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Abstract

New Methods For Domain Adaptation And Low Data Deep Learning

Muawiz Chaudhary

Real-world data coming from settings like hospital collections for detecting disease

experience multiple sources of distributional shifts. These issues affect the performance

of diagnostic methods, reducing the quality of service provided and leading to health

or economic harm. Deep learning has emerged as a promising method for classiĄcation

tasks, including diagnostics, and recent progress has led to methods that allow a

neural network to adapt network statistics to shifts in speciĄc settings at test time.

However, problems arise in these methods adapting to general shifts and domains. In

addition, they underperform when data is limited. In our Ąrst contribution, we tackle

general domain shifts by investigating the key issues leading Test Time Adaptive

algorithms to fail under label shift, proposing a means for mitigating these failures. In

the second contribution, we tackle few-shot cross-domain adaptation by modifying the

affine parameters of the batch norm during few-shot train time, generally enhancing

performance. The third contribution parameterizes Scattering Networks, where we

enhance a method for low data regimes by providing problem-speciĄc adaptation.
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Chapter 1

Introduction

1.1 Overview

Hospitals are critical sites for diagnostics around illness. ClassiĄcation of disease has

many sources of inĆuence; patient populations, calibration of tools used to diagnose

disease, and prevalence of infection [3, 4]. Sources, characterized as distributions, can

shift over geography, time, and other variables [3, 4]. The development of diagnostic

tools may only consider some possible sources, as data might be unobtainable in

some environments due to capacity or privacy constraints, and thus require the health

practitioner applying a diagnostic to consider several distributional shift issues [5]

which introduce a possible vector of diagnostic errors, or impossibility of detecting

disease. Failure of these tools to adapt to shifts means that patients can suffer,

having downstream impacts on economies. Automating the adaptation of diagnostic

algorithms as sources shift can allow for a solution [4].

Deep learning methods enable a parametrized model to learn from data through

an optimization process with a speciĄed loss function [6]. A non-trivial number

of scientiĄc efforts study the use of deep learning algorithms to automate standard

processes where data is available [7Ű13]. Also known as neural networks, these methods

have found successful applications in computer vision [14], protein folding [15], and

even playing video games [16]. Historically these methods required massive amounts of

labeled data to train networks. Developments in methodology and model architecture,

such as BatchNorm [17], led to networks that could better transfer across tasks,

such as classiĄcation to recognition, after Ąnetuning on a target set. Initially, these

transfer methods were limited to tasks with the same underlying distribution, where

natural images are one such example of a distribution, to eventually adapting between

distributions, such as natural image to medical imaging transfer [18, 19]. Further
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developments led to small sample and few-shot methods that rapidly adjust neural

networks in speciĄc low-data scenarios across domains [20]. Recent investigations

have looked into on-the-Ćy unsupervised optimization during deployment settings, the

latter of which commonly are of shifting distributions and can be composed of limited

samples [21,22]. These test-time-adaptation (TTA) methods are prone to failure when

facing multiple distribution shifts, limiting their use in clinical settings which require

robust algorithms. The aim of this thesis is to study this distributional shiftŠs impact

on neural networks, alongside other issues such as low data availability, and propose

methods for adapting neural networks to these distribution shifts.

SpeciĄcally, this thesis studies the test time adaptation, few-shot, and small-

sample contexts. Firstly, we explore the failure cases of a well-known baseline for TTA,

Test Time Normalization (TTN), Ąnding that TTN fails under various distribution

shifts. We investigate this failure, seeing that shifting class means due to particular

distribution shifts is likely responsible, and this failure in performance is mainly

constrained to later layers. Secondly, we look into adapting the Batchnorm affine

parameters in cross-domain few-shot learning settings, Ąnding that this method works

well. Finally, we analyze the performance and deformation stability properties of the

parametric scattering transforms, an extension of the scattering transforms developed

initially to generate discriminative features for small sample natural image and texture

classiĄcation. We Ąnd that parametric scattering networks mostly keep deformation

properties and increase performance on the classiĄcation of medical images, giving

evidence that a method developed explicitly for natural images can be slightly modiĄed

to generalize to different distributions.

1.2 Main Contributions and Outline

In chapter 3, we show a common failure case of Test Time Normalization (TTN)

under label shift. We then hypothesize that this is related to the shift in class means

deeper into the network and proceed to give evidence for this hypothesis. A method

called Hybrid-TTN is introduced, keeping covariate shift robustness of the TTN while

mitigating the impact of label shift. In the paper "Investigating Prediction-Time

Batch Normalization Under Label Shift" [23], unpublished at time of writing, I led

the project, discovering a critical failure in a popular test time adaptation method,

conducting experiment design (developing the experiments for Ągures 2, 3, and 4),

conducting a literature review, organizing the writing of the paper, and running the

experiments for tables 2 and 3, alongside with writing initial drafts of the document.
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• Muawiz Sajjad Chaudhary, Pedro Vianna, Michael Eickenberg, An Tang, Guy

Cloutier, Guy Wolf, and Eugene Belilovsky. "Investigating Prediction-Time

Batch Normalization Under Label Shift." Unpublished as of yet. 2023.

In chapter 4, we show that freezing the affine parameters of the BatchNorm

during pre-training and then adapting these same affine parameters during few-shot

evaluation time improves performance on cross domain datasets. We investigate

the sparsity induced before and after the ReLU activation in networks trained with

BatchNorm and networks trained with affines disabled in the BatchNorm, and Ąnd

that the later has denser features, which we hypothesize are important to our methods

improvement. In the paper "Revisiting learnable affines for batch norm in few-shot

transfer learning" [24], accepted to CPVR 2022 as a poster presentation, I developed

the FineAffine method, which has seen application in a few few-shot papers, ran

all of the experiments for the Ąrst table, much of the experiments for the second

(main) table, half of the experiments for table 3 (ablation study on Ąne tuning speciĄc

affine parameters), and developed table 6 (sparsity study). I developed the poster

presentation. The method was based off the experimental design from Johnathan

Frankles Training Batchnorm and only Batchnorm paper, adapted for use in the Few

Shot Setting.

• Moslem Yazdanpanah*, Aamer Abdul Rahman*, Muawiz Chaudhary, Christian

Desrosiers, Mohammad Havaei, Eugene Belilovsky, and Samira Ebrahimi Kahou.

"Revisiting Learnable Affines for Batch Norm in Few-Shot Transfer Learning."

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 9109-9118. 2022.

* denotes equal contribution

In "Simulated Annealing in Early Layers Leads to Better Generalization" [25],

accepted to CPVR 2023 as a poster presentation, I did all of the experiments for the

few shot learning section, which additionally used my FineAffine method proving that

the method works on additional pre-training regimes. I provided some minor editing

of the text.

• Amir SarĄ*, Zahra Karimpour*, Muawiz Sajjad Chaudhary, Nasir Mohammad

Khalid, Mirco Ravanelli, Sudhir Mudur, and Eugene Belilovsky. "Simulated

Annealing in Early Layers Leads to Better Generalization." In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

20205-20214. 2023.

* denotes equal contribution
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In chapter 5 we paramterize the wavelets of the Scattering Network, and show

various properties of these new Parametric Scattering Networks. We then apply

these new Parametric Scattering Networks in an unsupervised learning pipeline,

showing competitive performance over Scattering Networks. "Parametric Scattering

Networks" [26], accepted to CPVR 2022 as an oral and poster presentation, I ran

few of the main table experiments as needed, the "no auto-augment" experiments,

equivariant ablation experiments, number of Ąlters ablation experiments, most of the

deformation stability experiments and conducted the initial analysis that discovered

that learned Parametric Scattering Networks keeps similar deformation stability

properties as Scattering Networks, computational and memory complexity section,

and the unsupervised scattering section, along with developing the little wood paley

diagram used for visualizing dataset speciĄc parameterizations. I helped develop the

oral and poster presentation for CVPR. Additionally, I did massive refactorizations of

the code base, and developed further code/google colab notebooks for tutorials on

the Parametric Scattering Transforms. Code that I developed during my undergrad,

under the banner of the Kymatio framework, was used heavily in this project.

• Shanel Gauthier, Benjamin Thérien, Laurent Alsène-Racicot, Muawiz Chaudhary,

Irina Rish, Eugene Belilovsky, Michael Eickenberg, and Guy Wolf. "Parametric

Scattering Networks." In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 5749-5758. 2022.

* denotes equal contribution
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Chapter 2

Background

In this chapter, we explain brieĆy the background materials related to the works

presented in this manuscript.

2.1 Domain Adaptation

A standard evaluation of machine learning models is to evaluate a dataset sampled

from the same or a similar distribution as the training set. This setting is known as in-

distribution or the source domain and often has the property of having easy-to-annotate

data and is a simpler problem [18]. When the Ąne-tuning task and/or evaluation task

comes from a signiĄcantly different distribution, this is known as out-of-distribution or

a target domain [27, 28]. Often these out-of-distribution settings have limited labeled

or unlabeled data, and models pre-trained on a different distribution often fail to

generalize [29, 30]. Examples include a model trained on natural images now applied

to medical imaging tasks, a model trained to summarize newspapers of economic

forecasts used to simplify scientiĄc articles, or detecting anomalous objects/actions

in a setting. Out-of-distribution settings can happen due to dataset shift, such as

covariate shift, where the input distribution experiences a change; label shift, where

the output distribution shifts but labels stay the same; and concept shift, where there

is a change in the relationships between inputs and outputs [31]. Domain adaptation,

a subset of transfer learning, aims to mitigate the impact of these distributional

shifts. Domain adaptation provides methods for adapting to new domains with the

same labels as the pre-training task. As a result, using domain adaptation can avoid

labeling distribution-shifted data or spending signiĄcant resources to re-train models

on the out-of-distribution data. Adapting or aligning feature distributions is essential

here. Several methods used here include reweighting examples in the source domain
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(instance-based adaptation) [32], iteratively reĄning a model on a target domain

(iterative reĄnement) [33], learning invariant feature representations across domains

(feature-based adaptation) [34], or using a Bayesian model [35].

2.2 Test Time Adaptation

Deployment settings commonly have dataset shifts [31]. As mentioned, these shifts,

such as covariate, label, or concept shift, can severely impact the performance of a

deep learning model during deployment. While some settings, such as recommender

systems, might be tolerant to failure cases, other settings, such as autonomous driving

or medical imaging, can be expected to be deployed in settings where dataset shift is

typical and have massive impacts on individuals [21, 22]. Making our models adapt in

real-time robustly is then essential and includes developing methods for when there

is speciĄcally a covariate, label, or concept shift. Evaluation settings can consist of

evaluating your test time adapted learner in a source-free, batch/instance, or online

setting [31]. Given that we cannot access ground truth labels and are adapting to

distribution shifts, the domain of Test Time Adaptation is actually a special case of

Domain adaptation. Test Time Adaptation uses many standard Unsupervised Domain

Adaptation methods [31]. However, a notable difference with Domain Adaptation is

that the model trained on the source data, termed a source model, has no access to the

source dataset during the evaluation of the target dataset, possibly due to a privacy

constraint or a lack of resources. This difference in the setting is referred to as Test

Time Adaptation and intersects with Federated and Continual Learning. Test Time

Adaptation may also use self-supervised [36], semi-supervised, pseudo-labeling [37],

contrastive [38], or clustering [37]methods. Our work focuses explicitly on the batch

setting. Much work exists which takes advantage of the batch setting, such as a simple

adaptation of batch norm statistics [21, 22], alongside an entropy minimization on the

batch norm parameters [39]. These methods work well in covariate-shifted settings

when there is corruption on the input images but fail upon encountering label-shifted

scenarios.

Formally, we assume we have fθ, where f is our model and θ the parameters of

this model trained on the source domain ¶Xtrain, Ytrain♢ ∼ DSource, where DSource is

the source distribution, and we want to adapt θ to Xtest ∼ DTarget without access to

DSource, where DTarget is the target distribution shifted from the source distribution.
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2.3 Few-Shot Learning

Traditionally, machine learning models require large labeled domain-speciĄc data sets

to classify images correctly [6]. Adding new classes requires signiĄcant resources to

generate clean labeled inputs and training from scratch models. Typical resource

constraints include the limited availability of data, time and monetary cost to clean

and annotate data, a need to deploy models rapidly, or privacy concerns [40,41]. In

contrast, young human children can tell the difference between a horse and a zebra,

given limited prior knowledge of a horse and a single image of a zebra. Of great interest

then is developing a set of methods for making a model rapidly generalize to novel

classes across various domains [42, 43]. This paradigm is formatted and evaluated

using the notion of episodic N-Way K-Shot learning. An episode refers to an instance

of examples sampled from a dataset composed of a (support) set we may train or

Ąne-tune consisting of NK images and a (query) set of images we wish to evaluate N

refers to the number of novel classes we see during the few-shot tuning, and K refers

to the number of examples for each novel class we see in the support set. Of interest in

recent years is a cross-domain setting with which to evaluate these Few Shot Learning

methodologies [1].

Meta-learning, or "learning-to-learn," is a related, more general Ąeld [43]. During

meta-training, we construct multiple episodes with samples from a dataset. Each

episode trains a meta-learner to adapt a model to a support set and evaluation done

on a query set, producing a signal to update the meta-learner. After several episodes,

an assessment of the meta-learner takes place during a meta-eval phase, with the

meta-learnerŠs performance averaged over multiple episodes to measure the ability to

generalize to new data rapidly. Few-shot learning is an instance of this meta-learning

paradigm, where there is no notion of a meta-train and only a meta-evaluation. Usually,

models in this latter setting are assumed to pre-train on a large dataset.

One set of methods to attack the meta-learning problem is through learned

similarity metrics, such as SiameseNets [44], TripletNets [20], or networks such as

MatchingNets [45], Proto-typicalNets [46], and RelationNets [47]. The earlier set of

mentioned networks takes embeddings and computes similarity for a binary answer to

"Is this query embedding in the same class as this support embedding" while the last set

of networks computes similarity across multiple novel classes. Another set of methods

uses prior knowledge, whether Ąne-tuning speciĄc components of a pre-trained network

(such as MAML which learns an initial model that is updated [48]) or learning update

rules (LSTM-based meta-learners [49]).
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2.4 Scattering Transforms

ClassiĄcation problems demand an ability to learn invariances to certain affine

transformations of the input signal [50Ű52]. These affine transformations can include

but are not limited to, translations, rotations, and dilations. Additionally, it is

usually helpful to have resistance to small deformations of the input signal. Scattering

transforms [51,52] build an affine-invariant, stable representation of an input signal

that keeps high-frequency information. To be more speciĄc, the scattering transforms

are a cascade of convolutions with wavelet Ąlters followed by nonlinear modulus and

averaging operations. Mathematical principles guide the design of wavelet Ąlters,

which play a similar role to convolutional Ąlters [52]. Morelet wavelets make up the

Ąlters of the Scattering Transform, constructed according to a tight-frame initialization.

Initialization of the Ąlter bank features a mother wavelet and a family of wavelets

generated from dilations and rotations from this mother wavelet. The initialized Ąlter

bank then covers half of a frequency plane. This construction of the wavelet family,

alongside the properties of the modulus non-linearity, gives Scattering Transforms

energy preservation and stability to small deformations. The Scattering Transform

is traditionally deĄned to be translation invariant but can encode further structures

suited for a particular task, such as rotation or time-frequency invariance [53Ű55]. As

a result, the Scattering Transform produces discriminative representations that often

perform well in the low data regime [56].

Due to the cascaded structure, Scattering Transforms are similar to a CNN and, as

a result, are used as a simpliĄed, unlearned mathematical model for showing how one-

layer CNNs work [52]. Previous work has shown the Ąlters of the early layers of CNNs

to learn Gabor wavelets as Ąlters [57], not unlike the Ąlters speciĄed in the Scattering

Transform, and that initialization of these layers as Gabor wavelets gives similar

transfer learning results as pre-trained networks [19]. Further work has demonstrated

that Hybrid Scattering Networks, CNNs where Scattering Transform substitutes the

earlier layers, keep impressive performance, showing that Scattering Transforms can

replace the earlier layers and even scale to datasets such as Imagenet [58,59].
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Chapter 3

Investigating Prediction-Time

Batch Normalization Under Label

Shift

3.1 Introduction

Deep neural networks are able to achieve strong performance on a wide variety of tasks

from computer vision, natural language processing, speech, and others [60,61]. However,

a commonly cited limitation of existing deep learning models is limited generalization

under natural distribution shifts [62,63]. Indeed, in real-world deployment scenarios

models may encounter various corruptions and unexpected changes in environment.

In the context of perceptual data such as images, many of these shifts are easily

handled by humans (e.g. a change in the illumination through sunlight for pedestrian

detection or sensor noise in a camera) but can cause catastrophic failures for many

machine-learning and deep-learning models.

A recently emerging paradigm to deal with distribution shift is test-time adaptation

(TTA) [64], a subset of unsupervised domain adaptation (UDA) [65] where it is assumed

that access to the source data is not possible, which is realistic in deployment scenarios.

It is also often assumed that data arrives in batches and thus an unlabeled subset of

data from the target domain is available. Many algorithms have been proposed in this

setting that take advantage of batch-level information to adapt to the distribution

shift [21, 66, 67]. Test time normalization (TTN), also called prediction-time batch-

normalization (BatchNorm) [21], is a simple and popular method for adaptation [21,22].
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Data Mean   Adapted Class Sample

Non-Adapted Sample

Figure 1: We illustrate a mechanism for explaining the observed behavior under label
distribution shift. We consider one class mean (green) which is shifted towards the
data mean, as would be the case in a highly imbalanced setting. Classes are not
well separated in early layers and thus shifts in any mean are relatively small and
unintrusive. In later layers classes are well separated and a large shift of points from
one mean towards the data mean is likely to cross a decision boundary. Data points
in other classes moving away from the data mean are less likely to cross a decision
boundary.

In TTN, BatchNorm statistics [68] are updated on batches from the target data.

Despite being a simple approach, it has been shown to yield strong performance for

adaptation in prior work, handling particularly well various cases of image corruption.

Furthermore, other TTA methods utilize TTN as a critical component [66].

In many realistic scenarios the label distribution of data can shift from training

to testing scenarios. For example, object distributions encountered by autonomous

vehicles can shift with the location; or medical data can vary in the prevalence of an

underlying disease from one location to another. In order to be practically useful,

TTA methods relying on batched data must then be able to deal gracefully with label

distribution shifts alongside co-variate shifts. On the other hand, in the existing TTA

literature methods such as TTN have been only evaluated in the optimistic scenario

of class-balanced train and evaluation. In this work we investigate the effect of label

distribution shift on TTN, and observe that it can lead to catastrophic failures.

In particular, our contributions are:

1. We investigate the effect of label distribution shift on TTN, observing that

under severe imbalance, the performance of the model can be highly degraded

compared to using no adaptation at all.

2. We argue and demonstrate that this degradation can be attributed to increased

class separation at later layers in a deep network
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3. We propose a simple method, named Hybrid-TTN, which more gracefully deals

with label distribution shifts and, in particular, highly imbalanced target data,

while maintaining the beneĄts of TTN under covariate shift.

The paper is organized as follows, in Sec. 3.2 we review the related work. In Sec. 3.3

we formalize test-time normalization and our Hybrid-TTN. In Sec. 3.5 we show the

failure cases of TTN under label distribution shift, motivate our method to correct

for them, and directly apply our method to various datasets. Finally, in Sec. 3.6 we

discuss the conclusions of our Ąndings and propose further directions. Code for our

experiments is provided in the supplementary materials.

3.2 Related Work

BatchNorm [68] signiĄcantly aids in the optimization of deep neural networks,

regularizing overĄtting, and normalizing and scaling features and gradients thus

relieving the exploding or vanishing gradient problem. A batch of features is normalized

by a mean and variance calculated within a batch. Methods extending this approach

without looking at the batch dimension include a normalization based on groups

of channels, instance-based normalization, and a layer based normalization [69Ű71].

Weight normalization further extends this line of work, not modifying the features

but the weights of the model themselves [72].

Various studies have been conducted to further understand how batch-normalization

works. [73] notes that internal covariate shift is not a good explanation, and that

the loss landscapes of BatchNorm models appear to be a lot smoother than those of

equivalent models without. [74] takes randomly initialized networks and optimizes

only the BatchNorm parameters of the network, Ąnding that a third of the features

are shut down and the resulting networks obtain surprisingly good performance on

CIFAR-10 and Imagenet.

Batch-normalization has been extensively studied in the few-shot setting. Given

small amounts of data in the cross-domain setting, [75] Ąnd that shutting off the affine

transformations computed by BatchNorm during pre-training and then re-enabling the

affines when Ąnetuning the linear classiĄer head on a downstream cross domain few

shot task improves performance. FiLM layers, a conditional normalization method,

improve few shot performance [76,77].

TTN is a method for adapting BatchNorm parameters to distributions with

covariate shift [78, 79]. It is closely related to the UDA method AdaBN [80, 81]. A
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more recent TTA method, TENT utilizes an entropy minimization procedure on the

BatchNorm affine parameters [39].

Recent TTA methods have also utilized ideas from self-supervised learning [67,

82]. However they can lead to a costly and sensitive approach at adaptation time.

Furthermore, [82] has been improved over by TTN based methods.

Another class of methods does not utilize batches for test time adaptation have

been proposed. In [83] a framework is developed for adapting to single samples

at a time, motivated by inference time speed constraints. However, these classes

of approaches cannot fully leverage the distribution level statistics. Furthermore,

they are often heavily specialized to image data. [84] recently adapts the setting to

Automatic Speech Recognition.

The long tailed setting assumes training on an imbalanced train set and evaluation

on a balanced test set [85]. This is in contrast to our setting where training can

be on a balanced test set and evaluation on imbalanced data. [86], during inference,

standardizes the predictions of models trained on long-tailed distributions. It is noted

in [87] that there is often a distribution shift associated with various methods for

long-tailed recognition and a solution is proposed. [88] utilizes a Gaussian mixture

to reduce the dominance of the majority classes in estimating statistics and affine

parameters. However, it is not noted in these works that the performance of dominant

classes is signiĄcantly degraded, and effects are only explored during training.

3.3 Methods

3.3.1 Hybrid-TTN

The main idea behind TTA in general, and TTN in particular, is that while label

information is not available at test time, some information is available to estimate

impact of domain shifts on neural network operations and internal representations.

In particular, the setup typically considered here is based on data being processed in

batches, enabling assessment of distribution shifts between source and target domains.

In order to implement TTA in these settings, TTN views a neural network f as split

into blocks separated by batch normalization (BatchNorm) layers:

f = fK ◦B
sK−1

K−1 ◦ fK−1 · · · ◦Bs1

1 ◦ f1 ◦Bs0

0 ◦ f0, (1)

where f0, . . . , fK are blocks (i.e., sub-networks) of hidden layers and Bs0

0 , . . . , B
sK−1

K−1 are

batch normalization operators, with s0, . . . , sK−1 specifying which of these operations
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is ŞactiveŤ or ŞfrozenŤ. Whether frozen or active, each BatchNorm layer modiĄes each

neural activation by

Bs(h(x)) = β
h(x) − µs

σs
+ γ, (2)

where β and γ are parameters learned during the training process, and µs and σs

represent estimates of the mean and standard deviation of neuron activation over data.

The main difference between active and frozen operations is whether this estimate

is actively computed on each input batch at test time, or frozen at test time based

on the statistics computed over the training data. We note that at training time all

BatchNorm operations are in active state, while the main difference between TTN

and traditional supervised learning is whether BatchNorm operations are active or

frozen, respectively, during test time.

The main premise of the TTN approach is that changes in the distributions of

activations of each neuron between source and target batches would predominantly be

caused by unwanted covariate shifts, and therefore should be eliminated. However,

this does not take into account other distribution shifts that should affect, at the

very least, the output distribution of the network. In particular, in many real world

applications, one cannot guarantee that classes will be well balanced in general and

certainly at test time. Therefore it is often the case that the distribution of available

labels during the training process i.e. on the source domain will differ from one of

unknown labels encountered at test time. Most successful applications of TTN did not

contain such label distribution shift, and recent work has indicated possible sensitivity

of TTN to such shifts [81]. Indeed our work also establishes, as shown in Sec. 5.4, that

TTN may cause a signiĄcant adverse effect in the presence of label distribution shifts.

In order to mitigate the risk of adverse effects by TTN, we study its impact on

early versus later layers of a neural network. To this end we Ąrst recall that later

layers in neural networks are understood to be more specialized than earlier layers,

which perform generally useful feature extraction [89Ű91]. Furthermore, several studies

have shown that linear separability between classes typically increases, gradually,

within the depth of the network [92,93]. With this in mind, we can expect that the

global statistics (e.g., mean and standard deviation of neuron activation) over a data

batch would be more similar to the statistics of each individual class in early layers

than in later layers. Therefore the dependence of BatchNorm operations and the

shift (or scaling) they apply to earlier layers would be less affected by class and label

distributions than their effect in later layers. As a result, partial application of TTN

limited to sufficiently early parts of the network should be relatively resilient to label
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distribution shifts while at the same time obtaining some representation robustness to

covariate shifts, which will propagate through the rest of the network and partially

retain the advantages of full TTN.

Based on this understanding, we propose a simple approach we call Hybrid-TTN:

we set the Ąrst ℓ BatchNorm operations to active, while Ąxing the rest of the K − ℓ

BatchNorms to frozen. Here, we choose the exact cutting point ℓ via a heuristic based

on single-class accuracy degradation estimated on the train set, which represents

a worst-case label distribution shift1. We simulate several sets of extreme label

distribution shift, giving us only one single class in the target data batch, and compute

the resulting accuracy of Hybrid-TTN for each possible cutoff layer. Then, for each

possible cutoff, we take the average accuracy and analyse the drop in accuracy relative

to the zero cutoff (i.e., no test-time active BatchNorm setting). The Hybrid-TTN

network then uses the largest ℓ with accuracy drop below a given threshold, which is a

hyperparameter to be tuned based on the number of classes (e.g., in our experiments

we use 5% for datasets with fewer labels, such as CIFAR-10, and 10% for bigger ones,

such as Imagenet).

3.4 Experimental Setup

In this section we discuss our experimental analysis highlighting the issues that arise

under label distribution shift.

We utilize three datasets in our evaluations, two popular benchmarks, CIFAR-10-C

and Imagenet-1K-C, and a LiverUltrasound Dataset captured from multiple devices.

CIFAR-10 and CIFAR-10-C. We use the CIFAR-10 [94] dataset along with

CIFAR-10-C [62]. CIFAR-10 is a small natural image dataset with 50k training images

and 10k validation images. CIFAR-10-C contains corrupted versions of the CIFAR-10

Validation set at varying severities. We trained our models on the uncorrupted data

set.

Imagenet-1K and Imagenet-1K-C. We utilized the Imagenet-1K [95] dataset

along with Imagenet-1K-C [62]. Imagenet-1K is a large natural image dataset with

1.2 million training images and 50k validation images. Imagenet-1K-C, similarly

to CIFAR-10-C, contains corrupted versions of the Imagenet-1K Validation set at

1We note that this worst-case approach is chosen for simplicity. We expect that in practice, and
in future work, our heuristic can be relaxed to use other assumed label distribution shift priors.
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varying severities. Both CIFAR-10-C and Imagenet-1K-C are popular as a measure of

robustness to covariate shift.

Liver Ultrasound We utilized a private dataset of ultrasound abdominal images

collected at the University of Montreal Hospital from patients under suspicion of fatty

liver disease [96]. Images were collected between September 2011 to October 2020

with several devices, which we use to provide an additional and realistic covariate shift

for our analysis. SpeciĄcally, we train our models on one Philips iU22 device (denoted

Philips) and evaluate on another target device, Aplio 500 (Toshiba), alongside the

application of corruptions by adding two distinct levels of Gaussian noise to the images.

The dataset contains 2076 images (23% without fatty liver) from 89 patients collected

with Philips and 1014 images (11% without fatty liver) from a different set of 39

patients collected with Toshiba, and it was used for binary classiĄcation, detecting

fatty liver versus non-fatty liver.

3.4.1 Training and Architecture Details

On CIFAR-10 we trained a ResNet-26 model as deĄned in [97]. We used SGD with

a batch size of 128. An initial learning rate set to 0.1 is used in combination with a

cosine annealing schedule [98] trained over 200 epochs. Weight decay set to 5e-4 was

used along with momentum set to 0.9 [99]. Standard augmentation used random crop

of size 32 with 4 padding and random horizontal Ćips.

For Imagenet-1K we utilized a pre-trained Resnet18 model.

For the Liver Ultrasound data, we compared VGG-16 with BatchNorm, and Resnet-

18. Both architectures were trained with similar conĄgurations, using a SGD optimizer

with learning rate set to 0.001 and momentum 0.9, with a batch size of 32.

Adaptation Details For CIFAR-10 and Imagenet-1K we use a batch size of 500

for the experiments (sampled over multiple seeds). For Liver Ultrasound, the batch

size was the entire target set containing 222 images.

Target Label Distributions In order to analyze label distribution shifts we consider

two approaches for constructing these imbalances. N -class refers to randomly selecting

N classes from the set of all classes. We also utilized a more natural imbalanced dataset

simulation construction technique popular in e.g. federated learning literature [100]

which samples from a dirichlet distribution with parameter α. Smaller α typically

will yield more sample batches with higher imbalances. This allowed us to mimic a
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VGG-16 Resnet18

Labels proportion Source TTN Base TTN

Original (23%/77%) 79.2% 80.4% 82.3% 83.1%
0%/100% 93.0% 91.4% 92.2% 84.4%
50%/50% 62.5% 61.3% 71.9% 67.2%
100%/0% 32.0% 26.6% 51.6% 21.9%

Table 1: Illustration of failure case on binary classiĄcation medical ultrasound data
(detecting presence of fatty liver). If TTN is deployed on target data from the
same domain (same equipment) with the original training proportions (23%/77%)
performance is maintained or slightly improved. On the other hand, if the target
batch presented has a label distribution shift we see substantial degradation, with
some models being more severely effected than others.

more natural scenario where the label distribution is not only varying in classes but

proportions.

3.5 Experiments

3.5.1 Label Distribution Shift Impact on TTN

We Ąrst illustrate the potential pitfalls of TTN on several examples of Label

Distribution Shift. Using the CIFAR-10 dataset we show the effect on TTN of

an extreme version of label distribution shift in Figure 2. SpeciĄcally, we adapt on

batches containing one class or all classes (as can be seen in the label distributions

shown in Figure 2). We Ąrst observe on adaptation to one class batches that the

accuracy of TTN degrades severely compared to the source model in cases where

there is a covariate shift (application of Gaussian noise to the input) but also in

the absence of covariate shift. The latter observation is also conĄrmed in Table 1

on ultrasound data where we modify the target label proportion of the test data

coming from the same distribution (but without changing the device or adding noise).

This catastrophic failure, even without covariate shift, is a clearly undesired behavior

when operating in a realistic deployment environment where target label distribution

is unknown and can vary for each incoming batch. Furthermore, we can observe

from the per-class performance evaluations of the adapted models that the majority

class is disproportionately affected by TTN, and that classes underrepresented (or
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Figure 2: Effect of class imbalance and covariate shift through Gaussian noise on test-
time-normalized (TTN) model performance: TTN mitigates distributional shift but
greatly suffers from class imbalance. In the top row, two class distributions, uniform
and one-class are shown. In the bottom rows we show per-class accuracy plots for a
Source model (blue), a class-balanced TTN model (orange), and a class-imbalanced
TTN model (green). Observe in the bottom left plot that the class-imbalanced TTN
model performs very poorly on the most prevalent class label of the imbalanced
adaptation set (label 7, red rectangle). Observe in the bottom right plot that the
class-imbalanced TTN model greatly improves performance for Gaussian-corrupted
inputs while also greatly suffering from class imbalance. The goal of this paper is to
bring the advantage of TTN to the class-imbalanced setting.

not present) will, un-intuitively, experience less or slightly improved over source

performance degradation.

We can obtain intuition about this behavior by considering a strong classiĄcation

model where representations from each class will be well separated and clustered in

the Ąnal representation layer (see e.g. Fig 1). A biased BatchNorm computation

will compute the mean of a speciĄc label cluster and re-center the data by this

mean. Indeed, consider a neural network layer whose activations are tightly clustered,

such that each cluster corresponds to one label. Further, assume that the different

cluster centers occupy approximately orthogonal directions in this space. Such quasi-

orthogonality is not an uncommon property in high dimensions. In this setting, linear

decision directions would align with cluster means. Subtracting a cluster mean instead

of a class-balanced batch mean would then signiĄcantly move the label cluster along

its decision direction and will likely lead to some examples passing the classiĄcation
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Figure 3: We evaluate the relative shift in the BatchNorm means (measured with a
normalized L2 distance) for each layer when adapting to only one class. We observe
that as depth increases (and classes expectedly become more well separated) the shift
in the mean becomes larger.

boundary. Other classes will be barely affected due to the orthogonality of the cluster

centers and hence of the decision boundaries.

3.5.2 Analyzing BatchNorm Stat. Variation in Depth

As mentioned previously, many works in deep learning have shown that supervised

trained neural networks become more specialized as depth of a network increases [89Ű91]

and that classes progressively become more separated with depth. Thus, in particular,

as the classes separate, their individual means and data points will be farther from the

overall data mean. As discussed in Sec. 4.2, this would lead the BatchNorm centering

operation to more drastically move points in upper layers, potentially forcing them to

cross decision boundaries. For example, Figure 1 illustrates this intuition by showing

how class separation changes in depth, and the effect of the mean shift operation in

the extreme case where it is computed with respect to just one class in the target

batch (i.e., the same extreme shift as will be used in our Hybrid-TTN heuristic).

To empirically conĄrm this intuition, we attempt to measure the relative shift in

the majority class mean at different layers. Results of this experiment are shown in

Figure 3. Here we compare ∥uorig −u1−class∥ for each layer, where uorig are the original

training data means and u1−class are means computed from adapting the model on

19



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CIFAR-10 Test Data (Original) with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

20

30

40

50

60

70

80

90

100

CIFAR-10 Train Data (Original) with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Gaussian Noise(Level 1)  with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.3

0.4

0.5

0.6

 Gaussian Noise(Level 5)  with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Contrast(Level 3)  with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.3

0.4

0.5

0.6

0.7

 Shot Noise(Level 4)  with Layer Limited Adaptation

1 Class
3 Class
5 Class
10 Class

Figure 4: On CIFAR-10 we adapt models only up to the layer shown on the x-axis,
the y-axis showing the performance on the target data. We consider target data with
different corruptions (and no corruptions) and for each we test with different label
distributions. We consider label distributions with all (10) classes as well as 5,3, and 1
randomly selected and balanced classes. Note the x-axis starting value is the source
model performance and the ending value the TTN model performance. We observe
that adapting only earlier layers can avoid some of the catastrophic collapse due to
TTN observed on original data while maintaining the beneĄts of TTN over the source
model in covariate shift.

only one class. We use the Resnet model and CIFAR-10 data from Sec. 4.1. To allow

for cross-layer comparisons, we also normalize this ℓ2 distance by the average distances

between class-means in the layer. We observe that, as depth increases, we have larger

relative shifts in the mean, conĄrming our intuition (see Fig. 3).

3.5.3 Adaptation of Early Layers

Having observed that depth can have an effect on the behavior of TTN and taking into

account that earlier layers tend to be less specialized we now consider only adapting

earlier parts of the network and study this effect on the classiĄcation performance

under label distribution shift. We perform experiments on layer-limited adaptation

for a Resnet-18 model on CIFAR-10 both with and without noise. Our results are

shown in in Figure 4. SpeciĄcally, for each index on the x-axis we perform test-time

normalization of the model up to this layer. Consequently, the extremes of the x-axis

(0 and, here, 30) correspond to Source and TTN models respectively. First, we observe

that on the non-corrupted test and train data the performance of class-imbalanced

data degrades gradually at Ąrst and increasingly faster towards the later layers. This

is in line with our observations of the mean shifts in Sec 4.2. This suggests that
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Cifar-10 Covariate Shift

Label Dist. Shift Adaptation Method Original Corrupt-1 Corrupt-3 Corrupt-5

Source 94.8% 86.1% 73.3% 51.7%
Original (balanced) TTN (∆) -0.9% +3.5% +11.9% +25.8%

Hybrid-TTN (∆) -0.8% +0.6% +10.4 % +22.7 %

Source 95.1% 86.7% 73.6% 52.2%
1-class TTN (∆) -73.4% -66% -53.7% -33.7%

Hybrid-TTN (∆) -7.9% -6.4% -0.6% +10.8%

Source 95.1% 86.9% 74.1% 52.3%
5-class TTN (∆) -12.1% -8.4% -.1% +14.5%

Hybrid-TTN (∆) -1.7% +1.0% +8% +20.3%

Source 95.5% 86.9% 73.7% 51.3%
Dirichlet alpha = 0.1 TTN (∆) -36.7% -31.4% -21.4% -3.6%

Hybrid-TTN (∆) -3.6% -0.1% +7.7% +21.3%

Source 94.0% 85.5% 72.7% 52.9%
Dirichlet alpha = 0.5 TTN (∆) -19.1% -15.1% -6.4% +6.7%

Hybrid-TTN (∆) -2 % +0.5% +7.1% +17.4%

Table 2: CIFAR-10 evaluations on multiple label shifted distributions and covariate
shifts (corruptions) with different degrees of label imbalance. Corruptions values are
aggregated over 15 corruptions, all values are aggregated over 10 seeds. We show
the source model performance and the improvement (or degradation) as a delta with
TTN and Hybrid-TTN. Standard error is below 0.05%. We observe that Hybrid-TTN
provides beneĄts over source model when there is no covariate shift, while avoiding
catastrophic failures and allowing beneĄts over source when there are label distribution
shifts.

adapting only early layers up to a cutoff can provide a degree of invariance towards

label distribution shift. Secondly, for corrupted data we observe that adapting up

to earlier layers can allow enough label distribution invariance to provide beneĄts

under covariate shift. For example models that are adapted up to layers 8 through 15

can perform much better than source models under covariate shift but without label

distribution shift, while also being able to perform much better than fully adapted

and often source models in various label distribution shift scenarios.

Finally we note that the rate of degradation in performance on training data

can be predictive of the behavior on test data and corrupted data. For example,

we observe some of the largest drops in accuracy on training data at layers 23-25

and 28-29, which are similarly mimicked amongst all the imbalance cases and as well

under corruptions. This suggests we can use training data to select the layer that is

predictive of the effect of label distribution shift. Furthermore, one label distribution

shift scenario is predictive of others: severe relative degradation in 1-class also occur

at the same layers in 3-class. This motivates our use of the Hybrid-TTN for which we
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Imagenet Covariate Shift

Label Dist. Shift Adaptation Method Original Corrupt-1 Corrupt-3 Corrupt-5

Source 69.5 ± 0.2 % 51.5 ± 0.3 % 31.1 ± 0.3 % 13.9 ± 0.2 %
Original (balanced) TTN (∆) -0.6 ± 0.2 % +6.4± 0.4 % +12.3 ± 0.4 % +11.0± 0.3 %

Hybrid-TTN (∆) +0.8 ± 0.2 % +2.6± 0.3 % +3.6± 0.3 % +1.6 ± 0.2 %

Source 72.5 ± 2.1 % 52.1 ± 3.6 % 31.5 ± 3.8 % 13.9 ± 2.4 %
1-class TTN (∆) -71.1 ± 0.2 % -50.8 ± 0.2 % -30.3 ± 0.2 % -13.2 ± 0.1 %

Hybrid-TTN (∆) -6.3 ± 2.2 % -0.9 ± 4.0 % -1.9 ± 3.7 % -1.5 ± 2.3 %

Source 70.7 ± 1.1 % 51.2 ± 2.5 % 29.6 ± 1.8 % 12.0 ± 0.8 %
5-class TTN (∆) -28.9 ± 1.0 % -17.8 ± 2.0 % -6.3 ± 1.5 % +0.9 ±1.1 %

Hybrid-TTN (∆) -1.6 ± 1.0 % +0.8 ± 2.4 % +2.2 ± 1.9 % +0.9 ± 1 %

Source 69.6 ± 1.3 % 50.7 ± 1.4 % 31.3 ± 1.0 % 13.7 ± 0.5 %
Dirichlet alpha = 0.01 TTN (∆) -10.3 ± 1.6 % -2.8 ± 1.5 % +3.7 ± 1.2 % +6.4 ± 0.5 %

Hybrid-TTN (∆) -0.6 ± 1.4% +1.5 ± 1.4 % +2.1 ± 1.1 % +0.8 ± 0.6 %

Table 3: Imagenet-C evaluations on multiple label shifted distributions and covariate
shifts (corruptions) with different degrees of label imbalance. Corruptions values are
aggregated over 16 corruptions, all values are aggregated over 10 seeds.We observe that
Hybrid-TTN provides beneĄts over source model when there is covariate shift, while
avoiding catastrophic failures when there are label distribution shifts. SpeciĄcally, we
obtain beneĄts in Original, 5-class, and Dirichlet.

select an adaptation layer based on the training data. We evaluate Hybrid-TTN in

the subsequent section.

Threshold Selection To select the layer up to which to apply adaptation in Hybrid-

TTN, we utilize the training data from the respective dataset and cut off at the layer

at which we Ąnd an accuracy drop of T% or more with respect to the training accuracy

of the source model. SpeciĄcally, we perform 1-class adaptation starting from layer 1

until we reach a layer that degrades the training accuracy below the threshold. We

emphasize that the goal of Hybrid-TTN is to mitigate the effects of label distribution

shift while being able to maintain beneĄts of TTN for a variety of possible label

distributions that might be encountered at deployment. In this work we thus set the

threshold based on an extreme shift (1-class) and show that this can control for label

distribution shift in a variety of less severe label distribution shift scenarios. Since

the effect of label distribution shift can be gauged directly from the training data,

thresholds can be selected using the most severe label distribution shift expected from

the application at inference time by direct simulation on the training data, or on

validation data if available. For our experiments we utilize a T of 5% for CIFAR-10

and LiverUltrasound, while for Imagenet we utilize a higher threshold (10%) due to a

much larger number of classes.

For CIFAR-10 and Imagenet we observe that Hybrid-TTN is able to control the

degradation in performance under a variety of label distribution shifts in the absence
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of covariate shift, while TTN leads to serious failures. When corruptions are applied,

Hybrid-TTN is able to bring beneĄts (substantially improve on source model) for

original distribution. Unlike TTN, it is able to handle the label distribution shift, in

many cases avoiding catastrophic failure, and in a variety of combinations of severe

label and covariate shift improving over the source model.

For the ultrasound dataset we similarly observe that Hybrid-TTN can be applied

on multiple architectures. Under a shift to a new device Hybrid-TTN can minimize

degradation in performance, particularly in Resnet-18, where switching from label 1

to 0 causes a large failure with TTN, but is controlled by Hybrid-TTN. Similarly we

observe with corruptions added to the data in the Resnet18 case, Hybrid-TTN can

allow controlling for both covariate and label shift. We also observe for Resnet-18

that we can control label shift problems in TTN when going from imbalanced training

(77% label 1) to balanced (50% label 1).

Ultrasound VGG-16 Resnet18
Device/Corruption Proportion Source TTN Hybrid-TTN Source TTN Hybrid-TTN

Shift Label 1 (∆) (∆) (∆) (∆)

Unseen
Device

Orig. (77%) 78.8% -0.2% -1.1% 77.7% +1.1% +0.6%
100% 93.4% -0.3% -0.6% 91.3% +2.7% +0.6%
50% 64.3% -2.4% -2.0% 62.8% -6.9% -2.4%
0% 32.9% -9.2% -7.3% 31.4% -26.1% -12.6%

Avg. Shifted 63.5% -3.9% -3.3% 61.8% -10.1% -4.8%

Corruption
Level 1

Orig. (77%) 79.6% -1.1% -1.6% 75.5% +1.6% +2.8%
100% 95.8% -1.5% -1.8% 82.3% +12.0% +9.3%
50% 62.2% -0.8% -0.8% 68.3% -15.1% -8.2%
0% 26.1% -4.8% -3.4% 46.9% -42.1% -26.6%

Avg. Shifted 61.4% -2.4% -2.0% 65.8% -15.0% -8.5%

Corruption
Level 2

Orig. (77%) 79.0% -0.1% -0.2% 31.9% +44.7% +46.6%
100% 93.1% +1.5% +2.4% 13.8% +82.9% +78.7%
50% 61.0% -1.1% -0.2% 55.7% -3.0% +4.7%
0% 29.5% -11.6% -7.3% 93.7% -87.9% -75.3%

Avg. Shifted 61.2% -3.7% -1.7% 54.4% -2.7% +2.7%

Table 4: Evaluation on ultrasound data. Binary classiĄcation, label 0 for patients
without fatty liver, and label 1 for patients with fatty liver disease. Models were
trained on one device (Philips iU22) and are evaluated on another (Toshiba Aplio
500). We present evaluations on targets that include just the shift in device as well as
the shift in device along with corruptions. We observe that Hybrid-TTN is able to
control the degradation in performance under label distribution shift, while allowing
improvements over source model when target data has a large covariate shift.
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3.6 Conclusions

We have studied a popular batch level Test-time Adaptation method in the context

of label distribution shift. We observed that in realistic scenarios where batches at

deployment time have label distribution shifts, this method can fail catastrophically

and proposed a direction for solving this problem to allow for obtaining the beneĄts

of adaptation without risking catastrophic failure due to label shift.
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Chapter 4

Revisiting learnable affines for

batch norm in few-shot transfer

learning

4.1 Introduction

Large-scale data powers many advancements in automating tasks with machine

learning. The usual aim is to collect massive sets of annotated data and have deep

learning algorithms learn from this source data to produce models that generalize to

some target task. Collecting large amounts of data in domains of signiĄcant impacts,

such as medical imaging, often requires much expertise, care, or resources to annotate.

Privacy constraints may additionally make this approach harder. All this motivates

methods for rapidly generalizable learners which can quickly adapt to novel classes.

Plenty of work has been conducted on this front, producing few-shot methods that

use metric or matching methods to adapt to new classes quickly. Unfortunately, most

of these approaches focus on domain-to-domain approaches, and not until recently

were benchmarks available for evaluating few-shot methods across domains, including

various medical domains.

Developing methods for generalizable few-shot learners across substantial domain

shifts will be vital to diagnose diseases better. A corpus of previous work exists in

the meta-learning literature, where, running like a vein throughout, a focus exists

on batch norms to help adapt to shifts. Several few-shot methods adapt batch norm

statistics during few-shot tuning time, likely helping the learner cope with domain
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shift. Others condition the features produced by the normalization layers. Another

set of researchers studies domain-speciĄc batch normalization.

Our work utilizes two methods in tandem; during pretraining of the backbone, we

do not learn the parameters of the affines in normalization layers, which are instead

set to identity and Ąxed; During adaptation on the support set, we enable and directly

adapt the affine parameters of the normalization layers of the backbone. We investigate

the potential reasons for improvement of the Ąrst method by looking at the sparsifying

properties of Batch-Norm. The second method has recently seen application in further

works.

4.1.1 Related Work

4.1.1.1 Few-Shot learning

In recent years, signiĄcant efforts have been directed towards the development of

FSL [101Ű107]. FSL aims to adapt learners to novel classes using only a limited

number of labelled samples. Research in FSL has typically been predicated to settings

with limited domain shifts between the source and novel classes. Meta-learning

techniques have garnered signiĄcant attention in FSL based on their coherent and

simplistic qualities. Current meta-learning methods can be broadly classiĄed into

metric and optimization-based approaches. Metric-based approaches [44, 107Ű110]

utilize the distance between embeddings of the support and query samples to classify

the novel query images. Optimization approaches [101,102] incorporate the Ąne-tuning

component within the representation learning phase. Furthermore, several works

propose a transfer learning [106,111Ű113] approach following the hypothesis that the

base and novel classes share discriminative features. Other methods instead employ

model initialization techniques to speed up convergence and improve the classiĄer,

based on the assumption that the initialization which works well on the source domain

will be effective on the novel target domain [103,104].

Recently, research in FSL has focused on settings where there is a signiĄcant

domain gap between the source and target data [1]. Despite the popularity of

meta-learning, Guo et al. [1] demonstrated that the standard transfer learning and

Ąne-tuning approach outperforms current state-of-the-art meta-learning methods when

facing a large distribution shift. Furthermore, several methods utilize unlabelled data

from the target domain in the evaluation stages in order to reduce the distributional

shift [110,114Ű116]. Progress in self-training and self-supervised learning methods have
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led to promising solutions for CDFSL problems. STARTUP [117] is a notable state-of-

the-art approach in distant tasks which employs a combination of self-supervised and

self-training components for CDFSL.

4.1.1.2 Batch Normalization

The introduction of BN layers [17] has sped up model convergence and enabled

the training of deeper networks. The initial hypothesis stated that BN alleviates

the issue of internal covariate shift following the notion that the standardization

of features reduces dramatic shifts to the inputs of convolutional layers [17]. Since

then, this explanation has been cast into doubt in [118], where internal covariate shift

was induced in BN layers to Ąnd a negligible effect on BN effectiveness. Another

study suggests that the optimization of weight magnitude and direction is decoupled

by BatchNorm [119]. Empirical experiments demonstrate that BatchNorm layers

smoothen the optimization landscape [118]; while providing a slight regularization

effect [120] and aiding in deterring the exploding activations problem [121].

Our work investigates the role of BatchNorm and its affine parameters when

facing a shifted domain, particularly in few-shot settings. On domain adaptation,

Li et al. [122] use BN layers towards domain adaptation in their AdaBN method.

This method assumes that data from different domains will be transformed into

representations with similar distributions. The authors of AdaBN present its beneĄts

through empirical experiments carried out on CNNs for image classiĄcation tasks.

MetaNorm [123] is another BN-based domain adaptation technique that utilizes a

meta-learning approach to predict domain-speciĄc BatchNorm statistics for domain-

independent batch normalization. Frankle et al. [124] highlight the expressive powers

of the BN affine parameters. They conduct experiments that show that BN affine

parameters play a positive role in improving model performance. However, their work

does not take into consideration settings where there is a distributional gap between

the training and target data.

In this paper, we explore the role of affine parameters towards the generalizability

of few-shot learners in the presence of a distributional shift between the source

training and target data. We perform experiments on state-of-the-art methods such as

STARTUP. Furthermore, we adapt AdaBN to an FSL environment to study the effect

of the affine parameters on BN-based domain adaptation techniques on cross-domain

few-shot transfer.
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4.2 Methods

4.2.1 DeĄnitions

Notations here are adopted from the survey paper [27]. A domain D consists of a feature

space X and a marginal probability distribution P (X), where X = ¶x1, ..., xn♢ ∈ X .

4.2.2 Feature Normalization

Let S be a batch of labelled examples ¶(xs
i , y

s
i )♢N

i=1 of size N from a source domain Ds

where xs
i ∈ X s and ys

i ∈ Ys, and Θ be a deep convolutional neural network consisting

of L layers with weight matrices θl where l represents the layer index. If h represents

the intermediate features of Θ for layer l, the Feature Normalization layer at layer l is

computed for each channel and can be deĄned as1:

FN(hc) =
hc − µc
√

σ2
c + ϵ

. (3)

Here, subscript c represents the channel index, µc and σc are the Ąrst and second

moments of hc respectively deĄned as:

µc =
1

NHW

∑

n,h,w
hnchw (4)

σc =

√

1

NHW

∑

n,h,w
(hnchw − µc)

2, (5)

where H and W are the spatial dimensions of hc.

4.2.3 Fine-tuning affines (Fine-Affine)

In much of the few-shot learning literature [106, 117], only the linear classiĄer is

adapted in the Ąne-tuning stage, leaving the backbone frozen. Typically this is done

to allow for rapid adaptation, but also because Ąne-tuning the backbone does not

improve performance as the model becomes over-parameterized. In another work [125],

the affine parameters are utilized to provide task speciĄc conditioning. The affines

represent a small number of parameters and may allow the model to adapt without

overĄtting to the few samples presented in the few-shot Ąne-tuning stage. It is thus

natural to consider adapting both the linear layer and the affine parameters. In this

1For the sake of simplicity, we implement the Feature Normalize layer using standard Batch Norm
modules with disabled affine parameters.
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paper, we refer to the joint Ąne-tuning of the linear classiĄer and the affine parameters

as Fine-Affine.

4.3 Experiments

We experimented with Feature Normalization on state-of-the-art few-shot learning

frameworks, such as STARTUP [117], and present empirical results to evaluate FN in

few-shot transfer settings. We adapt AdaBN [122], a BN-based domain adaptation

technique, to an FSL setup and investigate the effect of replacing BN with FN. Ablation

studies are carried out on the BatchNorm affine parameters γ and β to evaluate their

isolated inĆuence towards performance in cross-domain few-shot transfer. The overhead

relative to baseline is calculated for all methods to emphasize the computational cost of

more complex methods while achieving similar performance gains to FN. We compare

the sparsity of feature representations at the end of a trained BN network across

datasets and alongside their FN counterparts. Finally, we investigate the effect of

reactivating the affine parameters while Ąne-tuning to the target domain.

4.3.1 Benchmarks

The challenging CDFSL benchmark introduced in [1] is used as the basis for our

experiments. MiniImageNet [107], which consists of images based on object recognition

tasks, is utilized as the base representation learning dataset. Experiments are

conducted on the more extensive ImageNet [126] dataset as well. The benchmarkŠs

target data is composed from four datasets, each from very different domains relative

to the source images of miniImageNet and ImageNet. The novel datasets consist of

EuroSAT (satellite imagery to determine land usage), CropDiseases (plant images to

identify botanical diseases), ChestX (chest X-rays to detect pathology), and ISIC2018

(images of skin abrasions to detect melanoma).

For methods with an unsupervised component such as STARTUP and AdaBN, we

randomly sample 20% of unlabelled images from novel classes in the target dataset

to use in the representation learning phase, following a similar setup to [117] . The

remaining samples are used during inference. Similar to [1], we perform experiments

in an FSL classiĄcation setting where the support set is composed of 5 classes with k

samples per class (5-way k-shot), where k ∈ {1, 5, 20, 50} and the overall scores are

an average of accuracies over all target datasets for k ∈ {5, 20, 50}. Evaluation of

models pre-trained on source miniImageNet are carried out over 600 episodes, 95%
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conĄdence intervals with reported mean accuracy. Models that were pre-trained on

source ImageNet are evalutated in similar settings, except over 2000 episodes.

4.3.2 Implementation details and variance of runs

The few-shot transfer experiments in Table 5 are carried out on the publicly available

CDFSL benchmark [1]. The Baseline is standard transfer learning trained for 400

epochs on miniImageNet with a batch size of 128. STARTUPŠs teacher model is

trained for 400 epochs on miniImageNet and its student model is trained for 1000

epochs on unlabelled samples from 20% of each target dataset, both using a batch

size of 256. The remaining 80% of target datasets are utilized for Ąne-tuning, as

described in Sec. 4.3.1. All methods make use of the ResNet-10 architecture [97]. The

experiments in this paper were carried out using the Tesla V100 SXM2 16 GB GPU.

For miniImageNet source cases with very-low shot cases such as 1-shot, we observe

a high variance in results across different seeds. For instance, on 5 different seeds,

the Ąne-tuned baseline trained in [117] produced the following mean accuracies for

5-way 1-shot classiĄcation on EuroSAT: {63.11%; 63.01 %; 61.50%; 62.68 %; 61.91 %},

each with 95% conĄdence interval of about 0.9 across episodes. We note as well some

reported improvements are often in the range of 2-3% in the mean [117], thus we can

see the variance due to the training procedure can be higher than typically assumed.

In order to take into consideration this high variance that has been unaccounted for

in other studies, we average the results obtained from experiments carried out over 5

seeds.

Overhead calculation It is worth noting that different methods have varying

computational demands and complexity. To make a fair comparison of the

computational costs relative to performance gains, we have calculated the base

training and adaptation times as a means of elaborating the cost differences between

the evaluated methods. The base training time is evaluated as the amount of time

required to train during the representation learning on labelled samples drawn from the

source domain Ds relative to the training time taken by the Baseline method. Having

an overhead of 1 is equivalent to the time taken by baseline, while 0.75 indicates that

the method only requires 75% of the time taken by the Baseline. Using the same

approach, the adaptation time ratio is calculated as the time needed to adapt a single

sample of the target domain Dt, either supervised or unsupervised, for each episode

relative to the amount of time taken by the Baseline.
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Evaluation setting Any inference technique that is dependent on a feature

representation and is built with BN in its backbone can be used agnostically with FN.

For fairness and simplicity, in this work, we follow the same evaluation setting used

for experiments on the CDFSL benchmark [1] and STARTUP [117]. Here, the weights

of the feature extractor are frozen after representation training on the base dataset. A

linear classiĄer is then trained on the support set and the model is evaluated on the

query set.

4.3.3 BatchNorm related methods

Our work focuses on Batch Normalization and thus we consider two additional

approaches not as commonly used in the few-shot literature that are based on

adjusting BatchNorm statistics or BatchNorm affine parameters to facilitate more

rigid comparisons.

AdaBN few-shot setup AdaBN, introduced in [122], is a lightweight BatchNorm-

based domain adaptation technique that has been shown to improve performance

on transfer learning methods towards image classiĄcation tasks. The method is an

unsupervised technique that utilizes unlabelled data from the target domain and

adapts the BN statistics to bridge the domain gap between the source and target

distributions. Despite the efficacy of this approach in transfer learning, it has been

neglected in the few-shot literature. In this study, we evaluate AdaBN in few-shot

settings both in near-domain and when facing a signiĄcant domain shift, with both

BN and FN conĄgurations. AdaBN utilizes the standard Baseline model pre-trained

on the source dataset, and adapts for an additional few epochs of forward passes on

unlabelled samples Dt. Here, the statistics of the modelŠs normalization layer are

updated based on the target feature distribution p(x)t while the learnable parameters

of the model remain frozen.

Adaptation of Affine Parameters We adapt affine parameters. Inspired by [124].

Other methods have learned affine parameters per domain, for a shared set of weights.

4.3.4 Results

Cross-domain few-shot transfer Table 5 reports the results of our experiments

on the CDFSL benchmark. Across all datasets and 1, 5, 20, and 50 shot settings

(consistent with the CDFSL benchmark), the average performance of the models
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EuroSAT CropDisease ISIC ChestX Adapt Base-Train
Time Time

5-way, 1-shot

Baseline
BN 61.54±0.89 68.87±0.84 31.96±0.60 22.43±0.40 1.00 1.00
FN 62.61±0.87 70.91±0.85 32.80±0.61 22.20±0.40 1.00 1.00

Baseline ✗
BN 61.49±0.91 68.94±0.85 31.77±0.58 22.54±0.40 1.00 1.00
FN 61.81±0.87 71.11±0.86 32.58±0.60 22.33±0.40 1.00 1.00

AdaBN
BN 59.44±0.84 68.07±0.85 33.82±0.62 22.41±0.40 7.25 1.00
FN 63.27±0.86 71.50±0.85 33.67±0.63 22.11±0.39 7.25 1.00

AdaBN ✗
BN 60.40±0.87 68.04±0.85 33.31±0.61 22.32±0.40 7.25 1.00
FN 63.29±0.88 71.32±0.86 33.43±0.63 22.14±0.40 7.25 1.00

STARTUP
BN 63.88±0.84 75.93±0.80 32.70±0.60 23.09±0.43 1251 1.00
FN 64.00±0.88 74.56±0.85 35.12±0.64 22.93±0.43 1251 1.00

5-way, 5-shot

MAML* BN 71.70±0.72 78.05±0.68 40.13±0.58 23.48±0.96 0.70 4.83
ProtoNet* BN 73.29±0.71 79.72±0.67 39.57±0.57 24.05±1.01 0.35 4.18

Baseline
BN 79.90±0.69 89.93±0.52 43.47±0.60 26.17±0.43 1.00 1.00
FN 80.51±0.67 91.14±0.49 45.03±0.62 25.90±0.43 1.00 1.00

Baseline ✗
BN 79.81±0.71 90.15±0.51 43.11±0.58 26.39±0.43 1.00 1.00
FN 80.03±0.70 91.11±0.49 45.34±0.60 25.78±0.42 1.00 1.00

AdaBN
BN 80.47±0.63 90.11±0.52 47.97±0.64 26.00±0.42 7.25 1.00
FN 82.34±0.62 91.29±0.49 47.92±0.64 25.87±0.43 7.25 1.00

AdaBN ✗
BN 80.39±0.65 89.95±0.51 46.74±0.61 25.93±0.43 7.25 1.00
FN 82.00±0.64 90.99±0.50 47.20±0.62 25.86±0.43 7.25 1.00

STARTUP
BN 82.29±0.60 93.02±0.45 47.20±0.61 26.94±0.44 1251 1.00
FN 82.51±0.62 92.86±0.43 48.54±0.63 27.17±0.44 1251 1.00

5-way, 20-shot

MAML* BN 81.95±0.55 89.75±0.42 52.36±0.57 27.53±0.43 0.70 4.83
ProtoNet* BN 82.27±0.57 88.15±0.51 49.50±0.55 28.21±1.15 0.35 4.18

Baseline
BN 87.59±0.45 95.83±0.29 54.67±0.58 32.24±0.46 1.00 1.00
FN 88.31±0.46 96.50±0.27 56.71±0.59 32.11±0.46 1.00 1.00

Baseline ✗
BN 88.31±0.48 96.06±0.28 56.62±0.57 32.58±0.46 1.00 1.00
FN 88.94±0.46 96.62±0.26 58.92±0.57 31.88±0.46 1.00 1.00

AdaBN
BN 88.90±0.45 96.03±0.28 59.04±0.60 31.33±0.46 7.25 1.00
FN 89.95±0.42 96.68±0.27 59.65±0.60 31.57±0.45 7.25 1.00

AdaBN ✗
BN 88.87±0.46 95.99±0.28 58.23±0.58 31.58±0.46 7.25 1.00
FN 89.91±0.43 96.55±0.27 59.24±0.59 31.68±0.47 7.25 1.00

STARTUP
BN 89.26±0.43 97.51±0.21 58.60±0.58 33.19±0.46 1251 1.00
FN 89.63±0.43 97.43±0.23 59.98±0.59 33.54±0.46 1251 1.00

5-way, 50-shot

ProtoNet* BN 80.48±0.57 90.81±0.43 51.99±0.52 29.32±1.12 0.35 4.18

Baseline
BN 90.43±0.41 97.58±0.21 60.84±0.56 35.71±0.47 1.00 1.00
FN 91.10±0.39 98.03±0.19 63.17±0.56 35.80±0.47 1.00 1.00

Baseline ✗
BN 91.64±0.39 97.85±0.19 64.29±0.57 36.25±0.48 1.00 1.00
FN 92.34±0.36 98.27±0.17 65.90±0.58 34.81±0.49 1.00 1.00

AdaBN
BN 91.75±0.37 97.77±0.20 63.69±0.58 34.36±0.47 7.25 1.00
FN 92.73±0.34 98.13±0.19 64.56±0.58 35.09±0.47 7.25 1.00

AdaBN ✗
BN 92.04±0.37 97.73±0.20 64.15±0.56 35.08±0.47 7.25 1.00
FN 92.86±0.34 98.11±0.18 65.28±0.56 35.18±0.48 7.25 1.00

STARTUP
BN 91.99±0.36 98.45±0.17 64.20±0.58 36.91±0.50 1251 1.00
FN 92.59±0.33 98.53±0.16 65.90±0.56 37.67±0.47 1251 1.00

Table 5: Few-shot transfer results under extreme distribution shift. All methods make
use of a ResNet-10 backbone evaluated over 600 episodes. (BN): BN conĄguration,
linear classiĄer Ąne-tuned; (FN): FN conĄguration, linear classiĄer Ąne-tuned; methods
marked with ✗: stands for Fine-Affine, linear classiĄer + affines Ąne-tuned.; The affines
of (FN Fine-Affine) are restored prior to the Ąne-tuning stage. * Results from [1].
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conĄgured with FN exceed that of the BN models. Notably, there is an average

improvement of 2.04% for 1 shot classiĄcation on the CropDisease dataset when the

the Baseline is equipped with FN across 5 seeds. Simply conĄguring the Baseline

model with FN obtains results that rival (within error bars) the more complex and

computationally expensive STARTUP, which employs a large amount of unlabelled

data to bridge the domain gap. Relative performance gains can be observed across all

three methods (Baseline, AdaBN and STARTUP) when equipped with FN. The best

overall results were produced by STARTUP with FN. The superior results produced by

FN models indicate that the BN affine parameters, γ and β, have a generally negative

impact on downstream few-shot transfer tasks when facing a signiĄcant domain shift.

BN FN BN Fine-Affine FN Fine-Affine

5-way, 1-shot

EuroSAT 65.17 ± 0.46 67.04 ± 0.44 66.32 ± 0.46 68.69 ± 0.45

CropDisease 72.98 ± 0.47 76.97 ± 0.44 74.01 ± 0.46 77.52 ± 0.43

ISIC 29.33 ± 0.29 30.89 ± 0.31 31.08 ± 0.32 31.40 ± 0.31

ChestX 22.37 ± 0.22 22.67 ± 0.23 22.28 ± 0.22 22.71 ± 0.22

5-way, 5-shot

EuroSAT 84.32 ± 0.31 86.43 ± 0.28 84.07 ± 0.34 86.75 ± 0.29

CropDisease 91.86 ± 0.25 93.59 ± 0.23 91.92 ± 0.25 94.02 ± 0.22

ISIC 42.11 ± 0.32 45.12 ± 0.33 47.50 ± 0.36 46.39 ± 0.33
ChestX 25.38 ± 0.23 26.22 ± 0.24 25.21 ± 0.23 26.39 ± 0.24

5-way, 20-shot

EuroSAT 91.32 ± 0.20 92.49 ± 0.19 92.43 ± 0.19 93.02 ± 0.19

CropDisease 96.80 ± 0.15 97.65 ± 0.13 97.48 ± 0.15 98.01 ± 0.12

ISIC 54.53 ± 0.33 56.92 ± 0.33 62.00 ± 0.35 60.04 ± 0.33
ChestX 29.55 ± 0.24 30.73 ± 0.24 30.20 ± 0.26 31.77 ± 0.26

5-way, 50-shot

EuroSAT 93.55 ± 0.17 94.34 ± 0.15 95.18 ± 0.15 95.15 ± 0.14
CropDisease 98.09 ± 0.10 98.62 ± 0.09 98.86 ± 0.07 98.88 ± 0.07

ISIC 60.78 ± 0.31 63.16 ± 0.31 69.05 ± 0.32 68.25 ± 0.32
ChestX 32.33 ± 0.25 33.64 ± 0.25 34.36 ± 0.28 35.85 ± 0.27

Table 6: Fine-tuning the linear classiĄer versus affines + linear classiĄer. All methods
make use of a ResNet18 pre-trained on ImageNet and evaluated over 2000 episodes.
BN: BN conĄguration, linear classiĄer Ąnetuned; BN Fine-Affine: BN conĄguration,
linear classiĄer + affines Ąne-tuned; FN: FN conĄguration, linear classiĄer Ąne-tuned;
FN Fine-Affine: FN conĄguration, linear classiĄer + affines Ąne-tuned.

Fine-Affine (Fine-tuning the γ and β) The results of the affine Ąne-tuning

experiment are presented in Table 6. Baseline models equipped with both BN and FN
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were evaluated with the Fine-Affine conĄguration. After the affine parameters of FN

Fine-Affine were disabled during the representation learning phase, they are restored

and initialized to 1 and 0 for γ and β. The ImageNet dataset was chosen as the source

domain on which both the BN and FN models are pre-trained on. It can be observed

from the results that there are strong performance gains as a result of the Fine-Affine

setup on both BN and FN models, but that FN models still outperform BN models.

Improvements are noted for 1, 5, 20 and 50 shot classiĄcation across all four datasets,

with noteworthy gains of 7.57% on 20-shot classiĄcation of ISIC and 2.21% on 50-shot

classiĄcation of ChestX by the BN Fine-Affine and FN Fine-Affine models respectively.

These results suggest that affine parameters are useful towards task speciĄc adaption

in few-shot transfer settings, without causing the models to overĄt to the small number

of samples presented in few-shot environments. The Fine-Affine adaptation was not

as effective when using miniImageNet as the source dataset, as observed from Table 5.

However, on both ImageNet and miniImageNet base datasets, FN provides a marked

improvement over BN on the Fine-Affine method.

Computational overhead From a practical perspective, even though STARTUP

produced the overall best results, its adaptation time ratio is 1251 times than taken

by the Baseline approach. This is due to an expensive unsupervised learning step.

This makes such computationally complex methods inapplicable in tight situations.

On the other hand, despite the slow paced base training for MAML and ProtoNet

(time ratios to Baseline are 4.83 and 4.18 respectively), they are relatively faster in

adaptation time with a lower ratio for MAML (0.70) and a considerably small portion

relative to the Baseline time for ProtoNet (0.35). AdaBN is an expensive method

compared to MAML and ProtoNet as the adaptation time is larger than MAMLŠs and

ProtoNetŠs sum of adaptation and base training time. In practice, the adaptation time

is not of the same scale as the base training and they can not be compared directly.

In a real-world scenario, the adaptation happens on much smaller annotated samples

from the target domain. Thus it can be considered as a smaller overhead compared

to the base training which beneĄts from a large supervised sample set. And Ąnally,

the proposed modiĄcation, the FN, resulted in improving other methods, without

any exposed extra overhead (even with a slight decrease from a smaller number of

parameters).

AdaBN AdaBN is a domain adaptation technique based on BatchNorm that has

been adapted to a few-shot environment in this paper. The evaluation of AdaBN
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on cross-domain few-shot transfer can viewed in Table 5. The results indicate that

AdaBN, with both BN and FN conĄgurations, produce considerable improvements

on the ISIC few-shot performance, with a notable 4.86% gain over the baseline on

5-shot classiĄcation. While on the other target datasets, AdaBN produced more

marginal gains relative to the Baseline. In terms of AdaBN with the BN and FN

conĄguration, FN consistently outperforms BN on most of the experiments. This

shows that replacing BN with FN can produce substantial gains for BatchNorm-based

domain adaptation techniques when facing a large domain shift.

Post-activation distributions under cross-domain Shifts We hypothesize that

the issue with BatchNorm affine parameters under domain shift is related to the

sparsifying properties of typical non-linearities like ReLU. A potentially small shift in

a neuronŠs pre-activation output distribution, for example the distribution becoming

more peaked, can result in substantial shifts in the post-activation distribution after

thresholding. Moreover excessive thresholding can lead to information loss. To obtain

further insights, we investigate the average number of non-zero entries (the sparsity) in

the feature representations of the penultimate layer of imagenet trained ResNet18 and

miniImageNet ResNet10 models under distribution shift. For each model we compute

its sparsity on the source data (ImageNet or miniImageNet) and subsequently compare

this to the sparsity of other datasets from the CDFSL benchmark. Furthermore, as seen

from Table 7, distribution shift (going from imagenet to CDFSL data) tends to induce

substantially sparser representations relative to in-distribution data. We hypothesize

this excessive sparsity leads to degraded performance and less general features. On

the other hand the centered distributions produced by the FN trained models do not

have as high a sparsity both for source data and for target datasets motivating their

potential for alleviating this issue with affine parameters and distribution shifts.

ImageNet Eurosat ISIC ChestXRay CropDisease

ImageNet Pretrained ResNet18 (BN) 53.5 37.2 47.3 58.4 54.2
ImageNet Pretrained ResNet18 (FN) 60.9 53.7 58.9 64.5 62.1

miniImageNet Pretrained ResNet10 (BN) 30.0 16.9 16.2 20.7 30.4
miniImageNet Pretrained ResNet10 (FN) 50.7 26.3 27.6 37.3 47.7

Table 7: The percentage of non-zero entries in the feature maps is computed after
the Ąnal ReLU activation in each pretrained model. Small changes in the continuous
distribution lead to large changes in the discrete distribution. From in-domain to
cross-domain transfer, we Ąnd that sparsity increases as we move cross-domain.
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4.3.5 Ablation studies

As described, the BatchNorm layer consists of two learnable affine parameters whereas

the Feature Normalization layer performs normalization in the absence of these affines.

In this section, we carry out ablation experiments on these parameters to determine

their isolated inĆuence on few-shot transfer performance. The results of the ablation

experiments on the CD-FSL benchmark are presented in Table 8. It can be observed

that both BN(γ) and BN(β) produce more accurate classiĄcation than BN across 1, 5,

20 and 50 shots on all four datasets. The margin of improvement is higher on BN(β)

relative to BN(γ). Feature Normalization, where both γ and β are removed, is the

best performing conĄguration for distant domain few-shot transfer.

BN (γ, β) BN (γ) BN (β) FN (ours)

5-way, 1-shot

EuroSAT 65.17 ± 0.46 66.67 ± 0.80 66.69 ± 0.80 67.04 ± 0.44

CropDisease 72.98 ± 0.47 75.32 ± 0.88 75.68 ± 0.84 76.97 ± 0.44

ISIC 29.33 ± 0.29 30.11 ± 0.54 29.41 ± 0.55 30.89 ± 0.31

ChestX 22.37 ± 0.22 22.62 ± 0.39 22.47 ± 0.41 22.67 ± 0.23

5-way, 5-shot

EuroSAT 84.32 ± 0.31 85.56 ± 0.52 86.18 ± 0.52 86.43 ± 0.28

CropDisease 91.86 ± 0.25 92.91 ± 0.47 93.09 ± 0.43 93.59 ± 0.23

ISIC 42.11 ± 0.32 44.48 ± 0.58 43.26 ± 0.59 45.12 ± 0.33

ChestX 25.38 ± 0.23 26.09 ± 0.43 26.01 ± 0.44 26.22 ± 0.24

5-way, 20-shot

EuroSAT 91.32 ± 0.20 91.73 ± 0.35 92.11 ± 0.34 92.49 ± 0.19

CropDisease 96.80 ± 0.15 97.26 ± 0.26 97.51 ± 0.23 97.65 ± 0.13

ISIC 54.53 ± 0.33 56.41 ± 0.59 56.25 ± 0.60 56.92 ± 0.33

ChestX 29.55 ± 0.24 30.26 ± 0.43 30.15 ± 0.44 30.73 ± 0.24

5-way, 50-shot

EuroSAT 93.55 ± 0.17 93.59 ± 0.29 94.11 ± 0.27 94.34 ± 0.15

CropDisease 98.09 ± 0.10 98.31 ± 0.19 98.57 ± 0.16 98.62 ± 0.09

ISIC 60.78 ± 0.31 62.46 ± 0.58 63.25 ± 0.57 63.16 ± 0.31
ChestX 32.33 ± 0.25 33.03 ± 0.45 32.60 ± 0.46 33.64 ± 0.25

Table 8: Ablation studies on the affine parameters of the Batch Norm layer. All
methods utilize a ResNet18 backbone pre-trained on the ImageNet dataset and
evaluated over 2000 episodes. BN (γ, β): Standard BN conĄguration; FN: FN
conĄguration; BN (γ): BN with disabled β; BN (β): BN with disabled γ.
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4.4 Summary

Feature Normalization layers improve few-shot generalization performance on shifted

domains by leveraging a smaller number of model parameters. By stabilizing the

output distribution of convolutional layers, Feature Normalization improves robustness

against distributional shifts. It captures and normalizes the statistical distribution of

data features while preventing the affine from overĄtting to the training source labels.

Feature Normalization is consistent with widely used BatchNorm implementations

and can be easily integrated into existing CNN architectures. It is observed that the

proposed normalization technique only helps in few-shot transfer and the effect is

more pronounced as the data distribution shifts.
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Chapter 5

Parametric scattering networks

5.1 Introduction

Small sample settings are standard in hospital systems, where data is limited and

expensive to collect for speciĄc tasks. For example, internal fetal heart rate monitoring

requires meeting speciĄc conditions and can pose risks of injury to or disease

transmission between infants and birthing parents. Additionally, privacy constraints

disable data sharing across hospitals. Strong laws and regulations, such as HIPPA and

PIPEDA, prevent data sharing across hospitals, and procedures for releasing medical

data take time. Pertinent critiques underlie approaches to learning from massive data.

Given the lack of scope in vast piles of data, often from a natural image domain

and not medical imaging, some question whether deep learning researchers provide

evidence for any valid hypothesis embedded within the data. Furthermore, the lack

of labeled data in most medical imaging datasets does not allow for applying most

deep-learned methods, and the domain shift of medical images complicates the design

of methods robust to small sample settings. Building methods that lead to effective

small-sample learners across domains would allow healthcare practitioners to navigate

the lack of data and privacy constraints.

One of the most interesting of these low-sample methods is Scattering

Transforms. Scattering Transforms provide a deformation-stable translation-invariant

representation of input signals that work well in the low data regime and provide an

excellent theoretical model of single and two-layered trained neural networks. The

layers of a scattering transform mimic the layers of a convolutional neural network, with

the non-linearities being modulus non-linearities and the convolutional Ąlters being

Morlet wavelets. These wavelets are spread in a Ąxed tight-frame layout enabling the

38



Scattering representations to be discriminative. The Scattering Transform originates

as a feature extractor suitable for natural image classiĄcation and texture recognition,

being transferred and evaluated successfully for speciĄc small sample medical imaging

settings.

Given that the intention of the design choices of the Scattering Transform is to

induce similarities with trained neural networks, one natural question after all the

literature is, "How vital is the tight-frame conĄguration of Scattering Transforms

in small sample medical imaging settings?". We investigate this question, making

our wavelets adaptable by allowing the parameters that generate each wavelet to

be learnable. We call the Scattering Network with learnable wavelets a Parametric

Scattering Network. We study the deformation properties of the learned wavelets

across domains, Ąnding that the problem-speciĄc wavelets keep similar properties to

the tight-frame wavelets that parameterize a scattering network. We then evaluate our

parametric scattering networks on detecting Covid from ChestXrays and investigate

unsupervised methods for training parametric scattering networks.

5.2 Related work

Learning useful representations from little training data [127] is arduous and a reality

in a variety of domains such as in biomedicine and healthcare. Recent works have

tried to tackle this problem. Lezama et al. [128] replace the categorical cross-entropy

loss with a geometric loss called Orthogonal Low-rank Embedding (OLÉ) to reduce

the intra-class variance and enforce inter-class margins. Barz and Denzler [129] also

propose to replace the categorical cross-entropy loss, but this time with the cosine

loss function in order to decrease overĄtting in the small-sample classiĄcation settings.

The cosine loss function, as opposed to the softmax function used with cross-entropy,

does not push the logits of the true class to inĄnity. Other methods show promise by

incorporating prior knowledge into the model [130Ű134]. Oyallon et al. [135] introduce

hybrid networks where the scattering transform with Ąxed wavelets was shown to

be an effective replacement for early layers of learned convolutional networks on a

wide residual network architecture. Cotter and Kingsbury [136] also propose a hybrid

network called a learnable ScatterNet, where learning layers are intermixed between

the scattering orders, unlike our work where only a few parameters governing the

wavelet construction are modiĄed. Ulicny et al. [137] propose Harmonic Networks

(HN), a hybrid network consisting of Ąxed Discrete Cosine Transform Ąlters combined

with learnable weights in CNNs.
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Related to our work, adding learnable components to existing wavelet-based

representations has been considered in a number of recent works in the context of

time-series [138Ű141]. Balestriero et al. [138] and Seydoux et al. [139] learn a spline-

parametrized mother wavelet for 1D problems. Similarly, Cosentino and Aazhang [140]

parametrized the group transform in the context of time-series data. Our work,

alternatively, focuses on 2D problems and maintains the canonical Morlet wavelet

parameterization, but allows deviation from a tight-frame Ąlter bank.

5.3 Methods

We Ąrst revisit the formulation of traditional scattering convolution networks in

Sec. 5.3.1 and introduce our parametric scattering transform in Sec. 5.3.2. Finally,

Sec. 5.3.3 discusses scattering parameter initialization.

5.3.1 Scattering Networks

For simplicity, we focus here on 2D scattering networks up to their 2nd order.

Subsequent orders can be computed by following the same iterative scheme, but

have been shown to yield negligible energy [51]. Given a signal x(u), where u is

the spatial position index, we compute the scattering coefficients S0x, S1x, S2x, of

order 0, 1, and 2 respectively. For an integer J , corresponding to the spatial scale

of the scattering transform, and assuming an N ×N signal input with one channel,

the resulting feature maps are of size N
2J × N

2J , with channel sizes varying with the

scattering coefficient order (i.e., 1 channel at order 0, JL channels at order 1 and

L2J(J − 1)/2 channels at order 2).

To calculate 0th-order coefficients, we consider a low-pass Ąlter ϕJ with a spatial

window of scale 2J , such as a Gaussian smoothing function. We then convolve this

Ąlter with the signal and downsample by a factor of 2J to obtain S0x(u) = x∗ϕJ(2Ju).

Due to the low-pass Ąltering, high-frequency information is discarded here and is

recovered in higher-order coefficients via wavelets introduced as in a Ąlter bank.

Morlet wavelets are a typical example of Ąlters used in conjunction with the

scattering transform, and are deĄned as

ψσ,θ,ξ,γ(u) = e−∥DγRθ(u)∥2/(2σ2)(eiξu′

− β), (6)

where β is a normalization constant to ensure wavelets integrate to 0 over the spatial

domain, u′ = u1 cos θ+u2 sin θ, Rθ is the rotation matrix of angle θ and Dγ =




1 0

0 γ



 .
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Table 9: Canonical Parameters of Morlet wavelet

Param Role Param Role

σ Gaussian window scale θ Global orientation

ξ Frequency scale γ Aspect Ratio

The four parameters can be adjusted and are presented in Table 9. From one wavelet

ψσ′,θ′,ξ′,γ′(u), the traditional wavelet Ąlterbank is obtained by dilating it by factors

2j, 0 ≤ j < J , and rotating by L angles θ equally spaced over the circle, to get

¶2-2jψσ′,θ′,ξ′,γ′(2-jRθ(u))♢, which is then completed with the lowpass ϕJ . This can be

written in terms of the parameters in Table 9 as ψ2jσ′,θ′−θ,2-jξ′,γ′(u) = ψ(2-jRθ(u)). By

slight abuse of notations, we use ψλ here, λ = (σj, θ, ξj, γj), to denote such wavelets

indexed by θ and j. The resulting set of Ąlters is visualized in the frequency domain

in Figure 6.

First-order scattering coefficients are calculated by Ąrst convolving the input signal

with one of the generated complex wavelets (i.e., indexed by the parameters in Table 9)

and downsampling the resulting Ąltered signal by the scale factor 2j1 of the wavelet

chosen. Then, a pointwise complex modulus is used to add nonlinearity, and the

resulting real signal is smoothed via a low-pass Ąlter. Finally, another downsampling

step is applied, this time by a factor of 2J−j1 , to obtain an optimally compressed

output size. Mathematically, we have

S1x(λ1, u) = ♣x ∗ ψλ1
♣∗ϕJ(2Ju). (7)

The resulting feature map has J · L channels, based on the number of wavelets in the

generated family. Second-order coefficients are generated similarly, with the addition

of another cascade of wavelet transform and modulus operator before the low-pass

smoothing, i.e.,

S2x(λ1, λ2, u) = ♣♣x ∗ ψλ1
♣∗ψλ2

♣∗ϕJ(2Ju). (8)

Due to the interaction between the bandwidths and frequency supports of Ąrst and

second order, only coefficients with j1 < j2 have signiĄcant energy. Hence, the

second-order output yields a feature map with 1
2
J(J − 1)L2 channels.

5.3.2 Morlet Canonical Parameterization

While the wavelet Ąlters are traditionally Ąxed, we let the network learn the optimal

parameters of each wavelet. In other words, we constrain our Ąlters to always be
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Morlet wavelets by only optimizing the parameters in Table 9. We call this approach

the Morlet canonical parameterization of the wavelet. We adapted the Kymatio

software package [142] to create the learnable scattering network.

5.3.3 Initialization

To evaluate the importance of the standard wavelet construction, we consider two

initializations and study their impact on resulting performance in both learned

and nonlearned settings. First, the standard wavelet construction follows common

implementations of the scattering transform by setting σj,ℓ = 0.8 × 2j, ξj,ℓ = 3π
4

2-j, and

γj,ℓ = 4
L

for j = 1, . . . , J , ℓ = 1, . . . , L, while for each j, we set θj,ℓ to be equally spaced

on [0, π). The construction ensures the resulting Ąlter bank forms an efficient tight

frame. Thus, we call this construction the tight-frame initialization. Second, as an

alternative, we consider a random initialization where these parameters are sampled

as σj,ℓ ∼ log(U [exp 1, exp 5]), ξj,ℓ ∼ U [0.5, 1], γj,ℓ ∼ U [0.5, 1.5], and θj,ℓ ∼ U [0, 2π].

That is, orientations are selected uniformly at random on the circle, the Ąlter width σ

is selected using an exponential distribution across available scales and the spatial

frequency ξ is chosen to be in the interval [0.5, 1], which lies in the center of the

feasible range between aliasing (> π) and the fundamental frequency of the signal size

(2π/N where N is the number of pixels). Finally, we select the aspect ratio variable

to vary around the spherical setting of 1.0, with a bias towards stronger orientation

selectivity (0.5) compared to lesser orientation selectivity (1.5).
However, the global orientation of the L Ąlters for each scale are set to be [Θ,

Θ + π
L

, Θ + 2π
L

, . . . , Θ + (L−1)π
L

].

5.4 Experiments

Our empirical evaluations are based on three image datasets: CIFAR-10, COVIDx

CRX-2, and KTH-TIPS2. CIFAR-10 and KTH-TIPS2 are natural image and

texture recognition datasets, correspondingly. They are often used as general-purpose

benchmarks in similar image analysis settings [143, 144]. COVIDx CRX-2 is a dataset

of X-ray scans for COVID-19 diagnosis; its use here demonstrates the viability of our

parametric scattering approach in practice, e.g., in medical imaging applications.

We evaluate the use of the parametrized scattering with two common models.

In the Ąrst case, we consider the scattering as feeding into a simple linear model

(denoted LL). The LL conĄgurations are used to evaluate the linear separability of the
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Tight-Frame Random Initialization

Figure 5: Initialized wavelet Ąlters pre and post-training. Real part of Morlet
wavelet Ąlters initialized with tight-frame (left) and random (right) schemes before
(top) and after (bottom) training. The Ąlters were optimized on the entire CIFAR-10
training set with linear model. We use the Morlet canonical wavelet parameterization.
For the tight-frame Ąlters, we observe substantial changes in both scale and aspect
ratio. On the other hand, all random Ąlters undergo major changes in orientation and
scale.

obtained scattering representations and have the added beneĄt of providing a more

interpretable model. In the second case, we take the approach of [135] and consider

the scattering as the Ąrst stage of a deeper CNN, speciĄcally a Wide Residual Network

(WRN) [145].

For both models (LL and WRN), we compare learned parametric scattering

networks (LS) to Ąxed ones (S). For learned scattering (LS), we consider the Morlet

canonical parameterization as described in Sec. 5.3.2. To show the importance of the

parametric approach, we also ablate the naive parameterization where all pixels of the

wavelets are adapted, which we refer to as a pixel-wise parameterization. For each

scattering architecture, we consider both random and tight-frame (TF) initialization.

The Ąxed scattering models determined by the TF construction are equivalent to

traditional scattering transforms. Finally, we also compare our approach to a fully

learned WRN (with no scattering priors) and ResNet-50 [97] applied directly to input

data. We note that the latter is unmodiĄed form its ImageNet architecture and that

we do not initialize it with pre-trained weights.

Across all scattering conĄgurations, a batch-normalization layer with learnable

affine parameters is added after all scattering layers. ClassiĄcation is performed via a

softmax layer yielding the Ąnal output. All models are trained using cross-entropy

loss, minimized by stochastic gradient descent with momentum of 0.9. Weight decay is

applied to the linear model and to the WRN. The learning rate is scheduled according

to the one cycle policy [146]. We replicate some of the experiments with learnable

scattering networks followed by WRN on CIFAR-10, COVIDx-CRX2, and KTH-TIPS2

using the cosine loss function [129].
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Figure 6: Parametric scattering network learns dataset speciĄc Ąlters. The
graph (top right) shows the Ąlterbank distance over epochs as the Ąlters are trained
on different datasets. We visualize dataset speciĄc parameterizations of scattering
Ąlterbanks (border colors from the legend) in Fourier space. The x and y axis are
the frequency axis. Scattering Ąlters optimized for natural (CIFAR-10) and medical
image (COVIDx CRX2) become more orientation-selective, i.e., thinner in the Fourier
domain. On the other hand, Ąlters optimized for texture discrimination (KTH-TIPS2)
become less orientation-selective and deviate most from a tight-frame setup.

5.4.1 Exploring Dataset-speciĄc Parameterizations

We Ąrst compare dataset-speciĄc Morlet wavelet parameterizations and evaluate

their similarities to a tight frame. SpeciĄcally, we train our parametric scattering

networks using the canonical Morlet wavelet formulation with a linear classiĄcation

layer and qualitatively compare the similarities of the learned Ąlter bank to the

tight-frame initialization. To facilitate quantitative comparison, we use a distance

metric for comparing the sets of Morlet wavelet Ąlters and Morlet wavelet Ąlterbanks

(i.e., scattering network instantiations), allowing us to measure deviations from the

tight-frame initialization.

We evaluate distances between two individual Morlet wavelets as Υ(M1,M2) =
∥
∥
∥(σ1, ξ1, γ1)

T − (σ2, ξ2, γ2)
T

∥
∥
∥

2
+ arcdist(θ1, θ2) where Mi = (σi, ξi, γi, θi)

T denotes the

parameterization of the Morlet wavelet. We use the arc distance on the unit circle to

compare values of theta. Since the set of learned scattering Ąlters does not have a

canonical order, to compare a learned scattering network to the tight frame scattering

network, we use a matching algorithm to match one set of Ąlters to another. SpeciĄcally,

we Ąrst compute Υ between all combinations of Ąlter pairs from both networks, then

use a minimum cost bipartite matching algorithm [147] to Ąnd the minimal distance

match between the two sets of Ąlters. The Ąnal distance we use as a notion of similarity

between two scattering networks is the sum of Υ for all matched pairs in the bipartite

graph. Henceforth, we will refer to this distance as the Ąlterbank distance.
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The graph in Figure 6 leverages the Ąlterbank distance to show the evolution of

scattering networks initialized from a tight frame and trained on different datasets.

Each network is trained on 1188 samples of its respective dataset (the standard size

for KTH-TIPS2). All Ąlters deviate quickly from a tight frame, but KTH-TIPS2Šs

keep changing the longest and ultimately deviate the most. We also observe that

Ąlters initialized with the random initialization of Sec. 5.3 become more similar to our

tight-frame initialization during the course of training.

On the left-hand side of Figure 6, we visualize the dataset-speciĄc scattering network

parameterizations in Fourier space. White contours are drawn around each Morlet

wavelet for clarity. The top black border corresponds to tight-frame initialization

at J=2, shown for comparison to CIFAR-10 in blue (also J=2). The bottom black

border corresponds to tight-frame initialization at J=4, shown for comparison to

COVIDX-CRX2 red and KTH-TIPS2 yellow (both J=4).

The Ąlters optimized on the KTH-TIPS2 texture dataset (yellow) become less

orientation-selective (wider in Fourier space) than the tight-frame initialization, with

Ąlters at J=0 becoming the least orientation-selective of the whole Ąlter bank. In

contrast, the Ąlters optimized on COVIDx-CRX2 become more orientation-selective

in general i.e., thinner in Fourier space. The Ąlters optimized on CIFAR-10 mirror

those optimized on COVIDx-CRX2, also becoming more orientation-selective than

their tight-frame counterparts. We suspect that this is due to a reliance on edges for

object classiĄcation datasets, which seem to require more orientation-selective Ąlters.

On the other hand, the morlet wavelets optimized for texture classiĄcation seem to

discard some edge information in favor of less orientation-speciĄc Ąlters. Each dataset-

speciĄc parameterization seems to discard unneeded information from the tight-frame

initialization in favor of accentuating problem-speciĄc attributes. Nonetheless, a tight-

frame does constitute a good starting point for learning. Indeed, the dataset-speciĄc

parameterizations for COVIDX-CRX2 and KTH-TIPS2 are, visually, very different,

yet they move similar Ąlterbank distances from the tight-frame initialization (see Ąg.6),

which are small relative to the distances observed for randomly initialized and trained

models.

5.4.2 Robustness to Deformation

In [52], it is shown that the scattering transform is stable to small deformations

of the form x(u − τ(u)) where x(u) is a signal and τ a diffeomorphism. Given the

substantial changes to the Ąlter composition in the learning process, we ask now
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Figure 7: Normalized distances between scattering representations of an
image and its deformation. Our parametric scattering transform shares similar
stability to deformations as the scattering transform.

whether these seem to signiĄcantly deviate from the stability result obtained from the

carefully handcrafted construction proposed in [52] and extensively used in previous

work e.g., [51, 148]. To evaluate the robustness of our parametric scattering networks

to different geometric distortions, we apply several tractable deformations to a chest

X-ray image x with varying deformation strength and encode all images with different

(learned and Ąxed) scattering networks. The learned ones are trained using the Morlet

canonical wavelet formulation with a linear classiĄcation layer. The transformed

image is denoted by x̃. For each of the different deformation strengths, we plot the

Euclidean distance between the scattering feature constructed from the original image

S(x) and the scattering feature constructed from the transformed image S(x̃). We

then normalize the obtained distance by S(x) to measure the relative deviation in

scattering coefficients (handcrafted or learned). Figure 7 demonstrates representative

results for a small rotation, shear and scale on images from the COVIDx datasets. We

observe that the substantial change in the Ąlter construction retains the scattering

robustness properties for these simple deformations, thus indicating that the use of

learned Ąlters (instead of designed ones) does not necessarily detract from the stability

of the resulting transform.

5.4.3 Unsupervised Learning of Parameters

We have studied the adaptation of the wavelet parameters towards a supervised

task. We now perform a preliminary investigation to determine if the scattering

representation can be improved in a purely unsupervised manner. We consider the

recently popularized SimCLR framework [149], which encourages representations from

two data augmentations of the same input to lie close together. We learn scattering

network parameters with the canonical Morlet parameterization on CIFAR-10 using
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Method 100 samples 500 samples 1000 samples All
Scattering (Fixed) 36.01 ± 0.55 48.12 ± 0.25 53.25 ± 0.24 65.58 ± 0.04
Unsupervised Learnt Scattering 38.05 ± 0.45 52.92 ± 0.28 57.76 ± 0.25 68.47 ± 0.04

Table 10: Scattering and learned unsupervised scattering features evaluated by training
a linear classiĄer on CIFAR-10. We observe the unsupervised learned scattering
improves the representation.

this unsupervised objective function and subsequently evaluate the discriminativeness

of the features under a standard linear evaluation experiment on the full CIFAR-10

dataset and in the small data regimes comparing them to the standard scattering

transform. The results are shown in Table 10. We observe the unsupervised

learning of Ąlter parameters can improve the scattering representation under standard

unsupervised learning evaluation protocols.

5.4.4 Computational and memory complexity

The computational complexity of scattering networks and parametric scattering

networks is directly related to the FFT (Fast Fourier transform), O(N · log(N)) for an

image of size (N × N). In practice, the computational and memory complexity of our

parametric scattering networks varies due to a number of factors.To summarize these

factors, we compare runtime (higher is faster), memory, and parameter count per

architecture and image size in Table 11. The models were trained using an NVIDIA

Tesla T4 GPU. We observe that Ąxed scattering is two to three times faster than

learned scattering for all image sizes and hybrid models. In contrast, WRN-16-8 is

faster than LS+WRN at image size 322, but slower for larger images. This is due

to the scattering transformŠs substantial spatial dimension reduction, which leads to

speed and memory beneĄt versus regular CNNs [52]. While gradient computation of

Morlet parameters adds compute overhead, learned scattering is still efficient with

much fewer parameters than CNNs.

5.5 Summary

Limitations There are two limitations to this study that could be addressed in

future research. First, the current implementation is limited to two-dimensional data.

In future work, the implementation could naturally be extended to one-dimensional

and three-dimensional data. Second, for popular datasets, such as CIFAR-10, there

are pre-trained models available. In the study, to compare performance with our

approach, we considered a fully learned WRN-16-8 and ResNet-50, but we did not
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Architecture Img.
size

Train

(
imgs
sec )

Infer.

(
imgs
sec )

GPU
Mem.
(GB)

#Params
(Million)

LS+L 322 264 542 0.3 0.2

C
I
F

A
R

︷
︸
︸

︷

S+L 322 650 656 0.1 0.2
LS+WRN 322 232 430 1.6 22.6
S+WRN 322 498 588 1.4 22.6
WRN-16-8* 322 510 1695 4.2 11.0
LS+L 1282 42 102 5.4 0.8

K
T

H
︷

︸
︸

︷

S+L 1282 123 123 0.5 0.8
LS+WRN 1282 42 101 8.5 23.8
S+WRN 1282 115 120 3.3 23.8
WRN-16-8* 1282 31 90 61.1 11.0
LS+L 2242 24 72 13.7 0.5

C
O

V
I
D

︷
︸
︸

︷

S+L 2242 78 79 1.3 0.5
LS+WRN 2242 22 67 16.1 23.7
S+WRN 2242 58 71 2.9 23.7
WRN-16-8* 2242 10 36 49.6 11.0

Table 11: Comparison of training runtime, inference runtime, GPU memory, and
parameter count per architecture and image size. ∗ from [2]

consider pre-trained models.

Conclusion This work showcases the competitive results of adapting a small number

of Morlet wavelet Ąlter parameters in scattering convolutional networks [51]. We

demonstrate that Ąlters learned by parametric scattering can be interpreted in the

context of speciĄc tasks (e.g., becoming thinner in object classiĄcation tasks that

require sensitivity to edges). We also empirically demonstrate that our parametric

scattering transform shares similar deformation stability to the traditional scattering

transform. Overall, we Ąnd that our hybrid parametric scattering architectures (with

LL and WRN) achieve state-of-the-art classiĄcation results in the low-data regime.

These results verge upon bridging the gap between the handcrafted Ąlter design in

traditional scattering transforms, which provides tractable properties and supports

low-parameter models, and fully parameterized convolutional neural networks, which

lack interpretability but are more Ćexible.
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Chapter 6

Conclusion

The problems we explore are related to domain shifts and limited data settings. Existing

approaches involve Test Time Normalization, Few Shot methods, and Scattering

Networks. These approaches are unable to adapt to unexpected domain shifts. This

work explores several ways to adapt to these distribution shifts.

In the Ąrst contribution, we show the effect of adapting Test Time Normalization

models to imbalanced label distribution and investigate this failure. TTN models

fail on the particular class but generalize well on other classes with or without the

covariate shift applied. Studying the shift over layers shows a trend toward increasing

separation between the class means. We propose to avoid this earlier problem by

adapting only the earlier, closer-to-input layers of the model, which preserve much

covariate shift robustness and mitigate the impact of the label shift. Future work will

look into applying this work to other normalization methods, methods that use TTN

as a base, or federated learning settings with BatchNorm.

In the second contribution, we adapt the affine parameters of BatchNorm to

cross-domain few-shot settings and conduct experiments on the sparsifying properties

of BatchNorm affine parameters. This method is successful in Cross Domain settings,

but improvements level off in near-domain settings or with additional data. Future

work will look into applying this method and better studying what leads to improved

performance.

In the third contribution, we parameterize scattering networks, learning a family

of wavelets speciĄed to a problem. Future work will look into what other contexts we

can apply our Parametric Scattering Networks, such as Bayesian settings where having

minimal parameters is vital. Ablating certain parts of the Parametric Scattering

Network, or further studying the invariance and stability properties of the network, or

parametrizing the scattering to different modalities will glean additional insights.
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