin (𝛼)

)2) + 𝑃 (𝜋(𝑅2 − (𝑅 − 𝑡)2) −
2𝜋𝑅𝑡

𝑐𝑜𝑡2(𝛼)
)

−
𝑠𝑖𝑛(𝛼)

𝐸𝑏𝑟𝑅𝑏𝑟
2 𝑛

4𝜋𝑃2𝑅4

𝑐𝑜𝑠4(𝛼)
 

 

(3.11) 

As expected, the blocked force equation does not incorporate the length of the actuator, given that 

the length is fixed in this state. Finally, knowing that cot(𝛼) = cos (𝛼)
sin(𝛼)  and tan(𝛼) = sin (𝛼)

cos(𝛼), the 

objective function in Eq. (3.11) can be expressed as: 

𝐹𝑏 = 𝑃𝜋 [𝑅2(2𝑡𝑎𝑛2(𝛼) − 1) + (2𝑅𝑡 − 𝑡2) − 2𝑡𝑅(𝑡𝑎𝑛2(𝛼)) −
4𝑃𝑅4𝑠𝑖𝑛𝛼

𝐸𝑏𝑟𝑛𝑅𝑏𝑟
2 (𝑐𝑜𝑠𝛼)4] 

(3.12) 

The blocked force equation takes into account several geometric parameters that have a significant 

impact on the performance of the MPAM. These parameters include the radius and thickness of 

the bladder (𝑅 and 𝑡), the braid angle (𝛼), the radius of the braid strands (𝑅𝑏𝑟), and the number of 

the braid fibres used to make the braided sleeving (𝑛). Other independent parameters are assumed 

to remain constant throughout the optimization process. The air pressure inside the bladder is 

maintained constant for each optimization run, and the braid is selected from the commonly used 

PET (polyethylene terephthalate) braids with a specific modulus of elasticity (𝐸𝑏𝑟 = 2.1 GPa). 

Therefore, the vector of design variables comprises five elements: 

𝑋 =  [𝑅, 𝑡, 𝛼, 𝑅𝑏𝑟, 𝑛]𝑇 (3.13) 

The identified design variables are subjected to certain geometrical constraints (side constraints) 

and a nonlinear constraint associated with the bladder’s thickness-to-radius ratio. In order to ensure 

a uniform pressure distribution throughout the length of the actuator, the ratio between the volume 

of the bladder and the volume of the entire structure of the actuator must fall within a certain range. 
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Assuming that the radius of the actuator is equal to the outer radius of the bladder, the mentioned 

ratio is calculated as below: 

𝑉𝑏𝑙

𝑉
=

𝜋𝐿(𝑅2 − (𝑅 − 𝑡)2)
𝜋𝐿𝑅2 =

𝜋𝐿(2𝑅𝑡 − 𝑡2)
𝜋𝐿𝑅2 =

𝑡
𝑅

(2 −
𝑡
𝑅

) 
(3.14) 

Eq. (3.14) demonstrates that the ratio of the bladder volume to the actuator volume is directly 

proportional to the ratio of the wall thickness of the bladder to its outer radius. In miniaturized 

PAMs, this ratio is often significant since the bladder constitutes a much larger portion of the 

actuator’s cross-sectional area. Therefore, the recommended range for this ratio is typically 

between 0.4 and 2 for MPAMs [55].  

Geometrical side constraints are limitations on the dimensions of the MPAM based on its intended 

application and the typical dimensions of the previously designed and commercialized MPAMs. 

The optimization problem is formally formulated by incorporating the aforementioned constraints 

as below: 

 

Find the vector of design variables: 𝑋 

To maximize: 𝐹𝑏(𝑋) 

Subject to the following constraints: 

                      𝑋𝑚𝑖𝑛  ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 

                    
𝑉𝑏𝑙

𝑉
− 2 ≤ 0 

                   0.4 −
𝑉𝑏𝑙

𝑉
≤ 0 

(3.15) 

The lower and upper bounds of each design variable are provided in Table (3.1). 

 
 
 
 
 



33 
 

 

Table 3.1: Lower and upper bounds of the design variables 

Design variable Lower bound Upper bound 

𝑅 (𝑚𝑚) 0.45 3 

𝑡 (𝑚𝑚) 0.16 1.5 

𝛼 (°) 36 72 

𝑅𝑏𝑟(𝑚𝑚) 0.005 2.5 

𝑛 30 100 

 

3.2.2 Design Optimization Formulation: Case II 

The objective function for the second optimization problem excludes the term associated with the 

energy stored in the braid from the blocked force equation. This is conducted to investigate how 

significant this effect is on the force output of an MPAM and to assess the impacts of optimizing 

braid parameters on maximizing the blocked force. Consequently, neglecting the elastic energy 

stored in the braid (the last term in Eq. (3.12)) yields:  

𝐹𝑏 = 𝑃𝜋 [𝑅2(2𝑡𝑎𝑛2(𝛼) − 1) + (2𝑅𝑡 − 𝑡2) − 2𝑡𝑅(𝑡𝑎𝑛2(𝛼))] (3.16) 

The braid parameters are thus omitted, reducing the number of design variables to three. The 

new vector of design variables is as follows: 

𝑌 =  [𝑅, 𝑡, 𝛼]𝑇 (3.17) 

Neglecting the impacts of the stored energy in the braided sleeving does not affect the constraints 

of the optimization problem. The ratio defined between the thickness and outer radius of the 

bladder, which ensures pressure consistency, remains independent of the braid characteristics and 

should still be within the predetermined range. Additionally, the side constraints remain unchanged 

as they pertain to the required dimensions of the actuator designed for specific small-scale 

applications. Based on the modified objective function and design variables, the second 

optimization problem can be formally expressed as: 
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Find the vector of design variables: 𝑌 

To maximize: 𝐹𝑏(𝑌) 

Subject to the following constraints: 

                   𝑌𝑚𝑖𝑛  ≤ 𝑌 ≤ 𝑌𝑚𝑎𝑥 

                      
𝑉𝑏𝑙

𝑉
− 2 ≤ 0 

                   0.4 −
𝑉𝑏𝑙

𝑉
≤ 0 

(3.18) 

3.3 Optimization Methodology 
The optimization problem discussed in this study involves a nonlinear objective function and a 

nonlinear inequality constraint, making it a nonlinear optimization problem, which can be solved 

using various direct and indirect optimization techniques. However, direct techniques are generally 

preferred due to their accuracy. Selecting an appropriate optimization method is crucial for 

achieving a fast and accurate optimization procedure. In this thesis, a hybrid optimization 

approach, in which a gradient-based optimization technique has been combined with a stochastic-

based algorithm, is implemented in the MATLAB® environment to assure the convergence to a 

global optimum solution. The hybrid optimization method used in this thesis combines the Genetic 

algorithm (GA) with either Sequential Quadratic Programming (SQP) or Interior Point (IP). Both 

SQP and IP are gradient based optimization algorithms that require gradients of the objective and 

constraint functions to search design space starting from an initial point and usually converge to a 

local optimum point without a mechanism to search for a global solution. GA, on the other hand, 

is a non-gradient, search-based optimizer that can stochastically converge to a near-global solution. 

Therefore, the optimization procedure is initiated with GA, and the optimal results from GA are 

then used as the initial points for the local optimizer (IP or SQP) to obtain the “true” global optimal 

values. 

Further descriptions of each of the employed optimization algorithms can be found in the 

subsequent sections.  



35 
 

3.3.1 Genetic Algorithm (GA) 

A genetic algorithm is a search-based method that emulates the process of natural selection and 

genetics in order to evolve the optimization problem toward the best solution. This evolutionary 

algorithm commences by generating a population of prospective solutions for a given problem, 

with each solution represented as an individual. The population size, referred to as generations, is 

randomly determined and varies based on each problem. In each generation, the fitness of each 

individual is assessed based on their ability to solve the problem, typically measured by the 

objective function value. The fittest individuals are then randomly selected and used to form the 

subsequent generation.   

The genetic algorithm applies biologically inspired operators such as crossover, selection, and 

mutation to the population in order to produce a new generation in each iteration. The selection 

operator favors the fittest individuals, while the crossover and mutation operators introduce genetic 

diversity and variability to the population. This process of evaluating fitness, selecting the fittest 

individuals, and applying genetic operators is repeated for multiple generations until a satisfactory 

solution is found or a termination criterion is reached. The termination criterion can be the 

maximum number of generations produced or a satisfactory fitness level.  

Genetic algorithm has been widely used in optimization problems, especially in engineering 

design. It is particularly useful in situations where the search space is extensive and complex, and 

traditional optimization methods may be too slow or infeasible [77]. 

3.3.2 Sequential Quadratic Programming (SQP) 

SQP is a powerful gradient-based optimization technique that can numerically determine an 

accurate solution for nonlinear optimization problems with linear or nonlinear equality and 

inequality constraints. SQP is a suitable and efficient algorithm for real-world problems due to its 

capability to handle any degree of nonlinearity, including nonlinearity in the constraints. This 

iterative algorithm approximates the objective function and constraints by solving a quadratic 

model at each iteration to obtain a search direction, which is then used to update the current 

solution. The step size is determined using a line search method. Finally, SQP converges to a local 

optimum point near the initial point faster than stochastic approaches searching for local minima 
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of a function. However, the resulting optimum point depends on the starting point, which is why 

accurate initial points must be chosen.  

An active set method and Quasi-Newton’s method are combined in SQP.  The active set method 

solves the KKT (Karush-Kuhn-Tucker) conditions using guesses and checks to find the critical 

points. In the first step, it is assumed that every inequality constraint is inactive, and after solving 

the problem, feasibility is checked. If any constraints are violated, they are active, and on the other 

hand, if any of the multipliers of a constraint are negative, the constraint is considered inactive. A 

limitation of the active set method is that many of the derivatives in the KKT conditions are highly 

nonlinear and difficult to solve. This is resolved by SQP which incorporates Quasi-Newton’s 

method [77].  

The SQP is more efficient for small to medium-sized problems, while for large problems, the 

algorithm may become computationally expensive due to the need to solve a quadratic 

programming subproblem and incorporate several derivatives at each iteration [77]. 

3.3.3 Interior Point (IP) 

The IP algorithm, which shares a similar background with SQP, has gained widespread popularity 

over the past 15 years and has become the default optimization algorithm in MATLAB ®. Similar 

to SQP, IP is a local optimizer that requires an initial point to start its iterations, and the objective 

function and constraints must be twice differentiable for the algorithm to be employed. IP can 

handle all types of optimization problems, including linear, nonlinear, convex, and nonconvex, 

and as opposed to SQP, it is particularly useful for large-scale problems. The IP method is named 

after its iterative movement along a path of strictly feasible solutions in the interior of the feasible 

set.  

IP works by solving a sequence of barrier subproblems that involve adding a barrier function to 

the objective function of the original optimization problem. The barrier function, which is convex, 

becomes increasingly steep as the iterations approach the boundary of the feasible set, effectively 

bypassing infeasible solutions. At each iteration, the KKT conditions, i.e. the Hessian and gradient, 

of the barrier subproblem are used to compute a search direction. The algorithm then takes a step 

in the search direction by adjusting the step length to satisfy the feasibility and optimality 

conditions of the barrier subproblem, using either a line search or a trust-region method. The IP 
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algorithm terminates when a stopping criterion is satisfied, such as reaching a desired level of 

optimality or approaching the boundary of the feasible set within a desired tolerance [77].  

IP offers several advantages over other optimization algorithms, including faster convergence rates 

and the ability to handle a wider range of optimization problems, including those with inequality 

constraints and problems with non-smooth objective functions. However, it can be 

computationally expensive for large-scale problems due to the need to solve a sequence of barrier 

subproblems. 

3.4 Optimization Results 

3.4.1 Comparison Between the Proposed Optimization Formulations 

The optimization formulations presented in section 3.2 aimed to investigate the impact of braid 

geometry on the maximized blocked force and optimal dimensions of an MPAM. Two different 

formulations, referred to as Case I and Case II, are proposed and optimized, and their results are 

compared in Table (3.2). It is important to note that the data provided in Table (3.2) corresponds 

to a 200 kPa inlet pressure, but similar results were obtained for a range of different pressures. The 

results presented in Table (3.2) demonstrate that the optimal values of 𝑅, 𝑡, and 𝛼, which are the 

design variables that are present in both formulations, remain constant regardless of the braid term 

added in Case I. The insignificant decrease (0.00647 N) in the maximized blocked force obtained 

from the first formulation, which optimizes the properties of the braid strands, is attributed to 

subtracting the energy stored in the braid from the total amount of force. This indicates that 

including the properties of the braid strands as optimization variables does not significantly impact 

the maximization of the force output of an MPAM. Consequently, the second formulation (Case 

II) is preferred for the remainder analysis in this thesis. Case II not only yields the same optimized 

dimensions for the MPAM but also offers the advantage of a simpler and more cost-effective 

design. This is because Case II allows for the utilization of commercially available braided 

sleeving without the need to customize a braid with optimized dimensions.  

Fig. (3.1) illustrates the iteration history for both optimization cases. The iteration number 

represents the number of times the optimization algorithm is run before converging to the optimum 

values. Despite Case I having 5 design variables and Case II having three, the initial values of the 
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design variables that are common in both cases are equal to ensure similar initial conditions for 

the optimization algorithm in both cases. It can be observed that the value of the objective function 

converges to the same optimum blocked force for both cases, confirming that they lead to the same 

optimized dimensions for the MPAM. 

 

Table 3.2: Optimum values obtained using different optimization formulations (P=200 kPa) 

 Optimum values Cost 
function 𝑹 

(𝒎𝒎) 
𝒕 

(𝒎𝒎) 
𝜶 
(°) 

𝑹𝒃𝒓 
(𝒎𝒎) 

n 

Case I 3 0.67621 72 0.0025 50 79.58108 

Case II 3 0.67621 72 --- --- 79.58755 

 
Figure 3.1: Variation of the optimal blocked force with the number of iterations for two different 

optimization formulations using the IP algorithm (P = 200 kPa) 

 

As a complement to the aforementioned results, the optimal parameters obtained from the previous 

optimization problems were fed into three different force models proposed for the PAMs as input 

values to compare their results: 1. The basic Gaylord model; 2. The Gaylord model incorporating 

the effects of the thickness of the bladder; and 3. The Gaylord model including the effects of the 

bladder’s thickness and energy stored in the braid. The blocked force values calculated using each 

force model are compared in Fig. (3.2) for a range of air pressures. It is clear that the simple 

Gaylord model overestimates the blocked force, specifically at higher pressures. This discrepancy 

arises from the model’s failure to account for the thickness of the bladder, which plays a crucial 
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role in a precise calculation of the generated force by an MPAM. On the other hand, the 

insignificant discrepancies between the amounts of force predicted using the other two equations 

prove that the term regarding the effects of the braided sleeving does not contribute to more 

accurate force anticipation.  

 
Figure 3.2: Comparison between the anticipated amounts of force using three various force equations 

 

3.4.2 Comparison Between the Optimization Algorithms 

As mentioned in Section 3.3, a hybrid optimization algorithm combining a global stochastic-based 

algorithm (i.e. GA) with a gradient-based algorithm (i.e. IP or SQP) is effectively utilized to find 

the true global optimum. GA yields near-global optimum solutions which are then fed into IP and 

SQP as the initial points to catch accurate global optimum solutions.  

Table (3.3) presents three optimum points obtained from the GA, indicating that this algorithm 

does not converge to the same optimal points when different random initial points are used. This 

implies that the GA is unable to find the exact global optima. To obtain the true global solution, 

the results from the GA are further processed using the SQP or IP algorithms. Fig. (3.3) and Fig. 

(3.4) illustrate the iteration history utilizing GA+ IP and GA+SQP algorithms, respectively. Both 

algorithms converge to the same true global optimum, regardless of the three different optimum 

points obtained from the GA used as their initial points. Table (3.4) represents the average values 

of the optimal points acquired from 10 repetitions of the GA, as well as the true global optimum 

points obtained from the IP and SQP algorithms using the average results from the GA as their 
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starting values. It is observed that both the IP and SQP algorithms converge to the same global 

optima, although they require a different number of iterations. The SQP algorithm, which is known 

for its fast speed convergence to the optimum points, reaches the true maximum value of the cost 

function after only 4 iterations, while the IP method requires 9 iterations, more than twice the 

number required by the SQP algorithm. It is noteworthy that all algorithms, including multiple 

attempts of the GA, converge to the same optimal values for the radius of the bladder and the braid 

angle. On the other hand, the true optimum value for the thickness of the bladder is obtained using 

combined GA and SQP or IP.  

 

Table 3.3: Optimization results from the GA using randomly generated initial points 

 

 

 

 

 

 

Figure 3.3: Convergence of GA+IP to the true global optimum 
 

Optimum values Optimized Cost function 
from GA  𝑹 

(𝒎𝒎) 
𝒕 

(𝒎𝒎) 
𝜶 
(°) 

𝑿𝟏 3 0.8639 72 72.7868 

𝑿𝟐 3 0.6751 72 79.4214 

𝑿𝟑 3 0.8638 72 72.7911 
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Figure 3.4: Convergence of GA+SQP to true optimum 

 

Table 3.4: Optimum points from different optimization algorithms (P = 200 kPa) 

 Optimum values Optimized 

Cost function 

No. of 

iterations 𝑹 

(𝒎𝒎) 

𝒕 

(𝒎𝒎) 

𝜶 

(°) 

GA  3 0.75092 72 77.1344 3 

GA+SQP 3 0.67621 72 79.5875 4 

GA+IP 3 0.67621 72 79.5875 9 

 

3.4.3 Analysis of the Optimal Points 
The results presented in Table (3.4) indicate that the optimal values for the radius of the bladder 

and the braid angle have converged to their respective upper bounds. This observation is consistent 

with previous parametric studies that have reported an increase in the force output of an MPAM 

with an increase in these parameters (R and 𝛼) [2,39,55,76].  

The presence of accurately defined constraints that are active at the optimum points has also a 

considerable impact on the optimization outcomes. In the absence of such a constraint, the 

optimization results can vary. It can be observed that at optimal solutions, the nonlinear constraint 

𝑉𝑏𝑙/𝑉  becomes active on its lower bound (0.4) in optimization formulations in Cases I and II as 

shown below: 
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𝑉𝑏𝑙

𝑉
− 2 =

𝑡
𝑅

(2 −
𝑡
𝑅

) − 2 =
0.67621

3
(2 −

0.67621
3

) − 2 = −1.6 ≤ 0 (3.19) 

 

0.4 −
𝑡
𝑅

(2 −
𝑡
𝑅

) = 0.4 − (
0.67621

3
(2 −

0.67621
3

)) = 0 ≤ 0 
(3.20) 

The impacts of varying the inlet pressure on the optimized values are investigated by repeating the 

optimization procedure for a range of pressures. Optimal results for the various inlet pressure are 

presented in Table (3.5). Variation of the optimal blocked force versus inlet pressure is also shown 

in Fig. (3.5). Results reveal that although the maximized blocked force increases linearly with 

pressure, the global optimum values of the geometrical parameters for an MPAM remain constant. 

It is clear that the inlet pressure does not affect the optimization results, and the observed increase 

in the optimum blocked force is solely due to the positive correlation between the force output of 

PAMs and the pressure inside their bladder [55,39]. The results demonstrate that increasing the 

inlet pressure of an MPAM with the optimized dimensions obtained in this work from 50 kPa to 

600 kPa results in a blocked force approximately 12 times higher than the initial amount. Results 

show that an MPAM comprising a bladder with a radius of 6 mm and wall thickness of 0.67621 

mm, along with a braided sleeving with a braid angle of 72 degrees can have a force output of 

almost 238 N if the bladder is pressured up to 600 kPa.  

 
Figure 3.5: Maximized amounts of blocked force under various inlet pressures 
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Table 3.5: Optimal points using various inlet pressures 

P 
(kPa) 

𝑹 
(𝒎𝒎) 

𝒕 
(𝒎𝒎) 

𝜶 
(°) 

Cost 
function 
(Case I) 

Cost 
function 
(Case II) 

50 3 0.67621 72 19.89648 19.89689 

100 3 0.67621 72 39.70377 39.79216 

200 3 0.67621 72 79.58109 79.58755 

300 3 0.67621 72 119.3668 119.3813 

400 3 0.67621 72 159.1492 159.1751 

500 3 0.67621 72 198.9487 198.9689 

600 3 0.67621 72 238.7335 238.7627 

 

To further investigate the impacts of the braid strand parameters on the optimization results and to 

determine whether these effects are dependent on the inlet pressure, the optimization procedure is 

also conducted using the optimization formulation including the braid term (Case II). Eq. (2.26) 

reveals that the force associated with the braided sleeving has a direct relationship with the inlet 

pressure. Nevertheless, the error between the maximized blocked force in Cases I and II at different 

pressures is nearly less than 0.01%. These findings are consistent with the results obtained from 

various force models in Fig. (3.2).  

3.4.5 Post-Optimality Analysis 

The effect of variation in the optimal parameters on the maximized blocked force is investigated 

in this section. The study considers variations in the design parameters (R, t, 𝛼) , with one 

parameter being perturbed ±5% around its optimum value while the other design variables remain 

constant. Fig. (3.6) illustrates the magnitude of the blocked force concerning variations in each 

design parameter. 

Fig. (3.6a) demonstrates a linear rise in the blocked force with increasing the bladder’s outer radius. 

Since the optimum value of R converges to the upper bound of this parameter, the optimal point 

falls in the middle of the range of the sensitivity analysis. Based on the direct relationship between 

R and 𝐹𝑏, if the upper bound of this optimization variable is relaxed, the optimization converges 
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to a higher blocked force. However, due to the goal of this work to maximize the force output of a 

”miniaturized” PAM within specific dimensional ranges, higher upper bounds cannot be used for 

its dimensional parameters. 

As mentioned in section 3.2, a specific ratio exists between the volume of the bladder and the 

volume of the entire structure (𝑉𝑏𝑙/𝑉) of the PAM, which is directly related to the ratio between 

the thickness and the radius of its bladder 𝑡
𝑅

(2 − 𝑡
𝑅

) . Hence, when altering the optimal thickness 

of the bladder to investigate its effect on the blocked force, the mentioned ratio and thus the value 

of R should also be considered. This is why variations in the lower boundaries of 𝑉𝑏𝑙/𝑉 ratio which 

are active at the optimum solution are studied to determine the effects of the thickness of the 

bladder on the optimization results. As indicated in Fig. (3.6b), if the lower boundary for 𝑉𝑏𝑙/𝑉 is 

relaxed, a linear increase can be observed in the blocked force. However, for a given thickness, 

this leads to a larger 𝑅 and thus bigger MPAM. 

Finally, post-optimality on the braid angle (Fig. (3.6c)) yields a significant rise in the magnitude 

of the blocked force with higher values for the braid angle. Increasing the braid angle to 75 ° results 

in a nearly 50% increase in the amount of the blocked force compared to an MPAM with 𝛼=72°. 

On the other hand, apart from the existing dimensional constraints for an MPAM, there is a 

practical limit for the maximum braid angle. The braid angle 72° is selected, since it can be readily 

found in commercialized braided sleeving available in the market.  

 

 
(a) 
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(b) 

 
(c) 

Figure 3.6: Sensitivity analysis with respect to the (a) bladder's outer radius (b) thickness of the bladder 
(c) braid angle (P = 200 kPa) 

 

3.5 Summary and Conclusion 
In this chapter, formal design optimization problems were formulated and then implemented in the 

MATLAB® optimization toolbox to obtain the optimum dimensional parameters of an MPAM to 

maximize the blocked force. Two optimization formulations, Case I and Case II, were developed 

with different objective functions and vectors of design variables. Case I included a term 

representing the energy stored in the braided sleeving, and thus the parameters related to the 
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properties of the strands used in the braided sleeving were included as the optimization variables. 

On the other hand, Case II neglected this term, resulting in a simpler optimization problem with a 

reduced number of design variables. A comparison between the results of these two cases revealed 

that Case II was accurate enough to find the optimal dimensions of an MPAM, leading to a more 

straightforward and cost-effective design for the optimized actuator. A hybrid optimization 

approach, combining the GA with either SQP or IP algorithms was employed to find the exact 

global optimum results and to make a comparison between the various algorithms and their effects 

on the optimization results. Finally, a post-optimality analysis was conducted to investigate the 

dependence of the maximized blocked force on the variation of each optimal design variable. 

Results show that within the dimensional constraints defined for a miniaturized PAM, the 

optimization procedure successfully converged to the true global optimum.  
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Chapter 4: Experimental Validation 
4.1 Introduction 
In Chapter 3, we presented an optimization framework to determine the optimal dimensions of 

MPAMs for achieving maximum force output. To validate the accuracy of the model and 

optimization results, MPAMs using the optimal dimensions obtained in Chapter 3 are fabricated 

and experimentally tested to evaluate their blocked force and free contraction under varied inlet 

pressures. In this chapter, the fabrication process of the MPAMs is described in detail, including 

the selection of the materials, manufacturing techniques, and assembly procedures.   

A critical aspect of the fabrication process is the choice of the bladder material, as it significantly 

affects the stiffness, strength, and overall performance of the actuator. Two samples of MPAM are 

fabricated, each with a different bladder material, allowing us to investigate the effect of bladder 

material and the differences between their performances. Following the fabrication process, the 

MPAM samples are tested under quasi-static conditions using an MTS machine and a customized 

test setup. The test procedure involves measuring the blocked force and free contraction of the 

MPAMs and obtaining their hysteresis loops. The hysteresis loop is a graphical representation of 

the force-contraction relationship of the actuator and is an important indicator of its repeatability 

and controllability. The experimental data are then utilized to determine the correction terms that 

should be added to the simplified force equation used as the objective function in the optimization 

process. By comparing the hysteresis loops of the fabricated MPAMs with the theoretical 

predictions obtained from the modified force equation, we can verify the accuracy of the force 

equation and its ability to anticipate the force and contraction outputs of the MPAMs under 

different inlet pressures.  

4.2 Fabrication of the Optimized MPAM 

4.2.1 Selection of the Main Components 

The present study aims at developing a low-cost MPAM utilizing commercially available 

materials. The MPAM is mainly composed of three major components: 1. A cylindrical 

elastomeric bladder to contain the pressurized air that powers the muscle, 2. A braided sleeve to 

transform the radial expansion of the muscle into axial contraction, hence generating the actuation 
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force and, 3. Two end-fittings, one of which seals the muscle cylinder, while the other serves as 

an air intake channel. The aforementioned critical components of the MPAM are carefully chosen 

based on their material properties and cost-effectiveness to ensure the desired performance: 

1.  The dynamic nature of the actuation process requires the bladder material to possess both 

flexibility and durability to withstand repeated cycles of inflation and deflation. Ecoflex 

silicone rubbers are frequently utilized for PAM bladders owing to their distinctive 

properties, such as high elasticity, low deformation, and resistance to tearing under high 

mechanical stress. Additionally, their biocompatibility and chemical resistance make them 

suitable for applications in prosthetics and biomedical devices. The Ecoflex-50 silicone 

mixture is selected as the material of choice for the bladder in this study due to its 

availability, and it is formulated in a 1A:1B weight ratio and cured at room temperature to 

form a soft yet robust bladder that can expand and contract without tearing or distorting. 

To compare the performance of MPAMs fabricated with various bladder materials, a 

second bladder is also fabricated using a different silicone mixture, including 

polydimethylsiloxane (PDMS) and Ecoflex-30 (1:10). Although both PDMS and Ecoflex 

possess remarkable elasticity, Ecoflex has lower stretchability than PDMS, which can be 

stretched up to several times its original size before breaking. Ecoflex is also available in 

a range of hardness levels, while PDMS is known for its low hardness and flexibility. 

Although both materials are generally biocompatible and chemically resistant, PDMS may 

be more resistant to certain chemicals. Finally, Ecoflex is usually less expensive than 

PDMS. PDMS is not typically utilized in PAMs due to its inferior tensile strength in 

comparison to elastomers such as silicone. This deficiency results in its inability to endure 

the elevated forces and stresses that occur during actuation. Its low tear resistance is another 

significant issue, rendering it vulnerable to tearing under mechanical stress, which is not 

ideal for use in PAMs demanding high levels of durability and reliability. A limited 

temperature range also degrades its mechanical properties at higher temperatures. 

Additionally, PDMS exhibits inferior gas barrier properties, which can limit its 

applicability in PAMs that require air tightness and pressure control. In this work, PDMS 

is combined with Ecoflex-30, which has higher tensile strength and tear resistance, to 

enhance the overall mechanical properties of the resulting material, making it more durable 
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and able to tolerate repeated cycles of inflation and deflation without tearing or degrading 

[78,79]. 

2. The braided sleeving selected for the fabrication of the optimized MPAMs is composed of 

PET (polyethylene terephthalate) braided sleeves manufactured by the TechFlex® 

company. PET is frequently chosen as the braid material in PAMs due to its numerous 

advantageous properties. PET is a robust and long-lasting material that is resistant to wear 

and tear, as well as being able to endure high temperatures and UV radiation. Additionally, 

it is resistant to chemicals and abrasions, making it an ideal choice for PAMs. PET braid 

sleeves are lightweight and do not significantly increase the weight of MPAMs, which is 

of great importance in miniaturized biomedical applications. Furthermore, PET is 

affordable and widely accessible, making it a popular material for use in PAMs. Most 

importantly, PET braid sleeves are highly flexible, enabling them to expand and contract 

with the muscle as it moves, thus allowing for ease of installation on the muscle.  

3. The selection of end-fittings is based on their compatibility with the geometry and material 

of the bladder to create a secure seal that does not cause damage to the thin bladder 

designed in this work. The fittings must also be easy to install and cost-effective.  

4.2.2 Assembly of the MPAM Actuator 

To assemble the actuator, a customized bladder is required to be fabricated with optimal 

dimensions found previously. Therefore, a tailored mold, which is shown in Fig. (4.2), is initially 

designed in SolidWorks (as illustrated in Fig. (4.1)) to be 3D-printed utilizing FormLabs, Form 3+ 

SLA printer with 25𝜇 accuracy, and Clear B4 resin. Stereolithography (SLA) 3D printers utilize 

photopolymerization to create objects using liquid resins. To fabricate a bladder with a 6 mm outer 

diameter, the mold comprises two outer halves with a semi-circular groove with an inner diameter 

of 3 mm and one inner solid cylinder with a diameter of 4.6 mm. Since the equipment available 

for the experiment has limited accuracy, the optimal thickness of the bladder is set to 0.7 mm 

instead of 0.67621 mm, hence, the diameter of the inner cylinder, which matches the inner diameter 

of the bladder is set to 4.6 mm to yield a tube with the required thickness (0.7 mm). The embedded 

holes on each part of the mold are used to attach these parts using screws.  The current design for 

the mold simplifies the assembly process and also contributes to the overall stability and precision 
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of the mold during printing and subsequent usage. The length of the bladder is set to 50 mm for 

miniaturization purposes, but the mold is fabricated with a length of approximately 60 mm to 

consider the overlapping of the bladder ends with the fittings. After the fabrication of the mold, 

the material of the bladder is prepared by thoroughly mixing parts A and B (1:1) of Ecoflex-50 

silicone (Smooth-On, Inc) for 40 seconds inside a vacuum mixer (Thinky, ARV-200) with a speed 

of 2000 rpm and under 27 inHg of pressure to remove all air bubbles. After the injection of the 

silicone mixture into the mold (the cavity between the outer and inner cylinder), it is cured for 24 

hours at room temperature to create a cylindrical tube for the bladder. Another bladder is also 

fabricated using the same mold and procedure, but a different silicone mixture (PDMS + Ecoflex-

30 (1:10)). This silicone mixture is cured at 200℉ in the oven for 24 hours. Fig. (4.3) depicts the 

process of fabricating the customized bladders.  

 

 

Figure 4.1: Sketch of the mold designed in SolidWorks 

 

 
 

Figure 4.2: 3D-printed mold 
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Figure 4.3: Process of fabricating the customized bladder (Ecoflex-30 + PDMS) 

 

The braided sleeving with a nominal diameter of 6.35 mm and a braid angle of 72 degrees was 

selected after purchasing various PET braids from the supplier and measuring their respective braid 

angles (TechFlex® - Clean Cut (CCP0.25BK)). To completely cover the bladder, the braid is then 

cut to the same length as the silicone tube. The ending of the braided sleeving is burned to avoid 

fraying. Finally, two end fittings are tightly inserted into the bladder’s inner diameter to seal the 

ends of the MPAM. The different components of the MPAM and its assembled configuration can 

be observed in Fig. (4.4) and Fig. (4.5), respectively. 

 



52 
 

 
       

Figure 4.4: Various components of the MPAM 
 

  

(a)                             (b) 

Figure 4.5: (a) Contracted MPAM under the pressure of 200 kPa (b) MPAM at its initial state 

 

4.3 Test Setup and Procedure 
The aim of the experimental setup is to validate the model and optimization results while 

evaluating the performance of the fabricated MPAMs under varying inlet pressure. Additionally, 

the hysteresis loops obtained experimentally are effectively utilized to obtain the correction terms 

necessary for the precise force equation. The quasi-static tests are conducted using an MTS 

machine (F1505, maximum load of 6.7 kN), capable of measuring both force and displacement 

(sensor mark-10, model FS05-50, max load 250 N, accuracy ±0.1%), along with a pressure sensor 
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(Festo®, SPAU-P10R-H-G18FD-L-PNLK-PNVBA-M12U, max load 1500 kPa, accuracy ±1.5% 

FS) to monitor the supplied pressure to the actuator. Fig. (4.6) depicts the MPAM installed within 

the test setup. 

In the initial step, the aim is to measure the blocked force under various constant pressures to 

validate the theoretical results. For this purpose, both MTS grippers are fixed throughout the 

experiment to maintain the MPAM at its initial state. First, the inlet pressure is increased gradually 

from 0 kPa to the state where the MPAM starts producing force, referred to as the dead-band 

pressure, which is attributed to the nonlinearity of the bladder material that results in a 

discontinuity in the relationship between the pressure and the diameter, hence, a sudden inflation 

above a specific pressure [74]. Then, the tests are carried out at various pressures ranging from    

20 kPa to 300 kPa with increments of 20 kPa to determine the blocked force as a function of 

pressure.  In each case, the pressure is maintained constant and the readings from the force sensor 

are recorded as the magnitude of the blocked force. To evaluate the repeatability and reliability of 

the measurements, each test is performed three times and the average of the recorded data is then 

utilized to determine the relationship between the air pressure and the blocked force. The same 

procedure is repeated for each sample of the MPAM to compare the force output of both MPAMs 

and investigate the impact of the bladder material on the blocked force and the dead-band pressure. 

Once the amounts of blocked force are recorded for each particular pressure, the upper MTS grips 

are unlocked to allow the MPAM to contract freely until it reaches its maximum contraction state, 

where it stops producing force. At this point, the variation in the initial length of the actuator is 

recorded as the amount of the free contraction for the MPAM. The free contraction of the MPAM 

is then measured under various pressures, ranging from 50 kPa to 250 kPa with increments of 50 

kPa to determine the correlation between the free contraction and the inlet pressure. Additionally, 

the variations of the generated force during loading and unloading cycles with respect to the 

contraction of the actuator are recorded to obtain the hysteresis loops for each MPAM. The 

hysteresis loops are then used to determine the correction terms concerning the nonlinearity of the 

MPAM and friction between its components.  
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Figure 4.6:  Experimental setup 

 

4.4 Blocked Force Measurements 
The findings from the quasi-static tests conducted on the two MPAMs under different internal 

pressures are presented in Fig. (4.7). MPAM1, featuring the MPAM fabricated with Ecoflex-50 

bladder, initiates force generation at an inlet pressure of 20 kPa whereas MPAM2, which refers to 

the other MPAM fabricated with a bladder made of PDMS and Ecoflex-30, generates a negligible 

blocked force at this pressure. The minimum pressure required to initiate force generation in an 

MPAM is referred to as the dead-band pressure, which is dependent on the bladder’s material as 

well as its thickness and diameter. Previous research by Pillsbury et al. [55] revealed that PAMs 

with higher volume ratios (𝑉𝑏𝑙
𝑉

) necessitate higher pressures (i.e., higher 𝑃𝐷𝐵 ) to generate an 

equivalent amount of force as PAMs with lower volume ratios. The bladder-to-PAM volume ratio 

is directly proportional to the ratio between the thickness and radius of the bladder, implying that 

increased bladder thickness can result in higher dead-band pressure. This can be explained due to 

the fact that a greater force is required to overcome the elasticity of a thick bladder during its 

deformation. Both optimized MPAMs in this study feature extremely small thickness-to-radius 

ratios, resulting in significantly lower dead-band pressures and higher force outputs at lower 

pressures, thereby, reducing the required energy input. Nonetheless, a comparison of the blocked 
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force generated by both MPAMs at the initial pressure (20 kPa) demonstrates that MPAM2 has a 

higher dead-band pressure, making MPAM1  more suitable for applications that prioritize low 

pressure and energy input.   

Results indicate that the blocked force exhibits a linear relationship with pressure, consistent with 

results in Chapter 3 and prior studies [2-5,39-42,55]. Both MPAMs exhibit almost identical force 

output, with MPAM2 generating higher blocked force when the pressure is increased beyond 150 

kPa. Due to the presence of imperfections in the tubular silicone and MTS machine limitations, 

the maximum pressure is limited to 300 kPa, yielding a maximum blocked force of 120 N and 136 

N for MPAM1 and MPAM2, respectively. This pressure (i.e. 300 kPa) displays the largest deviation 

between the output of the MPAMs, with MPAM2 achieving a blocked force approximately 16 % 

higher than MPAM1. The optimal blocked force obtained from Eq. (3.16) agrees exceptionally well 

with the experimental data for both MPAMs, particularly at lower pressures, as shown in Fig. (4.7). 

Fig. (4.8) illustrates that the overall error between simulated and experimental blocked forces 

under different pressures remain below 10% for both MPAMs. It should be noted that the absence 

of dead-band pressure in the theoretical force equation results in the largest errors between the 

simulation and experiment occurring at the inlet pressure of 20 kPa, which is the starting point for 

force generation in MPAM1. On the other hand, the significant deviation of almost 38% between 

the theoretical and experimental blocked forces generated by MPAM2  at 20 kPa suggests the 

presence of a higher dead-band pressure for this actuator. Additionally, comparing the overall 

errors between the simulated and experimental results from both MPAMs indicates that the 

behaviour of MPAM1  is better anticipated using the theoretical force equation derived in Eq. 

(3.16), which is likely due to the effects of neglecting dead-band pressure. The minor 

inconsistencies between the experimental and theoretical results can be attributed to the fabrication 

and testing limitations, as well as the assumptions made during the derivation of the optimization 

formulation. 
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Figure 4.7: Comparison between the experimental and theoretical results 

 

 

Figure 4.8: The error between the experimental data and the optimized blocked force 

 

In order to further validate the conclusion drawn from Fig. (3.2), the optimized parameters are 

employed as inputs in three distinct force models (G: simple Gaylord, G + t: Gaylord including 

the effects of the thickness of the bladder, G + t + b: Gaylord including the effects of the thickness 

of the bladder and the energy stored in the braided sleeving). Fig. (4.9) compares the theoretical 

values of the blocked force obtained using the aforementioned force models with the experimental 

data. The results confirm that the Gaylord model overestimates the blocked force in comparison 

to the other two equations. This observation is consistent with the previous studies [2,25,38-40], 

which have highlighted the limitations of the simple Gaylord model in accurately predicting the 

force output of PAMs. Furthermore, the results support the conclusions drawn from Fig. (3.2) 
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regarding the negligible discrepancy between force estimations using the second and third force 

equations.  

 

Figure 4.9: Comparison between the anticipated amounts of blocked force using various force models 
and experimental data 

 

4.5 Free Contraction Measurements 
In addition to the blocked force, the performance evaluation of an MPAM involves the free 

contraction which is also an important parameter. In order to investigate the influence of inlet 

pressure on the free contraction of the MPAM, a dimensionless parameter is defined as: 

Contraction ratio = 𝛾 =  
∆𝐿
𝐿0

 (4.1) 

where 𝐿0 is the initial active length of the actuator and ∆𝐿 is the amount of change in length.        

Fig. (4.10) illustrates the variation of the free contraction ratio with respect to the inlet pressure for 

both MPAMs. The results demonstrate that the contraction ratio increases nonlinearly as the inlet 

pressure rises, consistent with the trends reported in prior studies [2, 39]. Notably, MPAM1 exhibits 

significantly higher free contractions, nearly 1.5 times, than the other MPAM, particularly at lower 

pressures, making it a more desirable option for applications that require greater contractions. It is 

interesting to note that as the pressure increases, the contraction ratios increase at a slower rate, 

suggesting that the free contraction of both MPAMs reaches saturation at high inlet pressures. This 

trend is particularly significant for MPAM1, which experiences a sharp rise in the contraction ratio 

as the pressure increases from 50 kPa to 100 kPa, but the rate of increase slows considerably 
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between 100 kPa and 250 kPa for this MPAM due to the fact that the diameter of the bladder 

cannot expand beyond a certain value.  

 

Figure 4.10: Free contraction as a function of pressure 

 

4.6 Nonlinear Hysteresis Loops 
The process of obtaining the hysteresis loops in this study involves using IntelliMESUR ®, which 

is a motion control and data acquisition software integrated within the MTS machine. As 

mentioned in section 4.3, the hysteresis loops for each MPAM are obtained by first unlocking the 

upper MTS grips and allowing the MPAM to contract up to its free contraction state. At this point, 

the variation in the length of the actuator is recorded and inputted into the software as the maximum 

contraction that the MPAM can have while it is being loaded. The MPAM is then subjected to 

loading and unloading cycles at a constant speed of 50 mm/min until it returns to its initial state, 

with the force and distance being recorded in increments of 0.01 seconds. The loading and 

unloading cycles are repeated at different inlet pressures to obtain the hysteresis loops at each 

pressure. The hysteresis loops provide valuable information regarding the behaviour of the 

MPAMs under various pressures, and their acquisition is critical to find the correction terms due 

to the nonlinearity of the bladder material and friction in the braiding sleeve required for the 

modified force model of the PAMs as discussed in Chapter 2. The use of the integrated 

IntelliMESUR ® enables precise control over the motion of the actuator, which ensures that the 

data is collected with a high degree of accuracy, thus ensuring their reliability.   

By performing these experiments at various inlet pressures, we can obtain a comprehensive 

understanding of how the properties of the MPAMs change with variations in inlet pressure. The 
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hysteresis loops are then utilized to derive correction terms for the nonlinear stress-strain behaviour 

of the MPAMs and to find a friction term that enables the theoretical force equation to accurately 

predict the observed hysteresis in force-contraction relationships of the actuators. The derivation 

of each of these correction terms is explained in the following sections.  

4.6.1 Nonlinear Behaviour of the MPAM 
As explained in section 2.3.1, the bladder is modeled as a nonlinear elastic material, and its stress-

strain relationship is represented by a polynomial function as given in Eq. (2.12). This polynomial 

function is then incorporated into a refined force model (Eq. (2.17)) to accurately capture the 

nonlinear behaviour of the MPAM. Here in this research study, two methods are presented to 

empirically obtain modulus values (𝐸𝑘) and the degree of the polynomial relationship between the 

stress and strain (M) which are included in Eq. (2.12). The first method involves the stress-strain 

relationship defined using the tensile tests conducted on the bladder’s material, while the second 

method defines the nonlinear term based on the force-contraction tests on the whole actuator. By 

making a comparison between these methods, an accurate correction term is found to take the 

nonlinear behaviour of the MPAM into account. Hence, more accurate and detailed information 

about the mechanical behaviour of the MPAM is obtained, which in turn enhances our 

understanding of the overall performance of the MPAM. Each of the proposed methods is 

described in the following sections.  

4.6.1.1 Evaluation of Modulus Values by Testing the Bladder Material (Ecoflex-50): 

This method involves conducting tensile tests on a sample of the bladder material utilizing an MTS 

machine which is equipped to record the force applied to the material and its corresponding 

deformation. The empirical data obtained from these tests are used to calculate the stress and strain 

of the material as: 

𝜎 =
𝐹
𝐴

  (4.2) 

𝜀 =
Δ𝐿
𝐿

  (4.3) 

where 𝐹 and Δ𝐿, representing the force and deformation respectively, are obtained from the tensile 

tests, while 𝐴 and 𝐿, showing the area and the length, are known from the initial dimensions of the 
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Ecoflex-50 sample which is being tested. Fig. (4.11) illustrates the relationship between stress and 

strain during the tensile deformation process. A second-order polynomial function, as given in    

Eq. (4.4), provides an accurate representation of the relationship between stress and strain for the 

bladder material. The modulus values are obtained using error minimization between the function 

and experimental data and are listed in Table (4.1).  

 

Figure 4.11: Stress vs. strain relationship for Ecoflex-50 

 

𝜎 = ∑ 𝐸𝑘𝜀𝑘
2

𝑘=1

 

Table 4.1: 𝐸𝑘 obtained from the tensile tests conducted on Ecoflex-50 

Modulus of elasticity (Pa)  

𝑬𝟏 3.769 × 104 

𝑬𝟐 2.676 × 104 
 

 (4.4) 

 

4.6.1.2 Evaluation of Modulus Values by Testing the MPAM: 

The previous method for determining the elasticity moduli of the bladder material was limited to 

only one component of the MPAM, ignoring the potential influence of other components on the 

actuator’s nonlinear behaviour. Therefore, a second method is developed to investigate the elastic 

moduli of the entire structure. To achieve this, the force-contraction loops during a loading and 
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unloading cycle for MPAM1  are obtained (Fig. (4.12)). These loops represent the relationship 

between the force applied to the MPAM and the corresponding displacement of the actuator in 

loading and unloading. 

The order of the material (M) and modulus values (𝐸𝑘) are obtained by minimizing the least square 

error between the theoretical force obtained from Eq. (2.17) and the average experimental forces 

represented by the dashed lines in Fig. (4.12). The minimization process is conducted using the 

MATLAB® optimization toolbox, with a standard optimization formulation defined as Eq. (4.5). 

The minimization process initiates by assuming that M = 1 and iteratively increases the order of 

the polynomial function until the best-fit curve for the MPAM’s nonlinear behaviour is achieved.  

 

Figure 4.12: Force Vs. Contraction for MPAM1 

Knowing that:  

𝐹𝑡ℎ =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝐵2) + 𝑃(

𝑉𝑏𝑙

𝐿
−

𝑡𝐿2

2𝜋𝑁2𝑅
) +

𝑉𝑏𝑙

𝐿
∑ 𝐸𝑘(

𝐿
𝐿0

− 1)𝑘
𝑀

𝑘=1

−
𝑡𝐿2

2𝜋𝑁2𝑅
∑ 𝐸𝑘(

𝑅
𝑅0

− 1)𝑘
𝑀

𝑘=1

 

Find 𝐸𝑘 to Minimize: 

Least Sqare Error = ∑ (
𝐹𝑡ℎ − 𝐹𝑎𝑣𝑔

𝐹𝑎𝑣𝑔
)2

𝑖
  ;  

 

 

 

 

(4.5) 
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Fig. (4.13) compares the theoretical force obtained from various force equations with the average 

amount of experimental force obtained from hysteresis tests conducted on MPAM1 at 200 kPa. The 

results indicate that the simplified force equation, which considers only the effects of the bladder’s 

thickness but neglects the nonlinearities, underestimates the force outputs. Additionally, correcting 

the force model based on the modulus values obtained from the first method is not sufficient to 

enhance the accuracy of the equation since it only accounts for the elastic moduli of the bladder, 

while the braided sleeving woven around the bladder also contributes to the nonlinearity observed 

in the force-contraction curves of an MPAM. Consequently, the empirical data obtained from the 

hysteresis of the MPAM are necessary to derive the modulus values and the order of the 

polynomial stress-strain relationship applicable to the MPAM. The polynomial order is increased 

until the error between the experimental and theoretical data is minimized. Fig. (4.13) illustrates 

that a fourth-degree polynomial stress-strain relationship accurately captures the MPAM’s 

elasticity, and further increasing the order to 5 does not improve the results. The same conclusion 

can be derived from an analysis of the coefficient of determination for each equation, as presented 

in Table (4.2). The coefficients demonstrate that both the 4th-degree and 5th-degree polynomial 

functions exhibit equivalent precision in predicting the force generated by the MPAM. It is 

noteworthy that the values of 𝐸𝑘 are dependent on the inlet pressure and have been determined for 

each specific inlet pressure, as reported in Table (4.3).  

 

Figure 4.13: Comparison between the amounts of force calculated using different force equations and the 
average experimental force at 200 kPa (MPAM1) 
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Table 4.2: Coefficient of determination (𝑅2) for each force equation at 200 kPa (MPAM1) 

Force 

model 

 

𝑭𝑮+𝒕 𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

material) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=1) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=2) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=3) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=4) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=5) 

𝑅2 0.8838 0.8868 0.8784 0.8771 0.9780 0.9955 0.9955 

 

Table 4.3: 𝐸𝑘 at each inlet pressure for MPAM1 

P (kPa) 𝐄𝟏 (Pa) 𝐄𝟐 (Pa) 𝐄𝟑 (Pa) 𝐄𝟒 (Pa) 

50 4.6791× 107 -1.0822× 108 7.8137× 107 -1.0822× 108 

100 9.2886× 107 -2.1444× 108 1.5480× 108 -3.3207× 107 

150 1.4356× 108 -3.3089× 108 2.3844× 108 -5.1072× 107 

200 1.7603× 108 -4.0556× 108 2.9214× 108 -6.2561× 107 

250 2.1824× 108 -5.0125× 108 3.5947× 108 -7.6423× 107 

 

The 𝐸𝑘 values obtained for each inlet pressure are used to derive the modified force equation, 

including the effects of nonlinearity of the MPAM as given in Eq. (4.6). The accuracy of the 

modified equation is then evaluated by comparing the force-contraction relationships predicted 

using Eq. (4.6) and the 𝐸𝑘 values from Table (4.3) with the experimental force data as displayed 

in Fig. (4.14). The results illustrate that Eq. (4.6) accurately anticipates the average amount of 

force produced by the MPAM during loading and unloading between its initial and free contraction 

states.   
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𝐹𝑡ℎ = 𝑃𝜋 [𝑅2(2𝑡𝑎𝑛2(𝛼) − 1) + (2𝑅𝑡 − 𝑡2) − 2𝑡𝑅(𝑡𝑎𝑛2(𝛼))] +
𝑉𝑏𝑙

𝐿
∑ 𝐸𝑘(

𝐿
𝐿0

− 1)𝑘
4

𝑘=1

−
𝑡𝐿2

2𝜋𝑁2𝑅
∑ 𝐸𝑘(

𝑅
𝑅0

− 1)𝑘
4

𝑘=1

 

 (4.6) 

 

 

Figure 4.14: Average experimental force compared to the theoretical forces using the equation including 
the elasticity of MPAM1 

 

The variations in the  𝐸𝑘 values with respect to an increase in the inlet pressure are further analyzed 

and illustrated in Fig. (4.15). Results show that 𝐸1 and 𝐸3 exhibit an almost linear increase with 

increasing pressure, while 𝐸2  and 𝐸4  decrease almost linearly, with 𝐸4  showing a relatively 

smaller decline. To facilitate the determination of these parameters at other pressures, a linear 

relationship between each modulus and the pressure is presented in Eq. (4.7). The constant 

coefficients in Eq. (4.7) have been determined for each specific 𝐸𝑘, as reported in Table (4.4). The 

dashed lines in Fig. (4.15) represent the anticipated values of 𝐸𝑘, thereby highlighting the accuracy 

of Eq. (4.7) in determining the elasticity moduli of the designed MPAM. This is further supported 

by the coefficient of determination of the proposed equation for each 𝐸𝑘, as reported in Table (4.5). 

This approach reduces the requirement for additional force-contraction empirical data at each 

distinct pressure. The resulting equation provides a practical means to estimate the values of the 

elastic moduli for a wide range of operating conditions.  
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𝐸 (𝑃) = 𝑎𝑃 + 𝑏  (4.7) 

 

 

Figure 4.15: Variations in 𝐸𝑘 with the inlet pressure (MPAM1) 

 

Table 4.4: The values of each constant utilized in Eq. (4.7) for 𝐸𝑘 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 

a 8.521e+05 -1.954e+06 1.4e+06 -2.977e+05 

b 7.689e+06 -1.892e+07 1.46e+07 -3.333e+06 

 

Table 4.5: Coefficient of determination of Eq. (4.7) for 𝐸𝑘 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 

𝑅2 0.9952 0.9950 0.9946 0.9938 

 

The insufficiency of the first method, which focuses solely on the bladder material, in providing 

accurate results for the nonlinear correction term of MPAMs has led to the adoption of the second 

method to obtain the polynomial stress-strain function for MPAM2 . To accomplish this, the 
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hysteresis loops for MPAM2 are studied, as shown in Fig. (4.16), and utilized to determine the 

average experimental forces at different inlet pressures. These forces are then used in the least 

square error minimization method, defined in Eq. (4.5). Fig. (4.17) presents a comparison between 

the theoretical and experimental forces at 200 kPa, indicating that a five-degree polynomial stress-

strain function is required to accurately predict the nonlinear behaviour of MPAM2 fabricated with 

a PDMS + Ecoflex30 bladder. The coefficients of determination of each force equation are also 

reported in Table (4.6), demonstrating that the 5-degree polynomial function exhibits the highest 

level of accuracy, surpassing even the 6-degree polynomial function. Furthermore, the elasticity 

moduli for each operating pressure are reported in Table (4.7).  

 

Figure 4.16: Force Vs. Contraction for MPAM2 

 

Figure 4.17: Comparison between the amounts of force calculated using different force equations and the 
average experimental force at 200 kPa (MPAM2) 
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Table 4.6: Coefficient of determination (𝑅2) for each force equation at 200 kPa (MPAM2) 

Force 

model 

𝑭𝑮+𝒕 𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=1) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=2) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=3) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=4) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=5) 

𝑭𝑮+𝒕+𝑵𝑳 

(𝐸𝑘 of the 

MPAM, 

M=6) 

𝑅2 0.8879 0.8815 0.8797 0.9858 0.9819 0.9935 0.9822 

 

Table 4.7: 𝐸𝑘 at each inlet pressure for MPAM2 

P (kPa) 𝐄𝟏 (Pa) 𝐄𝟐 (Pa) 𝐄𝟑 (Pa) 𝐄𝟒 (Pa) 𝐄𝟓 (Pa) 

50 -5.8122× 104 7.5506× 105 -1.9064× 106 1.4114× 106 -2.0814× 105 

100 2.1223× 108 -6.4210× 108 7.3562× 108 -3.8947× 108 8.3694× 107 

150 2.3075× 108 -6.1615× 108 5.9366× 108 -2.5431× 108 4.5917× 107 

200 2.6883× 108 -6.6105× 108 5.4863× 108 -1.7853× 108 2.1968× 107 

250 3.0780× 108 -7.2566× 108 5.5050× 108 -1.4134× 108 8.5317× 106 

 

In order to evaluate the accuracy of the modified force equation, the modified force equation with 

the integrated 5-degree polynomial function is used to predict the force output of MPAM2, and the 

results are then compared to the average experimental forces. The comparison, as shown in Fig. 

(4.18), indicates that the modified force equation accurately predicts the average force output of 

the MPAM2 . It should be noted that the highest discrepancy between the theoretical and 

experimental data is observed at 50 kPa likely due to the absence of the effect of dead-band 

pressure in the theoretical model.  
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Figure 4.18: Average experimental force compared to the theoretical forces using the equation including 
the elasticity of MPAM2 

 

Furthermore, Fig. (4.19) displays the relationship between the elasticity modulus (𝐸𝑘) and the inlet 

pressure, where the actual values are presented using circles. It is observed that between 50 kPa 

and 100 kPa of inlet pressure, there is a sharp increase or decrease in the 𝐸𝑘 values. However, at 

pressures higher than 100 kPa, the values for 𝐸𝑘 slightly change (saturation). This behaviour can 

be explained by the characteristics of the materials of the MPAM2, and their underlying physical 

properties. PDMS and Ecoflex-30, as elastomers, exhibit nonlinear stress-strain relationships, and 

their mechanical properties are influenced by cross-linking, which refers to the formation of 

chemical bonds between polymer chains. Higher pressures induce a structural rearrangement and 

more efficient cross-linking. Consequently, the plateau after 100 kPa indicates a well-established 

cross-linking network where further pressure has minimal effect on the elasticity.  

The phenomenological model presented in Eq. (4.8) is also proposed based on the trend observed 

in Fig. (4.19), capturing the variations in 𝐸𝑘 with increasing pressure. This equation provides an 

estimation of 𝐸𝑘 at various inlet pressures without requiring additional empirical data. Each line 

in Fig. (4.19) represents the predicted values of 𝐸𝑘 using the proposed model, which are further 

validated by the high coefficients of determination reported in Table (4.8). The constants utilized 

in Eq. (4.8) are specific to each 𝐸𝑘, and their corresponding values are documented in Table (4.9). 
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𝐸 (𝑃) = 𝑐(exp(𝑑𝑃)) + 𝑤(exp(𝑧𝑃))  (4.8) 

 

Figure 4.19: Variations in each 𝐸𝑘 based on the inlet pressure (MPAM2) 

 

Table 4.8: Coefficients of determination for Eq. (4.8) and each 𝐸𝑘 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 𝑬𝟓 

𝑅2 0.9990 0.9942 0.9861 0.9953 0.9997 

 

Table 4.9: The values of each constant utilized in Eq. (4.8) for 𝐸𝑘 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 𝑬𝟓 

c 1.605× 108 -5.623× 108 8.668× 108 -7.968× 108 6.334× 108 

d 0.002584 0.0009189 -0.002075 -0.00732 -0.01688 

w -5.843× 1018 7.14× 1018 -1.382× 1019 1.699× 1020 -2.218× 109 

z -0.4838 -0.4644 -0.4719 -0.529 -0.04192 

 

The polynomial stress-strain functions defined for each MPAM allow the derivation of nonlinear 

correction terms that consider the elastic behaviour of an MPAM. These correction terms can be 
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added to the force equation in order to improve its accuracy. The modified force equation is given 

as follows:  

𝐹𝑡ℎ = 𝐹𝐺+𝑡 + 𝐹𝑏𝑟 + 𝐹𝑁𝐿  (4.9) 

It is noted that based on the optimization results and the comparison between the two optimization 

cases presented in Chapter 3, it has been concluded that neglecting the correction term regarding 

the energy stored in the braid (𝐹𝑏𝑟 ) would not significantly affect the accuracy of the force 

equation. Thus, this term is excluded to achieve a simplified optimized design of the MPAM. 𝐹𝐺+𝑡 

represents the force equation that accounts for the thickness of the bladder, as simplified in Eq. 

(3.16). The nonlinearity correction terms, 𝐹𝑁𝐿, presented in Eq. (4.9) can be further simplified 

using the equations for 𝑉𝑏𝑙 and 𝑁, as shown below: 

Knowing that 𝑉𝑏𝑙 = 𝜋𝐿(2𝑅𝑡 − 𝑡2) and 𝑁 = 𝐿𝑐𝑜𝑡𝛼
2𝜋𝑅

: 

𝐹𝑁𝐿 =
𝑉𝑏𝑙

𝐿
∑ 𝐸𝑘 (

𝐿
𝐿0

− 1)
𝑘𝑀

𝑘=1

−
𝑡𝐿2

2𝜋𝑁2𝑅
∑ 𝐸𝑘 (

𝑅
𝑅0

− 1)
𝑘𝑀

𝑘=1

= 𝜋(2𝑅𝑡 − 𝑡2) ∑ 𝐸𝑘 (
𝐿
𝐿0

− 1)
𝑘𝑀

𝑘=1

−
2𝜋𝑅𝑡

𝑐𝑜𝑡2(𝛼)
∑ 𝐸𝑘 (

𝑅
𝑅0

− 1)
𝑘𝑀

𝑘=1

 

 

(4.10) 

In which M and 𝐸𝑘  are determined based on the material utilized for fabricating various 

components of the MPAM. In this thesis, two MPAMs are designed with bladders made of 

Ecoflex-50 and PDMS + Ecoflex-30. The nonlinear terms can be further simplified using the 

equation defined for the 𝐸𝑘 values and also the polynomial functions established between the 

stress-strain relationships for each MPAM as: 

𝐹𝑁𝐿 = 𝜋(2𝑅𝑡 − 𝑡2) ∑(𝑎𝑃 + 𝑏)𝑘 (
𝐿
𝐿0

− 1)
𝑘4

𝑘=1

−
2𝜋𝑅𝑡

𝑐𝑜𝑡2(𝛼) ∑(𝑎𝑃 + 𝑏)𝑘 (
𝑅
𝑅0

− 1)
𝑘4

𝑘=1

; MPAM1 

 

(4.11) 
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𝐹𝑁𝐿 = 𝜋(2𝑅𝑡 − 𝑡2) ∑(𝑐(𝑒𝑥𝑝(𝑑𝑃)) + 𝑤(𝑒𝑥𝑝(𝑧𝑃)))𝑘 (
𝐿
𝐿0

− 1)
𝑘5

𝑘=1

−
2𝜋𝑅𝑡

𝑐𝑜𝑡2(𝛼) ∑(𝑐(𝑒𝑥𝑝(𝑑𝑃)) + 𝑤(𝑒𝑥𝑝(𝑧𝑃)))𝑘 (
𝑅
𝑅0

− 1)
𝑘5

𝑘=1

; MPAM2 

 

(4.12) 

 

Based on the analysis conducted, it is evident that MPAM1 and MPAM2exhibit different nonlinear 

behaviours. The comparison of the two actuators indicates that MPAM1 can be modeled using a 

four-degree polynomial stress-strain function, while MPAM2 requires a higher degree polynomial 

to describe its nonlinear behaviour. This implies that MPAM2  exhibits more pronounced 

nonlinearities compared to MPAM1. Additionally, the elastic moduli of MPAM1 demonstrate an 

almost linear relationship with the inlet pressure, indicating that the behaviour of this MPAM can 

be predicted relatively easily. However, in the case of MPAM2,  the elasticity moduli are 

exponential functions of the pressure. This makes it more challenging to accurately anticipate the 

behaviour of MPAM2 unless certain simplifications are made, such as assuming constant moduli 

of elasticity for pressures above 100 kPa.  

4.6.2. Friction Between the Components of the MPAM 
When the MPAM is unloaded, it contracts, resulting in a decrease in length. When loading the 

muscle, it begins to expand, and its length increases. However, the force required to maintain the 

contraction at a particular length is less than the force required to maintain the expansion at the 

same length. This difference in force can be attributed to the hysteresis that exists in the muscle, 

which is caused by several factors, the most important of which is the frictional loss within the 

muscle. As described in section 2.3.3, it can be assumed that the static friction between the 

components of an MPAM only consists of the friction between the braid strands. In this thesis, two 

methods are proposed to consider the effects of friction on the force output of the MPAMs. In the 

first method, the theoretical friction force in Eq. (2.43) is used and in the second method, the 

friction factor in Eq. (2.44) is identified using the experimental data. A comparison is made 

between the accuracy of the resulting refined force equations to choose the most accurate force 

model that can accurately capture the force outputs of the MPAM with the minimum error.   
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4.6.2.1 Theoretical friction term 

To account for the friction between the braid fibers of an MPAM, an equation was derived for the 

theoretical friction term as presented in Eq. (2.43) in Chapter 2. This friction term opposes the 

motion of the MPAM and must be added to the force equation during expansion, while subtracted 

from the force equation during contraction of the MPAM. By integrating this friction term with 

the previously defined force equation presented in Eq. (4.9), a modified force equation that can 

capture the nonlinear behaviour of the MPAM and predicts the hysteresis observed in the force-

contraction loops is expressed as: 

𝐹𝑡ℎ = 𝐹𝐺+𝑡 + 𝐹𝑁𝐿 + 𝐹𝐹 ; expansion 

𝐹𝑡ℎ = 𝐹𝐺+𝑡 + 𝐹𝑁𝐿 − 𝐹𝐹 ; contraction 

 (4.13) 

The theoretical static friction (𝐹𝐹) as presented in Eq. (2.43) is expressed as: 

|𝐹𝐹| = 𝑃 × (𝑓𝑠) ×  2𝜋𝑅0𝐿0
𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼0(1 − 𝛾)2
×

1
1 − 𝛾 ×

1
0.69

× (
𝑃(1 − 𝜈𝑠

2)
𝐸𝑏𝑟

)1/3  (4.14) 

where 𝑓𝑠 is the friction factor for the braided strands and is typically reported in the literature to 

range between 0.15-0.25 for PET braid strands. Other parameters that are included in the modified 

force equation are the Poisson’s ratio of PET braid, 𝜈𝑠 , which is known to be equal to 0.33, and 

the modulus of elasticity of the braid, 𝐸𝑏𝑟 , which is typically around 2  GPa. The remaining 

parameters include the initial dimensional parameters ( 𝐿0, 𝑡0, 𝑅0, and 𝛼0 ) as well as the 

instantaneous parameters (L, R, t, and 𝛼 ). The initial parameters are known from the optimized 

design of each MPAM, while the instantaneous parameters are obtained as described below: 

Knowing that 𝐵0 = 𝐵  and 𝐿 = 𝐿0 ± ∆L (where ∆L is subtracted from the initial length during 

contraction while being added to it during expansion), the braid angle can be determined at each 

state: 

𝐿0

𝑠𝑖𝑛𝛼0
=

𝐿
𝑠𝑖𝑛𝛼

→ 𝛼 = 𝑠𝑖𝑛−1(
𝐿𝑠𝑖𝑛𝛼0

𝐿0
) (4.15) 
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To determine the amount of 𝑅 after the actuator has been deformed, it is assumed that 𝑉𝑏𝑙 remains 

constant and the thickness of the bladder remains unchanged. With the initial dimensions of the 

MPAMs (L0 = 50 mm; t = 0.7 mm; R0 = 3 mm), the value of 𝑅 can be calculated as follows: 

𝑉𝑏𝑙0 = 𝑉𝑏𝑙 →  𝜋𝐿0(𝑅0
2 − (𝑅0 − 𝑡0)2) = 𝜋𝐿(𝑅2 − (𝑅 − 𝑡0)2) 

185.5 = 𝐿(𝑅2 − (𝑅 − 0.7)2) → 𝑅 =
185.5 + 0.49𝐿

1.4𝐿
 

(4.16) 

To enhance the accuracy of the refined force model in predicting the force and contraction of the 

MPAM at each state, the optimized value of 𝑓𝑠 is determined by minimizing the least square error 

between the predicted force value and the experimental force. The variations in the least square 

error with respect to changes in 𝑓𝑠 are illustrated in Fig. (4.20), exhibiting a nonlinear increase in 

the error when 𝑓𝑠 increases. This trend is presented for a pressure of 200 kPa, and similar results 

are observed for the other inlet pressure. Based on these findings, the value of 𝑓𝑠 is set to 0.15 for 

the remainder of the calculations to improve the accuracy of the resulting force equation.  

 

Figure 4.20: Variations in the Least Square Error between the theoretical and experimental forces with 
changes in  𝑓𝑠 (P = 200 kPa) 

The force generated by the MPAM at each contraction state and each pressure can be calculated 

by substituting the values obtained for each dimensional parameter from Eqs. (4.15) and (4.16), 

along with the optimized value for 𝑓𝑠 and the constant values for 𝜈𝑠 and 𝐸𝑏𝑟, into the theoretical 

equation derived for calculating the friction between the braided strands in Eq. (4.14). By adding 

or subtracting the friction term from the total amount of force calculated previously as given in 

Eq. (4.13), one can predict the hysteresis force-contraction loops. The resulting theoretical values 
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calculated for the force are compared to the actual amounts of force produced by the MPAM under 

each pressure in Fig. (4.21). Results show a great agreement between the theoretical and 

experimental forces, particularly at higher contractions. The theoretical lines, represented by 

dashed lines, fall between the hysteresis loops at each pressure, indicating that the force equation 

overestimates the force during a contraction while underestimating it when the MPAM is being 

expanded to its initial length.  This discrepancy arises from the inability of the force equation to 

fully account for the resistive force case by frictional loss within the muscle during contraction or 

the assisting effect of friction during expansion, particularly at lower contraction levels. It is 

important to note that uncertainties in material properties, simplifications in model assumptions, 

and variations in experimental conditions can also contribute to these slight deviations between 

the theoretical and experimental forces.  

 

Figure 4.21: Comparison between the theoretical amounts of force obtained from Eq. (4.14) and the 
experimental forces (MPAM1) 

 4.6.2.2 Empirical Coulomb Friction Term 

An alternative approach to account for the effects of friction between the components of the 

MPAM on its force output is to derive an empirical friction force, as suggested in Eq. (2.44). While 

this method may be more straightforward compared to a complex theoretical friction term, it is 

purely experiment based and can only be performed when the experimental force-contraction data 

are available. The experimentally driven friction term is obtained by minimizing the error between 

the theoretical and experimental force values. The standard optimization formulation using the 

Coulomb friction term defined in Eq. (2.44) is given below: 
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Substituting 𝐹𝑓 = −𝐾𝑓(𝐹𝐺+𝑡 + 𝐹𝑁𝐿)𝑠𝑔𝑛(𝑉) in Eq. (4.13), find 𝐾𝑓 to minimize: 

Least Sqare Error = ∑ (
𝐹𝑡ℎ − 𝐹𝑒𝑥𝑝

𝐹𝑒𝑥𝑝
)2

𝑖
  ;  

Subjected to: 

𝐾𝑓 ≥ 0 

 

 

 

(4.17) 

It is worthwhile to note that the value of 𝐾𝑓 is dependent on the inlet pressure, and as such, the 

optimization procedure outlined earlier needs to be repeated for each pressure in order to determine 

the appropriate values of 𝐾𝑓, as presented in Table (4.10). Fig. (4.22) compares the experimental 

forces with the theoretical forces obtained using the modified force equation, incorporating the 

empirical Coulomb friction term. The modified force equation accurately predicts the force 

generated by the MPAM at each inlet pressure and state of contraction. It is interesting to note that 

unlike the theoretically derived friction term, the dashed lines representing the predictive forces 

calculated using the force equation with the empirical friction term fall outside the hysteresis loops, 

specifically at higher pressures. This suggests that the equation including the empirical friction 

term underestimates the force during contraction and overestimates it during expansion. These 

discrepancies arise due to the limitations of the force equation in precisely capturing the resistive 

or assistive frictional forces. In contrast to the theoretical approach, the empirical Coulomb friction 

term yields a higher value for the friction force. 

 

Table 4.10: Amounts of 𝐾𝑓 at each pressure 

 50 kPa 100 kPa 150 kPa 200 kPa 250 kPa 

𝐾𝑓 0.0905 0.0702 0.0711 0.0840 0.0778 
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Figure 4.22: Comparison between the Force-Contraction relationship anticipated using the force model 
including the empirical friction term and the experimental results (MPAM1) 

 

4.6.2.3 Evaluation of the Friction Term for MPAM2 

A comparison is performed between the errors obtained from the two theoretical force models, 

including each friction term, in predicting the force generated by an MPAM. The results, as 

presented in Table (4.11), indicate that the modified force equation incorporating the theoretical 

correction term yields more accurate force predictions, exhibiting an average coefficient of 

determination (𝑅2)  of 99.86% when compared to the experimental data. 

Table 4.11: Coefficient of determination for each force equation at various inlet pressures for MPAM1 

P (kPa) 𝑹𝟐  

(Modified force with theoretical 

friction term) 

𝑹𝟐  

(Modified force with empirical 

friction term) 

50 0.998924 0.997336 

100 0.999702 0.998904 

150 0.999762 0.997403 

200 0.999068 0.986835 

250 0.998908 0.996886 
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Following the comparison of the two friction calculation methods, it is determined that the first 

method yields superior accuracy. Consequently, this method is selected to examine the friction in 

MPAM2  and analyze the resulting hysteresis in its force-contraction loops. Accordingly, Eq. 

(4.18), which is the modified force equation considering the nonlinearities of the MPAM2 and the 

friction between its components, is employed to compute the theoretical force as: 

𝐹 = 𝑃𝜋 [𝑅2(2𝑡𝑎𝑛2(𝛼) − 1) + (2𝑅𝑡 − 𝑡2) − 2𝑡𝑅(𝑡𝑎𝑛2(𝛼))]

+ 𝜋(2𝑅𝑡 − 𝑡2) ∑ 𝐸𝑘 (
𝐿
𝐿0

− 1)
𝑘𝑀

𝑘=1

−
2𝜋𝑅𝑡

𝑐𝑜𝑡2(𝛼) ∑ 𝐸𝑘 (
𝑅
𝑅0

− 1)
𝑘𝑀

𝑘=1

±  𝑃𝑓𝑠 2𝜋𝑅0𝐿0
𝑐𝑜𝑠𝛼0

√1 − 𝑠𝑖𝑛2𝛼0(1 − 𝛾)2
(

1
1 − 𝛾

)(
1

0.69
)(

𝑃(1 − 𝜈𝑠
2)

𝐸𝑏𝑟
)1/3 

(4.18) 

Fig. (4.23) presents a comparison between the theoretical force calculated using Eq. (4.18) and the 

experimental force data for the MPAM2 . Results show that the theoretical model accurately 

predicts the experimental force generated by the MPAM2. Furthermore, the lines representing the 

theoretical force fall within the experimental hysteresis loops, similar to the observations for 

MPAM1  in Fig. (4.21). However, there is a notable discrepancy between the theoretical and 

experimental forces at the lowest pressure (50 kPa), which is likely due to the dead-band pressure 

which has not been accounted for in the theoretical force model, leading to inaccurate predictions 

at lower pressures. As discussed in the previous section, MPAM2 exhibits a higher dead-band 

pressure compared to MPAM1, thus generating initial force at a higher starting pressure. It is noted 

that as the pressure increases, the theoretical lines gradually approach the experimental forces. 

Additionally, at higher contractions, the theoretical and experimental lines closely align, 

demonstrating the high accuracy of the modified force equation in predicting the behaviour of an 

MPAM at higher pressures and contractions.   
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Figure 4.23: Theoretical and experimental values of the force vs. contraction for MPAM2 

 

4.7 Performance of the Proposed MPAMs 
Table (4.12) presents a comprehensive comparison of the specifications and outputs between the 

proposed optimally designed MPAMs in the present research and previously designed and 

commercialized MPAMs. The results indicate that the optimized MPAMs, with their refined 

dimensions, are capable of generating significantly higher levels of blocked force compared with 

other MPAMs of similar size. In some cases, the proposed MPAMs produce twice as much blocked 

force as the other MPAMs with comparable dimensions. For example, MPAM1 and MPAM2 

generate blocked forces that are respectively 14.2% and 23.8% greater than the force output of the 

commercially available MPAM from Festo® with the same bladder diameter. It is important to 

note that the developed MPAMs can theoretically produce a maximum blocked force of 238 N at 

an inlet pressure of 600 kPa, which is substantially higher than the maximum force output achieved 

by the existing MPAMs. These findings provide strong evidence of the success of the optimization 

procedure in maximizing the blocked force generated by an MPAM. Interestingly, although 

maximizing free contraction was not the primary objective of the optimization analysis, the 

developed MPAMs exhibit higher free contractions compared to most previous MPAMs. The 

optimized actuators achieve approximately 19%-23% greater free contraction than the MPAM 

from Festo®. This indicates that, in addition to higher force outputs, the proposed MPAMs, 

fabricated using cost-effective materials available in the market, are capable of producing large 
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displacements while maintaining a compact size suitable for a wide range of miniaturized robotic 

applications. 

Additionally, the correction terms obtained from the hysteresis tests conducted on the fabricated 

samples have resulted in a modified force equation (Eq. (4.18)) for the MPAMs. This modified 

equation accurately predicts the force and contraction outputs of the actuators with a high degree 

of accuracy (nearly 99.8%). The modified force equation incorporates a correction term to account 

for the nonlinearities of the actuator, which needs to be determined specifically for each sample 

based on the moduli of elasticity of the MPAM and the material used for its fabrication, in addition 

to a friction term.  

Table 4.12: Comparison between the performance of different MPAMs at P=300 kPa 

Reference  D 
(mm) 

t 
(mm) 

L 
(mm) 

Materials Blocked Force 
(N) 

Free Contraction 
(%) 

 
[39] 

  
9.525 

 
1.587 

 
152 

Silicone rubber 
bladder, PET braid 

 

 
40 

 
4.6% 

 
 

[38] 

  
 

4.6 

 
 

0.4 

 
 

43.9 

 
V330 elastomer 

bladder, PET braid 

 
 

71 

 
 

26.8 % 

 
 

[2] 

  
 
3 

 
 

0.5 

 
 

39.16 

 
Silicone bladder; 

PET braid 

 
60 

 
44% 

 
 

[36] 

  
 

10 

 
 

1.6 

 
 

270 

 
Latex bladder; 

PET braid 

 
100 

 
15% 

 
Festo 

 

  
6 

 
--- 

 
30 

 
--- 

 
105 

 
10% 

 
Present         
work 

(MPAM1) 

  
6 

 
0.7 

 
50 

 
Ecoflex-50 bladder, 

PET braid 

 
120 

 
33.2% 

 

 
Present 
work 

(MPAM2) 

  
6 

 
0.7 

 
50 

 
PDMS +Ecoflex-30 
bladder, PET braid 

 
130 

 
29% 
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4.8 Summary and Conclusion 
This chapter provided a comprehensive overview of the fabrication process for the optimized 

MPAMs, along with a detailed description of the test setup and experimental procedure conducted 

during quasi-static tests to measure blocked force and free contraction. The comparison between 

the experimental results and theoretical data demonstrated the accuracy of the formulation and 

optimization process, yielding an overall error of less than 10%. Furthermore, the force and 

contraction outputs of the two MPAM samples, one utilizing a bladder made from Ecoflex-50 and 

the other incorporating a bladder made from a combination of PDMS and Ecoflex-30, were 

compared. It was revealed that while both samples exhibited nearly similar force outputs, the 

second sample displayed a slightly higher blocked force at higher pressures, while the first sample 

demonstrated significantly higher free contraction. Additionally, the hysteresis force-contraction 

curves obtained from loading and unloading the samples at various pressures were employed to 

derive correction terms that account for the nonlinear behaviour of the actuators and also the 

friction between their components. These correction terms contributed to the development of an 

enhanced force model capable of accurately anticipating the force and contraction outputs of the 

MPAM. Finally, we conducted a comparative analysis between the performance of the optimized 

MPAMs and previously designed MPAMs documented in the literature. The findings revealed that 

the force and contraction outputs of the proposed MPAMs were substantially higher than their 

counterparts with similar dimensions, highlighting the superior performance of the optimized 

MPAMs. 
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Chapter 5: Contributions, Conclusions, and Future Remarks  
5.1 Major Contributions 
The primary objective of this research thesis was to address the existing gap in the literature on 

the design optimization of miniaturized pneumatic artificial muscles (MPAMs) by maximizing 

their force output while maintaining their compact dimensions. To accomplish this, a formal 

optimization problem was formulated incorporating a simple blocked force model. The force 

model for MPAMs was further enhanced by integrating multiple correction terms, obtained from 

hysteresis curves, into the fundamental force equation. The major contributions of this thesis are 

summarized below: 

I. Development of a formal optimization formulation for maximizing the force output of an 

MPAM while considering geometrical constraints and an accurate objective function that 

incorporates all key parameters affecting the force output of an MPAM. 

II. Formulation of two distinct cases of optimization formulations: one including a correction 

term for the energy stored in the braided sleeving, and the other neglecting it, enabling the 

investigation of the significance of the braid term in enhancing the accuracy of the blocked 

force equation and optimization of MPAM outputs. 

III. Design and fabrication of MPAMs with optimized parameters, resulting in notably superior 

force and free contraction compared to previously designed MPAMs of the same size and 

even commercially available MPAMs such as the one from Festo®. 

IV. Fabrication of two customized bladders utilizing 3D-printed molds: one employing 

Ecoflex-50 and the other using PDMS + Ecoflex-30, allowing the study of bladder material 

effects on the MPAM’s behaviour. 

V. Establishment of a relationship between inlet pressure and the moduli of elasticity of each 

sample, enabling the study of their nonlinear behaviour under various pressures without 

relying on empirical data. 

VI. Development of an improved force equation capable of accurately predicting the force 

generated by an MPAM at each contraction state and under varying pressures, considering 

the nonlinearities of the MPAM and the friction between its components. 
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5.2 Major Conclusions 
The major conclusions derived from the present thesis are summarized as follows: 

I. The comparison between the two optimization cases indicated that including the correction 

term for energy stored in the braid in the objective function and optimizing the dimensional 

parameters related to the braid strands did not significantly improve the results. Therefore, 

it was concluded that this term can be disregarded to achieve a simplified optimized design 

for the MPAM without requiring customized braided sleeving. 

II. Quasi-static tests conducted on the actuators demonstrated that the derived objective 

function accurately predicted the force output of both MPAMs, exhibiting an overall error 

of less than 10% for each sample. 

III. A comparison between the two MPAM samples revealed that the first sample (MPAM1), 

utilizing an Ecoflex-50 bladder, exhibited a lower dead-band pressure, lower blocked force 

when the pressure was increased from 150 kPa, and significantly higher free contractions 

(approximately 1.5 times higher) compared to the second sample (MPAM2)  using a 

bladder made of PDMS + Ecofles-30. Furthermore, comparing the overall errors between 

simulated and experimental results for both MPAMs indicated that the behaviour of 

MPAM1 was better predicted using the derived force equation. 

IV. Due to the imperfections in the tubular silicone and limitations of the MTS machine, the 

maximum pressure was limited to 300 kPa, yielding a maximum blocked force of 120 N 

and 136 N for MPAM1 and MPAM2, respectively. However, the optimized design has the 

potential to produce a blocked force of nearly 240 N if the inlet pressure is increased to 

600 kPa. 

V. Comparing the blocked force and free contraction of the fabricated samples with previously 

designed MPAMs demonstrated that the optimization formulation successfully resulted in 

an optimized MPAM with maximized blocked force while maintaining compactness. 

VI. Comparing various force equations proposed for MPAMs, incorporating various correction 

terms, revealed that a force equation accounting for the bladder’s thickness, actuator’s 

nonlinearities, and friction between the components yielded accurate predictions of the 

outputs of the MPAM, with almost 99.8% coefficient of determination. 
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VII. The nonlinear correction term derived from tensile tests conducted on the bladder material 

of the first MPAM did not significantly improve the force equation. Thus, it was concluded 

that the polynomial stress-strain relationship should consider the effects of the whole 

structure of the MPAM to accurately represent the nonlinear behaviour of the MPAMs. 

VIII. A comparison of the two actuators demonstrated that MPAM1 could be modelled with a 

four-degree polynomial stress-strain function, while MPAM2  required a five-degree 

polynomial to describe its nonlinear behaviour. Additionally, the elastic moduli of MPAM1 

showed an almost linear relationship with the inlet pressure, indicating relatively easier 

predictability of this PAM’s behaviour. Conversely, for MPAM2  the elasticity moduli 

followed a second-order exponential function of the pressure, posing challenges in 

accurately anticipating its behaviour.  

IX. Comparing the accuracy of the empirically and theoretically driven friction terms revealed 

that the theoretical method more accurately predicted the hysteresis observed in force-

contraction loops.  

5.3 Future Remarks 
Although this research thesis has offered essential guidance for the design optimization and 

experimental characterization of MPAMs, there remain certain issues that merit further 

investigation in future studies. 

I. Using the enhanced force model and the standard optimization formulation developed in 

this thesis, future studies could explore additional optimization variables and constraints to 

further improve the performance of MPAMs.  

II. A wider range of materials, considering their mechanical properties, compatibility, and 

manufacturing feasibility can be investigated for fabricating MPAMs. 

III. Although this thesis conducted quasi-static tests and validated the accuracy of the force 

equation, future work can expand experimental validation to dynamic scenarios and real-

world applications. This may involve performing experiments under varying operating 

conditions, exploring different loading profiles, or investigating the MPAM’s response in 

more complex environments.  
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IV. Future research can focus on developing robust control algorithms to precisely manipulate 

MPAMs for tasks requiring force modulation, trajectory tracking, or cooperative 

manipulations. Furthermore, investigating practical applications, such as robotic systems, 

prosthetics, or assistive devices, can provide valuable insights into the real-world 

implementation of the designed actuator. 

V. The behaviour and performance of MPAMs in multi-actuator systems could be explored, 

which could involve studying interactions and coordination between multiple MPAMs. 
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