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Abstract for MSc
Arithmetic Biases for Binary Quadratic Forms

Jeremy Schlitt
Concordia University, 2023

The prime number theorem for arithmetic progressions tells us that there are asymp-
totically as many primes congruent to 1 mod 4 as there are congruent to 3 mod 4.
That being said, Chebyshev noticed that (numerically) there almost always seems to
be slightly more primes congruent to 3. This simple fact has a highly non-trivial expla-
nation. Rubinstein and Sarnak [RS94] proved that the assumption of some natural (yet
still unproven) conjectures, there is a way to prove that there are more primes congruent
to 3 than congruent to 1 more than half of the time (in an appropriate sense).

Many other sets of integers demonstrate a bias towards a certain residue class modulo
some number q. Recently, Gorodetsky [Gor22] showed that the sums of two squares
exhibit a Chebyshev-type bias, and that in this case the conjectures one must assume
to prove the existence of the bias are weaker. In this thesis, we present two papers
(chapters 2 and 3) which demonstrate some bias in arithmetic progressions for sets of
integers that are represented by a given binary quadratic form.

In chapter 2, we examine a bias towards the zero residue class for the integers repre-
sented by binary quadratic forms. In many cases, we are able to prove that the bias
comes from a secondary term in the associated asymptotic expansion (unlike Cheby-
shevŠs bias, which lives somewhere at the level of O(x1/2+ϵ).) In some other cases, we
are unable to prove that a bias exists, even though it is present numerically. We then
make a conjecture on the general situation which includes the cases we could not prove.
Many interesting results on the distribution of the integers represented by a quadratic
form are proven, and the paper Ąnishes with some numerical data that is illustrative of
the generic data for any quadratic form.

In chapter 3, we examine a different kind of bias. We ask for the distribution of pairs of
sums of two squares in arithmetic progressions, i.e. how many numbers are the sum of
two squares, congruent to a mod q, and are such that the next largest sum of two squares
is congruent to b mod q. We prove that when q ≡ 1 mod 4, we have equidistribution
among the q2 possible pairs of residue classes. That being said, there exist bizarre
numerical biases, most notably a negative bias towards repetition. The main purpose of
the second paper is to provide a conjecture which explains the bias, via a secondary and
tertiary term in the associated asymptotic expansion. We then support this conjecture
with both numerical and theoretical evidence. The paper contains many partial results
in the direction of the conjecture, as well as some theorems on the sums of two squares
that are of independent interest. For example, we provide an integral representation for
the number of integers not exceeding x which are the sum of two squares. This integral
representation is akin to li(x) for primes, in that it has a O(x1/2+ϵ) error term under
the Generalized Riemann Hypothesis.
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Chapter 1

Introduction

1.1 An Overview of this Thesis

This thesis is comprised of two research papers in analytic number theory. The Ąrst
paper is a complete manuscript which will be submitted to a journal in 2023. The
second paper is collaborative work with Chantal David, Lucile Devin, and Jungbae
Nam which was completed in 2020-2021 and published in Mathematische Annalen in
November 2021. Both papers are, in some respect, related to the distribution in arith-
metic progressions of integers represented by a given quadratic form. A positive deĄnite
binary quadratic form is one that can be expressed in as ax2 + bxy + cy2, where a, b,
and c are integers, a > 0, and the discriminant D = b2 − 4ac is negative. The values
of the quadratic form are strictly positive except when x = y = 0. Positive deĄnite
binary quadratic forms are important objects in number theory and have numerous
applications, including the study of quadratic Ąelds, the distribution of primes, and the
representation of integers by such forms.

Binary quadratic forms have a long and rich history in mathematics that spans over
two millennia. The Ąrst known reference to these forms dates back to Diophantus of
Alexandria in the 3rd century AD, who studied equations of the form ax2 + bx = cy2.
However, it was not until the work of Indian mathematicians, including Aryabhata
and Brahmagupta, in the 5th and 6th centuries AD that a systematic theory of bi-
nary quadratic forms began to emerge. In the 18th and 19th centuries, European
mathematicians, such as Lagrange, Gauss, and Dirichlet, further developed the theory
of binary quadratic forms and made signiĄcant contributions to their applications in
number theory. Today, binary quadratic forms continue to be an active area of research
in mathematics, with ongoing investigations into their properties, applications, and
connections to other Ąelds.

A seemingly innocuous question one can ask about the integers represented by a given
binary quadratic form is: How are these numbers distributed modulo some Ąxed integer?
Prachar [Pra53] proved a general theorem about the asymptotic proportion of integers
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1.1. AN OVERVIEW OF THIS THESIS

represented by the quadratic form x2 + y2 that lie in each residue class modulo q. One
consequence of PracharŠs theorem is that there is equidistribution modulo 5 for sums
of two squares; one Ąfth of the numbers not exceeding X are of the form x2 + y2 are
congruent to a mod 5 for each residue class a (mod 5), as X tends to inĄnity.

By examining numerical data (section 2.5), one quickly sees that there is something
intriguing happening with the 0 residue class. It seems that there are more sums of
two squares congruent to 0 mod 5 than there are congruent to anything else. In the
Ąrst paper (chapter 2), this phenomenon is explored in the more general setting where
we replace 5 with some prime q, and we replace x2 + y2 with some positive deĄnite
integral binary quadratic form ax2 + bxy + cy2, subject to some conditions which will
be explained later.

In this Ąrst paper, we observe that a bias similar to that we observe for the sums of two
squares modulo 5 occurs for pretty much any form modulo any prime. In particular,
the zero residue class modulo q always contains more integers than any other class. We
prove that for a large family of quadratic forms, this bias arises from a secondary term
in an associated asymptotic expansion, and we give quantitative characterization of the
bias. We also extend this claim to an even more general family of quadratic forms, but
our results there are more qualitative in nature. Finally, in the Ąrst paper, we make
a conjecture on the general situation for all (suitable) integral binary quadratic forms,
and provide numerical evidence to support our conjecture.

The second paper (chapter 3), inspired by the work of Lemke Oliver and Soundararajan
[LOS16], studies a different kind of arithmetic progression bias. In particular, we know
that asymptotically 1/5 of the sums of two squares are a mod 5 for any a. We wish
to know, asymptotically, the number of sums of two squares that are a mod 5 and
are such that the next largest sum of two squares is b mod 5 for each pair a,b. It
is shown that asymptotically each pair represents 1/25 of the total count, but there
are perplexing irregularities in numerical data. In particular, there is a bias against
repetitions, meaning that if a sum of two squares is, say, 0 mod 5, it is (at least according
to numerical data) less likely that the next largest sum of two squares will also be
0 mod 5.

The second paper gives a conjectural explanation for this negative bias towards repe-
titions, and also explains some other phenomena one can observe in the data. These
conjectures are themselves based on widely believed conjectures, namely the General-
ized Riemann Hypothesis (GRH), as well as a version of Hardy and LittlewoodŠs pair
correlation conjecture for sums of two squares. In addition to using these conjectures to
formulate our own, we also prove partial results in the direction of the pair correlation
conjecture. Overall, the paper contains many original theorems on sums of two squares
that are of interest in their own right, such as an integral representation for the number
of sums of two squares up to x with a O(x1/2+ϵ) error term under GRH.

The commonality between both the Ąrst and second papers is that there exists some
kind of numerical bias in arithmetic progressions for a set of integers (or tuples of

2



CHAPTER 1. INTRODUCTION

integers) being represented by some quadratic form, and that this bias is explained
by the computation of secondary order terms in the associated asymptotic expansions.
This being said, the results and the methods used in both papers differ vastly. The
Ąrst paper relies almost entirely on classical techniques in analytic number theory,
whereas the second paper also combines some basic ideas from combinatorics, such as
the inclusion-exclusion principle.

3



Chapter 2

Biases Towards the Zero Residue
Class for Quadratic Forms in
Arithmetic Progressions

2.1 Introduction

A well known theorem of Landau [Lan09] gives an asymptotic estimate on the number
of positive integers not exceeding x that are the sum of two squares. Some years
after LandauŠs original proof, Prachar ([Pra56]) proved a generalization to arithmetic
progressions. Precisely, he showed that for Ąxed integers a,q, with (a,q) = 1, and
a ≡ 1 mod (4,q), as x → ∞,

∑

n≤x
n=□+□

n≡a mod q

1 ∼ Kq
x

(log x)1/2
, (2.1)

where

Kq = K
(4,q)

(2,q)q

∏

p♣q
p≡−1 mod 4

(
1 +

1

p

)
,

and K is the Landau-Ramanujan constant, deĄned by

K =
1√
2

∏

p≡−1 mod 4

(
1 − 1

p2

)−1/2

.

The case q = 1 of course corresponds with LandauŠs theorem. See [Iwa76] for a more
modern account of PracharŠs theorem and some of its improvements.

In the present article, we are interested in the distribution in arithmetic progressions of
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CHAPTER 2. BIASES FOR QUADRATIC FORMS

integers represented by a given binary quadratic form. We will denote by Bf (x; q,a) the
number of integers not exceeding x that are congruent to a modulo q, and represented by
the form f . In what follows, D will always denote a negative fundamental discriminant.
As a Ąrst result, we have an extension of PracharŠs theorem1 to forms other than x2+y2.

Theorem 2.1.1. Let f be a binary quadratic form of discriminant D, and let q be a
positive integer such that (q,2D) = 1. One has, for all a satisfying (a,q) = 1:

Bf (x; q,a) =
1

q

∏

p♣q
(D

p )=−1

(
1 +

1

p

)
Bf (x) + O

(
x

(log x)2/3

)
,

where Bf (x) = Bf (x,1,1) denotes the number of integers not exceeding x which are
represented by the form f . In particular, when q is a prime number, one has

Bf (x; q,a) = c(q,a)Bf (x) + O
(

x

(log x)2/3

)
,

where

c(q,a) :=





1
q

if
(
D
q


= 1

q+1
q2 if

(
D
q


= −1, a ̸≡ 0 mod q

1
q2 if

(
D
q


= −1, a ≡ 0 mod q

The computation of the main term for Bf (x) is due to Bernays [Ber12]. See Section 2.1
of [MO06] for an excellent exposition on BernayŠs theorem, due to Moree and Osburn.

As we will see in the proof of Theorem 2.1.1, it is non-trivial to make the leap from
x2 +y2 to any binary quadratic form of negative fundamental discriminant, as one must
make considerations about the ideal class group of Q(

√
D), which in general may not

be trivial as it is when D = −4.

Theorem 2.1.1 tells us what we should expect as the proportion of integers that lie in
each nonzero residue class, and when q is prime, this implies the proportion for the
zero residue class. However, a look at some of the tables of Section 2.5 giving values of
Bf (x; q,a) for varying f , q, a suggests an interesting discrepancy between Theorem 2.1.1
and actual data. It appears that there is a numerical bias towards the 0 residue class in
all examples. In cases when

(
D
q


= 1, we expect a proportion of 1/q in each class, and

yet we observe that the 0 class contains more integers than the non-zero classes in an
apparent way. Similarly, in cases when

(
D
q


= −1, we expect there to be roughly 1/q2 of

the integers falling into the zero residue class, but in actuality it seems like this estimate
is always an under-count. We give in this paper a theoretical explanation for this bias in
some cases. Hereafter, C(D) denotes the group of reduced forms of discriminant D with
h := ♣C(D)♣, and G(D) denotes the genus group; G(D) ∼= C(D)/C(D)2. In the case

1Under slightly stricter assumptions about the modulus.
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2.1. INTRODUCTION

when there is a single quadratic form per genus in the genus group, i.e. C(D) ∼= G(D),
we explicitly compute the second term in the asymptotic expansion of Bf (x; q,a), which
accounts for the bias:

Theorem 2.1.2. Let D be a fundamental discriminant such that C(D) ∼= G(D), and
let f ∈ C(D) be a given form. Let q be a prime modulus for which (q,2D) = 1. One
has

Bf (x; q,a) = c(q,a)

(
a0

x

(log x)1/2
+ a1

(
1 − a0

a1

δ(a,q)
 x

(log x)3/2

)
+O

(
x

(log x)5/2

)
,

where c(q,a) is as in Theorem 2.1.1, a0 and a1 are deĄned by (2.2), and

δ(q,a) =





log q
2(q−1)

, if
(
D
q


= 1, a ̸≡ 0 mod q

− log q
2
, if

(
D
q


= 1, a ≡ 0 mod q

log q
q−1

, if
(
D
q


= −1, a ̸≡ 0 mod q

− log q, if
(
D
q


= −1, a ≡ 0 mod q.

Theorem 2.1.2 tells us that the secondary term of Bf (x; q,a) is generally larger when
a ≡ 0 mod q, as opposed to when a ̸≡ 0 mod q, explaining the numerical bias.

Let us write 1R(n) to be the function that equals 1 if n is represented by a form in the
genus R ∈ G(D), and 1R(n) = 0 otherwise. Let us also deĄne

BR(x; q,a) :=
∑

n≤x
n≡a mod q

1R(n).

The proofs of Theorems 2.1.1 and 2.1.2 both rely on the fact that one can compute
BR(x; q,a), by writing a generating series with genus group characters. The generating
series we obtain will have an essential singularity at s = 1, which allows us to apply
the Landau-Selberg-Delange (LSD) method. This process will immediately yield The-
orem 2.1.2, as we have by assumption in this case that Bf (x; q,a) = BR(x; q,a). To
conclude the proof of Theorem 2.1.1 once we have the main term of BR(x; q,a) in hand,
we apply the following strong result of Fomenko ([Fom98]):

Theorem 2.1.3. Let f be a form in the genus R. We have (as x → ∞)

Bf (x; q,a) = BR(x; q,a) + ‰

(
x

(log x)2/3

)
.

In an appropriate sense, Theorem 2.1.3 tells us that almost all integers represented by
some form in the genus R are actually represented by all forms in that genus.

Turning now to the case when there is a single genus of forms (G(D) ∼= ¶1♢), but with
several forms in that genus, we prove some partial results which give good evidence to

6



CHAPTER 2. BIASES FOR QUADRATIC FORMS

there being a numerical bias towards the zero residue class modulo q. Rather astonish-
ingly, though the secondary term in this case is of a different nature than the secondary
term of Theorem 2.1.2, it still espouses a bias towards the zero residue class.

Theorem 2.1.4. Let D be a discriminant for which C(D) is cyclic of odd order h. Let
[f ⋆] be a generator of C(D), and H = ⟨[f ⋆]p0⟩, where p0 is the smallest prime divisor
of h. Let q be an integer such that (q,2D) = 1, and let B′

f (x; q,a) denote the number of
squarefree integers not exceeding x that are coprime to 2D, are represented by the form
f , and are congruent to a mod q. Let A1(f,q,a) be the constant such that (as x → ∞)

B′
f (x; q,a) ∼ A1(f,q,a)

x

(log x)1/2
.

Then, one has, for every a such that (a,q) = 1,

B′
f (x; q,a) = A1(f,q,a)

x

(log x)1/2
− c′(q,a)A2(f)

x

(log x)1−1/(2p0)
(log log x)r(1 + o(1)),

where A2(f) is a positive constant depending only on f ,

r =




p0 − 2, [f ] ∈ H,

p0 − 3, otherwise,

c′(q,a) =
1

ϕ(q)

∏

p♣q

(
1 +

νH(p)

p

)−1

,

and νH(p) is deĄned to be 1 if p is represented by a class of forms in H, and νH(p) = 0
otherwise. In particular, if q is taken to be prime, then

c′(q,a) =





1
q+1

, a ≡ 0 mod q and νH(q) = 1
q

q2−1
, if a ̸≡ 0 mod q and νH(q) = 1

1
q−1

, a ≡ 0 mod q and νH(q) = 0

o(1), if a ̸≡ 0 mod q and νH(q) = 0.

Note that q/(q2 − 1) > 1/(q + 1), so that (for q prime) −c′(q,a) is larger when a ≡ 0
and smaller otherwise.

An examination of numerical data suggests that the bias still exists when one removes
the restriction that the integers should be squarefree and coprime to 2D. See Table 2.8.
In Section 2.3.2, we will discuss why dropping the squarefreeness condition makes the
implied constants in-explicit.

Summary of main theorems: When G(D) ∼= C(D), then the biased secondary
term will be of size x/(log x)3/2, and will arise from a result on the equidistribution
of arithmetic progressions for integers represented by a given genus (Theorem 2.2.1).
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2.2. PROOF OF THEOREMS 1 AND 2

When C(D) is cyclic and of odd order, then the biased secondary term will be of size
x(log log x)β/(log x)α, for some β ∈ Z≥0, and α ∈ [5/6,1). The secondary term in this
case arises from a characterization of the integers which are represented by some form
in the genus of f but not by f itself, which will generalize the work of [Gol01].

Several recent works have been concerned with some aspects of the behaviour of the form
x2 + y2 in arithmetic progressions. In [Gor22], Gorodetsky demonstrates a Chebyshev-
type bias towards quadratic residues for numbers of the form x2 + y2. Most notable of
GorodetskyŠs result is that it occurs in a natural density sense, unlike the logarithmic
density one obtains when examining ChebyshevŠs bias for primes. This distinction
allows Gorodetsky to loosen the hypothesis on the linear independence of zeros of ζ
and other associated L-functions.

Inspired by the earlier work of Lemke Oliver and Soundararajan [LOS16], David, Devin,
Nam, and the author studied the distribution of consecutive sums of two squares in
arithmetic progressions in [DDNS21]. Theorem 2.4 of that paper is a special case of
Theorem 2.1.2 in the present paper.

The function Ąeld analogue of LandauŠs theorem has also been explored. In [GR21],
Gorodetsky and Rogers explore the variance of sums of two squares in short intervals for
Fq[T ]. Theorem B.1 of their article is of interest, as it provides an integral representation
for the number of integers that are the sum of two squares not exceeding x, with a
O(x1/2+ϵ) error term (under GRH). It would be interesting to consider the extension of
this theorem to more general families of binary quadratic forms.

2.2 Proof of Theorems 1 and 2

2.2.1 Proof of Theorem 1

Theorem 2.1.3 tells us that the main term in the asymptotic expansion of BR(x; q,a)
matches that of Bf (x; q,a). In light of this fact, it can be seen that Theorem 2.1.1 is
implied from the following:

Theorem 2.2.1. Let q be a positive integer, and let (q,2D) = 1, where D is a negative
fundamental discriminant. Let R ∈ G(D) be a genus of forms. Then, for every J ∈ N,
we can write

BR(x) := BR(x; 1,1) =
J∑

j=0

ajx

(log x)1/2+j
+O

(
x

(log x)3/2+J

)
(2.2)

and for every a satisfying (a,q) = 1, we can write

BR(x; q,a) =
J∑

j=0

bjx

(log x)1/2+j
+O

(
x

(log x)3/2+J

)

8



CHAPTER 2. BIASES FOR QUADRATIC FORMS

for positive constants aj and bj that do not depend on R or on a. aj is deĄned by (2.9),
and the Ąrst two bj are given by

b0 = a0
1

q

∏

p♣q
(D♣p)=−1

(1 + p−1), (2.3)

b1 = a1
1

q

∏

p♣q
(D♣p)=−1

(1 + p−1)


1 − a0

2a1



∑

p♣q

log p

p− 1
−

∑

p♣q
(D♣p)=−1

log p

p+ 1





 . (2.4)

Proof of (2.2.1). We will loosely follow the proof of a similar theorem which appears
in [Lut67], where asymptotic for the number of rational integers that are the norm on
an algebraic integer of a given quadratic number Ąeld is obtained. We begin with a
Lemma which completely describes how the genus characters act on the primes.

Lemma 2.2.2. Let D be the discriminant of the imaginary quadratic Ąeld K. There is
a one-to-one correspondence between the characters of the genus group G(D) and the
factorizations D = uv of D into two fundamental discriminants u and v (treating uv

and vu as the same factorization). The relation between the genus characters ψ ∈ Ĝ(D)
and the factorizations is expressed by

ψ(p) :=





(
u

N(p)


, if (u, p) = 1,

(
v

N(p)


, if (v, p) = 1,

where p is any prime ideal of OK

Proof. Note that any real character of the ideal class group C(D) will correspond with
a character of the genus group G(D) = C(D)/C(D)2, as

ψ is a character of G(D) ⇐⇒ ψ is a character of C(D)

satisfying ψ(g2n) = ψ(g′2n) ∀g,g′,n ∈ C(D)

⇐⇒ ψ is a real character of C(D).

With this in mind, we know that the number of genera of discriminant D is 2µ−1. The
integer µ is deĄned as follows: if D ≡ 1 mod 4, µ = s, the number of distinct odd prime
factors of D. If D = 4n, then

µ =





s, n ≡ 1 mod 4

s+ 1 n ≡ 2,3 mod 4

s+ 1 n ≡ 4 mod 8

s+ 2 n ≡ 0 mod 8

9



2.2. PROOF OF THEOREMS 1 AND 2

See Theorem 3.15 of [Cox13] for the proof of this fact. This proves that there are 2µ−1

characters of G(D). We note that we get one real character ψ(p) for each factorization
D = uv as deĄned in the statement of the lemma. One can calculate that there are in
total 2µ−1 such factorizations of D, so that the set of characters of G(D) which are as
in the statement of the lemma (coming from a factorization D = uv) are actually all
the characters of G(D). This proves the 1 − 1 correspondence.

From each genus character, we construct the generating series

F (s,ψ) :=
∑

n≥1

b(n,ψ)n−s,

for ℜ(s) > 1, where

b(n,ψ) =





0, if n is not the norm of any ideal,

ψ(a), if n = N(a).

If p ∈ Z is such that (D♣p) = 0, then pOK = p2, and so p = N(p), if (D♣p) = 1, then
pOK = p1p2, so that p = N(p1) = N(p2). Finally, if (D♣p) = −1, then pOK = p, so
that p2 = N(p), and p is not the norm of any ideal. These remarks imply that b(n,ψ)
is well deĄned.

Our reason for introducing b(n,ψ) is that it satisĄes an orthogonality relation that
allows us to detect when 1R(n) = 1. Indeed, when n is the norm of some ideal a, we
have:

1R(n) =
1

G(D)

∑

ψ∈Ĝ(D)

b(n,ψ)ψ(R)−1

=
1

G(D)

∑

ψ∈Ĝ(D)

ψ(a)ψ(R)−1

=





1, [a] ∈ R

0, otherwise.

(2.5)

Above, [a] refers to the ideal class of a in the ideal class group C(D). When n is not

the norm of any ideal, then 1R(n) = b(n,ψ) = 0 for every ψ ∈ Ĝ(D), so the Ąrst line of
(2.5) still holds.

Using the multiplicativity of b(n,ψ), we Ąnd that

F (s,ψ) =
∏

p♣D
(1 − ψ(p)p−s)−1

∏

(D♣p)=1

(1 − ψ(p)p−s)−1
∏

(D♣p)=−1

(1 − ψ(p)p−2s)−1.

In each term of the above product, p denotes any prime above p. In the cases when
pOK = p1p2, we note that ψ(p1) = ψ(p2), so we can choose either one. We now

10
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explicitly write the Euler factors above a prime for the three possible cases (ramiĄes,
splits, inert).

RamiĄes: If p♣D, then p♣uv, and p♣u ⇐⇒ p ∤ v, and

(1 − ψ(p)p−s) =

(
1 −

(
u

p

)
p−s

)(
1 −

(
v

p

)
p−s

)
,

since one of the two factors on the right hand side is always 1.

Splits: If (D♣p) = 1, then
(
u
p

 (
v
p


= 1, and

(1 − ψ(p)p−s) =

(
1 −

(
u

p

)
p−s

)

=

(
1 −

(
v

p

)
p−s

)

=

(
1 −

(
u

p

)
p−s

)1/2 (
1 −

(
v

p

)
p−s

)1/2

.

Inert: if (D♣p) = −1, then N(p) = p2, hence
(

u
N(p)


=
(

v
N(p)


= 1, and

(1 − ψ(p)p−2s) = (1 − p−2s) =

(
1 −

(
u

p

)
p−s

)(
1 −

(
v

p

)
p−s

)
.

Putting all this information together, we Ąnd that

F (s,ψ) =
∏

p♣D

(
1 −

(
u

p

)
p−s

)−1 (
1 −

(
v

p

)
p−s

)−1

×
∏

(D♣p)=1

(
1 −

(
u

p

)
p−s

)−1/2 (
1 −

(
v

p

)
p−s

)−1/2

×
∏

(D♣p)=−1

(
1 −

(
u

p

)
p−s

)−1 (
1 −

(
v

p

)
p−s

)−1

.

Let us deĄne

Lu(s) =
∏

p

(
1 −

(
u

p

)
p−s

)−1

Lv(s) =
∏

p

(
1 −

(
v

p

)
p−s

)−1

.

We now have
F (s,ψ)2 = Lu(s)Lv(s)A(s), (2.6)

11



2.2. PROOF OF THEOREMS 1 AND 2

where

A(s) =
∏

p♣D

(
1 −

(
u

p

)
p−s

)−1 (
1 −

(
v

p

)
p−s

)−1 ∏

(D♣p)=−1

(1 − p−2s)−1.

We note that A(s) is analytic for ℜ(s) > 1/2, and Lu(s)Lv(s) is entire unless u = 1, v =
D, since when u ̸= 1, v ̸= D, both Lu and Lv can be viewed as Dirichlet L-functions
of non-principal characters2. We note that the pair u = 1,v = D corresponds to the
principal genus character ψ0, and we have

L1(s)LD(s) = ζ(s)LD(s).

Taking (principal) square roots on either side of (2.6), we have

F (s,ψ0) = (ζ(s)A(s)LD(s))1/2 .

We wish to use the Dirichlet series F (s,ψ0) to make a conclusion about the partial sums∑
n≤x b(n,ψ0). We can make use of PerronŠs formula in the usual way to get the relation

∑

n≤x
b(n,ψ0) =

1

2πi

∫ 2+i∞

2−i∞
F (s,ψ0)

xs

s
ds,

but we are not able to apply CauchyŠs theorem to evaluate the contribution from the
singularity at s = 1 of the integrand, since it is not a pole. Instead, we appeal to the
LSD method:

Theorem 2.2.3. [Kou19, Theorem 13.2] Let f(n) be a multiplicative function with
generating function F (s) =

∑
n≥1 f(n)n−s. Suppose there exists κ ∈ C be such that for

x large enough ∑

p≤x
f(p) log p = κx+OA

(
x/(log x)A


,

for each Ąxed A > 0, and such that ♣f(n)♣ ≤ τk(n) for some k ∈ N, where τk is the
k-th divisor function. For j ≥ 0, let c̃j be the Taylor coefficients about 1 of the function
(s− 1)κF (s)/s. Then, for any J ∈ N, and x large enough, we have

∑

n≤x
f(n) = x

J∑

j=0

c̃j
(log x)κ−j−1

Γ(κ− j)
+O

(
x

(log x)J+2−ℜ(κ)

)
.

Applying Theorem 2.2.3 to F (s,ψ), we conclude that for any J ≥ 0, one has

∑

n≤x
b(n,ψ) = δψ

J∑

j=0

ãjx

Γ(1/2 − j)(log x)1/2+j
+ O

(
x

(log x)J+3/2

)
, (2.7)

2D has no square factors, except maybe 4

12
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where δψ = 0, unless ψ = ψ0, in which case δψ0 = 1, and ãj is the jth Taylor coefficient
of (s − 1)1/2F (s,ψ0)/s. Combining (2.5) with (2.7) we Ąnd that for each Ąxed genus
R ∈ G(D) we have, for any J ≥ 0,

BR(x) :=
∑

n≤x
1R(n)

=
1

♣G(D)♣
∑

n≤x

∑

ψ∈Ĝ(D)

b(n,ψ)ψ(R)−1

=
1

♣G(D)♣
∑

ψ∈Ĝ(D)

ψ(R)−1δψ
J∑

j=0

ãjx

Γ(1/2 − j)(log x)1/2+j
+ O

(
x

(log x)J+3/2

)

=
1

♣G(D)♣
J∑

j=0

ãjx

Γ(1/2 − j)(log x)1/2+j
+ O

(
x

(log x)J+3/2

)
.

(2.8)

We then adopt the notation

aj =
ãj

Γ(1/2 − j)♣G(D)♣ . (2.9)

We can repeat this argument with the addition of a congruence condition modulo q
inserted. DeĄne

F (s,ψ,χ) :=
∑

n≥1

b(n,ψ)χ(n)n−s,

where χ is a Dirichlet character modulo q. Applying (2.5) as well as the orthogonality
relations for Dirichlet characters, one has

1

ϕ(q)♣G(D)♣
∑

χ mod q

∑

ψ∈Ĝ(D)

b(n,ψ)χ(n)χ−1(a)ψ−1(R) =





1, 1R(n) = 1 and n ≡ a mod q

0, otherwise.

(2.10)

Since we are assuming (q,D) = 1, then the conductor of χ will be coprime to D. As
such, the only choice of characters that makes F (s,ψ,χ) have a singularity at s = 1 is
when ψ = ψ0, and χ = χ0, the principal character modulo q. We then have

F (s,ψ0,χ0) = Cq(s) (ζ(s)A(s)LD(s))1/2

= Cq(s)F (s,ψ0),
(2.11)

where
Cq(s) :=

∏

p♣q
(1 − p−s)

∏

p♣q
(D♣p)=−1

(1 + p−s).

Applying Theorem 2.2.3 again, this time to F (s,ψ0,χ0), we conclude that for any J ≥ 0,
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one has

∑

n≤x
b(n,ψ)χ(n) = δψ,χ

J∑

j=0

b̃jx

Γ(1/2 − j)(log x)1/2+j
+ O

(
x

(log x)J+3/2

)
, (2.12)

where δψ,χ = 0, unless ψ = ψ0 and χ = χ0, in which case δψ0,χ0 = 1. Above, b̃j is the
jth Taylor coefficient of (s− 1)1/2F (s,ψ0,χ0)/s. Combining (2.10) with (2.12), then for
every a such that (a,q) = 1, one has

∑

n≤x
n≡a mod q

1R(n) =
1

ϕ(q)

1

♣G(D)♣
J∑

j=0

b̃jx

Γ(1/2 − j)(log x)1/2+j
+ O

(
x

(log x)J+3/2

)
.

This proves Theorem 2.2.1, as we see that

bj =
b̃j

Γ(1/2 − j)ϕ(q)♣G(D)♣ ,

and the constants bj are independent of R. We can easily express the bj in terms of the
aj as in the statement of the lemma by comparing the Taylor coefficients of F (s,ψ0)
and F (s,ψ0,χ0); these generating series differ only by the factor Cq(s), as can be seen
in (2.11).

This also concludes the proof of Theorem 2.1.1 by our remarks at the start of this
section. Additionally, Theorem 2.2.1 immediately implies Theorem 2.1.2.

Proof of Theorem 2.1.2. We begin by noting that when there is a single form per genus,
then Bf (x; q,a) = BR(x; q,a). As such, Theorem 2.2.1 gives us an explanation for the
numerical bias towards the zero residue class; as in (2.4), the constant multiplying the
secondary term for Bf (x; q,a) will be

Cq(1)

ϕ(q)♣G(D)♣a1

(
1 − a0

a1

C ′
q(1)

2Cq(1)

)

when a ̸≡ 0 mod q, and

1 − Cq(1)

♣G(D)♣ a1

(
1 +

a0

a1

C ′
q(1)

2(1 − Cq(1))

)

when a ≡ 0 mod q (again, assuming q is prime). Simplifying the above and noting that
a0/a1 > 0 immediately yields Theorem 2.1.2.
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2.3 Exceptional Integers in Arithmetic Progressions

In this section, q denotes a prime modulus, and we assume that C(D) is cyclic of odd
order h. We will show how the bias towards the zero residue class in this case arises
from computing the secondary term in the asymptotic expansion of Bf (x; q,a).

When there is more than one form in the given genus R, we do not have the equality
Bf (x; q,a) = Bf (x; q,a) (except in the sense of Theorem 2.1.3). Since we are interested
in the secondary of Bf (x; q,a), Theorem 2.1.3 is ineffective due to the O(x/(log x)2/3)
error term.

2.3.1 Proof of Theorem 2.1.4

Due to Theorem 2.1.3, studying the secondary term of Bf (x; q,a) is equivalent to esti-
mating the number of integers which are represented by a form from the genus contain-
ing f , but not represented by f itself. We refer to these as the Şexceptional integers"
for f . We deĄne

Nf (x,q,a) := #¶n ≤ x : n ≡ a mod q, n is exceptional for f♢.

It is clear that one has

Bf (x; q,a) = BR(x; q,a) −Nf (x,q,a). (2.13)

Summary of GolubevaŠs Paper

In Theorem 2.1.2, Nf (x,q,a) was always 0. Theorem 2.1.3 can be viewed as a result
giving an upper bound on the size of Nf (x,q,a), and a similar result appears in [Gol96].
Computing asymptotics for these exceptional integers turns out to be tricky, with the
only result known to the author being the following of Golubeva:

Theorem 2.3.1 ([Gol01]). Let C(D) be cyclic of odd order h. Let [f ⋆] be a generator
of C(D). Let p0 be the smallest prime divisor of h, and let H ⊂ C(D) be the subgroup
generated by [f ⋆]p0. Let Nf (x) := Nf (x,1,1). Then (writing [f ] to be the class that f
lies in),

if [f ] ∈ H, one has

Nf (x) = A1
x

(log x)1−1/(2p0)
(log log x)p0−2(1 + o(1)),

and if [f ] ̸∈ H, then one has

Nf (x) = A2
x

(log x)1−1/(2p0)
(log log x)p0−3(1 + o(1)).

where A1,A2 are positive constants depending only on f .
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The constants A1 and A2 are not computed explicitly in GolubevaŠs paper. See Sec-
tion 2.3.2 for more comments on the computation of these constants, which turn out to
be difficult to do explicitly. Golubeva proves Theorem 2.3.1 through a series of lemmas.
Lemmas 2-6 of their paper imply that associated to each class of forms [f ] ∈ C(D) is a
Ąnite set of tuples ([f1],[f2], · · · [fr]), [fi] ∈ C(D), such that once one discards a sparse
set, all squarefree integers n which are exceptional for f and coprime to 2D will be of
the form

n = mp1 · · · pr, (2.14)

where each prime divisor of m is represented by a form in H, and pi is any prime
represented by [fi]. One also has that

r =




p0 − 2, [f ] ∈ H

p0 − 3, [f ] ̸∈ H.

Remark. We will consider two tuples ([f1], · · · , [fr]) and ([g1], · · · , [gr]) to be distinct
if there is no set of indices i,j such that [fi] = [gj]

±1 for 1 ≤ i,j ≤ r. If pi is any prime
represented by [fi], and qi is any prime represented by [gi], then p1 · · · pr may be equal
to q1 · · · qr if and only if the tuples ([f1], · · · , [fr]) and ([g1], · · · , [gr]) are not disctinct.
This follows from the fact that a prime is uniquely represented by a class of forms and
that classŠ inverse.

There is a more explicit description of these tuples in both cases. Again taking [f ⋆]
to be a generator of C(D), we may write [fi] = [f ⋆]ei for each i. Lemmas 5 and 6 of
GolubevaŠs paper imply the following two propositions:

Proposition 1. Let [f ] ∈ H and let p0 be deĄned as above. The squarefree integers
coprime to 2D which are exceptional for f (after discarding a sparse set) are those of
the form

mp1p2 · · · pp0−2,

where each prime divisor of m is represented by a form in H, and pi is represented
by the class of forms [fi] = [f ⋆]ei . The set of choices for (e1,e2, · · · ,ep0−2) is the set of
diagonal nonzero tuples (a,a, · · · ,a), a ∈ (Z/p0Z)∗.

Proposition 2. Let [f ] ̸∈ H and let p0 be deĄned as above. Write [f ] = [f ⋆]e
⋆
. The

squarefree integers coprime to 2D which are exceptional for f (after discarding a sparse
set) are those of the form

mp1p2 · · · pp0−3,

Where each prime divisor of m is represented by a form in H, and pi is represented by
the class of forms [fi] = [f ⋆]ei . The set of choices for (e1,e2, · · · ,ep0−3) being the set of
tuples (a,a, · · · ,a), a ∈ Z/p0Z)∗, with the additional condition a ̸≡ e⋆ mod p0.

Theorem 2.3.1 then follows from a lemma on counting integers of the form (2.14) for
each individual tuple ([f1], · · · , [fr]) which is suitable, and then summing the results
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over all the distinct tuples:

Lemma 2.3.2. Let C(D), be cyclic of odd order h. Let H ⊂ C(D) be a proper subgroup.
Fix [f1], . . . , [fr], (not necessarily distinct) classes of forms not belonging to H. We wish
to count integers of the form

n = mp1 · · · pr,
p♣m =⇒ p represented by a form f ∈ H,

pj represented by the class [fj].

(2.15)

Let us deĄne S[f1],···[fr](x,1,1) = S(x) by

S(x) := #¶n ≤ x : n squarefree, (n,2D) = 1, n satisfying (2.15)♢.

Then we have, as x → ∞,

S(x) = A(f1, · · · ,fr)
x

(log x)1−♣H♣/(2h)
(log log x)r(1 + o(1)), (2.16)

where A(f1, · · · ,fr) is a constant depending only on the tuple [f1], · · · , [fr].
As stated in Propositions 1 and 2, there is a Ąnite set of tuples (f1, · · · ,fr) for which
an integer n of the form of (2.15) can be exceptional for f . Summing (2.16) over all
such distinct3 tuples yields Theorem 2.3.1 for squarefree integers coprime to 2D. The
general theorem follows by noting that the inclusion of all integers only changes the
asymptotic by a constant factor. See Section 2.3.2 for a comment on the removal of the
ŞsquarefreeŤ condition.

ModiĄed Golubeva Lemma and itŠs Proof

We consider now the behaviour of the exceptional integers in arithmetic progressions,
and we obtain the following generalization of Theorem 2.3.2:

Lemma 2.3.3. Let q be a chosen modulus, (q,2D) = 1. Let H, [f1], · · · ,[fr] be as in
Theorem 2.3.2. Let us deĄne S[f1],···[fr](x,q,a) = S(x,q,a) by

S(x,q,a) := #¶n ≤ x : n squarefree, (n,2D) = 1, n ≡ a mod q, n satisfying (2.15)♢.

Then, for (a,q) = 1, one has, as x → ∞,

S(x,q,a) =
1

ϕ(q)

∏

p♣q

(
1 +

νH(p)

p

)−1

S(x)(1 + o(1)), (2.17)

3In the sense of the remark preceding Propositions 1 and 2.
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where

νH(n) :=





1, n squarefree, (n,2D) = 1, p♣n =⇒ p represented by a form f ∈ H,

0, otherwise.

To prove (2.17), we will need to know about the distribution of primes represented
by a given quadratic form in an arithmetic progression. The information we need is
contained in the following lemma.

Lemma 2.3.4. Let q be a chosen modulus, (q,2D) = 1. Fix a binary quadratic form f
of discriminant D. We have

∑

p≤x
p≡a mod q

1f (p) =
1

ϕ(q)

δ(f)

h
Li(x) +O(x exp (−c

√
log x)), (2.18)

for some positive constant c, where 1f (n) = 1 if n is represented by f and 1f (n) = 0
otherwise, and

δ(f) =





1
2
, if the class containing f has order ≤ 2 in C(D)

1, otherwise.

Proof of Theorem 2.3.4. Let K be the imaginary quadratic Ąeld of discriminant D, and
let H be the Hilbert class Ąeld of K, so that Gal(H/K) ∼= C(D). For a given class
C ∈ C(D), we wish to Ąnd an asymptotic for the size of the set

SC,a := ¶p ∈ OK : N(p) ≤ x,N(p) ≡ a mod q, p ∈ C♢.

The prime ideals in the set SC,a satisfy two Chebatorev conditions simultaneously, and
we may apply the Chebatorev density theorem to count them. First, let ζq = ζ = e2πi/q,
and consider the following lattice of extensions:

18
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Q

K

K[ζ]

H[ζ]

H

2

ϕ(q)h

Note that as long as h > 1,4 then Gal(K[ζ]/K) ∼= (Z/qZ)∗, since ζb ̸∈ K for any integer
b satisfying (b,q) = 1 as K does not contain any qth roots of unity other than ±1. Since
H is the maximal unramiĄed abelian extension of K, and K[ζ]/K is a Ąnite Galois
extension where q is completely ramiĄed, then H ∩K[ζ] = K, and as such we have an
isomorphism

Gal(H[ζ]/K) ∼= Gal(H/K) ×Gal(K[ζ]/K)

σ → (σ♣H ,σ♣K[ζ])

Art(p,H[ζ]/K) → (Art(p,H/K),Art(p,K[ζ]/K)),

(2.19)

where Art denotes the Artin symbol. Applying an effective Chebatorev density theorem
to the extension H[ζ]/K tells us that for any given σ ∈ Gal(H[ζ]/K), one has

♣¶p ∈ OK : N(p) ≤ x,Art(p,H[ζ]/K) = σ♢♣ =
1

hϕ(q)
Li(x) +O(x exp (−c

√
log x)).

Note that the ramiĄed primes contribute only O(1) to our count, and are included
in the error term. On the other hand, by the isomorphism of (2.19), for any given
(C,a) ∈ C(D) × (Z/qZ)∗ ∼= Gal(H/K) ×Gal(K[ζ]/K), we can Ąnd a σ ∈ Gal(H[ζ]/K)
which is mapped to this pair. With this choice of σ in the above equation, one gets

♣SC,a♣ = ♣¶p ∈ OK : N(p) ≤ x,Art(p,H/K) = C, Art(p,K[ζ]/K) = a♢♣

=
1

hϕ(q)
Li(x) +O(x exp (−c

√
log x)).

Above, c is some positive constant which can be computed. In fact, in our case one can

take c = (99 ∗
√
h ∗ ϕ(q))−1 (see, for example, [Win13], Théorème 1.1 for details on the

4In fact, the claim holds as long as K ̸= Q(
√

m) for m ∈ ¶−1, − 3♢. Either way, we have already
dealt with the h = 1 case in Theorem 1.
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computation of such a constant). To Ąnish the proof, deĄne the sets

S ′
C,a = ¶p ∈ OK : pp = p, p ≡ a mod q, p ∈ C♢,

S ′′
C,a = ¶p ∈ Q, p ≡ a mod q, p = N(p), p ∈ C♢.

We note that
♣S ′

C,a♣ = ♣SC,a♣ +O(x1/2),

♣S ′′
C,a♣ =

∑

p≤x
p≡a mod q

1f (n) +O(x1/2), for any f ∈ C.

The map p → N(p) induces a correspondence between S ′
C,a and S ′′

C,a that is two-to-one
if C = C−1 in C(D). Otherwise, the map is one-to-one. This introduces the factor δ(f)
into our Ąnal count for the size of S ′′

C,a.

Proof of Theorem 2.3.3. The function νH is multiplicative by deĄnition. We claim that
for (q,2D) = 1, one has

∑

n≤x
n≡a mod q

νH(n) =
1

ϕ(q)

∑

n≤x
(n,q)=1

νH(n) +O

(
x

(log x)A

)
(2.20)

for all A > 0 i.e. only the principal character mod q will make a contribution to the
main term. Indeed, for χ a non-principal character modulo q, one has for ℜ(s) > 1/2
that

∑

n≥1

νH(n)χ(n)

ns
=
∏

p

(
1 +

νH(p)χ(p)

ps

)

= exp

(
∑

p

log

(
1 +

νH(p)χ(p)

ps

))

≪ exp

(
∑

p

νH(p)χ(p)

ps

)
. (2.21)
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By applying Theorem 2.3.4, summing (2.18) over all classes of forms in H, we see that

∑

p≤y
νH(p)χ(p) =

∑

(a,q)=1

χ(a)




∑

p≤y
p≡a mod q

νH(p)




=
∑

(a,q)=1

χ(a)




∑

p≤y
p≡a mod q

1f0(p) +
1

2

∑

f∈H\[f0]

∑

p≤y
p≡a mod q

1f (p)




=
∑

(a,q)=1

χ(a)

(
1

2ϕ(q)h
Li(y) +

♣H♣ − 1

2ϕ(q)h
Li(y) +Oa(y exp (−c

√
log y))

)

=
♣H♣

2ϕ(q)h

∑

(a,q)=1

χ(a)

Li(y) +Oa(y exp (−c

√
log y))



= O(y exp (−c
√

log y)).

We introduced a factor 1/2 in the second line above to avoid double-counting; each
prime is simultaneously represented by the class [f ] and the class [f ]−1. Since ♣C(D)♣
is odd, [f ] = [f ]−1 if and only if [f ] = [f0], and so there is no double counting for f0.
Hence, by partial summation, we have

∑

p≤y

νH(p)χ(p)

ps
= y−s∑

p≤y
νH(p)χ(p) + s

∫ y

2
t−s−1

∑

p≤t
νH(p)χ(p) dt

≪ sy1−s exp (−c
√

log y)

We see that the limit as y tends to inĄnity converges if, say ℜ(s) ≥ 1 − 1/(log y)1/2. In
this range, using (2.21) we have

∑

n≥1

νH(n)χ(n)

ns
≪ 1.

Using partial summation again, with ℜ(s) = 1 − 1/(log y)1/2, we have

∑

n≤x
νH(n)χ(n) = xs

∑

n≤x

νH(n)χ(n)

ns
− s

∫ x

2
ts−1

∑

n≤t

νH(n)χ(n)

ns
dt

≪ x
1− 1

(log x)1/2+ϵ

≪ x

(log x)A
,

for anyA > 0, as the partial sums in the above equation are bounded when ℜ(s) = 1 − 1/(log y)1/2.
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By applying the orthogonality relations for Dirichlet characters, we have, for (a,q) = 1,

∑

n≤x
n≡a mod q

νH(n) =
1

ϕ(q)

∑

χ mod q

χ−1(a)
∑

n≤x
χ(n)νH(n)

=
1

ϕ(q)

∑

n≤x
(n,q)=1

νH(n) +O

(
x

(log x)A

)
.

(2.22)

This proves that (2.20) holds for all moduli q satisfying (q,2D) = 1. At this stage, one
can apply the classical result of [Wir61] for sums of bounded multiplicative functions:

Theorem 2.3.5 (Wirsing). Given a non-negative multiplicative function f(n), assume
there exists constants α,β with β < 2 such that f(pk) ≤ αβk for each prime p and
integer k ≥ 2. Assume further that as x → ∞, one has

∑

p≤x
f(p) ∼ κ

x

log x
,

where κ is a constant. Under these assumptions, as x → ∞, one has

∑

n≤x
f(n) ∼ eγκ

Γ(κ)

x

log x

∏

p≤x



∑

k≥0

f(pk)

pk


 ,

where γ is the Euler-Mascheroni constant.

In Lemma 1 of [Gol01], WirsingŠs theorem is applied to νH(n), and one Ąnds that

κ = ♣H♣
2ϕ(q)h

, and

∑

n≤x
νH(n) =

eγκ

Γ(κ)

x

log x

∏

p≤x

(
1 +

νH(p)

p

)
(1 + o(1))

= A3
x

log x
exp



∑

p≤x

νH(p)

p


 (1 + o(1))

= A4
x

(log x)1−♣H♣/(2h)
(1 + o(1)),

(2.23)

for some constants A3, A4, which can explicitly be written:

A3 :=
eγκ

Γ(κ)
exp


−

∑

p

∑

k≥2

(−1)k(νH(p))k

kpk


 ,
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A4 := A3 exp


m(f0) +

1

2

∑

f∈H
f ̸=f0

m(f)


 ,

where m(f) is the constant deĄned by the equation

∑

p≤x

1f (p)

p
=
δ(f)

h
log log x+m(f) + o(1).

And equivalent deĄnition of A4 would be

A4 := A3 lim
N→∞

exp



∑

p≤N

νH(p)

p
− ♣H♣

2h
log logN




To continue the proof of Theorem 2.3.3, we apply WirsingŠs Theorem to the multiplica-
tive function νH ∗ χ0, where χ0 is the principal Dirichlet character modulo q. We Ąnd,
again, that κ = ♣H♣

2ϕ(q)h
. This leads to

∑

n≤x
(n,q)=1

νH(n) = A3

∏

p♣q

(
1 +

νH(p)

p

)−1
x

log x
exp



∑

p≤x

νH(p)

p


 (1 + o(1))

=
∏

p♣q

(
1 +

νH(p)

p

)−1 ∑

n≤x
νH(n)(1 + o(1)).

(2.24)

We remark that the constant A3 in (2.24) and (2.23) are the very same, since

∑

p≤x
νH(p) ∼

∑

p≤x
p∤q

νH(p).

As such, we obtained the term
∑
n≤x νH(n) in (2.24) by using the Ąrst equality in (2.23).

We can then write

S(x,q,a) =
∑

p1···pr≤√
x

pi repr. by [fi]
pi ̸=pj

∑

m≤x(p1···pr)−1

m≡a(p1···pr)−1 mod q

νH(m) +
∑

m≤√
x

νH(m)
∑

√
x≤p1···pr≤x/m
pi repr. by [fi]

pi ̸=pj

p1···pr≡m−1a mod q

1
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We note that

∑

m≤√
x

νH(m)
∑

√
x≤p1···pr≤x/m
pi repr. by [fi]

pi ̸=pj

p1···pr≡m−1a mod q

1 ≪
∑

m≤√
x

νH(m)
∑

√
x≤p1···pr≤x/m

pi ̸=pj

1

≪ x

log x
(log log x)r−1

∑

m≤√
x

νH(m)

m

≪ x

(log x)1−♣H♣/(2h)
(log log x)r−1,

using summation by parts and WirsingŠs theorem in the last line. We also have, using
(2.22) and (2.24),

∑

p1···pr≤√
x

pi repr. by [fi]
pi ̸=pj

∑

m≤x(p1···pr)−1

m≡a(p1···pr)−1 mod q

νH(m) =
1

ϕ(q)

∏

p♣q

(
1 +

νH(p)

p

)−1 ∑

p1···pr≤√
x

pi repr. by [fi]
pi ̸=pj

∑

m≤x(p1···pr)−1

νH(m)(1 + o(1)),

(2.25)

and in [Gol01] it is shown that

∑

p1···pr≤√
x

pi repr. by [fi]
pi ̸=pj

∑

m≤x(p1···pr)−1

νH(m) = A(f1, · · · ,fr)
X

(log x)1−H/(2h)
(log log x)r(1 + o(1)).

This proves Theorem 2.3.3.

Having proven the validity of (2.17), we may sum it over the disctinct tuples of
[f1], · · · [fr] as discussed prior to Theorem 2.3.3. In doing so, we obtain the follow-
ing result:

Lemma 2.3.6. Let N ′
f (x,q,a) note the number of integers not exceeding x which are

square-free, coprime to 2D, and exceptional for the form f . One has, for a,q,νH as in
Theorem 2.3.3:

N ′
f (x,q,a) =

1

ϕ(q)

∏

p♣q

(
1 +

νH(p)

p

)−1

N ′
f (x,1,1)(1 + o(1)).

Theorem 2.3.6 is a statement about squarefree integers coprime to 2D, and we also note
that

B′
f (x,q,a) = B′

R(x,q,a) −N ′
f (x,q,a), (2.26)
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where the ′ symbol always indicates a sum over squarefree integers which are coprime
to 2D. By our work in this section, we now have an explicit form for the main term of
N ′
f (x,q,a). This yields Theorem 2.1.4.

2.3.2 Dropping the Squarefreeness Condition

We have proven an asymptotic count for the number of integers not exceeding x which
are squarefree, coprime to 2D, congruent to a mod q, and exceptional for a given form
f . We now comment on the claim made (without proof) by Golubeva that ommiting
the condition Şsquarefree" changes our asymptotic count only by a constant. Let f be
a Ąxed reduced form which we decide upon from the start. Let us write 1E(n) to be
the function that is 1 when n is exceptional for f , and 0 otherwise.

Lemma 2.3.7. Given a squarefree number m for which 1R(m) = 1, and any integer s,
one has

1E(ms2) = 1 =⇒ 1E(m) = 1.

Proof. We prove the contra-positive statement. Suppose that 1E(m) = 0, then m is
represented by the form f . Since s2 is represented by the principal form (among other
forms), then ms2 is also represented by f , i.e. 1E(ms2) = 0.

The converse statement is not true, as we could have some s such that 1E(m) = 1, but
1E(ms2) = 0. For example, consider the quadratic form f(x,y) = x2 + xy + 15y2. In
this case, the integer 5 is exceptional for f , but 5 · 32 is actually represented by f , so
not exceptional. Thus, 1E(5) = 1, and 1E(5 · 32) = 0. By combining Theorem 2.3.7
with Theorem 2.3.1, we have

A1x
(log log x)β

(log x)α
(1 + o(1)) =

∑

n≤x
1E(n) =

√
x∑

s=1

∑

ms2≤x
m squarefree

1E(ms2)

≤
∞∑

s=1

∑

m≤x/s2

m squarefree

1E(m)

= A1

∞∑

s=1

x

s2

(log log x/s2)β

(log x/s2)α
(1 + o(1))

= A1

∞∑

s=1

x

s2

(log log x)β

(log x)α

(
1 +O

(
log s

log log x

))

≤ A1
π2

6
x

(log log x)β

(log x)α
(1 + o(1)),

with A1, α, β above being some constants coming from Theorem 2.3.1. The error term
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involving log s can be determined using series expansions. Indeed, one Ąnds that

(log log x/s2)β

(log x/s2)α
=

(log log x)β

(log x)α

(
1 +O

(
log s

log log x

))
.

All in all, weŠve given an upper bound on the number of exceptional integers for f
not exceeding x, and this implies that once we drop the squarefree restriction, we only
change our count by a constant. Since we have no characterization of the integers where
1E(m) = 1 and 1E(ms2) = 0 simultaneously, we cannot seem to explicitly compute the
involved constant.

2.4 Conjecture and Observations

In this section, we will state a conjecture on the behaviour of the integers represented
by binary quadratic forms in cases not covered by our theorems. It seems natural to
conjecture that the bias we have exhibited here in many cases remains true when we
drop any restrictions (i.e. we do not assume anything about the class group, and drop
any restrictions on squarefreeness/coprimality with 2D).

Conjecture 1. Let D be any fundamental discriminant. Let f be any reduced binary
quadratic form of discriminant D. Let q be any prime such that (q,2D) = 1. A
numerical bias towards the zero residue class modulo q exists. More precisely, there is
a secondary term in the asymptotic expansion of Bf (x; q,a) which has a constant factor
that is larger when a ≡ 0 mod q, and smaller otherwise.

The above conjecture is evidenced by much numerical data (see, for example, Sec-
tion 2.5), as well as the fact that there always exists a term of size x/(log x)3/2 in the
expansion of Bf (x; q,a) that has a constant satisfying the conditions of the conjecture,
together with (2.13). With this in mind, proving the conjecture would likely require
one to either show that for a given f Nf (x,q,a) exhibits no bias in terms ≫ x/(log x)3/2

(as was the case in Theorem 2.1.2), or to show that Nf (x,q,a) exhibits a bias in the
correct direction (i.e. Nf (x,q,a) is smaller when a ≡ 0 mod q, and bigger otherwise)
(as was the case in Theorem 2.1.4).

There seems to be a couple other interesting phenomena which are tangentially related
to ?? 1. For example, it seems that there is always an accentuation of the bias toward
the zero residue class when one jumps from only considering squarefree integers to
considering all integers represented by a given form. One can see an example of this by
comparing Table 2.5 with Table 2.6, or by comparing Table 2.7 with Table 2.8.

2.5 Numerical Data

This section contains numerical examples which demonstrate Theorem 2.1.1, Theo-
rem 2.1.2, and Theorem 2.3.6. Table 2.1 and Table 2.2 display values of Bf (x; q,a)
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for f(x,y) = x2 + xy + y2. In this case, there is a single reduced form of the chosen
discriminant, making it the simplest case covered by our theorems (i.e. we compare
with Theorem 2.1.1).

Table 2.3 and Table 2.4 display values of Bf (x; q,a) for f(x,y) = x2 + 5y2. In this case,
there are two separate reduced forms5 of discriminant −20 lying in two separate genera.
These two tables illustrate that the phenomena of Table 2.1 and Table 2.2 carry over
to the situation where there is more than one genus, provided that each genus contains
only a single form (Theorem 2.1.2).

Table 2.5 provides an example of the behaviour predicted by Theorem 2.3.6. Table 2.6,
along with several other numerical investigations suggest that the bias towards the
zero residue class is still present when we count all integers, instead of just squarefree
integers coprime to 2D.

Table 2.7 and Table 2.8, demonstrate that a bias towards the zero class still exists in a
case where νH(q) = 0.

Tables 2.9 and 2.10 give further evidence for the truth of ?? 1 in cases not covered by
our theorems.

q a Bf (108,7,a) Main Term Two Terms Additional Information
0 2342596 2126610 2305520 f(x,y) = x2 + xy + y2,
1 2181168 2174480 D = −3,

2 2181169
(
D
q


= 1,

7 3 2181008 C(D) = trivial,
4 2181101 G(D) = trivial,
5 2181032 Bf (108)/q = 2204167.
6 2181096

Table 2.1: The distribution of Bf (x; 7,a) for f(x,y) = x2 + xy + y2 compared with the Ąrst
term and Ąrst two terms of Theorem 2.1.2. Notice the equidistribution among all residue
classes, with a bias towards zero.

q a Bf (108,3,a) Main Term Two Terms Additional Information
0 4502885 4156480 4448270 f(x,y) = x2 + 5y2,

3 1 4276237 4262350 D = −20,

2 4275772
(
D
q


= 1,

C(D) ∼= Z/2Z,
G(D) ∼= Z/2Z,

Bf (108)/q = 4351630.

Table 2.3: The distribution of Bf (x; 3,a) for f(x,y) = x2 + 5y2 compared with the Ąrst term
and Ąrst two terms of Theorem 2.1.2. Notice the similarities with Table 2.1.

5The second reduced form of discriminant −20 is 2x2 + 2xy + 3y2. A table of data for this form
would look almost identical to Table 2.3 or Table 2.4, depending on the value of (−20♣q), since the
constants in Theorem 2.2.1 do not depend on the genus.
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q a Bf (108,5,a) Main Term Two Terms Additional Information
0 685734 595452 666121 f(x,y) = x2 + xy + y2,
1 3685946 3572710 3696540 D = −3,

5 2 3685770
(
D
q


= −1,

3 3685731 C(D) = trivial,
4 3685990 G(D) = trivial,

Bf (108)/q2 = 617167,
(q + 1)Bf (108)/q2 = 3703001

Table 2.2: The distribution of Bf (x; 5,a) for f(x,y) = x2 + xy + y2 compared with the Ąrst
term and Ąrst two terms of Theorem 2.1.2. Notice the equidistribution among all nonzero
residue classes, with a much smaller proportion for the zero residue class.

q a Bf (108,11,a) Main Term Two Terms Additional Information
0 128016 103053 120629 f(x,y) = x2 + 5y2,
1 1292745 1236640 1270480 D = −20,

2 1292628
(
D
q


= −1,

3 1292788 C(D) ∼= Z/2Z,
4 1292739 G(D) ∼= Z/2Z,

11 5 1292791 Bf (108)/q2 = 107892.
6 1292573 (q + 1)Bf (108)/q2 = 1294700.
7 1292545
8 1292595
9 1292875
10 1292599

Table 2.4: The distribution of Bf (x; 11,a) for f(x,y) = x2 + 5y2 compared with the Ąrst term
and Ąrst two terms of Theorem 2.1.2. Notice the similarities with Table 2.2.
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q a B′
f (108,17,a) Additional Information

0 376649 f(x,y) = x2 + xy + 15y2,
1 354287 D = −59,

2 354196
(
D
q


= 1,

3 354373 C(D) ∼= Z/3Z,
4 354313 G(D) = trivial,
5 354509 νH(q) = 1.
6 354363
7 354453

17 8 354278
9 354228
10 354259
11 354418
12 354329
13 354263
14 354347
15 354402
16 354192

Table 2.5: Values of B′
f (x,3,a), where f(x,y) = x2 + xy + 15y2. A bias towards the zero class

is visible, as predicted by Theorem 2.1.4.

q a Bf (108,17,a) Additional Information
0 782426 f(x,y) = x2 + xy + 15y2,
1 683226 D = −59,

2 683405
(
D
q


= 1,

3 683040 C(D) ∼= Z/3Z,
4 683379 G(D) = trivial,
5 683240 νH(q) = 1.
6 683199
7 683179

17 8 683380
9 683427
10 683042
11 683073
12 683018
13 683403
14 683214
15 683499
16 683323

Table 2.6: Values of Bf (x; 17,a), where f(x,y) = x2 +xy+15y2. A bias still exists numerically
when we drop the squarefreeness restriction. The bias seems to become more pronounced in
doing so (compare with the bias in Table 2.5).
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q a B′
f (108,3,a) Additional Information

0 2418331 f(x,y) = x2 + xy + 6y2,
3 1 2325663 D = −23,

2 2326169
(
D
q


= 1,

C(D) ∼= Z/3Z,
G(D) = trivial,
νH(q) = 0.

Table 2.7: Values of B′
f (x,3,a), where f(x,y) = x2 + xy + 6y2.

q a Bf (108,3,a) Additional Information
0 6223402 f(x,y) = x2 + xy + 6y2,

3 1 4240799 D = −23,

2 4239968
(
D
q


= 1,

C(D) ∼= Z/3Z,
G(D) = trivial,
νH(q) = 0.

Table 2.8: Values of Bf (x; 3,a), where f(x,y) = x2 + xy + 6y2. Notice how the bias towards
0 seems to become more pronounced when we drop the squarefree restriction (compare with
Table 2.7).

q a Bf (108,7,a) Additional Information
0 1745576 f(x,y) = x2 + xy + 22y2,
1 1254963 D = −87,

2 1254939
(
D
q


= 1,

7 3 1254519 C(D) ∼= Z/6Z,
4 1255006 G(D) ∼= Z/2Z,
5 1254481 νH(q) = 0.
6 1254492

Table 2.9: Values of Bf (x; 7,a), where f(x,y) = x2 + xy + 22y2. A bias still exists, though
none of our theorems cover this case.

q a Bf (108,3,a) Additional Information
0 4246393 f(x,y) = 3x2 + xy + 8y2,

3 1 3387811 D = −95,

2 3387781
(
D
q


= 1,

C(D) ∼= Z/8Z,
G(D) ∼= Z/2Z,
νH(q) = 1.

Table 2.10: Values of Bf (x; 3,a), where f(x,y) = 3x2 + xy + 8y2. A bias still exists, though
none of our theorems cover this case.
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Chapter 3

Lemke Oliver and Soundararajan
Bias for Consecutive Sums of Two
Squares

Chantal David1, Lucile Devin2, Jungbae Nam1 and Jeremy Schlitt1

Abstract In a surprising recent work, Lemke Oliver and Soundararajan noticed how
experimental data exhibits erratic distributions for consecutive pairs of primes in arith-
metic progressions, and proposed a heuristic model based on the HardyŰLittlewood
conjectures containing a large secondary term, which Ąts the data very well. In this
paper, we study consecutive pairs of sums of squares in arithmetic progressions, and
develop a similar heuristic model based on the HardyŰLittlewood conjecture for sums
of squares, which also explains the biases in the experimental data. In the process,
we prove several results related to averages of the HardyŰLittlewood constant in the
context of sums of two squares.

3.1 Introduction

We study in this paper the distribution of consecutive sums of two squares in arithmetic
progressions. Our work is inspired by a recent paper of Lemke Oliver and Soundararajan
[LOS16] who proposed a heuristic model based on the HardyŰLittlewood conjecture for
the distribution of consecutive primes in arithmetic progressions.

Roughly speaking, it is expected that numbers described by reasonable multiplicative
constraints should be well-distributed, in short intervals and in arithmetic progressions.
The case of prime numbers is of course well-studied, and this philosophy was also tested

1Department of Mathematics & Statistics, Concordia University, 1455 de Maisonneuve Blvd. West,
Montréal, Québec, H3G 1M8, CANADA

2Univ. Littoral Côte dŠOpale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62100 Calais, FRANCE
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for numbers expressible as sums of two squares, as well as square-free numbers3. Gal-
lagher [Gal76] proved that the distribution of primes of size up to x in intervals of size
log x has a Poisson spacing distribution, assuming some explicit form of the HardyŰ
Littlewood conjecture. This was generalized to primes in arithmetic progressions by
Granville [Gra87] and to sums of two squares by Freiberg, Kurlberg and Rosenzweig
[FKR17], for intervals of size

√
log x/K, which is the correct analogue to GallagherŠs

result in view of (3.1). For primes in larger intervals, Montgomery and Soundarara-
jan [MS04] showed that the spacings exhibit a normal distribution around the mean,
assuming again some explicit form of the HardyŰLittlewood conjecture. We prove in
this paper a weaker version of their results (Theorem 3.3.4) for the case of sums of two
squares which is needed to study the distribution of successive sums of two squares in
arithmetic progressions. We speculate that the full analogue of their results can be
obtained for sums of two squares, but we did not pursue it as Theorem 3.3.4 is suffi-
cient for our application. Some unexpected irregularities in the distribution of primes
in short intervals were discovered by Maier [Mai85], and it was shown by Balog and
Wooley [BW00] that sums of two squares exhibit the same irregularities. Sums of two
squares in short intervals were also studied over function Ąelds of a Ąnite Ąeld Fq, where
many results which are inaccessible over number Ąelds can be proven when the size of
the Ąnite Ąeld Fq grows [BSSW16, BBSF18, BSF19, GR21].

We Ąrst Ąx some notations. We denote by

E = ¶a2 + b2 : a,b ∈ Z♢ = ¶En : n ∈ N♢

the set of sums of two squares (enumerated in increasing order), such that En is the nth
number that can be written as a sum of two squares. Let 1E be the indicator function
of this set. By a classical result of Landau, one has

∑

n≤x
1E(n) ∼ K

x√
log x

, (3.1)

where K is the constant deĄned by (3.5). The distribution of sums of two squares in
arithmetic progressions exhibits different behavior depending on the modulus q of the
progression, and we restrict in this paper to the case where q is a prime number such
that q ≡ 1 (mod 4). In that case, the sums of squares are equidistributed in all the
residue classes a (mod q), including the class a ≡ 0 (mod q) (see Theorem 3.2.2), but
unlike the case of the primes, there is a large secondary term depending on if the residue
class a ≡ 0 (mod q) or not (see Theorem 3.2.4).

We consider in this paper the following question, which was studied by Lemke Oliver
and Soundararajan for primes [LOS16]. Fix a prime number q ≡ 1 (mod 4), and integers

3In the case of square-free numbers, the HardyŰLittlewood conjecture is a theorem [Mir49], and the
analogue of [LOS16] has been proved recently by Mennema [Men17].
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a,b. What is the distribution of

N(x; q,(a,b)) := #¶En ≤ x : En ≡ a (mod q), En+1 ≡ b (mod q)♢ ?

Using a model based on randomness, we expect successive sums of two squares to be
well-distributed in arithmetic progressions, and each of the q2 pairs of classes (a,b) to
contain the same proportion (asymptotically) of sums of two squares, with possibly a
bias towards the pairs (a,b) where ab ≡ 0 (mod q) in view of Theorem 3.2.4. However,
the numerical data of Table 3.1 (for q = 5 and x = 1012) shows a lot of Ćuctuation,
and in particular an unexpected large bias against the classes (a,a) including (0,0).
Interestingly, this bias goes in the opposite direction of the bias for sums of squares in
arithmetic progressions: there are ŞmoreŤ sums of two squares congruent to 0 (mod q),
but there are ŞlessŤ consecutive sums of two squares congruent to (0,0) (mod q).

a b N(1012; 5,(a,b)) a b N(1012; 5,(a,b)) a b N(1012; 5,(a,b))
0 0 4 108 407 474 2 0 8 049 996 586 4 0 7 155 732 959

1 7 153 121 164 1 5 516 037 772 1 5 356 545 210
2 5 604 312 560 2 3 754 593 831 2 7 730 855 281
3 8 054 714 831 3 6 837 553 372 3 5 497 266 920
4 5 780 373 060 4 5 350 735 550 4 3 768 530 444

1 0 5 777 315 850 3 0 5 609 476 219
1 3 765 205 659 1 7 718 021 263
2 6 870 009 299 2 5 549 146 140
3 5 354 226 097 3 3 765 159 558
4 7 742 174 162 4 6 867 117 598

Table 3.1: N(x; q, (a,b)) for q = 5 and x = 1012. The average of N(x; q, (a,b)) is 5 949 465
154.

Estimates for the consecutive sums of squares (or consecutive primes) in arithmetic
progressions is a very difficult question, and few results are known. For consecutive
primes in arithmetic progressions, it was conjectured by Chowla that there are inĄnitely
many primes pn such that pn+i−1 ≡ a (mod q) for 1 ≤ i ≤ r, for any (a,q) = 1 and r ≥ 2.
This was proven by Shiu [Shi00]. Recent progress in sieve theory have led to a new proof
of ShiuŠs result [BFTB13], and Maynard has proven that the number of such primes
is ≫ π(x) [May16]. It would be interesting to see if those recent progresses could be
applied to get lower bounds for the number of successive sums of two squares En such
that En+i−1 ≡ a (mod q) for 1 ≤ i ≤ r, for any a and r ≥ 2, but this question was not
addressed yet in the literature.

We propose in this paper a heuristic model predicting an asymptotic for N(x; q,(a,b)),
based on the heuristic of Lemke Oliver and Soundararajan [LOS16] for the case of
primes, and exhibiting a similar bias.

Conjecture 3.1.1. Fix a prime q ≡ 1 (mod 4), and J ≥ 1. Then, for any a ∈ N, we
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have

N(x; q,(a,a)) =
K

q2

x√
log x

(
1 −

√
2ϕ(q)

π

√
log log x√

log x
+

1√
log x

J∑

j=1

Cj(log log x)
1
2

−j
)

+O

(
x

log x(log log x)J+ 1
2

)
,

for some explicit constants Cj depending only on q. For a,b ∈ N with a ̸≡ b (mod q), we
have

N(x; q,(a,b)) =
K

q2

x√
log x

(
1 +

√
2

π

√
log log x√

log x
+

Ca,b√
log x

− 1

ϕ(q)
√

log x

J∑

j=1

Cj(log log x)
1
2

−j
)

+O

(
x

log x(log log x)J+ 1
2

)
,

with

Ca,b :=
1

2K

q

ϕ(q)

∑

χ̸=χ0

χ(b− a)Cq,χ, (3.2)

where the sum is over the non-principal Dirichlet characters modulo q and Cq,χ is deĄned
in (3.28). The value of C1 is given in Conjecture 3.4.3.

Our heuristic model leading to Conjecture 3.1.1 follows very closely [LOS16], and as such
it is based on the HardyŰLittlewood conjectures for sums of squares, which are stated
in Section 3.3. Our exposition for that section, and many of the results used for the
properties of the (conjectural) HardyŰLittlewood constants for sums of squares follow
from [FKR17]. Fix k ≥ 1 and ¶d1, . . . , dk♢ ⊆ Z. We denote S(¶d1, . . . , dk♢) the Hardy-
Littlewood constants for k-tuples of sums of two squares deĄned in Section 3.3. As
the results of [LOS16], our conjecture follows from an average of the HardyŰLittlewood
constants, which is one of the main results of our paper.

Theorem 3.1.2. Let q ≡ 1 (mod 4) be a prime. For each Dirichlet character χ ̸=
χ0 (mod q), let Cq,χ be deĄned by (3.28). Then, for any J ≥ 1, and v ̸= 0 (mod q), we
have

∑

h≥1

S(¶0,h♢)e−h/H = H − 2

Kπ

√
log H +

J∑

j=1

c(j) (log H)1/2−j + O
(
(log H)−1/2−J



∑

h≥1
h≡0 (mod q)

S(¶0,h♢)e−h/H =
H

q
− 2

Kπ

√
log H +

J∑

j=1

c0(j) (log H)1/2−j + O
(
(log H)−1/2−J



∑

h≥1
h≡v (mod q)

S(¶0,h♢)e−h/H =
H

q
+

1

2K2ϕ(q)

∑

χ (mod q)
χ̸=χ0

χ̄(v)Cq,χ +
J∑

j=1

c1(j) (log H)1/2−j + O
(
(log H)−1/2−J


.

The constants c(j) are absolute while the constants c0(j), c1(j) depend only on q, they can
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all be explicitly computed, in particular the values for j = 1 are given in (3.35) and (3.38).
Moreover they satisfy the relation

c0(j) + ϕ(q)c1(j) = c(j), j ≥ 1. (3.3)

By using Theorem 3.3.4, which is the analogue of the work [MS04] for sums of two
squares, we need only to compute a weighted average of the constants S(¶0, h♢) as-
sociated to 2-tuples, while [FKR17] compute a more general average of the constants
S(¶h1, . . . , hk♢) associated to k-tuples. Since the HardyŰLittlewood constants S(¶0, h♢)
can be described explicitly with a simple formula from the work of Connors and Keating
[CK97], this allows us to get a very precise result exhibiting a small secondary term
which gives the bias. A similar average of the constants S(¶0, h♢) was computed by
Smilansky [Smi13], and we also use some of his results. Moreover, the techniques de-
veloped in this paper yield a more precise form of the averages considered in [Smi13]
and [FKR17].

Proposition 3.1.3. Assume the Generalized Riemann Hypothesis. For ε > 0 and
k ≥ 2, we have

∑

1≤d1,...,dk≤H
distinct

S(¶d1, . . . , dk♢) = Hk +
k(k − 1)Hk−1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1 log H

♣σ − 1♣1/2
dσ + Ok,ε(H

k− 3
2

+ε),

where F (s) = ζ(s − 1)M(s − 1) [(s − 1)ζ(s)]1/2 s−1, with M(s) as deĄned by (3.31).

Finally, the heuristic leading to Conjecture 3.1.1 can be generalized to predict an asymp-
totic for r successive sums of two squares in arithmetic progressions.

Conjecture 3.1.4. Fix a prime q ≡ 1 (mod 4), r ≥ 2 and a = (a1, . . . , ar) ∈ Nr. Let

N(x; q,a) := #¶En ≤ x : En+i−1 ≡ ai (mod q)♢.

We have

N(x; q,a) =
x

qr
K√
log x


1 + C−1(a)

(log log x)
1
2

(log x)
1
2

+
C0(a)

(log x)
1
2

+
C1(a)

(log log x)
1
2 (log x)

1
2




+O
(
x(log log x)− 3

2 (log x)−1

,

35



3.1. INTRODUCTION

where

C−1(a) =
q
√

2

π

r−1∑

i=1

(
1
q

− δ(ai+1 ≡ ai)


C0(a) =
∑

1≤i≤r−1
ai ̸≡ai+1 (mod q)

Cai,ai+1

C1(a) = − qC1

ϕ(q)

r−1∑

i=1

(
1
q

− δ(ai+1 ≡ ai)


+
q
√

2√
π

r−2∑

k=1

r−1−k∑

i=1

1
q

− δ(ai+k+1 ≡ ai)

k
,

the constants Cai,ai+1
are deĄned by (3.2), and the value of C1 is given in Conjec-

ture 3.4.3.

The structure of the paper is as follows: we review in Section 3.2 the basic properties of
sums of two squares, including the secondary terms for the counting function of sums
of two squares in arithmetic progressions, which surprisingly we did not Ąnd in the
literature. We discuss the HardyŰLittlewood conjectures for sums of two squares in
Section 3.3. We present the heuristic model leading to Conjecture 3.1.1 in Section 3.4,
following Lemke Oliver and Soundararajan [LOS16]; in particular, we explain how the
heuristic reduces Conjecture 3.1.1 to an average of HardyŰLittlewood constants (The-
orem 3.1.2), which we prove in Section 3.5 using the SelbergŰDelange method.

We prove Theorem 3.3.4, which is an analogue of the main result of Montgomery and
Soundararajan [MS04] mentioned above used to justify our heuristic, in Section 3.6. We
then use this result in Section 3.7 to prove Proposition 3.1.3 which improves the average
results of [FKR17] and [Smi13]. Finally, we explain how to deduce Conjecture 3.1.4
from our heuristic in Section 3.8, and we present numerical data in Section 3.9.
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3.2 Sums of two squares in arithmetic progressions

By a classical result of Landau [Lan09], we have

∑

n≤x
1E(n) ∼ K

x√
log x

, (3.4)

where

K =
1√
2

∏

p≡3 (mod 4)

(1 − p−2)− 1
2 (3.5)

is the LandauŰRamanujan constant. We remark that, unlike the prime number theorem
and contrarily to a claim of Ramanujan (see e.g. [MC99]), the asymptotic above gives
only the main term, and there is no simple integral similar to li(x) which approximates
well the number of sums of two squares up to x. This is caused by the fact that
the generating series for sums of two squares has an essential singularity at s = 1,
its contribution is evaluated by the SelbergŰDelange method which gives (3.4). It is
possible to iterate the SelbergŰDelange method to write, for any J ≥ 1,

∑

n≤x
1E(n) = Kx




J∑

j=0

cj
(log x)1/2+j


+O

(
x(log x)−3/2−J


. (3.6)

Explicit values for the constants cj can be found in the literature for c0 = 1 [Lan09],
c1 = 0.581948659 · · · [Sta28, Sta29, Sha64, CLM23] and up to c15 in [EG18]. It is
possible to get an expression for the number of sums of two squares smaller than x
with a better error term, but one loses the simplicity of the formula above as a sum of
descending powers of log. We state this result in the next theorem, that we will prove
in Section 3.7. A similar expression for the number of sums of two squares exhibiting
square-root cancellation under the GRH can be found in [GR21, Theorem B.1], inspired
by the work of [RB02]. Such an expression is also suggested in a note of Tenenbaum
[Ten15, page 291].

Theorem 3.2.1. Let 0 < ε < 1/2. There exists a constant c > 0 such that

∑

n≤x
1E(n) =

1

π

∫ 1

1/2+ε
G(σ)

xσ

σ♣σ − 1♣1/2
dσ +O


x exp


−c
√

log x


,

where G(s) = (ζ(s)(s − 1))1/2L(s, χ4)
1/2(1 − 2−s)−1/2∏

p≡3 (mod 4) (1 − p−2s)
−1/2

and χ4

is the non-trivial Dirichlet character modulo 4, so G(s) is an analytic function for
Re(s) > 1/2 + ε. If we assume the Riemann Hypothesis for ζ(s) and L(s, χ4), we can
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replace the error term by O
(
x1/2+ε


.

Even if it is more precise (see Table 3.2), this formula gives somehow less insight on the
behaviour of the secondary terms and we come back to the SelbergŰDelange method
when separating the sums of two squares into congruence classes.

x Actual (3.4) (3.6) Theorem 3.2.1 (3.4) (3.6) Theorem 3.2.1

109 173 229 059 167 877 068 172 591 375 173 226 354 1.0319 1.0037 1.00001562
1010 1 637 624 157 1 592 621 708 1 632 873 166 1 637 616 416 1.0283 1.0029 1.00000473
1011 15 570 512 745 15 185 052 177 15 533 945 443 15 570 488 969 1.0254 1.0024 1.00000153
1012 148 736 628 859 145 385 805 874 148 447 838 016 148 736 563 568 1.0230 1.0019 1.00000044

Table 3.2: Comparison of the experimental data for
the number of sums of two squares up to x with the
asymptotic of (3.4), the asymptotic of (3.6) with the
Ąrst two terms and the integral of Theorem 3.2.1. The
three rightmost columns are the percentage errors.
Notice that the error for the integral approximation
of Theorem 3.2.1 agrees with the error term under the
Riemann Hypothesis.

Let us now consider the distribution of sums of two squares in arithmetic progressions
modulo q. For a ∈ N, following the notations introduced in Section 3.1, let us denote

N(x; q,a) := #¶En ≤ x : En ≡ a (mod q)♢.

The case q ≡ 1 (mod 4) is a prime is particularly simple, and we restrict to that case.
We refer the reader to [Rie65, Satz 1] (see also [BW00, Lemma 2.1]) for the general
case.

Theorem 3.2.2. [Rie65, Satz 1] Let q ≡ 1 (mod 4) be a prime. Then, for a ∈ Z/qZ,

N(x; q,a) :=
∑

n≤x
n≡a (mod q)

1E(n) ∼ K

q

x√
log x

.

If one compares the above theorem with experimental data for N(x; q, a) as shown
in Table 3.3, there is a discrepancy, and the experimental data shows an excess for
a ≡ 0 (mod q) compared to the other classes modulo q. This is caused by secondary
terms that depend on the class a, which do not seem to appear in the literature, and
we compute the Ąrst such term in Theorem 3.2.4 below. The proof uses the SelbergŰ
Delange method which evaluates the contribution of essential singularities by using
HankelŠs formula, replacing CauchyŠs residue theorem for this case. We state below the
version of the method needed for the proof of Theorem 3.2.4, and we refer the reader
to [Ten15, Chapter II.5] and [Kou20, Chapter 13], and to Section 3.5 for more details.

Theorem 3.2.3. [Kou20, Theorem 13.2] Let f(n) be a multiplicative function with
generating function F (s) =

∑
n≥1 f(n)n−s. Suppose there exists κ ∈ C such that for x
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large enough ∑

p≤x
f(p) log p = κx+OA

(
x/(log x)A


,

for each Ąxed A > 0, and such that ♣f(n)♣ ≤ τk(n) for some k ∈ N, where τk is the
k-th divisor function. For j ≥ 0, let c̃j be the Taylor coefficients about 1 of the function
(s− 1)κF (s)/s. Then, for any J ∈ N, and x large enough, we have

∑

n≤x
f(n) = x

J∑

j=0

c̃j
(log x)κ−j−1

Γ(κ− j)
+O

(
x

(log x)J+2−Re(κ)

)
.

Theorem 3.2.4. Let q ≡ 1 (mod 4) be a prime, and let K and c1 be as deĄned above.
Then,

∑

n≤x
n≡a (mod q)

1E(n) =
K

q
x

J∑

j=0

cj,a
(log x)1/2+j

+O

(
x

(log x)J+3/2

)
,

where

c0,a = c0 = 1 and c1,a :=





c1 +
log q

2
if a ≡ 0 (mod q)

c1 − log q

2(q − 1)
otherwise.

. (3.7)

We refer the reader to Table 3.3 for the comparison between the numerical data and
Theorem 3.2.4.

q a N(x; q, a) Main term Main and secondary terms

0 30 700 929 089 29 077 161 174 30 536 403 581
1 29 508 931 067 29 477 858 608

5 2 29 508 917 111
3 29 508 920 778
4 29 508 930 814

Table 3.3: Comparison of the experimental data for
N(x; q, a) and the asymptotic of Theorem 3.2.4 using
only the main term, or the main term and the Ąrst
secondary term for q = 5 and x = 1012. The average
of N(x; q, a) is ≈ 29 747 325 771.

Proof. Let F (s) :=
∑
n≥1 1E(n)n−s be the generating series for sums of two squares.

Using the well-known fact that n is a sum of two squares if and only if vp(n) is even for
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all primes p ≡ 3 (mod 4), it is easy to see that for Re(s) > 1,

F 2(s) =
∏

p̸≡3 (mod 4)

(
1 − 1

ps

)−2 ∏

p≡3 (mod 4)

(
1 − 1

p2s

)−2

= ζ(s)L(s, χ4)


1 − 1

2s

−1 ∏

p≡3(4)

(
1 − 1

p2s

)−1

where χ4 is the non-principal Dirichlet character modulo 4. Landau [Lan09] also showed
that in a neighborhood of s = 1,

F (s)

s2
=
∑

ℓ≥0

iaℓ(1 − s)ℓ−1/2,

with a0 = K
√
π and a1 = a0(2c1+1) [Sha64]. Applying Theorem 3.2.3 with κ = 1/2, we

get (3.6), using the values a0, a1 to get explicit values for the Ąrst two Taylor coefficients
of (s− 1)1/2F (s)/s.

To introduce the congruence condition, we write for a ̸≡ 0 (mod q),

N(x; q, a) =
1

q − 1

∑

χ (mod q)

χ(a)
∑

n≤x
χ(n)1E(n), (3.8)

and we denote the generating function of fχ(n) = χ(n)1E(n) by Fχ(s) :=
∑
n≥1 χ(n)1E(n)n−s.

For χ0 the principal character modulo q and χ ̸= χ0, we have for Re(s) > 1,

F 2
χ(s) = L(s, χ)L(s, χ4χ)

(
1 − χ(2)

2s

)−1 ∏

p≡3(4)

(
1 − χ2(p)

p2s

)−1

F 2
χ0

(s) =

(
1 − 1

qs

)2

F 2(s).

(3.9)

For χ ̸= χ0, since Fχ(s) is analytic for Re(s) > 1/2, we have for any ε > 0 that

∑

n≤x
χ(n)1E(n) = O

(
x1/2+ε


,

and the theorem will follow by evaluating
∑
n≤x χ0(n)1E(n) with the SelbergŰDelange

method. Let b̃j be the Taylor coefficients of (s − 1)1/2Fχ0(s)/s around s = 1, and c̃j
are the Taylor coefficients of (s − 1)1/2F (s)/s around s = 1. From (3.9), it is easy to
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compute

b̃0 = (1 − q−1) c̃0 = (1 − q−1)K
√
π

b̃1 = (1 − q−1) c̃1 +
log q

q
c̃0 = K

√
π

(
log q

q
− 2c1(1 − q−1)

)
.

Applying Theorem 3.2.3 with κ = 1/2, to estimate the sum
∑
n≤x χ0(n)1E(n), and

replacing in (3.8), we get the statement of the theorem when a ̸≡ 0 (mod q), with

K

q
c0,a =

b̃0

(q − 1)Γ(1/2)
,

K

q
c1,a =

b̃1

(q − 1)Γ(−1/2)
.

For a ≡ 0 (mod q), we use the above and (3.6) to obtain

N(x; q, 0) =
∑

n≤x
1E(n) −

∑

a ̸≡0 (mod q)

N(x; q, a)

=
K

q
x


 1

(log x)1/2
+

(
c1 +

log q

2

)
1

(log x)3/2
+

J∑

j=2

cj − (q − 1)cj,1
(log x)1/2+j


+O

(
x(log x)−3/2−J


,

which completes the proof.

3.3 HardyŰLittlewood conjectures in arithmetic pro-

gressions for sum of two squares

We state in this section the analogue of the HardyŰLittlewood prime k-tuple conjectures
for the case of sums of two squares, following [FKR17]. We also state new bounds on
the average of the HardyŰLittlewood constant in this context that are useful in our
heuristic for Conjecture 3.1.1, but are also interesting in themselves as they are related
to the distribution of gaps between sums of two squares.

For k ≥ 1, let H = ¶h1, . . . , hk♢ ⊆ Z, and

Rk(H; x) :=
1

x

∑

n≤x
1E(n + h1) . . . 1E(n + hk).

In the case H = ¶0♢, we have

R1(x) := R1(¶0♢; x) =
1

x

∑

n≤x
1E(n) ∼ K√

log x
.

The philosophy of the HardyŰLittlewood conjecture is that the events 1E(n + hi) are Şinde-
pendentŤ, and the probability that n+hi are simultaneously sums of two squares for 1 ≤ i ≤ k
is the product of the probabilities, which is (ignoring the small differences between log n or
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log n + hi) 
K√
log n

k
.

Of course, the events are not really independent, so we adjust by considering the probabilities
that n+hi are sums of two squares modulo p versus the probably that k independent integers
are sums of two squares modulo p. To do so, for each prime p, we deĄne

δH(p) = lim
α→∞

#¶0 ≤ a < pα : ∀h ∈ H, a + h ≡ □ + □ (mod pα)♢
pα

.

Since δH(p) = 1 for p ≡ 1 (mod 4) (see e.g. [FKR17, Proposition 5.1]), we deĄne the singular
series for H = ¶h1, . . . , hk♢ by

S(H) :=
∏

p̸≡1 (mod 4)

δH(p)

(δ¶0♢(p))k
. (3.10)

It is proven in [FKR17] that the limit deĄning δH(p) exists, and the Euler product converges
to a non-zero limit provided that δH(p) > 0 for all p ̸≡ 1 (mod 4).

Conjecture 3.3.1. [FKR17, Conjecture 1.1] Fix k ≥ 1, and H = ¶h1, . . . , hk♢ ⊆ Z. If
S(H) > 0, then

Rk(H; x) ∼ S(H) (R1(x))k ∼ S(H)


K√
log x

k

This conjecture is still open, but it is known that
∑
n 1E(n + h1) . . . 1E(n + hk) is inĄnite for

k = 2,3 by the work of Hooley [Hoo71, Hoo73].

It is not straightforward to give a simple formula for the singular series S(H) for a given set
H (see Section 3.6), except the trivial cases S(∅) = S(¶h♢) = 1. For H = ¶0, h♢, Connors
and Keating [CK97] computed

S(¶0, h♢) =
1

2K2
W2(h)

∏

p≡3 (mod 4)
p♣h

1 − p−vp(h)−1

1 − p−1
, (3.11)

where

W2(h) =

{
1 if 2 ∤ h

2 − 3 · 2−v2(h) otherwise,

and vp is the p-adic valuation.

Notice that it means that S(H) > 0 when k = 2. This can also be proven for k = 3, but
for general k, we can Ąnd sets H such that S(H) = 0. It is easy to see that

∑
n 1E(n +

h1) . . . 1E(n + hk) is Ąnite when S(H) = 0.

We now state a slight generalization of the HardyŰLittlewood conjecture where n is restricted
to an arithmetic progression modulo q.

Conjecture 3.3.2. (HardyŰLittlewood for sums of two squares in arithmetic progressions)
Fix k ≥ 1, and H = ¶h1, . . . , hk♢ ⊆ Z. Let q ≡ 1 (mod 4) be a prime, and a ∈ Z. If S(H) > 0,
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then

Rk(H; x, q, a) :=
1

x

∑

n≤x
n≡a (mod q)

1E(n + h1) . . . 1E(n + hk)

∼ S(H)

q


K√
log x

k
.

We remark that unlike the generalized HardyŰLittlewood conjecture of [LOS16], we do not
need to adjust the local factors at the prime numbers dividing q in S(H) since we Ąxed q
to be prime with q ≡ 1 (mod 4), and this prime does not appear in the Euler product (3.10)
deĄning S(H).

In Conjectures 3.3.1 and 3.3.2, we used K/
√

log n for the probability that n is a sum of two
squares. As the secondary term for this probability depends on the residue class modulo q from
Theorem 3.2.4, we get more precise results by using this second term to reĄne the probability
in Conjecture 3.3.2. We state that in the conjecture below, and we used it to illustrate the
Ąt with the numerical data in Table 3.4, but not in the rest of the paper while getting in the
heuristic model leading to Conjecture 3.1.1 and Conjecture 3.1.4 (as those secondary terms
would be smaller than some error terms occurring in the heuristic).

Conjecture 3.3.3. (ReĄned HardyŰLittlewood in arithmetic progressions) Fix k ≥ 1, and
H = ¶h1, . . . , hk♢ ⊆ Z. Let q ≡ 1 (mod 4) be a prime, and a ∈ Z. If S(H) > 0, then

Rk(H; x, q, a) =
S(H)

q
Kk


 1

(log x)k/2
+

1

(log x)k/2+1

∑

h∈H
c1,h+a + O


1

(log x)k/2+2


 ,

where c1,h is deĄned by (3.7).

a h xRk(H;x, q, a) Main term Main and secondary term Err1 Err2

0 1 3 906 419 030 3 619 120 683 3 850 620 130 1.0794 1.0145
1 1 3 751 339 794 3 619 120 683 3 718 867 172 1.0365 1.0087
1 2 1 925 818 092 1 809 560 341 1 859 433 586 1.0642 1.0357
0 5 4 062 607 000 3 619 120 682 3 982 373 088 1.1225 1.0201

Table 3.4: Numerical data versus Conjecture 3.3.3 for H = ¶0, h♢, x = 1012, q = 5. The third
column shows the numerical data, the 4-th and 5-th columns show the product of x and the
prediction of Conjecture 3.3.3 with the main term, and with the main and Ąrst secondary
term respectively. The last two columns show their percentage errors, respectively.

Finally, we need an equivalent form of Conjecture 3.3.2, inspired by the work of Montgomery
and Soundararajan [MS04] for the case of primes, namely

1

x

∑

n≤x
n≡a (mod q)

∏

h∈H


1E(n + h) − K√

log n


∼ S0(H)

q


K√
log x

♣H♣
. (3.12)

Assuming that Conjecture 3.3.2 holds, we get relations between the constants S0(H) and
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S(H), and it is easy to see that

S0(∅) = 1

S0(¶h♢) = 0

S0(¶h1, h2♢) = S(¶h1, h2♢) − 1,

and that for a general set H,

S0(H) =
∑

T ⊆H
(−1)♣H∖T ♣S(T ). (3.13)

Mirroring [MS04], we prove in Section 3.6 the following result, which is critical to justify our
heuristic.

Theorem 3.3.4. Let S0(H) the constants deĄned by (3.13). Then, for any k ≥ 1 and ε > 0,
we have

∑

H⊆[1,h]
♣H♣=k

S0(H) ≪k,ε h
k
2

+ε.

Note that our result is weaker than the result of Montgomery and Soundararajan who com-
puted an asymptotic for the average of Theorem 3.3.4 in the case of primes [MS04, Theorem 2].
We did not pursue that as Theorem 3.3.4 is sufficient for our application. We observe that,
similar upper bounds are given by Aryan [Ary15b, Ary15a] in the general context of k-tuples
of reduced residues.

3.4 Heuristic for the conjecture

We now develop a heuristic leading to Conjecture 3.1.1 following [LOS16]. Let q ≡ 1 (mod 4)
be a prime, and we recall that

N(x; q,(a,b)) = #¶En ≤ x : En ≡ a (mod q), En+1 ≡ b (mod q)♢.

We Ąrst write

N(x; q,(a,b)) =
∑

n≤x
n≡a (mod q)

∑

h>0
h≡b−a (mod q)

1E(n)1E(n + h)
h−1∏

t=1

(1 − 1E(n + t)). (3.14)

We introduce the notation

1̃E(n) = 1E(n) − K√
log n

,

and for each Ąxed h in (3.14), we study the sum

Sh :=
∑

n≤x
n≡a (mod q)


K√
log n

+ 1̃E(n)


K√

log (n + h)
+ 1̃E(n + h)

 ∏

0<t<h


1 − K√

log (n + t)
− 1̃E(n + t)


.
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If we ignore the small differences among
√

log n,
√

log(n + h), and
√

log (n + t) and we expand
out the product, we get

Sh =
∑

A⊂¶0,h♢

∑

T ⊂[1,h−1]

(−1)♣T ♣ ∑

n≤x
n≡a (mod q)


K√
log n

2−♣A♣ ∏

t∈[1,h−1]
t̸∈T


1 − K√

log n

 ∏

t∈A∪T
1̃E(n + t)

Finally, denoting

α(n) = 1 − K√
log n

,

and using (3.12), we conjecture that

Sh =
∑

A⊂¶0,h♢

∑

T ⊂[1,h−1]

(−1)♣T ♣ ∑

n≤x
n≡a (mod q)


K√

log(n)

2−♣A♣
α(n)h−1−♣T ♣ ∏

t∈A∪T
1̃E(n + t)

∼ x

q

∑

A⊂¶0,h♢

∑

T ⊂[1,h−1]

(−1)♣T ♣S0(A ∪ T )


K√
log x

2+♣T ♣
α(x)h−1−♣T ♣.

We emphasize that this is a heuristic argument: in obtaining this expression for Sh, we have
not paid attention to the error terms in (3.12), in particular on the dependency on the size
of the sets A ∪ T and on h.

Summing Sh over all h ≡ b − a (mod q), this gives the conjectural estimate

N(x; q,(a,b)) ∼ x

q
α(x)−1


K√
log x

2

D(a,b; x), (3.15)

where

D(a,b; x) =
∑

h>0
h≡b−a (mod q)

∑

A⊂¶0,h♢

∑

T ⊂[1,h−1]

(−1)♣T ♣S0(A ∪ T )


K

α(x)
√

log x

♣T ♣
α(x)h. (3.16)

In order to evaluate (3.16), we will use the following notations. Let

α(x)h =


1 − K√

log x

h
= e−h/H ⇐⇒ H = − 1

log α(x)
, (3.17)

which implies that

H =

√
log x

K
− 1

2
+ O

(
(log x)−1/2



log H =
1

2
log log x − log K + O

(
(log x)−1/2


.
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3.4.1 Discarding the singular series involving larger sets

We approximate D(a,b; x) by discarding all the singular series where A ∪ T has more than
2 elements, which is justiĄed by Theorem 3.3.4. We separate in 3 cases, depending on the
possible choices for the set A ⊆ ¶0, h♢. We use the notation deĄned in (3.17) for H, and the
bound

∑
h>0

h≡v (mod q)

α(x)hhℓ ≪ℓ Hℓ+1 for any ℓ ≥ 0, and v ∈ Z.

If A = ∅, then for k ≥ 3, we deduce from Theorem 3.3.4 that

∑

h>0
h≡b−a (mod q)

∑

T ⊂[1,h−1]
♣T ♣=k

S0(T )


K

α(x)
√

log x

k
α(x)h ≪k


K

α(x)
√

log x

k ∑

h>0
h≡b−a (mod q)

h
k
2

+εα(x)h

≪k


K

α(x)
√

log x

k
H1+ k

2
+ε ≪k (log x)− k

4
+ 1

2
+ε.

If A = ¶h♢ and ♣A ∪ T ♣ ≥ 3, we have for k ≥ 2

∑

h>0
h≡b−a (mod q)

∑

T ⊂[1,h−1]
♣T ♣=k

S0(T ∪ ¶h♢)


K

α(x)
√

log x

k
α(x)h

≈k
1

q


K

α(x)
√

log x

k ∑

D⊂[1,H]
♣D♣=k+1

S0(D) ≪k
1

q


K

α(x)
√

log x

k
H

k+1
2

+ε ≪k
1

q
(log x)− k

4
+ 1

4
+ε,

where we are approximating the sum over h and T of the Ąrst line as the sum over all D of
size k + 1 contained in [1,H], which we then bound by Theorem 3.3.4. We obtain the same
bound for A = ¶0♢ using the fact that S0 is invariant by translation.

Finally, in the case A = ¶0,h♢, we introduce an extra average. Since S0 is translation
invariant, we have

∑

s≥1

S0(¶s, t1+s, . . . , tk+s, h+s♢)e−s/H = S0(¶0, t1, . . . , tk, h♢)
∑

s≥1

e−s/H ≈ S0(¶0, t1, . . . , tk, h♢)H,
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and using this, we get for k ≥ 1


K

α(x)
√

log x

k ∑

h>0
h≡b−a (mod q)

∑

T ⊂[1,h−1]
♣T ♣=k

S0(T ∪ ¶0, h♢)α(x)h

≈ 1

qH


K

α(x)
√

log x

k∑

s≥1

∑

h≥1

∑

0<t1<···<tk<h
S0(¶s, t1 + s, . . . , tk + s, h + s♢)e−(s+h)/H

≈ 1

qH


K

α(x)
√

log x

k ∑

0<s<t′1<···<t′
k
<h′<2H

S0(¶s, t′
1, . . . , t′

k, h′♢)

≪k
1

q


K

α(x)
√

log x

k
(2H)−1+ k+2

2
+ε ≪k

1

q
(log x)− k

4
+ε.

Discarding all the singular series where A ∪ T has more than 2 elements from (3.16), and
working again heuristically by ignoring the dependence on ♣A ∪ T ♣ in the error terms, we are
led to the model

D(a,b; x) = (D0 + D1 + D2)(a,b; x) + Oε((log x)− 1
4

+ε),

where

D0(a,b; x) =
∑

h>0
h≡b−a (mod q)


1 + S0(¶0,h♢)


α(x)h

D1(a,b; x) = −


K

α(x)
√

log x

 ∑

h>0
h≡b−a (mod q)

∑

t∈[1,h−1]


S0(¶0,t♢) + S0(¶t,h♢)


α(x)h

D2(a,b; x) =


K

α(x)
√

log x

2 ∑

h>0
h≡b−a (mod q)

∑

1≤t1<t2<h


S0(¶t1,t2♢)


α(x)h.

Replacing in (3.15), we then conjecture that up to error term of order x(log x)− 5
4

+ε, we have

N(x; q,(a,b)) ∼ x

q
α(x)−1


K√
log x

2

(D0 + D1 + D2)(a,b; x). (3.18)

3.4.2 Evaluation of the sums of singular series involving sets
of size 2

In order to evaluate (3.18), we Ąrst evaluate the simple exponential sums. We will use the
notation

f(v; q) :=

{
−1

2 v = 0
q−2v

2q 1 ≤ v ≤ q − 1
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which gives

E(H) :=
∑

h>0

e−h/H = H − 1

2
+ O(H−1) =

√
log x

K
− 1 + O

(
(log x)−1/2



E(q,v; H) :=
∑

h>0
h≡v (mod q)

e−h/H =
H

q
+ f(v; q) + O(H−1) =

√
log x

Kq
+ f(v; q) − 1

2q
+ O

(
(log x)−1/2


.

Let

S(q,v; H) :=
∑

h≥1
h≡v (mod q)

S(¶0,h♢)e−h/H

S0(q,v; H) :=
∑

h≥1
h≡v (mod q)

S0(¶0,h♢)e−h/H =
∑

h≥1
h≡v (mod q)

(S(¶0,h♢) − 1)e−h/H .
(3.19)

and

S(H) :=
∑

h≥1

S(¶0,h♢)e−h/H =
∑

v (mod q)

S(q,v; H)

S0(H) :=
∑

h≥1

S0(¶0,h♢)e−h/H =
∑

v (mod q)

S0(q,v; H).

We then have

S0(q,v; H) = S(q,v; H) − H

q
− f(v; q) + O(H−1)

S0(H) = S(H) − H +
1

2
+ O(H−1).

(3.20)

Using Theorem 3.1.2, we evaluate D0(a,b; x), D1(a,b; x) and D2(a,b; x).

Proposition 3.4.1. Let q ≡ 1 (mod 4) be a prime. For j ≥ 1, let c(j) be the constants from
Theorem 3.1.2. Then,

D0(a,b; x) + D1(a,b; x) + D2(a,b; x)

= S(q, b − a; H) +
2

qKπ
(log H)1/2 − 1

2q
− 1

q

J∑

j=1

c(j)(log H)1/2−j + O

(
(log H)−1/2−J +

√
log H√
log x

)

where we use the change of variables (3.17). We remark that the error term (log H)−1/2−J is
the largest one, for any value of J .
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Proof. First, notice that D0(a,b; x) = S(q, b − a; H). For D1(a,b; x), we Ąrst compute

∑

h≥2
h≡b−a (mod q)

∑

1≤t≤h−1

S0(¶0,t♢)e−h/H =
∑

t≥1

S0(¶0,t♢)e−t/H ∑

h≥1
h≡b−a−t (mod q)

e−h/H (3.21)

=


H

q
+ O(1)


S0(H),

and

−


K

α(x)
√

log x

 ∑

h>0
h≡b−a (mod q)

∑

1≤t≤h−1

S0(¶0,t♢)e−h/H =


−1

q
+ O


1√

log x


S0(H).

We get a similar estimate for the second sum in D1(a,b; y) involving S0(¶t, h♢) by making a
change of variable to replace it by S0(¶0, r♢) with r = h − t, which gives

D1(a,b; x) =


−2

q
+ O

(
(log x)−1/2


S0(H).

Similarly, for D2(a,b; x), we Ąrst compute

∑

h≥3
h≡b−a (mod q)

∑

1≤t1<t2<h
S0(¶t1,t2♢)e−h/H

=
∑

1≤t1<t2
S0(¶0, t2 − t1♢)

∑

h≡b−a (mod q)
h≥t2+1

e−h/H =
∑

r≥1

S0(¶0, r♢)
∑

t2≥r+1

e−t2/H
∑

h′≥1
h′≡b−a−t2 (mod q)

e−h′/H

=
∑

r≥1

S0(¶0, r♢)e−r/H ∑

t′2≥1

e−t′2/H
∑

h′≥1
h′≡b−a−t′2−r (mod q)

e−h′/H =

(
H2

q
+ O(H)

)
S0(H), (3.22)

and replacing in the deĄnition of D2(a,b; x), we have

D2(a,b; x) =


1

q
+ O

(
(log x)−1/2


S0(H).

Using Theorem 3.1.2 and (3.20) to evaluate S0(H), this completes the proof.

One can be more precise regarding the dependence on the congruence classes by separating
the sum over t in (3.21) and the sum over r in (3.22) in congruence classes modulo q. In
particular, the following reĄnement of Proposition 3.4.1 will be used for numerical testing.
The proof follows directly from the proof of Proposition 3.4.1, and we omit it.

49



3.4. HEURISTIC FOR THE CONJECTURE

Proposition 3.4.2. Let q ≡ 1 (mod 4) be a prime. Then

D0(a,b; x) + D1(a,b; x) + D2(a,b; x)

= E(q, b − a; H) + S0(q, b − a; H) − 2
K

α(x)
√

log x

∑

c (mod q)

S0(q, b − a − c; H)E(q,c; H)

+


K

α(x)
√

log x

2 ∑

c,d (mod q)

S0(q, b − a − c − d; H)E(q,c; H)E(q,d; H).

3.4.3 Completing the heuristic

We now deduce Conjecture 3.1.1, by replacing Theorem 3.1.2 and Proposition 3.4.1 in (3.18).
If a ≡ b (mod q), we have

N(x; q,(a,a)) =
xK2

q log x


1 +

K√
log x

+ O


1

log x

√
log x

Kq
− 2(q − 1)

qKπ
(log H)1/2 − 1

q

+
J∑

j=1


c0(j) − c(j)

q


(log H)1/2−j + O

(
(log H)−J−1/2

 

=
Kx

q2
√

log x


1 +

1√
log x

J∑

j=0

b0(j) (log H)1/2−j + O


1√

log x(log H)J+1/2



(3.23)

where b0(0) = −2(q − 1)/π and b0(j) = K(qc0(j) − c(j)) for j ≥ 1.

If a ̸≡ b (mod q), we have

N(x; q,(a,b)) =
xK2

q log x


1 +

K√
log x

+ O


1

log x

√
log x

Kq
+

2

qKπ
(log H)1/2 − 1

q

+
1

2K2ϕ(q)

∑

χ (mod q)
χ̸=χ0

χ(v)−1Cq,χ +
J∑

j=1


c1(j) − c(j)

q


(log H)1/2−j + O

(
(log H)−J−1/2

 

=
Kx

q2
√

log x


1 + Ca,b +

1√
log x

J∑

j=0

b1(j) (log H)1/2−j + O
(
(log H)−J−1/2

 

(3.24)

=
Kx

q2
√

log x


1 + Ca,b − 1

ϕ(q)

1√
log x

J∑

j=0

b0(j) (log H)1/2−j + O
(
(log H)−J−1/2

 
,

where Ca,b = q
2Kϕ(q)

∑
χ (mod q)
χ̸=χ0

χ(v)−1Cq,χ, b1(0) = 2/π and b1(j) = K(qc1(j)−c(j)) for j ≥ 1.

For the last line, we used (3.3) which gives b1(j) = − b0(j)
ϕ(q) , for j ≥ 0.

To deduce Conjecture 3.1.1 and obtain the explicit expressions for the constants Cj for 0 ≤ j ≤
J , from the above expressions (3.23) and (3.24), we approximate (log H)1/2−j for 0 ≤ j ≤ J ,
where H is given by (3.17). We illustrate the process below for J = 1.
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Using the approximations

(log H)1/2 =
1√
2

√
log log x − log K√

2

1√
log log x

+ O
(
(log log x)−3/2


,

(log H)−1/2 =

√
2√

log log x
+ O

(
(log log x)−3/2


,

we obtain

1∑

j=0

b0(j) (log H)1/2−j = −
√

2(q − 1)

π

√
log log x +

(√
2(q − 1) log K

π
+

√
2b0(1)

)
(log log x)−1/2

(3.25)

+ O
(
(log log x)−3/2



Using the values of c(1) and c0(1) given by (3.35) and (3.38), we have

b0(1) = K(qc0(1) − c(1)) =
ϕ(q)

π


ω + γ

2
+

q

ϕ(q)
log q


,

where γ is the Euler-Mascheroni constant and ω is deĄned in Lemma 3.5.2. Replacing in (3.25)
and then in (3.23), we get Conjecture 3.4.3 below which is the special case of Conjecture 3.1.1
for J = 1. The case a ̸≡ b (mod q) follows from multiplying the corresponding term by −1

ϕ(q)

in (3.24). The general case of Conjecture 3.1.1 follows similarly by using approximations for
(log H)−1/2−j as above for 1 ≤ j ≤ J .

Conjecture 3.4.3. Fix q ≡ 1 (mod 4). Then,

N(x,q,(a,a)) ∼ x

q2

K√
log x


1 −

√
2ϕ(q)

π

(log log x)1/2

(log x)1/2
+

C1

(log x)1/2(log log x)1/2



up to an error term of O


x

log x(log log x)3/2


, and with

C1 =

√
2ϕ(q)

π


log K +

ω + γ

2


+

√
2q log q

π
,

where γ is the Euler-Mascheroni constant and ω is deĄned in Lemma 3.5.2.

For a ̸= b (mod q),

N(x,q,(a,b)) =
x

q2

K√
log x


1 +

√
2

π

√
log log x√

log x
+

Ca,b√
log x

− C1

ϕ(q)(log x)1/2(log log x)1/2



up to an error term of O


x

log x(log log x)3/2


, and with

Ca,b :=
1

2K

q

ϕ(q)

∑

χ̸=χ0

χ(b − a)Cq,χ
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where the sum is over the non-principal Dirichlet characters modulo q and Cq,χ is deĄned
in (3.28).

3.5 Proof of Theorem 3.1.2

Proof. As in [Smi13], we deĄne a(h) = 2K2S(¶0,h♢). Then using (3.11), we see that a(h) is
a multiplicative function of h with

a(pk) =





1 for p ≡ 1 (mod 4),

2 − 3

2k
for p = 2, k ≥ 1,

1 − p−(k+1)

1 − p−1
for p ≡ 3 (mod 4).

Using Mellin Inversion, we have

2K2S(H) =
∑

h≥1

a(h)e−h/H =
1

2πi

∫

(2)
D(s)HsΓ(s)ds,

where D(s) =
∑
h≥1 a(h)h−s. Similarly, for χ a character modulo q,

2K2S(H, χ) :=
∑

h≥1

a(h) χ(h)e−h/H =
1

2πi

∫

(2)
Dχ(s)HsΓ(s)ds, (3.26)

where Dχ(s) =
∑
h≥1 a(h)χ(h)h−s.

In order to compute S(H) and S(H, χ), we move the contour integral and pick up the con-
tributions of the singularities of the integrand. So, Ąrst, we need to understand the analytic
properties of the generating series D(s) and Dχ(s). Using the formulas for a(pk) above, we
have

Dχ(s) = Rχ(s)Pχ(s)Qχ(s),

where

Rχ(s) = 1 + 2


χ(2)2−s

1 − χ(2)2−s


− 3


χ(2)2−(s+1)

1 − χ(2)2−(s+1)



Pχ(s) =
∏

p≡1 (4)

(1 − χ(p)p−s)−1

Qχ(s) =
∏

p≡3 (4)

(1 − χ(p)p−s)−1(1 − χ(p)p−(s+1))−1.

This can be rewritten as

Dχ(s) = L(s,χ)(1 − χ(2)2−s)Rχ(s)Q1,χ(s) = L(s,χ)L(s + 1,χ)
1
2 Mχ(s)
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where

Q1,χ(s) =
∏

p≡3 (4)

(1 − χ(p)p−(s+1))−1

=
( L(s + 1,χ)

L(s + 1,χ · χ4)

 1
2
(1 − χ(2)2−(s+1))

1
2

∏

p≡3 (mod 4)

(1 − χ(p)2p−2(s+1))− 1
2 ,

Mχ(s) =

(
1 + χ(2)2−s − 3


χ(2)2−(s+1)(1 − χ(2)2−s)

1 − χ(2)2−(s+1)

)
L(s + 1,χ · χ4)− 1

2

× (1 − χ(2)2−(s+1))
1
2

∏

p≡3 (mod 4)

(1 − χ(p)2p−2(s+1))− 1
2

= (1 − χ(2)2−s + χ(4)2−2s)L(s + 1,χ · χ4)− 1
2

× (1 − χ(2)2−(s+1))− 1
2

∏

p≡3 (mod 4)

(1 − χ(p)2p−2(s+1))− 1
2 ,

where χ4 is the primitive character modulo 4. The formula for Q1,χ(s) follows from developing
the identity (1−χ(p)2p−2(s+1)) = (1−χ(p)p−(s+1))(1+χ(p)p−(s+1)). Since χ ̸= χ4, the function
Mχ is holomorphic in the half plane Re(s) ≥ 0, and we can push this limit a bit further to the
left depending on the zero-free region of L(s + 1,χ · χ4) (up to Re(s) > −1

2 under Riemann
Hypothesis).

In the case χ is a non-principal character, L(s,χ) is entire on the complex plane, and L(s +

1,χ)
1
2 is holomorphic in a region containing the half-plane Re(s) ≥ 0, where L(s + 1,χ) does

not vanish. As such, there is no pole or singularity in the integrand at s = 1. If we shift
the line of integration of (3.26) to the left of the line Re(s) = 0 using the standard zero-free
region and estimates for L-functions, we obtain (for some c > 0 and any ε > 0)

S(H, χ) =
Cq,χ

2K2
+

{
O(H−1/2+ε) under GRH

O
(
exp

(−c
√

log H
))

otherwise,
(3.27)

where the constant term comes from the contribution of pole of order 1 from Γ(s) at s = 0,
and

Cq,χ = Dχ(0) = L(0,χ)L(1,χ)
1
2 Mχ(0) (3.28)

= L(0,χ)L(1,χ)
1
2 L(1,χ · χ4)− 1

2 (1 − χ(2) + χ(4))(1 − χ(2)2−1)− 1
2

∏

p≡3 (mod 4)

(1 − χ(p)2p−2)− 1
2 .

Note that Cq,χ ̸= 0 only when χ(−1) = −1.

If χ = χ0, Dχ0(s) has a simple pole at s = 1 with residue 2K2ϕ(q)/q, and no other singularities
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H

Figure 3.1: HankelŠs Contour

for Re(s) > 0, and we move the integral to Re(s) = ε > 0. This gives

∑

h≥1

a(h)χ0(q)e−h/H =
1

2πi

∫

(2)
Dχ0(s)HsΓ(s)ds

= 2
ϕ(q)

q
K2H +

1

2πi

∫

(ε)
Dχ0(s)HsΓ(s)ds. (3.29)

Similarly, we have that

∑

h≥1

a(h)e−h/H =
1

2πi

∫

(2)
D(s)HsΓ(s)ds = 2K2H +

1

2πi

∫

(ε)
D(s)HsΓ(s)ds, (3.30)

where
D(s) = ζ(s)(1 − 2−s)R(s)Q1(s) = ζ(s)ζ(s + 1)

1
2 M(s), (3.31)

and the functions R, Q1, M are obtained by taking χ ≡ 1 in the previous deĄnitions.

To account for the contribution of the singularity of Dχ0(s) and D(s) as s = 0 to the inte-
grals (3.29) and (3.30), we use again the SelbergŰDelange method. Since we are evaluating a
Mellin transform, we cannot use directly [Kou20, Theorem 13.2] as in Section 3.2, but we are
following the same standard steps. We Ąrst approximate the line of integration ℜ(s) = ε by
the truncated segment from ε − iT to ε + iT , which we then deform to a truncated HankelŠs
contour. This is possible since there are no residue inside this contour. We then replace this
contour by the inĄnite HankelŠs countour H of Figure 3.1 with a very good error term, which
allows us to use Theorem 3.5.1 to compute the contribution of the singularity of the generat-
ing functions (for each term of the Taylor series). We refer the reader to [Kou20, Chapter 13]
and [Ten15, Chapter 5] for more details. The contributions to S(H) and S(H, χ0) will be
different in magnitude, because the singularities of ζ(s)ζ(s + 1)1/2 and L(s,χ0)L(s + 1,χ0)1/2

at s = 0 are different, since L(0, χ0) = 0, but ζ(0) ̸= 0.

Theorem 3.5.1 (HankelŠs formula [Ten15] Theorem 0.17 p.179). Fix any r > 0, and let H
be the HankelŠs countour, which is the path consisting of the circle ♣s♣ = r excluding the point
s = −r, and of the half-line (−∞, −r] covered twice, with respective arguments π and −π.
Then for any complex number z, we have

1

2πi

∫

H
s−zes ds =

1

Γ(z)
.

We Ąrst work with D(s) = ζ(s)ζ(s + 1)
1
2 M(s). The function M(s) is analytic around s = 0,
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and

M(0) = 2KL(1, χ4)− 1
2 =

4K√
π

.

Then, s
3
2 D(s)Γ(s) is analytic and non-zero around s = 0 with Taylor series

∑
n≥0 cnsn, and

we write

D(s)Γ(s) =
a(3/2)

s3/2
+

a(1/2)

s1/2
+ a(−1/2)s1/2 + . . . .

We now compute the contribution to the integral (3.30) for each term of the series above using
Theorem 3.5.1. For every term a(z)/sz of the Taylor series above (where z = 3/2, 1/2, −1/2, . . . ),
we have

1

2πi

∫

H
a(z)s−zHsds =

a(z)

2πi

∫

H
s−zes logHds

=
a(z)(log H)z−1

2πi

∫

H
t−zetdt =

a(z)(log H)z−1

Γ(z)
,

where we used the change of variables t = s log H. This gives, for any integer N ≥ 1,

1

2πi

∫

(ε)
D(s)HsΓ(s)ds =

N∑

n=0

a(3/2 − n)(log H)1/2−n

Γ(3/2 − n)
+ O

(
(log H)1/2−N−1


.

Replacing in (3.30), this gives

S(H) = H +
J∑

j=0

c(j)(log H)1/2−j + O
(
(log H)−1/2−J


, (3.32)

with

c(j) =
a(3/2 − j)

2K2Γ(3/2 − j)
, j ≥ 0.

To complete the proof of Theorem 3.1.2, we now compute the values of c(0) and c(1). Using
the expansions4 around s = 0

√
ζ(s + 1) =

1

s1/2


1 +

γ

2
s + O(s2)


, Γ(s) =

1

s
− γ + O(s),

we have

D(s)Γ(s) =
1

s
3
2

ζ(s)M(s)


1 − γ

2
s + O(s2)


, (3.33)

4We used the Laurent expansion of ζ(s) at s = 1

ζ(s) =
1

s − 1
+

∞∑

n=0

(−1)n
γn

n!
(s − 1)n, with γn := lim

N→∞



∑

1≥k≥N

logn k

k
−
∫

N

1

logn t

t
dt


 , and γ := γ0.
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which gives

a(3/2) = ζ(0)M(0) = −2K√
π

=⇒ c(0) =
a(3/2)

2K2Γ(3/2)
= − 2

Kπ
.

To get the value of c(1), we need the Ąrst 2 terms of the Taylor series around s = 0 of the
analytic function

Z(s) = ζ(s)M(s) = Z(0) + Z ′(0)s + O
(
s2


. (3.34)

Replacing in (3.33), and using Lemma 3.5.2 for the value of Z ′(0), we have

a(1/2) =


Z ′(0) − γ

2
Z(0)


=

K(ω + γ)√
π

=⇒ c(1) =
a(1/2)

2K2Γ(1/2)
=

ω + γ

2πK
, (3.35)

where γ is the Euler-Mascheroni constant and ω is deĄned in Lemma 3.5.2.

We now turn to the secondary term for the sum

∑

h≥1

a(h)χ0(h)e−h/H =
1

2πi

∫

(2)
Dχ0(s)HsΓ(s)ds

= 2
ϕ(q)

q
K2H +

1

2πi

∫

(ε)
Dχ0(s)HsΓ(s)ds (3.36)

which is similar to the above replacing D(s) with Dχ0 , where χ0 is the principal character
modulo q. We have

Dχ0(s) = L(s,χ0)L(s + 1,χ0)
1
2 Mχ0(s),

where

Mχ0(s) = (1 − 2−s + 2−2s)L(s + 1,χ0 · χ4)− 1
2 (1 − 2−(s+1))− 1

2

∏

p≡3 (mod 4)

(1 − p−2(s+1))− 1
2

since χ0(p) = 1 for each p ∤ q and q ≡ 1 (mod 4). We remark that Mχ0(s) = (1 −
q−(s+1))− 1

2 M(s), which implies that

Dχ0(s) = L(s,χ0)ζ(s + 1)
1
2 M(s) = (1 − q−s)D(s).

Then writing (1 − q−s) = (log q)s + O(s2), we notice that s1/2Dχ0(s)Γ(s) is analytic and
non-zero around s = 0. Indeed, L(s, χ0) has a simple zero at s = 0 which cancels the pole
of Γ(s). Around s = 0, we write

Dχ0(s)Γ(s) =
b(1/2)

s1/2
+ b(−1/2)s1/2 + b(−3/2)s3/2 + . . . ,

and working as above this gives

1

2πi

∫

(ε)
Dχ0(s)HsΓ(s)ds =

N∑

n=0

b(1/2 − n)(log H)−1/2−n

Γ(1/2 − n)
+ O

(
(log H)−1/2−N−1


,
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replacing in (3.36), we have

S(H, χ0) =
ϕ(q)

q
H +

J∑

j=1

c(j, χ0)(log H)1/2−j + O
(
(log H)−1/2−J


. (3.37)

Using the expansion of D(s)Γ(s) above, we have

b(1/2) = a(3/2) log q = −2K√
π

log q =⇒ c(1, χ0) =
b(1/2)

2K2Γ(1/2)
= − 1

Kπ
log q.

We now complete the proof of Theorem 3.1.2. Using (3.27) and (3.37) and the orthogonality
relations, we have for v ̸= 0,

S(q,v,H) =
∑

h≥1
h≡v (mod q)

S(¶0,h♢)e−h/H =
1

ϕ(q)

∑

χ

χ(v)−1S(H, χ)

=
1

ϕ(q)
S(H, χ0) +

1

2K2ϕ(q)

∑

χ̸=χ0

χ(v)−1Cq,χ + O(exp(−c
√

log H))

=
H

q
+

1

2K2ϕ(q)

∑

χ̸=χ0

χ(v)−1Cq,χ +
J∑

j=1

c(j, χ0)

ϕ(q)
(log H)1/2−j + O

(
(log H)−1/2−J


.

For v = 0, we use (3.32) and the above to get

S(q,0,H) = S(H) −
∑

v∈(Z/qZ)∗

S(q,v,H)

=
H

q
− 2

Kπ

√
log H +

J∑

j=1

(c(j) − c(j, χ0)) (log H)1/2−j + O
(
(log H)−1/2−J


,

where we used the fact that

∑

v∈(Z/qZ)∗

∑

χ̸=χ0

χ(v)−1Cq,χ = 0

by the orthogonality relations. This completes the proof of the proposition, with c1(j) =
c(j, χ0)/ϕ(q) and c0(j) = c(j) − c(j, χ0) for j ≥ 1, from which the relation c0(j) + ϕ(q)c1(j) =
c(j) easily follows. From the values c(1) and c(1, χ0) computed above, we have

c1(1) = − log q

Kϕ(q)π
and c0(1) =

1

Kπ


ω + γ

2
+ log q


, (3.38)

where γ is the Euler-Mascheroni constant and ω is deĄned in Lemma 3.5.2.

Lemma 3.5.2. Let Z(s) be the function deĄned by (3.34). Then,

Z ′(0) =
K√

π
ω ≈ −0.3851314513 . . .
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where

ω = log
2

π2
+

L′(1, χ4)

L(1, χ4)
+ 2

∑

p≡3(4)

log p

p2 − 1
.

Proof. Firstly, observe M(s) in (3.34) and rewrite it as

Z(s) = ζ(s)M(s) = ζ(s)A(s)B(s)

where

A(s) = 1 − 2−s + 2−2s,

B(s) =


L(s + 1, χ4)

(
1 − 2−(s+1)) ∏

p≡3(4)


1 − 1

p2(s+1)

−1/2

.

Then, we have

Z ′

Z
(0) =

ζ ′

ζ
(0) +

A′

A
(0) +

B′

B
(0),

Hence, we need to compute ζ, A, A′, B and B′ at s = 0. Indeed, the following special values
for ζ are well-known:

ζ(0) = −1

2
, ζ ′(0) = − log 2π

2
.

Moreover, for A(s), we have A(0) = 1, A′(0) = − log 2. We may use the recursive formula for
B(s) to obtain B(0) = 4K/

√
π and

B′

B
(0) = −1

2


L′(1, χ4)

L(1, χ4)
+ log 2 + 2

∑

p≡3(4)

log p

p2 − 1


 = −1

2
(log 2 + α1 + β1)

where we denote

α1 =
L′(1, χ4)

L(1, χ4)
, = 0.2456096036 . . . , β1 = 2

∑

p≡3(4)

log p

p2 − 1
= 0.4574727064 . . . .

One can compute the value of α1 by L(1, χ4) = π/4 and L′(1, χ4) = 0.192901331574902 . . ..

3.6 Proof of Theorem 3.3.4

In the heuristic leading to Conjecture 3.1.1, we used Theorem 3.3.4 to justify that the terms
involving a sum of singular series for sets with three or more elements contribute to the error
term. Theorem 3.3.4 is an analogue of [MS04, Theorem 2] of Montgomery and Soundararajan
adapted from primes to sums of two squares. We now prove Theorem 3.3.4, following closely
the argument developed in [MS04], without giving all the details but insisting on the points
that are different in the case of the sums of two squares. To help with the comparison, we stay
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close to the notation used in loc. cit. so we may use notation that differs from the rest of the
paper, which should not cause trouble to the reader as this section is relatively independent
from the rest of the paper. We use the standard notation e(x) = e2iπx.

3.6.1 The singular series

The Ąrst step in the proof is to write the singular series as an actual series (and not a Euler
product), the way it was introduced by Hardy and Littlewood (see [MS04, Lemma 3]). We
begin with giving a new expression for the local factors of the singular series. Let D =
¶d1, . . . , dk♢ ⊆ Z. We recall that for any p ̸≡ 1 (mod 4), we have

δD(p) = lim
α→∞

#¶0 ≤ a < pα : ∀d ∈ D, a + d ≡ □ + □ (mod pα)♢
pα

,

and the singular series is deĄned by

S(D) :=
∏

p̸≡1 (mod 4)

δD(p)

(δ¶0♢(p))k
.

Lemma 3.6.1. Let D = ¶d1, . . . , dk♢ ⊆ Z be a set with k elements. For any prime number
p ̸≡ 1 (mod 4), one has

δD(p)

δ¶0♢(p)k
=

∑

q1,...,qk♣p∞

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk),

where for any q1, . . . , qk ∈ N,

AD(q1, . . . , qk) =
∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

e

(
k∑

i=1

aidi
qi

)
k∏

i=1

C(qi,ai),

with

C(q,a) =





1 if q is odd,

0 if 2 ♣ q but 4 ∤ q,

2e(−a/4) if 4 ♣ q.

and λ2 is the multiplicative function deĄned on the prime powers by

λ2(pm) =

{
(−1)m if p is odd,

1 if p = 2.

Proof. Let p ≡ 3 (mod 4) be a prime number. For D = ¶d1, . . . , dk♢ ⊆ Z a set with k elements,
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we deduce from [FKR17, Proposition 5.1, Proposition 5.3(a) and (5.4)] that

δD(p) = lim
α→∞ p−α

pα∑

x=1

k∏

i=1

1Sp,α(x + di)

where 1Sp,α is the characteristic function of the set Sp,α = ¶p2βm : 0 ≤ β < α
2 , m ̸≡ 0 (mod p)♢.

In particular, for α even, following the idea of the proof of [MV86, Lemma 2], we write that

1Sp,α(x) =

α
2

−1∑

β=0

∑

s♣p

µ(s)

p2βs

p2βs∑

a=1

e


ax

p2βs



=

α
2

−1∑

β=0

1

p2β






1 − 1

p

 ∑

r♣p2β

∑

a∈(Z/rZ)∗

e


ax

r


− 1

p

∑

a∈(Z/p2β+1Z)∗

e


ax

p2β+1




=
α−2∑

γ=0





α
2

−1∑

β=⌈ γ
2

⌉

1

p2β


1 − 1

p

 ∑

a∈(Z/pγZ)∗

e


ax

pγ






−
α
2

−1∑

β=0

1

p2β+1

∑

a∈(Z/p2β+1Z)∗

e


ax

p2β+1



=
α−1∑

γ=0

(−p)−γ − p−α

1 + 1
p

∑

a∈(Z/pγZ)∗

e


ax

pγ


,

where we used the fact that α is even in the last line. Thus, we have,

δD(p)

δ¶0♢(p)k
= lim

α→∞
α even

p−α
pα∑

x=1

k∏

i=1



α−1∑

γi=0

((−p)−γi − p−α)
∑

ai∈(Z/pγiZ)∗

e


(x + di)ai

pγi


 ,

since δ¶0♢(p) = (1 + 1
p)−1 by [FKR17, Proposition 5.3(c)]. We swap the sums and begin with

the sum over x, as γ1, . . . , γk ≤ α − 1, we have

p−α
pα∑

x=1

e

(
x

k∑

i=1

ai
pγi

)
=

{
1 if

∑k
i=1

ai
pγi ∈ Z

0 otherwise.

This yields

δD(p)

δ¶0♢(p)k
= lim

α→∞
α even

α−1∑

γ1=0

· · ·
α−1∑

γk=0

k∏

i=1

((−p)−γi − p−α)AD(pγ1 , . . . ,pγk).

We obtain the formula announced in the Lemma for p ≡ 3 (mod 4) by taking the limit α → ∞,
and using the bound ♣AD(q1, . . . , qk)♣ ≤ q1...qk

[q1,...,qk] (see (3.46)).

The proof is similar for p = 2. By [FKR17, Proposition 5.2(a) and (5.3)], for α ≥ 2 we can
take S2,α = ¶2βm : 0 ≤ β < α − 1, m ≡ 1 (mod 4)♢, and [FKR17, Proposition 5.2(c)] gives
δ¶0♢(2) = 1

2 .

60



CHAPTER 3. BIAS FOR CONSECUTIVE SUMS OF TWO SQUARES

We write that

1S2,α(x) =
α−2∑

β=0

2−β−2
2β∑

a=1

e


ax

2β

 4∑

t=1

e


( x

2β − 1)
t

4



=
α−2∑

β=0

2−β−2
∑

r♣2β+2

∑

b∈(Z/rZ)∗

e

(
(x − 2β)b

r

)

=
α∑

γ=0

∑

b∈(Z/2γZ)∗

e


xb

2γ

 α−2∑

β=max¶0,γ−2♢
2−β−2e

(
−2β−γb



=
α∑

γ=0

∑

b∈(Z/2γZ)∗

e


xb

2γ

(
C(2γ ,b)2−γ−1 − 2−α


,

note that in the sum we always have (b,2) = 1 so 1 + e(−b
2 ) = 0. Thus, we have

δD(2)

δ¶0♢(2)k
= lim

α→∞ 2−α+k
2α∑

x=1

k∏

i=1

1S2,α(x + di)

= lim
α→∞ 2−α

2α∑

x=1

k∏

i=1




α∑

γi=0

∑

bi∈(Z/2γiZ)∗

e


(x + di)bi

2γi

(
C(2γi ,bi)2

−γi − 2−α+1




Exchanging the sums and computing the sum over x Ąrst, this yields

δD(2)

δ¶0♢(2)k
= lim

α→∞

α∑

γ1=0

· · ·
α∑

γk=0

k∏

i=1

2−γiAD(2γ1 , . . . ,2γk),

which gives the formula announced in the Lemma for p = 2.

We now give the analogue of [MS04, (44) and (45)]. The main difference between the case
of primes and the case of sum of two squares is that the local probabilities δD(p) at each
prime p involve all powers of p, and then the sum over q1, . . . , qk in Lemma 3.6.1 runs over all
integers (and not only square-free integers). We then approximate S(D) by taking all integers
supported on primes p ≤ y and appearing with power at most N , for the appropriate values
of y and N .

Lemma 3.6.2. Let D ⊆ N ∩ [1,h] be a set with k elements. Let y > h, N ≥ 4 log y, and
Py :=

∏
p≤y

p̸≡1 (mod 4)

p. Then,

S(D) =
∑

q1,...,qk♣PN
y

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok

(
y−1(log y)k−1) (3.39)

and S0(D) =
∑

q1,...,qk♣PN
y

qi>1

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok

(
y−1(log y)k−1), (3.40)
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where AD(q1, . . . , qk) is deĄned in Lemma 3.6.1.

Proof. First, it follows from the Chinese Remainder Theorem that for q1, . . . , qk, q′
1, . . . , q′

k ∈ N

satisfying
(∏k

i=1 qi,
∏k
i=1 q′

i


= 1, one has AD(q1, . . . , qk)AD(q′

1, . . . , q′
k) = AD(q1q′

1, . . . , q1q′
1).

Since y > h ≥ max D, from [FKR17, Proposition 5.3.(c)] we deduce

∏

p>y

δD(p)

δ¶0♢(p)k
=
∏

p>y

(1 + 1
p)k−1(1 − k−1

p ) =
∏

p>y

(1 + Ok(p
−2)) = 1 + Ok((y log y)−1).

By deĄnition we have δD(p) ≤ 1 for all prime number p, thus

∏

p≤y

δD(p)

δ¶0♢(p)k
≤ 2k

∏

p≤y
p≡3 (mod 4)

(1 + 1
p)k ≪k (log y)k,

which gives

S(D) =
∏

p≤y

δD(p)

δ¶0♢(p)k
+ O(y−1(log y)k−1).

Using Lemma 3.6.1 and the bound ♣AD(q1, . . . , qk)♣ ≤ 2
k
2

q1...qk
[q1,...,qk] (see (3.46)), we have

δD(p)

δ¶0♢(p)k
=

∑

q1,...,qk♣pN

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok

( ∑

pN+1♣q1♣p∞

∑

q2,...,qk♣p∞

1

[q1, . . . ,qk]

)

=
∑

q1,...,qk♣pN

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok

( ∞∑

n=N+1

(n + 1)k−1

pn
)

=
∑

q1,...,qk♣pN

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok

(
p−N−1(N + 2)k−1).

Moreover, using again the bound (3.46), we have

∏

p≤y

∑

q1,...,qk♣pN

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) ≪k

∑

q1,...,qk♣PN
y

k∏

i=1

♣λ2(qi)♣
qi

q1 · · · · · qk
[q1, . . . ,qk]

≤
∑

q1,...,qk♣PN
y

1

[q1, . . . ,qk]

≪k

∏

p≤y

N∑

n=0

(n + 1)k

pn
≤
∏

p≤y

(
1 +

Ck

p

) ≪ε yε (3.41)
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for some constant Ck > 0, for any ε > 0. Finally,

∏

p≤y

δD(p)

δ¶0♢(p)k
=

∑

q1,...,qk♣PN
y

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok,ε

(
yε
∑

q♣Py

q ̸=1

q−N−1N (k−1)ω(q))

=
∑

q1,...,qk♣PN
y

k∏

i=1

λ2(qi)

qi
AD(q1, . . . , qk) + Ok,ε

(
yε2−NNk−1).

Choosing log y
log 2 (1 + ε) < N gives (3.39). We deduce (3.40) from (3.39) using the formula

S0(D) =
∑

T ⊆D
(−1)♣D\T ♣S(T )

and the relation A¶d1,...,dk♢(q1, . . . , qk−1,1) = A¶d1,...,dk−1♢(q1, . . . , qk−1).

In particular, taking y = hk+1 in (3.40), one has

∑

D⊆[1,h]
♣D♣=k

S0(D) =
∑

q1,...,qk♣PN
y

qi>1

k∏

i=1

λ2(qi)

qi

∑

D⊆[1,h]
♣D♣=k

AD(q1, . . . , qk) + ok(1). (3.42)

3.6.2 An easier version of the main term

To continue with notation similar to [MS04], we deĄne

Vk(y,N,h) =
∑

q1,...,qk♣PN
y

qi>1

k∏

i=1

λ2(qi)

qi

∑

1≤d1,...,dk≤h
A(d1,...,dk)(q1, . . . , qk), (3.43)

where we remark that the difference with the main term above is that d1, . . . , dk do not have
to be distinct. Let us introduce some other useful notations and results from [MS04]. For
α ∈ R, we denote

Eh(α) =
h∑

d=1

e(αd) and Fh(α) = min(h,∥α∥−1), (3.44)

where ∥·∥ is the distance to the nearest integer, so that we have ♣Eh(α)♣ ≤ Fh(α). We have
(see [MS04, (54)])

q−1∑

a=1

Fh(aq )2 ≪ q min(q,h). (3.45)

We will also use the following result from the work of Montgomery and Vaughan [MV89]
and which is an analogue of [MS04, Lemma 1] that applies to the case of non necessarily
square-free numbers.
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Lemma 3.6.3 (Theorem 1 of [MV89]). Let k ≥ 2 be an integer and for 1 ≤ i ≤ k, let qi ∈ N

and Gi be a 1-periodic complex valued function. Then, we have

∣∣∣
∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

k∏

i=1

Gi(
ai
qi

)
∣∣∣ ≤ 1

[q1, . . . ,qk]

k∏

i=1

(
qi

∑

1≤ai≤qi

(qi,ai)=1

♣Gi(
ai
qi

)♣2)
1
2 .

In particular we deduce the bound for AD(q1, . . . ,qk) that we used in the proofs of Lemma 3.6.1
and 3.6.2:

♣AD(q1, . . . ,qk)♣ ≤ 1

[q1, . . . ,qk]

k∏

i=1

(
qi

∑

1≤ai≤qi

(qi,ai)=1

♣C(qi,ai)♣2
) 1

2 . (3.46)

We also have a bound for Vk(y,N,h).

Corollary 1. For any h, y, N > 0, one has Vk(y,N,h) ≪k,ε h
k
2 yε.

Proof. Recall that we deĄned

Vk(y,N,h) =
∑

q1,...,qk♣PN
y

qi>1

k∏

i=1

λ2(qi)

qi

∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

k∏

i=1

Eh

(aidi
qi


C(qi,ai),

where C(q,a) = 1 for odd q and ♣C(q,a)♣ ≤ 2 in general. We use (3.44) to write

♣Vk(y,N,h)♣ ≤
∑

q1,...,qk♣PN
y

qi>1

k∏

i=1

2

qi

∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

k∏

i=1

Fh(ai
qi

).

Then Lemma 3.6.3, (3.45) and the bound in (3.41) yield

♣Vk(y,N,h)♣ ≤
∑

q1,...,qk♣PN
y

qi>1

2k

[q1, . . . ,qk]

k∏

i=1

1

q
1
2
i

( ∑

1≤ai≤qi

(qi,ai)=1

Fh(ai
qi

)2
 1

2

≤
∑

q1,...,qk♣PN
y

qi>1

2k

[q1, . . . ,qk]
h

k
2 ≪k,ε h

k
2 yε,

which is the bound announced.
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3.6.3 The main estimate

We now prove the analogue of [MS04, (60)], writing
∑

D⊆[1,h]
♣D♣=k

S0(D) in terms of Vk(y,N, h).

Again, the idea of the proof is very similar to the work of Montgomery and Soundararajan,
except that we deal with a wider summation (namely a sum over all integers instead of a sum
over square-free integers).

Lemma 3.6.4. For any h > k ∈ N, let y = hk+1 and N ≥ 4 log y. One has

∑

D⊆[1,h]
♣D♣=k

S0(D) =

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j


−h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j

Vk−2j(y,N,h) + Ok,ε(h
k−1

2 yε),

where Vk(y,N,h) is deĄned in (3.43), and

C(d) =





1 if d is odd

0 if 2 ♣ q, 4 ∤ d

4 if 4 ♣ d.

Proof. Following the arguments of [MS04], we can prove the analogue of [MS04, (52)] in our
context, which is

∑

D⊆[1,h]
♣D♣=k

AD(q1, . . . , qk) =
∑

P=¶S1,...,SM ♢
w(P)

∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

k∏

i=1

C(qi,ai)
M∏

m=1

h∑

dm=1

e



∑

i∈Sm

ai
qi

dm


 ,

(3.47)

where the Ąrst sum is over partitions P = ¶S1, . . . , SM♢ of ¶1, . . . , k♢, and w(P) is deĄned
in [MS04, p. 17].

In the case of a partition P containing at least one part of size ≥ 3, write N1 =
⋃

♣Sm♣=1 Sm,
N2 = ¶1, . . . , k♢ ∖ N1 and m2 = ♣¶1 ≤ m ≤ M : ♣Sm♣ ≥ 2♢♣. Using (3.44) and ♣C(q,x)♣ ≤ 2,
we have

∣∣∣
∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

k∏

i=1

C(qi,ai)
M∏

m=1

h∑

dm=1

e



∑

i∈Sm

ai
qi

dm



∣∣∣ ≤ 2khm2

∑

a1,...,ak
1≤ai≤qi,(qi,ai)=1∑k

i=1

ai
qi

∈Z

∏

i∈N1

Fh(ai
qi

).

Then we apply Lemma 3.6.3 and the bound (3.45) to obtain that the sum above is

≤ 2khm2

[q1, . . . ,qk]

∏

i∈N1

(
qi

∑

1≤ai≤qi

(qi,ai)=1

(
Fh(ai

qi
)
)2 1

2
∏

i∈N2

(
qi

∑

1≤ai≤qi

(qi,ai)=1

12
 1

2

≤ 2kh
k−1

2
q1 · · · · · qk
[q1, . . . ,qk]

,
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where we used 1
2 ♣N1♣ + m2 ≤ k−1

2 when the partition P contains at least one part of size ≥ 3.
Replacing this bound in (3.47) and then in (3.42), we sum over 1 < q1, . . . , qk ♣ PN

y as in (3.42)
and use the bound (3.41) to obtain that the contribution of the partitions containing at least

one part of size ≥ 3 in
∑

D⊆[1,h]
♣D♣=k

S0(D) is at most Ok,ε(h
k−1

2
+ε).

We now turn our attention to partitions of ¶1, . . . , k♢ with sets of size at most 2. The
combinatorics leading to [MS04, (56)] work similarly and give

∑

D⊆[1,h]
♣D♣=k

S0(D) =
∑

0≤j≤ k
2

(−1)j
(

k

2j

)
(2j)!

j!2j

∑

r1,...,rj ♣PN
y

∑

b1,...,bj

1≤bi≤ri,(ri,bi)=1

j∏

i=1

H
( bi
ri

)

×
∑

q2j+1,...,qk♣PN
y

qi>1

∑

a2j+1,...,ak

1≤ai≤qi,(qi,ai)=1∑j

i=1

bi
ri

+
∑k

i=2j+1

ai
qi

∈Z

k∏

i=2j+1

λ2(qi)C(qi,ai)

qi

h∑

di=1

e


ai
qi

di



+ Ok(h
k−1

2
+ε)

(3.48)

where

H
(
b
r

)
=

∑

q1,q2♣PN
y

qi>1

∑

a1,a2

1≤ai≤qi,(qi,ai)=1
a1
q1

+
a2
q2

∈ b
r

+Z

λ2(q1)C(q1,a1)λ2(q2)C(q2,a2)

q1q2

h∑

d=1

e


b

r
d


.

In particular, we have

H(1) =
∑

1<q♣PN
y

∑

1≤a≤q
(q,a)=1

C(q,a)C(q,q − a)

q2
h = h

∑

1<q♣PN
y

C(q)ϕ(q)

q2
,

and the contribution of the terms with all ri = 1 in the sum above is

∑

0≤j≤ k
2

(
k

2j

)
(2j)!

j!2j

(
− h

∑

1<q♣PN
y

C(q)ϕ(q)

q2

j
Vk−2j(y,N,h).

We now show that the contribution to (3.48) of the terms where not all ri are 1 can be
absorbed in the error term. Let ℓ be the number of iŠs for which ri > 1. For any ℓ > 0, and
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any r1, . . . , rℓ, q2j+1, . . . , qk > 1 up to re-ordering and applying Lemma 3.6.3, we have

∑

b1,...,bℓ
1≤bi≤ri,(ri,bi)=1

ℓ∏

i=1

H
(bi
ri

) ∑

a2j+1,...,ak

1≤ai≤qi,(qi,ai)=1∑j

i=1

bi
ri

+
∑k

i=2j+1

ai
qi

∈Z

k∏

i=2j+1

λ2(qi)C(qi,ai)

qi

h∑

di=1

e


ai
qi

di



≪k
1

[r1, . . . , rℓ,q2j+1, . . . , qk]

ℓ∏

i=1

(
ri

∑

1≤b≤ri,(ri,b)=1

∣∣∣∣H
( b

ri

)∣∣∣∣
2  1

2

×
k∏

i=2j+1

( 1

qi

∑

1≤a≤qi,(qi,a)=1

∣∣∣∣Fh
( a

qi

)∣∣∣∣
2  1

2
.

(3.49)

To obtain a bound for
∣∣∣H
(
b
r

)∣∣∣ we proceed similarly to [MS04] which gives

H
(
b
r

) ≪ Fh
(
b
r

) ∑

s1,s2♣PN
y

[s1,s2]=r

∑

c1,c2

1≤ci≤si,(si,ci)=1
c1
s1

+
c2
s2

∈ b
r

+Z

1

s1s2

∑

t♣PN
y

(t,r)=1

ϕ(t)

t2

≪ Fh
(
b
r

) 1

ϕ(r)

∑

s1,s2♣PN
y

[s1,s2]=r

ϕ(s1)ϕ(s2)

s1s2

∏

p≤y
p∤r

(
1 +

1

1 − p−1

N∑

n=1

p−n


≪ Fh
(
b
r

)1
r

∏

p♣r
(1 − p−1)2(1 + vp(r) − vp(r)p−1)

∏

p≤y
p∤r

(
1 + p−1



≪ Fh
(
b
r

)d(r)

r
log y,

where d(r) is the number of divisors of r. Using (3.45), this gives

∑

1≤b≤r
(r,b)=1

∣∣H( br )
∣∣2 ≤ min(r,h)

d(r)2

r
(log y)2.

Using this bound and (3.45) in (3.49) summed over all r1, . . . , rℓ, q2j+1, . . . , qk > 1 divisors of
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PN
y , we obtain

∑

r1,...,rℓ♣PN
y

ri>1

∑

b1,...,bℓ
1≤bi≤ri,(ri,bi)=1

ℓ∏

i=1

H
( bi
ri

) ∑

q2j+1,...,qk♣PN
y

qi>1

∑

a2j+1,...,ak

1≤ai≤qi,(qi,ai)=1∑j

i=1

yi
ri

+
∑k

i=2j+1

ai
qi

∈Z

k∏

i=2j+1

λ2(qi)C(qi,ai)

qi

h∑

di=1

e


ai
qi

di



≪k

∑

r1,...,rℓ♣PN
y

ri>1

∑

q2j+1,...,qk♣PN
y

qi>1

1

[r1, . . . , rℓ,q2j+1, . . . , qk]

ℓ∏

i=1

(
h

1
2 d(ri) log y


h

k−2j
2

≪kh
k+ℓ−2j

2 (log y)ℓ
∑

m♣PN
y

1

m

(∑

r♣m
d(r)

ℓ(∑

q♣m
1
k−2j

≪kh
k+ℓ−2j

2 (log y)ℓ
∏

p♣Py

(
1 +

N∑

n=1

(n + 1)k+ℓ−2j(n + 2

2

)ℓ
p−n


≪k,ℓ,j,ε h

k+ℓ−2j
2 yε.

Finally, summing the contribution for each ℓ ≥ 0 yields

∑

D⊆[1,h]
♣D♣=k

S0(D) =

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j


−h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j

Vk−2j(y,N,h)

+

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j

j∑

ℓ=1

(
j

ℓ

)
h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j−ℓ

O
(
h

k+ℓ−2j
2 yε

)
+ Ok(h

(k−1+ε)/2),

and using
∑

1<d♣PN
y

C(d)ϕ(d)
d2 ≪ε yε, we deduce

∑

D⊆[1,h]
♣D♣=k

S0(D) =

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j


−h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j

Vk−2j(y,N,h) + Ok,ε(h
k−1

2 yε).

which completes the proof of Lemma 3.6.4.

The proof of Theorem 3.3.4 is now relatively straightforward. Lemma 3.6.4 gives for any
h > k ∈ N, and N ≥ 4(k + 1) log h that

∑

D⊆[1,h]
♣D♣=k

S0(D) =

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j


−h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j

Vk−2j(h
k+1,N,h) + Ok,ε(h

k−1
2

+ε).
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Then the bound from Corollary 1 yields

∑

D⊆[1,h]
♣D♣=k

S0(D) ≪k,ε

k/2∑

j=0

(
k

2j

)
(2j)!

j!2j


h

∑

1<d♣PN
y

C(d)ϕ(d)

d2




j

h
k−2j

2
+ε + Ok,ε(h

k−1
2

+ε)

≪k h
k
2

+ε
( ∏

p<y

1 − 1

p

−k
2 ≪k,ε h

k
2

+2ε,

which Ąnishes the proof of Theorem 3.3.4.

3.7 Integral form and improved error terms

Using the methods of Section 3.5 and Theorem 3.3.4, we can obtain a more precise form of the
averages of the HardyŰLittlewood constants for sums of two squares of [Smi13, Theorem 1.1]
and [FKR17, Proposition 1.3] (in a special case) by exhibiting a secondary term. In order
to see the secondary term, we need to express the results of Section 3.5 differently, as a
closed-form expression which contains implicitly all the descending powers of log h. We Ąrst
prove that we can write such an asymptotic for the number of sums of two squares, with
a square-root cancellation error term under the Riemann Hypothesis (Theorem 3.2.1). The
argument for the proof of Theorem 3.2.1 is essentially due to Selberg and known to experts,
it appeared as a mathoverĆow post [(ht13], and an exercise in the book of Koukoulopoulos
[Kou20, Exercise 13.7]. Note also the observation of Tenenbaum [Ten15, page 291] as well as
the independent analogue result of Gorodetsky and Rodgers [GR21, Theorem B.1] inspired
by [RB02]. With the same techniques, we then prove Proposition 3.7.1, which exhibits the
secondary term for the average of the Hardy-Littlewood constants for 2-tuples of sums of two
squares. The general case is Proposition 3.1.3 and it follows by using Theorem 3.3.4 to show
that the average over k-tuples reduces to the average over 2-tuples.

3.7.1 Proof of Theorem 3.2.1

We Ąrst assume the Riemann Hypothesis. Using PerronŠs formula, we have for any δ > 0

∑

n≤x
1E(n) =

∫ 1+δ+iT

1+δ−iT
F (s)

xs

s
ds + O


x1+δ log x

T


, (3.50)

where F (s) = ζ1/2(s)L(s, χ4)1/2(1 − 2−s)−1/2∏
p≡3 (mod 4)

(
1 − p−2s

)−1/2
as seen in the proof

of Theorem 3.2.4. The above path integral is part of a contour which encloses a region of
analyticity of the integrand, which is the usual contour going from 1 + δ − iT to 1 + δ + iT
then to 1/2 + ε + iT then to 1/2 + ε − iT and then back to 1 + δ − iT with a slit along the real
axis between 1/2 + ε and 1, with a line just above the real axis from 1/2 + ε to 1, and a line
just below the real axis from 1 to 1/2 + ε. More precisely, for any ε, η > 0 and for 0 < κ < δ,
we deĄne line segments Lj , j = 1,2,...,7 as in Figure 3.2.

Together with the line segment 1+δ+iT → 1+δ−iT of the integral (3.50), this gives the closed
contour of Figure 3.2, which encloses a region of analyticity of the function F (s) = G(s)(s −
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L1

L2

L3

L4

L5

L6

L7 1 + δ + iT

1 + δ − iT1/2 + ε − iT

1/2 + ε − iη 1 + κ − iη

1 + κ + iη1/2 + ε + iη

1/2 + ε + iT

1

L1 : 1 + δ − iT → 1/2 + ε− iT

L2 : 1/2 + ε− iT → 1/2 + ε− iη

L3 : 1/2 + ε− iη → 1 + κ− iη

L4 : 1 + κ− iη → 1 + κ+ iη

L5 : 1 + κ+ iη → 1/2 + ε+ iη

L6 : 1/2 + ε+ iη → 1/2 + ε+ iT

L7 : 1/2 + ε+ iT → 1 + δ + iT.

Figure 3.2: The contour used in the proof of Theorem 3.2.1.

1)−1/2 since we are assuming the Riemann Hypothesis and ζ1/2(s)(s − 1)1/2, L(s, χ4)1/2(1 −
2−s)−1/2∏

p≡3 (mod 4)(1 − p−2s)−1/2 are analytic for Re(s) > 1/2 + ε. Then, using CauchyŠs
theorem, we have

∫ 1+δ+iT

1+δ−iT
F (s)

xs

s
ds =

7∑

j=1

∫

Lj

F (s)
xs

s
ds.

The contribution coming from L1,L2,L4,L6,L7 are bounded by the classical estimates, where
we use the Lindelöf Hypothesis to bound ♣ζ1/2(σ + it)♣, ♣L1/2(σ + it, χ4)♣ ≪σ ♣t♣ε1 for 1/2 <
σ < 1 and ε1 > 0. For the horizontal integral over L1, we have

∫

L1

F (s)
xs

s
ds ≪

∫ 1+δ

1/2+ε

xσ

T 1−2ε1
dσ = O


x1+δ

T 1−2ε1


,

where we also used the fact that the Euler product (1 − 2−s)−1/2∏
p≡3 (mod 4)(1 − p−2s)−1/2 is

absolutely bounded for Re(s) > 1/2 + ε. We get the same bound for
∫
L7

.

For the vertical integral over L2, we have

∫

L2

F (s)
xs

s
ds ≪

∫ T

η

x1/2+ε

(t + 1
2)1−2ε1

dt = O


x1/2+εT 2ε1


,

which also holds for
∫
L6

. Finally, we have

∫

L4

F (s)
xs

s
ds ≪ η x1+κ,
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and choosing T = x1/2 and η < x− 1
2

−κ, this gives

∫ 1+δ+iT

1+δ−iT
F (s)

xs

s
ds = lim

η→0+

∫ 1+κ−iη

1/2+ε−iη
−
∫ 1+κ+iη

1/2+ε+iη


F (s)

xs

s
ds + O


x1/2+ε


.

Note that κ can be arbitrarily small, and choosing for example κ = x−2, we have

lim
η→0+

∫ 1+κ−iη

1/2+ε−iη
−
∫ 1+κ+iη

1/2+ε+iη


F (s)

xs

s
ds = lim

η→0+

∫ 1−iη

1/2+ε−iη
−
∫ 1+iη

1/2+ε+iη


F (s)

xs

s
ds + O(1).

Putting everything together, we have

∑

n≤x
1E(n) =

1

2πi

∫ 1

1/2+ε
G(σ)

xσ

σ
lim
η→0+

(
(σ − iη − 1)−1/2 − (σ + iη − 1)−1/2


dσ + O


x1/2+ε


,

where G(s) = (s − 1)1/2F (s).

We use the fact that when σ ∈ (0,1), log(σ ± iη − 1) ∼ log ♣σ − 1♣ ± iπ as η → 0+. Writing
(σ ± iη − 1)−1/2 = exp (−1

2 log(σ ± iη − 1)), we see that (σ ± iη − 1)−1/2 ∼ ∓i♣σ − 1♣−1/2, and
we have

lim
η→0+

(
(σ − iη − 1)−1/2 − (σ + iη − 1)−1/2


= 2i♣σ − 1♣−1/2.

Replacing above, this proves the theorem under the Riemann Hypothesis. Unconditionally,
we start from (3.50), and we use a similar contour, but with 1/2 + ε replaced by 1 − c/

√
log x,

where c is small enough to insure that the contour does not contain any zeroes of ζ(s) or
L(s, χ4). Working as above, we get

∑

n≤x
1E(n) =

1

π

∫ 1

1− c√
log x

xσ

σ
G(σ)♣σ − 1♣−1/2dσ + O

(
x1+δ

T 1−2ε1
+ x exp

(
−c
√

log x

T 2ε1

)
,

and choosing δ = 1/ log x and T = exp(c
√

log x), we get

∑

n≤x
1E(n) =

1

π

∫ 1

1−c/√
log x

xσ

σ
G(σ)♣σ − 1♣−1/2dσ + O

(
x exp(−c0

√
log x)


,

for some c0 > 0. Finally, we have

∫ 1−c/√
log x

1
2

+ε

xσ

σ
G(σ)♣σ − 1♣−1/2dσ ≪

∫ 1−c/√
log x

1
2

+ε

xσ

σ♣σ − 1♣1/2
dσ ≪ x1−c/√

log x

which shows the unconditional result.

3.7.2 Averages of HardyŰLittlewood constants

The following proposition is a more precise version of [Smi13, Theorem 1.1] who showed that

∑

1≤d1,d2≤H
distinct

S(¶d1, dk♢) = H2 + O(H1+ε).
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We remark that our normalization differs from [Smi13] for the singular series.

Proposition 3.7.1. Fix ε > 0. There exists c > 0 such that

∑

1≤d1,d2≤H
distinct

S(¶d1, dk♢) = H2+
2

πK2

∫ 1

1/2+ε

F ′(σ)Hσ + F (σ)Hσ log H

♣σ − 1♣1/2
dσ+O

(
H exp(−c

√
log H)



where F (s) = ζ(s − 1)M(s − 1) [(s − 1)ζ(s)]1/2 s−1, with M(s) as deĄned by (3.31). Assuming

the Riemann Hypothesis, we can replace the error term by O
(
H1/2+ε


.

Proof. As in [Smi13, ğ 2.3], we have

∑

1≤d1,d2≤H
distinct

S(¶d1, dk♢) = 2
∑

1≤d<H
S(¶0,d♢)(H − d)

=
1

K2

1

2iπ

∫

(2)

D(s)

s(s + 1)
Hs+1ds,

where D(s) = ζ(s)ζ(s + 1)
1
2 M(s) as deĄned in the beginning of section 3.5. As [Smi13], we

compute the main term, coming from the pole of D(s) at s = 1, which gives

∑

1≤d1,d2≤H
distinct

S(¶d1, dk♢) = H2 +
1

K2

1

2iπ

∫

(ε)

D(s)

s(s + 1)
Hs+1ds.

We Ąrst assume the Riemann hypothesis and we evaluate the integral

1

2iπ

∫

(ε)

D(s)

s(s + 1)
Hs+1ds =

1

2iπ

∫

(1+ε)

F (s)

(s − 1)3/2
Hsds

where F (s) = ζ(s − 1)M(s − 1) [(s − 1)ζ(s)]1/2 s−1 is analytic for Re(s) > 1/2 + ε. We begin
with an integration by part to obtain

∫

(1+ε)

F (s)

(s − 1)3/2
Hsds = lim

T→∞
[−2F (s)Hs(s − 1)−1/2]1+ε+iT

1+ε−iT + 2

∫

(1+ε)

F ′(s)Hs + F (s)Hs log H

(s − 1)1/2
ds

= 2

∫

(1+ε)

F ′(s)Hs + F (s)Hs log H

(s − 1)1/2
ds.

To evaluate the last integral, we Ąrst approximate the line integral by the segment from
1 + ε − iT to 1 + ε + iT , and use the contour of Figure 3.2. Working as in the proof of
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Theorem 3.2.1, we get

2

2πi

∫

(1+ε)

F ′(s)Hs + F (s)Hs log H

(s − 1)1/2
ds

=
1

πi

∫ 1

1/2+ε

(
F ′(σ)Hσ + F (σ)Hσ log H

)
lim
η→0+

(
(σ − 1 − iη)−1/2 − (σ − 1 + iη)−1/2


dσ + O

(
H1/2+ε



=
2

π

∫ 1

1/2+ε

(
F ′(σ)Hσ + F (σ)Hσ log H

) ♣σ − 1♣−1/2dσ + O
(
H1/2+ε


.

Replacing above, this gives (under the Riemann Hypothesis)

1

K2

1

2πi

∫

(ε)

D(s)

s(s + 1)
Hs+1ds =

2

πK2

∫ 1

1/2+ε

F ′(σ)Hσ + F (σ)Hσ log H

♣σ − 1♣1/2
dσ + O

(
H1/2+ε


.

To do a proof without the Riemann Hypothesis, we proceed as in the proof of Theorem 3.2.1,
and we get

2

2πi

∫

(1+ε)

F ′(s)Hs + F (s)Hs log H

(s − 1)1/2
ds =

2

π

∫ 1

1−c1/
√

logH

F ′(σ)Hσ + F (σ)Hσ log H

♣σ − 1♣1/2
dσ + O

(
H exp

(
−c
√

log H


.

To conclude the proof, we show that

∫ 1

1−c1/
√

logH

F ′(σ)Hσ + F (σ)Hσ log H

♣s − 1♣1/2
dσ =

∫ 1

1/2+ε

F ′(σ)Hσ + F (σ)Hσ log H

♣s − 1♣1/2
dσ+O

(
H exp

(
−c
√

log H


.

This follows from the fact that ζ does not vanish on [1
2 + ε,1], so F and F ′ are deĄned and

continuous on [1
2 + ε,1], in particular, they are uniformly bounded. We have

∫ 1−c1/
√

logH

1
2

F ′(σ)Hσ + F (σ)Hσ log H

♣σ − 1♣1/2
dσ ≪F

∫ 1−c1/
√

logH

1
2

Hσ log H

♣σ − 1♣1/2
dσ

≪ H1−c1/
√

logH(log H)
5
4 ≪c H exp

(
−c
√

log H


for any c < c1.

We can now prove Proposition 3.1.3. We observe that it is a more precise version of (a
particular case of) [FKR17, Proposition 1.3] who showed that

∑

1≤d1,...,dk≤H
distinct

S(¶d1, . . . , dk♢) = Hk + O
(
Hk−2/3+o(1)


.

Proof of Proposition 3.1.3. Note that the cases k = 0 or 1 are easy. We have S(∅) = S(¶d♢) =
1, so we obtain 1 and H respectively, without error term. The case k = 2 is proven in
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Proposition 3.7.1. Similarly to [MS04, (17)], we have

∑

1≤d1,...,dk≤H
distinct

S(¶d1, . . . , dk♢) =
k∑

r=0

(
k

r

)
(H − r)!

(H − k)!

∑

1≤d1,...,dr≤H
distinct

S0(¶d1, . . . , dr♢)

=
H!

(H − k)!
+

(
k

2

)
(H − 2)!

(H − k)!

∑

1≤d1,d2≤H
distinct

S0(¶d1, d2♢) + O(Hk− 3
2

+ε),

where we used the decomposition S(H) =
∑

T ⊆H S0(T ), the fact that S0(¶d♢) = 0, and the
bound from Theorem 3.3.4 as soon as the size of the set is larger than 2. Using the estimates

H!

(H − k)!
= H(H − 1) . . . (H − k + 1) = Hk + Hk−1

k−1∑

i=1

(−i) + Ok(H
k−2)

= Hk − Hk−1 k(k − 1)

2
+ Ok(H

k−2),

(H − 2)!

(H − k)!
= Hk−2 + Ok(H

k−3),

and Proposition 3.7.1, this gives

∑

1≤d1,...,dk≤H
distinct

S(¶d1, . . . , dk♢)

= Hk − k(k − 1)

2
Hk−1 +

(
k

2

)
Hk−2

∑

1≤d1,d2≤H
distinct

(S(¶d1, d2♢) − 1) + O(Hk− 3
2

+ε)

= Hk − k(k − 1)

2
Hk−1 +

(
k

2

)
Hk−2

(
2

πK2

∫ 1

1/2+ε

F ′(σ)Hσ + F (σ)Hσ log H

♣σ − 1♣1/2
dσ + H

)
+ O(Hk− 3

2
+ε)

= Hk + k(k − 1)
Hk−1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1 log H

♣σ − 1♣1/2
dσ + O(Hk− 3

2
+ε).

3.7.3 Another formulation of Theorem 3.1.2

We conclude this section by stating a different version of Theorem 3.1.2 with a very good
error term by using an integral form for the main term. We use this proposition for numerical
testing in Section 3.9.

Proposition 3.7.2. Fix ε > 0 and let S(q, v, H) as in (3.19). There exists c > 0 such that
for v ̸≡ 0 (mod q)

S(q, v, H) =
H

q
+

1

2K2ϕ(q)

∑

χ̸=χ0

χ(v)−1Cq,χ +
1

2πK2ϕ(q)

∫ 1

1/2+ε

Fχ0(σ)Hσ−1

♣σ − 1♣1/2
dσ + O

(
exp(−c

√
log H)


,
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and

S(q, 0, H) =
H

q
+

1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1(log H − Aq(σ)/2)

♣σ − 1♣1/2
dσ + O

(
exp(−c

√
log H)



where F (s) = ζ(s−1)M(s−1) [(s − 1)ζ(s)]1/2 Γ(s) and Fχ0(s) = 1−q−(s−1)

s−1 F (s), with M(s) as

deĄned by (3.31) and Aq(s) = 1−q−(s−1)

s−1 . Assuming the Riemann Hypothesis, we can replace

the error terms above by O
(
H−1/2+ε


.

Observe that close to 1
2 one has F ′(σ) ≍ (σ − 1

2)− 5
4 , so the error term in the formula for

S(q, 0, H) depends strongly on ε. The proof is similar to the other proofs of this section, and
we skip the details.

Proof of Proposition 3.7.2: Starting from (3.30), we write

S(H) = H +
1

2K2

1

2πi

∫

(1+ε)

F (s)

(s − 1)
3
2

Hs−1ds,

where F (s) = ζ(s − 1)M(s − 1) [(s − 1)ζ(s)]1/2 Γ(s), with M(s) as deĄned by (3.31). Pro-
ceeding as in the proof of Proposition 3.7.1, with an integration by part before moving the
contour of integration gives the following

S(H) = H +
1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1 log H

♣σ − 1♣1/2
dσ + O

(
exp(−c

√
log H)


.

Similarly, using (3.29) and without the integration by part, we have

S(H, χ0) =
ϕ(q)

q
H +

1

2K2

1

2πi

∫

(1+ε)

Fχ0(s)

(s − 1)
1
2

Hs−1ds

=
ϕ(q)

q
H +

1

2πK2

∫ 1

1/2+ε

Fχ0(σ)Hσ−1

♣σ − 1♣1/2
dσ + O

(
exp(−c

√
log H)


,

where

Fχ0(s) = L(s − 1, χ0)Γ(s − 1)Mχ0(s − 1) [(s − 1)L(s,χ0)]1/2

=
1 − q−(s−1)

s − 1
F (s) =: Aq(s)F (s)

where we used Mχ0(s) = (1 − q−(s+1))−1/2M(s). Assuming the Riemann Hypothesis, we can

replace the error term by O
(
H−1/2+ε


. Then, we obtain the expressions in Proposition 3.7.2

by using the orthogonality of characters and expression (3.27) for the contribution of non-
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trivial characters as in the proof of Theorem 3.1.2. For v ̸= 0 (mod q), we have

S(q, v, H) ∼ 1

2K2ϕ(q)

∑

χ̸=χ0

χ(v)−1Cq,χ +
1

ϕ(q)
S(H, χ0)

∼ H

q
+

1

2K2ϕ(q)

∑

χ̸=χ0

χ(v)−1Cq,χ +
1

2πK2ϕ(q)

∫ 1

1/2+ε

Fχ0(σ)Hσ−1

♣σ − 1♣1/2
dσ

and

S(q, 0, H) ∼ S(H) − ϕ(q)

q
H − 1

2πK2

∫ 1

1/2+ε

Fχ0(σ)Hσ−1

♣σ − 1♣1/2
dσ

∼ H

q
+

1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1 log H

♣σ − 1♣1/2
dσ − 1

2πK2

∫ 1

1/2+ε

Aq(σ)F (σ)Hσ−1

♣σ − 1♣1/2
dσ

∼ H

q
+

1

πK2

∫ 1

1/2+ε

F ′(σ)Hσ−1 + F (σ)Hσ−1(log H − Aq(σ)/2)

♣σ − 1♣1/2
dσ.

3.8 Heuristic in the case of r-uplets

As in [LOS16], the essence for the general conjecture in the case of the distribution of r
consecutive sums of two squares is really in the particular case r = 2 that we explained in
more details. In this section we present the heuristic for Conjecture 3.1.4 with highlights on
the differences from the case r = 2, for this we follow again the exposition of [LOS16]. Let
r ≥ 3, q ≡ 1 (mod 4) and a = (a1, . . . ,ar) ∈ Nr be Ąxed. We write

N(x; q,a) =
∑

n≤x
n≡a1 (mod q)

∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

1E(n)
r∏

i=2

1E(n + h2 + · · · + hi)

×
hi−1∏

t=1

(1 − 1E(n + h2 + · · · + hi−1 + t)).

As in Section 3.4, we use the notation 1̃E(n) = 1E(n) − K√
logn

, approximate all the log(n + t)

by log x, expand out the products and apply the HardyŰLittlewood Conjecture (3.12) in our
context, neglecting the terms corresponding to products over more than 3 terms thanks to
Theorem 3.3.4. Thus, heuristically, up to error of size x(log x)− r

2
− 1

4
+ε, we obtain

N(x; q,a) ∼ x

q

( K√
log x

r
α(x)−r+1(D0(a,x) + D1(a,x) + D2(a,x)

)
,
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where α(x) = 1 − K√
log x

and

D0(a,x) =
∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

(
1 +

∑

1≤i<j≤r
S0(¶0, hi+1 + · · · + hj♢)


α(x)h2+···+hr

D1(a,x) = − K

α(x)
√

log x

∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

r∑

i=1

r∑

j=2

hj−1∑

t=1

S0(¶h2 + · · · + hi, h2 + · · · + hj−1 + t♢)α(x)h2+···+hr

D2(a,x) =
K2

α(x)2 log x

∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

∑

2≤i≤j≤r

hi−1∑

t1=1

hj−1∑

t2=1
t2>t1 if i=j

S0(¶t1, hi + · · · + hj−1 + t2♢)α(x)h2+···+hr .

Let us begin with studying D0(a,x) in more details. As in Section 3.4, we write H =
− 1

logα(x) ⇐⇒ α(x)h = e(−h/H). The contribution of the 1 to D0(a,x) gives

∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

e−(h2+···+hr)/H =
r∏

ℓ=2

(H

q
+ f(aℓ − aℓ−1; q) + O(H−1)



=
(H

q

r−1
+
(H

q

r−2 r∑

ℓ=2

f(aℓ − aℓ−1; q) + O(Hr−3). (3.51)

For the contribution of
∑

1≤i<j≤r to D0(a,x), we Ąrst make a change of variables by writing
j = i + k, and we exchange the order of summation, which gives

∑

1≤i≤r−1
1≤k≤r−i




∑

h2,...,hi,hi+k+1,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

e−(h2+···+hi+hi+k+1+hr)/H




×




∑

hi+1,...,hi+k>0
hℓ≡aℓ−aℓ−1 (mod q)

S0(¶0, hi+1 + · · · + hi+k♢)e−(hi+1+···+hi+k)/H


 .

For each Ąxed i,k, the second factor in the inner sum above is

∑

h>0
h≡ai+k−ai (mod q)

S0(¶0, h♢)e−h/H ∑

hi+1,...,hi+k>0
hℓ≡aℓ−aℓ−1 (mod q)
hi+1+···+hi+k=h

1

=
1

(k − 1)!qk−1

∑

h>0
h≡ai+k−ai (mod q)

S0(¶0, h♢)e−h/H(hk−1 + O(hk−2)). (3.52)
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We need some notation, generalizing the functions deĄned in Section 3.4.2. For v,k ∈ N, let

S(k)(q,v,H) :=
∑

h≥1
h≡v (mod q)

S(¶0,h♢)hke−h/H

S
(k)
0 (q,v,H) :=

∑

h≥1
h≡v (mod q)

S0(¶0,h♢)hke−h/H

S(k)(H) :=
∑

h≥1

S(¶0,h♢)hke−h/H

S
(k)
0 (H) :=

∑

h≥1

S0(¶0,h♢)hke−h/H .

Note that S(0)(q,v,H) = S(q,v,H) as deĄned in (3.19). Moreover, we have

S
(k)
0 (H) = S(k)(H) −

∑

h≥1

hke−h/H = S(k)(H) − k!Hk+1 + O(Hk−1)

and S
(k)
0 (q,v,H) = S(k)(q,v,H) −

∑

h≥1
h≡v (mod q)

hke−h/H = S(k)(q,v,H) − k!

q
Hk+1 + O(Hk−1).

Proposition 3.8.1. Let q ≡ 1 (mod 4) be a prime. For any k ≥ 1 , we have

S(k)(H) = k!Hk+1 − (k − 1)!

K
√

π
Hk(log H)− 1

2 + O(Hk(log H)− 3
2 ).

and

S(k)(q,v,H) =





k!
q Hk+1 + O(Hk(log H)− 3

2 ) if v ̸≡ 0 (mod q)
k!
q Hk+1 − (k−1)!

K
√
π

Hk(log H)− 1
2 + O(Hk(log H)− 3

2 ) if v ≡ 0 (mod q).

We observe that the secondary term is relatively smaller in the case k ≥ 1 than in the case
k = 0 (which is Theorem 3.1.2). This is due to the fact that the order of the singularity is
smaller when k ≥ 1 as the poles of the functions ζ(k + 1 + s) and Γ(s) do not coincide. Note
also that, similarly to Theorem 3.1.2, one could develop the secondary term using a sum of
descending powers of log H with explicit coefficients. We chose not to do so in this statement
as we are mostly interested in the direction of the bias in the distribution of consecutive sums
of two squares in arithmetic progressions.

Proof. The proof is similar to the proof of Theorem 3.1.2, and we just give a sketch. The
main idea is to approximate the sums S(k)(H) and S(k)(q,v,H) via contour integration of the
shifted functions D(s − k) and Dχ(s − k) (for χ a character modulo q) respectively, where
the functions D and Dχ are as deĄned in Section 3.5. For k ≥ 1 and χ ̸= χ0, the function
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Γ(s)Dχ(s − k) is analytic on a zero free region containing the line Re(s) = k, thus, we have

∑

h≥1

2K2S(¶0,h♢)χ(h)hke−h/H = O(Hke−c√logH).

For S(k)(H), the function Γ(s)D(s−k) has a simple pole at s = k+1 with residue 2K2Γ(k+1)

and an essential singularity at s = k of the shape (s − k)− 1
2 . We deduce that

∑

h≥1

2K2S(¶0,h♢)hke−h/H = Hk+12K2Γ(k + 1) − 2Γ(k)
K√

π
Hk(log H)− 1

2 + O(Hk(log H)− 3
2 ),

which gives

S(k)(H) = Hk+1Γ(k + 1) − Γ(k)
1

K
√

π
Hk(log H)− 1

2 + O(Hk(log H)− 3
2 ).

In the case χ = χ0, the function Γ(s)Dχ0(s − k) has a simple pole at s = k + 1 with residue

2K2Γ(k + 1)ϕ(q)
q and an essential singularity at s = k of the shape (s − k)

1
2 . We deduce

∑

h≥1

2K2S(¶0,h♢)χ0(h)hke−h/H = Hk+12K2Γ(k + 1)
ϕ(q)

q
+ O(Hk(log H)− 3

2 ).

Finally, we obtain the expressions in the statement of Lemma 3.8.1 using the orthogonality
relations in the case v ̸≡ 0 (mod q), and the case v ≡ 0 (mod q) is then deduced by subtracting
the contributions of all non-zero vŠs to S(k)(H).

Using Lemma 3.8.1 and (3.51), (3.52), we get

D0(a,x) =
(H

q

r−1
+
(H

q

r−2 r∑

i=2

f(ai − ai−1; q)

+
r−1∑

i=1

r−i∑

k=1

(H

q

r−k−1 1

(k − 1)!qk−1
S

(k−1)
0 (q,ai+k − ai,H) + O(Hr−3)

=
(H

q

r−1
+
(H

q

r−2 r−1∑

i=1

(
S0(q,ai+1 − ai,H) + f(ai+1 − ai; q)



+
(H

q

r−2 (log H)− 1
2

K
√

π(k − 1)

∑

1≤i,j≤r
j>i+1

δ(aj ≡ ai) + O(Hr−2(log H)− 3
2 ).
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Let us now study D1(a,x). We Ąrst write

D1(a,x) = − K

α(x)
√

log x

∑

h2,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

(
∑

2≤j≤r
2≤i≤j

hj−1∑

t=1

S0(¶0, hi + · · · + hj−1 + t♢)e−(h2+···+hr)/H

+
∑

2≤j≤r
j≤i≤r

hj−1∑

t=1

S0(¶hj + · · · + hi, t♢)e−(h2+···+hr)/H

)

(3.53)

We focus on the Ąrst inner sum of (3.53). Exchanging the order of summation, for each Ąxed
i and j = i + k ≥ i, we have

∑

hi,...,hi+k>0
hℓ≡aℓ−aℓ−1 (mod q)

hi+k−1∑

t=1

S0(¶0, hi + · · · + hi+k−1 + t♢)e−(hi+···+hi+k)/H

×
∑

h2,...,hi−1,hi+k+1,...,hr>0
hℓ≡aℓ−aℓ−1 (mod q)

e−(h2+···+hi−1+hi+k+1+···+hr)/H

The second sum of the above is evaluated by (3.51), and

∑

hi,...,hi+k>0
hℓ≡aℓ−aℓ−1 (mod q)

hi+k−1∑

t=1

S0(¶0, hi + · · · + hi+k−1 + t♢)e−(hi+···+hi+k)/H

=
∑

u>0

S0(¶0, u♢)
∑

h>u
h≡ai+k−ai−1 (mod q)

e−h/H ∑

hi,...,hi+k−1>0
hℓ≡aℓ−aℓ−1 (mod q)
hi+···+hi+k−1<u

∑

hi+k>0
hi+k≡ai+k−ai+k−1 (mod q)

hi+···+hi+k=h

1

=
∑

u>0

S0(¶0, u♢)e−u/H ∑

h′>0
h′≡ai+k−ai−1−u (mod q)

e−h′/H
∑

hi,...,hi+k−1>0
hℓ≡aℓ−aℓ−1 (mod q)
hi+···+hi+k−1<u

1

=
∑

u>0

S0(¶0, u♢)e−u/H
( 1

k!

(u
q

)k
+ O(uk−1)

(H

q
+ O(1)



=
H

k!qk+1
S

(k)
0 (H) + O(Hk+ε)

We get a similar estimate for the second inner sum of (3.53) involving S0(¶hj + · · · + hi, t♢)
by making a change of variable to replace it by S0(¶0, r + hj+1 · · · + hi♢) with r = hj − t, and
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we obtain

D1(a,x) = −2
K

α(x)
√

log x

r∑

i=2

r−i∑

k=0

(H

q

r−2−k H

qk+1k!
S

(k)
0 (H) + O(Hr−3+ε)

= −2
K

α(x)
√

log x

Hr−1

qr−1

(
(r − 1)S0(H) − (log H)− 1

2

K
√

π

r−2∑

k=1

(r − 1 − k)

k


+ O(Hr−2(log H)− 3

2 )

The same ideas are used to estimate D2(a,x). Let i and j = i + k ≥ i be Ąxed, and let us
study the sum in D2(a,x). In the case i = j, this is

∑

hi>0
hi≡ai−ai−1 (mod q)

∑

1≤t1<t2≤hi−1

S0(¶t1, t2♢)e−hi/H =
(H2

q
+ O(H)


S0(H)

as we already saw in the case r = 2. In the case k ≥ 1, we have

∑

hi,...,hi+k>0
hℓ≡aℓ−aℓ−1 (mod q)

hi−1∑

t1=1

hi+k−1∑

t2=1

S0(¶t1, hi + · · · + hi+k−1 + t2♢)e−(hi+···+hi+k)/H

=
∑

1≤t1<t′2

S0(¶0, t′
2 − t1♢)

∑

h>t′2

e−h/H ∑

hi,...,hi+k−1>0
hℓ≡aℓ−aℓ−1 (mod q)
t1<hi+···+hi+k−1<t

′

2

∑

hi+k>0
hi+k≡ai+k−ai+k−1 (mod q)

hi+···+hi+k=h

1

=
∑

u>0

S0(¶0, u♢)
∑

t′2>u

∑

h>t′2

e−h/H
( 1

k!

(u
q

)k
+ O(uk−1)



=
∑

u>0

S0(¶0, u♢)e−u/H
( 1

k!

(u
q

)k
+ O(uk−1)

(H2

q
+ O(H)



=
H2

k!qk+1
S

(k)
0 (H) + O(Hk+1+ε).

We deduce that

D2(a,x) =
K2

α(x)2 log x

r∑

i=2

r−i∑

k=0

(
H
q

r−2−k H2

k!qk+1
S

(k)
0 (H) + O(Hr−3+ε)

=
K2

α(x)2 log x

Hr

qr−1

(
(r − 1)S0(H) − (log H)− 1

2

K
√

π

r−2∑

k=1

(r − 1 − k)

k


+ O(Hr−2(log H)− 3

2 ).
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Wrapping up, we obtain

N(x; q,a) =
x

q

( K√
log x

r
α(x)−r+1

((
H
q

)r−1
+
(
H
q

)r−2
r−1∑

i=1

(D0(ai,ai+1,x) − H
q + D1(ai,ai+1,x) + D2(ai,ai+1,x)

)

− (
H
q

)r−2 (log H)− 1
2

K
√

π

( r−2∑

k=1

r−1−k∑

i=1

δ(ai+k+1 ≡ ai) − 1
q

k

)
+ O(Hr−2(log H)− 3

2 )

.

Then using H =
√

log x
K − 1

2 + O((log x)− 1
2 ), and the estimates for Di(a,b,x), i = 0,1,2 from

Theorem 3.1.2 we obtain Conjecture 3.1.4.

3.9 Numerical data

We present in this section some numerical data testing the approximation of Conjecture 3.1.1
for N(x; q, (a,b)). One of the challenges of the numerical testing is the change of scale in-
troduced by the change of variable (3.17), which gives H =

√
log x/K. The actual values of

N(x; q,(a,b)) were obtained by using SageMath [The19] on about 20 CPU cores in a Linux
cluster for a couple of months, which allows us to take x = 1012. But then, H ≈ 6.356 in
Theorem 3.1.2, which is very small even for this large value of x.

There are some technical methods for computing the Euler products, whenever they converge,
and their derivatives with enough precision, and we used the following equality, which gives
us a faster convergence:

∏

p≡3 (mod 4)

(
1 − p−2s


=

∏

1≤j≤J

(
L(2js,χ4)

ζ(2js)(1 − 2−2js)

)1/2j

∏

p≡3 (mod 4)

(
1 − p−2J+1s

1/2J

.

Note that the rightmost hand side product converges much faster than the left hand side one.
Also, its derivatives can be computed by taking the derivatives of the right hand side instead
so that one might obtain some recursive formula.

We present in Table 3.5 some numerical data for Conjecture 3.1.1, for q = 5 and x = 1012.
There are 25 cases for N(x; q, (a,b)) in Table 3.5, but the conjectural asymptotic of Conjec-
ture 3.1.1 only depends on b − a (mod q), and there are then unavoidable Ćuctuations in the
data for various pairs (a,b) with the same value of b − a (mod 5). The Ąt between the numer-
ical data and the conjecture is slightly better when b − a ̸≡ 0 (mod 5). The numerical data
is also inĆuenced by the bias of Theorem 3.2.4, which is of smaller magnitude that the bias
of Conjecture 3.1.1 but in the opposite direction, and the data when a = b = 0 in particular
shows the inĆuence of both biases. We have used several asymptotic approximations of our
conjecture in Table 3.5. We used Conjecture 3.1.1 as such with J = 1 (the column labeled
ŞConjecture 3.1.1Ť), and we also used the more complicated expression of Proposition 3.4.2
for D0(a,b; x) + D1(a,b; x) + D2(a,b; x) in (3.18), where we evaluate the exponential sums
E(q,v; H) exactly for each residue class (recall that H =

√
log x/K ≈ 6.356 when x = 1012).

We then replaced S0(q,v; H) in that expression by the approximation of Theorem 3.1.2 with
J = 1 (the column labeled ŞTheorem 3.1.2Ť), and by the actual numerical value of S0(q,v; H)
(the column labeled ŞS0(q,v; H)Ť).
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We also present some numerical data for Theorem 3.1.2 in Table 3.6 and 3.7 for larger values
of H. We tested the asymptotic of Theorem 3.1.2 for J = 1,2,3 and the integral formula of
Proposition 3.7.2 for various values of H. For H ≈ 6.356, larger values of J or the integral
formula of Proposition 3.7.2 are not approximating well S(q,v; H), but one can see the Ąt for
larger values of H. The values of the constants c0(2), c0(3), c1(2), c1(3) can be computed by
taking more terms in the Taylor expansions of the proof of Theorem 3.1.2, similarly to the
computations of c0(1), c(1) in Section 3.5. We did not include those computations (which are
lengthy but straightforward and not very interesting) in the paper. The numerical values are

c0(1) ≈ 0.604541230, c0(2) ≈ 0.696827721, c0(3) ≈ 1.185903185

c1(1) ≈ −0.167588374, c1(2) ≈ −0.054190676, c1(3) ≈ −0.328019051.
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3.9. NUMERICAL DATA

a b N(x; q,(a,b)) S0(q,v;H) Theorem 3.1.2 Conjecture 3.1.1 Error1 Error2 Error3

0 4 108 ·106 3 585 ·106 3 219 ·106 3 919 ·106 1.1461 1.2763 1.0483
1 7 153 ·106 6 949 ·106 6 904 ·106 6 841 ·106 1.0294 1.0360 1.0457

0 2 5 604 ·106 5 430 ·106 5 493 ·106 5 426 ·106 1.0320 1.0203 1.0329
3 8 055 ·106 7 487 ·106 7 858 ·106 7 153 ·106 1.0759 1.0250 1.1261
4 5 780 ·106 5 626 ·106 5 603 ·106 5 738 ·106 1.0274 1.0317 1.0073
0 5 777 ·106 5 626 ·106 5 603 ·106 5 738 ·106 1.0269 1.0312 1.0068
1 3 765 ·106 3 585 ·106 3 219 ·106 3 919 ·106 1.0503 1.1697 0.9607

1 2 6 870 ·106 6 949 ·106 6 904 ·106 6 841 ·106 0.9886 0.9950 1.0043
3 5 354 ·106 5 430 ·106 5 493 ·106 5 426 ·106 0.9860 0.9747 0.9868
4 7 742 ·106 7 487 ·106 7 858 ·106 7 153 ·106 1.0341 0.9853 1.0824
0 8 050 ·106 7 487 ·106 7 858 ·106 7 153 ·106 1.0752 1.0244 1.1254
1 5 516 ·106 5 626 ·106 5 603 ·106 5 738 ·106 0.9804 0.9845 0.9613

2 2 3 755 ·106 3 585 ·106 3 219 ·106 3 919 ·106 1.0474 1.1664 0.9580
3 6 838 ·106 6 949 ·106 6 904 ·106 6 841 ·106 0.9840 0.9903 0.9996
4 5 351 ·106 5 430 ·106 5 493 ·106 5 426 ·106 0.9853 0.9741 0.9861
0 5 609 ·106 5 430 ·106 5 493 ·106 5 426 ·106 1.0330 1.0212 1.0338
1 7 718 ·106 7 487 ·106 7 858 ·106 7 153 ·106 1.0309 0.9822 1.0790

3 2 5 549 ·106 5 626 ·106 5 603 ·106 5 738 ·106 0.9863 0.9904 0.9670
3 3 765 ·106 3 585 ·106 3 219 ·106 3 919 ·106 1.0503 1.1697 0.9607
4 6 867 ·106 6 949 ·106 6 904 ·106 6 841 ·106 0.9882 0.9946 1.0039
0 7 156 ·106 6 949 ·106 6 904 ·106 6 841 ·106 1.0298 1.0364 1.0461
1 5 357 ·106 5 430 ·106 5 493 ·106 5 426 ·106 0.9864 0.9752 0.9872

4 2 7 731 ·106 7 487 ·106 7 858 ·106 7 153 ·106 1.0326 0.9838 1.0808
3 5 497 ·106 5 626 ·106 5 603 ·106 5 738 ·106 0.9771 0.9812 0.9580
4 3 769 ·106 3 585 ·106 3 219 ·106 3 919 ·106 1.0512 1.1707 0.9615

Table 3.5: The experimental value of N(x; q,(a,b)) versus several estimates for Conjecture 3.1.1
with J = 1 for q = 5 and x = 1012. We used Conjecture 3.1.1 as such with J = 1 (the
column labeled ŞConjecture 3.1.1Ť), and we also used the more complicated expression of
Proposition 3.4.2 for D0(a,b; x) + D1(a,b; x) + D2(a,b; x) in (3.18), where we evaluate the
exponential sums E(q,v; H) exactly for each residue class (recall that H =

√
log x/K ≈ 6.356

when x = 1012). We then replaced S0(q,v; H) in that expression by the approximation
of Theorem 3.1.2 with J = 1 (the column labeled ŞTheorem 3.1.2Ť), and by the actual
numerical value of S0(q,v; H) (the column labeled ŞS0(q,v; H)Ť). Error1, Error2, Error3 are
the percentage errors for the 4th, 5th and 6th columns, respectively.
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H S(q,0;H) −H/q Prop. 3.7.2 J = 1 J = 2 J = 3 Prop. 3.7.2 J = 1 J = 2 J = 3

6.356 −0.6093 -0.0087 -0.6889 -0.4122 -0.1577 70.3362 0.8843 1.4779 3.8630
16 −0.8852 -0.5540 -1.0240 -0.8731 -0.7804 1.5980 0.8645 1.0139 1.1343
102 −1.3968 1.2847 -1.5059 -1.4354 -1.4094 1.0862 0.9275 0.9731 0.9910
104 −2.2932 -2.2839 -2.3289 -2.3040 -2.2994 1.0041 0.9846 0.9953 0.9973
106 −2.9169 -2.9162 -2.9337 -2.9201 -2.9184 1.0002 0.9943 0.9989 0.9995

Table 3.6: The numerical value of S(q,0; H) − H/q for q = 5 and various values of H versus
the asymptotic of Proposition 3.7.2 and Theorem 3.1.2 for J = 1, 2,3. The last 4 columns are
the percentage errors.

H S(q,3;H) −H/q Prop. 3.7.2 J = 1 J = 2 J = 3 Prop. 3.7.2 J = 1 J = 2 J = 3

6.356 0.0327 0.0728 0.0811 0.0596 -0.0108 0.4485 0.4029 0.5485 -3.0166
16 0.0788 0.0919 0.1036 0.0919 0.0663 0.8575 0.7609 0.8581 1.1900
102 0.1120 0.1171 0.1262 0.1207 0.1135 0.9565 0.8875 0.9278 0.9868
104 0.1456 0.1461 0.1490 0.1471 0.1458 0.9966 0.9770 0.9899 0.9986
106 0.15813 0.15819 0.1592 0.1581 0.1577 0.9997 0.9935 1.0001 1.0030

Table 3.7: The numerical value of S(q,3; H) − H/q for q = 5 and various values of H versus
the asymptotic of Proposition 3.7.2 and Theorem 3.1.2 for J = 1, 2,3. The last 4 columns are
the percentage errors.
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