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Abstract

Deep Learning Methods for Estimation of

Elasticity and Backscatter Quantitative Ultrasound

Ali Kafaei Zad Tehrani, Ph.D.

Concordia University, 2023

Ultrasound (US) imaging is increasingly attracting the attention of both academic and in-

dustrial researchers due to being a real-time and nonionizing imaging modality. It is also less

expensive and more portable compared to other medical imaging techniques. However, the

granular appearance hinders the interpretation of US images, hindering its wider adoption.

This granular appearance (also referred to as speckles) arises from the backscattered echo

from microstructural components smaller than the ultrasound wavelength, which are called

scatterers. While significant effort has been undertaken to reduce the appearance of speckles,

they contain scatterer properties that are highly correlated with the microstructure of the

tissue that can be employed to diagnose different types of disease. There are many properties

that can be extracted from speckles that are clinically valuable, such as the elasticity and

organization of scatterers. Analyzing the motion of scatterers in the presence of an internal

or external force can be used to obtain the elastic properties of the tissue. The technique

is called elastography and has been widely used to characterize the tissue. Estimating the

scatterer organization (scatterer number density and coherent to diffuse scattering power) is

also crucial as it provides information about tissue microstructure and potentially aids in dis-

ease diagnosis and treatment monitoring. This thesis proposes several deep learning-based

methods to facilitate and improve the estimation of speckle motion and scatterer proper-

ties, potentially simplifying the interpretation of US images. In particular, we propose new

methods for displacement estimation in Chapters 2 to 6 and introduce novel techniques in

Chapters 7 to 11 to quantify scatterers’ number density and organization.
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Chapter 1

Introduction

Ultrasound (US) imaging is a popular modality in diagnosis and image-guided interventions

thanks to its portability, affordability, and non-invasiveness. However, several types of ar-

tifacts make the interpretation of US images difficult. Cells, collagen, microcalcifications,

and other microstructures are often smaller than the wavelength of the US wave, and as

such, scatter the wave and create the granular appearance in B-mode images called speckles.

Although speckles make the interpretation and visual inspection of B-mode images difficult,

they provide useful information about the physical properties of the tissue which has been

used to characterize the tissue [1, 2].

Quantitative ultrasound (QUS) aims to analyze the speckle and obtains parameters which

are highly correlated with the physical properties of the tissue. QUS parameters have been

utilized to diagnose different types of abnormalities including the breast tumors [3], and

fibrosis in the liver [4]. There are different QUS parameters including speed of sound, elas-

ticity, effective scatterer diameter (ESD), scatterer number density, coherent scattering ratio,

backscattering coefficient, and attenuation coefficient. These parameters can be obtained by

analyzing the backscattered signal in the time domain (scatterer number density and co-

herent scattering ratio), in frequency domain (backscattering coefficient and attenuation

coefficient) or by measuring the motion by an external/internal force (elasticity) [5–8].

In this thesis, we focus on two QUS parameters: elasticity and scatterer number density.

We aim to employ deep learning to improve motion estimation for elasticity quantification

and boost the scatterer number density estimation performance. The rest of the thesis is
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organized in the following manner: we first introduce the elasticity and scatterer number

density parameters. In the next step, novel methods are proposed for improving the motion

estimation in Chapters 2, 3, 4, 5, and 6. New methods are then introduced for scatterer

number density estimation in Chapters 7, 8, 9, 10 and 11.

1.1 Strain imaging and elastography

Materials exhibit different behavior in the presence of an external force. Elastic materials

tend to return to their original shape after the external force is removed. The stress versus

strain curve for these materials is linear and the slope of this line is called elasticity modulus.

The linear relation between stress and strain is fixed and independent of time in elastic

materials, as opposed to viscoelastic materials in which the stress-strain relationship varies

by time. Elasticity represents the material’s resistance to deformation in the presence of

force. Materials with higher elasticity modulus tend to deform less than materials having

lower elasticity modulus [9]. Abnormalities in the tissue might have a different elasticity

modulus than normal tissue; therefore, quantifying the elasticity modulus can have clinical

values.

Ultrasound elastography (USE) aims to quantify the elasticity by finding the motion from

ultrasound data. The source of the force can be internal (motion of the heart in echocardio-

graphy), by the operator using the probe (free-hand palpation), or by an acoustic radiation

force. Among different USE methods, free-hand palpation has gained much popularity due

to its simplicity, low cost, and ease-of-use. The basic idea of the free-hand palpation method

is that the operator compresses the tissue by the US probe. The images before and af-

ter compression are compared to obtain the displacement of each individual sample. This

displacement can be used to obtain a strain map which has relative elasticity information

[10, 11].
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Figure 1.1: Summary of the distribution used to explain envelope data.

1.2 Scatterers number density and scatterer organiza-

tion

The US radio-frequency (RF) echo is the result of contribution from all scatterers and co-

herent strong reflectors inside the resolution cell which can be explained by a random walk

model. Each scatterer has a random phase and amplitude. In the absence of a coherent

strong reflector, the RF echo is the summation of all scatterers inside the resolution cell

having independent phases and amplitudes. The random walk model is given in Eq 1.1.

The phase (Θ) is uniformly distributed over the interval [−π,π) and the amplitude (x) has

normal distribution having zero mean and standard deviation of σ [12].

X =
N−1∑︂
i=0

xie
jΘi (1.1)

If N is large enough (N > 10), the absolute (envelope) of X can be modeled by Rayleigh

distribution, and the scattering type is considered as the diffuse scattering [5]. If RF echo

reflected by the scatterers has a strong constant component, the random walk is changed to

the Eq 1.2. The parameter S is the constant component which is also called coherent scat-

tering [12]. This type of scattering happens when there are specular reflectors or periodically

unresolved scatterers. Under this condition and assuming having large N , the distribution
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of the echo envelope would be Rice distribution [5, 13].

X = S +
N−1∑︂
i=0

xie
jΘi (1.2)

When the number of N is not large enough (N < 10), the N is modeled by a negative

binomial distribution [14]. If there is no coherent component (S = 0), K-distribution can be

used to model the echo envelope. While Homodyned K-distribution should be used when the

coherent component is present [14]. The Nakagami model has also been proposed to explain

the envelope data. This model is obtained experimentally by Dr.Nakagami to describe

fading in wireless channels [15]. The diagram in Fig. 1.1 summarizes the distribution used

to describe envelope data.

1.3 Thesis statement

High-quality and real-time visualization of QUS parametric images, such as elasticity and

scatterer number density, can be clinically significant since quantitative measurements are

not subject of interpretation. Current speckle tracking methods and QUS parameter extrac-

tions are computationally expensive, and their accuracy is limited. Deep learning methods

can be employed to tackle the mentioned problems. The deep learning models are efficiently

implemented on GPUs to be fast enough to work in real-time. Furthermore, they can find

highly non-linear relationships between the inputs and their corresponding outputs. In this

thesis, we employ deep learning models to accomplish the following objectives:

1. Improve the quality of the estimation of strain images in elastography.

2. Reduce the computation time to be able to estimate strain images in real-time.

3. Improve estimation of the scatterer number density parametric image using a limited

sample size.

4. Eliminating the need of patching for estimating scatterer number density and their

organization to avoid unreliable estimates in the boundary regions.
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Table 1.1: The presented chapters and their corresponding publication. The journals are in
bold.

Summary Publication

Chapter 2 An Optical flow CNN is modified to adapt for USE
IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, 2021

Chapter 3
The proposed network in Chapter 1 is altered to
improve the network for large displacements

SPIE (Ultrasonic Imaging and Tomography), 2021

Chapter 4
A bi-directional unsupervised method

is introduced for USE
IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, 2022

Chapter 5
A novel regularization method is proposed to

improve lateral displacement estimation
IEEE Transactions on Medical Imaging, 2023

Chapter 6 Infusing known operators in deep networks
Under review in medical image computing

and computer-assisted intervention (MICCAI), 2023

Chapter 7
A path-based CNN is proposed to

classify the scatterer number density
IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, 2021

Chapter 8
A novel method is proposed to segment the

US envelope data without patching
IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, 2022

Chapter 9
A novel method is introduced to estimate the
scatterer number density without patching

SPIE (Ultrasonic Imaging and Tomography), 2023

Chapter 10
HK-distribution parameters are estimated

using a Bayesian neural network,
which can also quantify the uncertainty

IEEE International Symposium on
Biomedical Imaging (ISBI), 2023

Chapter 11
Deep autoencoder feature projection for

accurate HK-distribution
parameter estimation

IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, (under preparation)

1.4 Organization of the thesis

The remaining of the thesis is organized as follows. Chapters 2 to 6 are dedicated to motion

estimation in USE. Chapters 7 to 11 are allocated to scatterer number density classification,

segmentation, and regression. The summary of the chapters provided in this thesis is given

in Table 1.1. It should be noted that we did not include some of our publications to improve

the flow and eliminate overlap between different chapters.
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Chapter 2

Displacement Estimation in

Ultrasound Elastography using

Pyramidal Convolutional Neural

Network

Ultrasound imaging is being increasingly used as an inexpensive and easy-to-use imaging

modality in numerous diagnosis and image-guided intervention applications. Ultrasound

elastography (USE) is an imaging technique that reveals viscoelastic properties of tissue,

and has been applied to many applications including breast lesion characterization [16] and

ablation monitoring [17–20]. USE compliments B-mode ultrasound by providing biomechan-

ical properties of the tissue [21].

Among different USE methods, free-hand palpation has gained much popularity due its

simplicity, low cost and ease-of-use. The basic idea of free-hand palpation method is that

the operator compresses the tissue by the ultrasound probe. The images before and after

compression are compared to obtain the displacement of each individual sample. This dis-

placement can be used to obtain strain map which has relative elasticity information [10, 11].

The quality of USE mainly depends on the fidelity of the displacement estimation. Window-

based [11, 22–25] and optimization-based [26–28] methods are two main approaches for dis-
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placement estimation in USE. Window-based methods try to find the displacements of each

individual sample by considering a window around the sample in pre- and post-compression

images and assuming that the displacement within the window is constant. In the next

step, a similarity metric such as normalized cross correlation (NCC) is chosen to find the

corresponding windows [11, 22]. Optimization-based methods use a regularized cost function

to find the displacements, therefore they are more robust to signal decorrelation and out of

plane motion [26, 29, 30]. Global ultrasound elastography (GLUE) is a recent optimization-

based method [27] with an implementation available online at code.sonography.ai. GLUE

aims to estimate sub-pixel displacement and requires initial estimate of the displacement

which is obtained by dynamic programming (DP) [28]. The displacement estimation in USE

can also be viewed as a non-rigid registration [31] or optical flow problem [32–34].

Convolutional neural network (CNN) models have been successfully trained to perform

many applications such as classification [35] and segmentation [36]. Recently, CNN has been

used for optical flow problem [37–40]. FlowNet is among the first attempts to extract optical

flow using deep learning architectures [38]. Before FlowNet, patch- and point-based deep

learning methods were used. These methods were only able to extract optical flow of a

point or a small patch of the images. As such, they were computationally expensive as it

was necessary to run them many times to cover the entire image. Two variants of FlowNet

were proposed [38]: FlowNetS and FlowNetC. FlowNetS has a U-shape architecture with a

contracting and an expanding path, and as such, shares many similarities with U-Net [36].

FlowNetS uses coarse outputs in the refinement section to build the finer outputs and uses

multi-scale loss function for optimization. FlowNetC is the other variant of FlowNet that

differs from FlowNetS only in the contracting part. Instead of concatenating input images

and using a U-shape network, it extracts features of each input separately and exploits

a correlation layer to merge information from features of the two images. Although they

reported better performance with FlowNetS, Mayer et al. [39] show that with better learning

schedule and more training data, FlowNetC outperforms FlowNetS.

Following the success of FlowNet, Mayer et al. [39] stack several FlowNetS and FlowNetC

to improve the accuracy of FlowNet. They show that the optimum architecture is to use

FlowNetC as the first block, followed by two FlowNet blocks. This architecture is called
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FlowNet2CSS. In order to improve the network accuracy for small displacements, another

FlowNet is used and it is trained on a database with small displacements. A fusion network

is then proposed to fuse the outputs of FlowNet (trained to provide small displacements)

and FlowNet2CSS. This network called FlowNet2 achieves outstanding performance and is

the first CNN architecture that outperforms traditional optical flow algorithms. FlowNet2

performs well but with one drawback. It has many parameters (around 160 million), which

makes training difficult and renders inference both computationally expensive and memory

exhaustive.

Designing a network with fewer parameters is an active field of research. Ranjan and

Black [40] proposed spatial pyramide network (SPynet), which has much lower number of

parameters but with an accuracy close to that of FlowNet. Recently, pyramid, warping

and cost volume network (PWC-Net) [37] was proposed, which not only has fewer number

of parameters (around 9 million), but also achieves slightly better accuracy compared to

FlowNet2. The main idea of PWC-Net is to use pyramidal structure to estimate the optical

flow in each level and warp the features by the estimated flow to reduce the search range

of the next level. This network utilizes cost volumes (similar to correlation layer) in each

pyramid level to extract correlation between features of the two images, and unlike SPynet,

warps the features of the second image instead of the image itself.

There are two important differences between USE displacement estimation and optical

flow that limits the use of optical flow CNN models: 1) Accurate subsample displacement

estimation is paramount in USE; 2) RF data is characteristically different from images in

computer vision because it has a very large frequency content. Therefore, any optical flow

method used for USE must preserve and utilize the information of high frequency RF data

for an accurate and robust displacement estimation. USE is a new and less explored deep

learning application in medical image processing. At the time of writing this paper in 2019,

only a few papers tried to apply neural networks for USE [32–34, 41, 42].

A deep learning architecture was proposed by Wu et al. [41] to estimate displacement

and strain. A patch around the sample of interest is fed to the network and the displacement

and the strain of the patch are estimated. Gao et al. [33] further improved this network

by introducing learning-using-privileged-information (LUPI). LUPI uses displacement as the
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intermediate loss, and results in better generalization and higher accuracy compared to [41],

as well as non-deep learning approaches of DP [28] and optical flow [43]. The main drawback

of the networks is that in order to compute the strain and the displacement of an image pair,

it is required to run the network many times since this network only takes small patches as

the input. In [32, 44], we used FlowNet2 for USE. But since the displacement estimates were

not precise even after fine-tuning with Field II simulations [45, 46], they were used as the

initial estimator for GLUE, replacing dynamic programming [28] with FlowNet2. In [34],

FlowNetCSS is used for USE and it was shown that using simulated images for fine-tuning

can be beneficial. The main contribution of our work in this chapter can be summarized as:

• Two networks, namely Modified Pyramid Warping and Cost volume Network (MPWC-

Net) and RFMPWC-Net are proposed for USE, both based on PWC-Net. Both of our

proposed networks substantially outperform PWC-Net in USE.

• FlowNet2 has been recently exploited for USE [32, 34]. Our proposed networks are

based on PWC-Net, and have more than 10 times fewer parameters compared to

FlowNet2 while substantially outperforming it in USE. This is paramount as GPU

memory is often a critical bottleneck.

• A fine-tuning strategy and a loss function are proposed to improve the displacement

estimation and the corresponding strain quality using simulated data.

• The performance of top optical flow CNNs in USE is presented and analyzed.

2.1 Methods

2.1.1 PWC-Net

The core ideas of PWC-Net are to utilize pyramid structures, cost volume and a refinement

network. This leads to substantial reduction of number of the parameters and improvement in

the accuracy. Using the pyramid structure reduces the displacement required to be estimated

in each resolution, resulting in a smaller search range. The coarser resolution finds large

displacements and removes these displacements by warping the second image features with
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Figure 2.1: PWC-Net structure. The feature extraction layer of the final pyramid is outlined
by a red box (all kernels in the box are 3× 3). m, n, dx denote image size in axial direction,
lateral direction and number of channels of the corresponding layer, respectively.

the estimated displacements, and the finer resolution estimates the smaller displacements

from the warped image. Unlike FlowNet2 that warps the moved images, PWC-Net warps

the features of the moved images so that fewer number of parameters are required for optical

flow estimation. PWC-Net utilizes cost volume in each pyramid level. Unlike FlowNet2

that uses correlation layer (cost volume) only as the first block and reports over fitting by

using more correlation layers, PWC-Net uses cost volume in all pyramid levels, substantially

reducing the number of parameters. Finally, PWC-Net employs a refinement network which

is a post processing stage to improve the quality of the estimated optical flow in the last

pyramid level [37]. As shown in Fig. 2.1, PWC-Net is composed of 4 different blocks: feature

extraction, warping and cost volume, optical flow estimation and refinement network.

To compute each pyramid output, first the input images are fed into a CNN in order to

extract features from the image pyramid, transforming it to a feature pyramid. Then the

warping block warps the second image feature map toward the first one. At the next step,

a cost volume is created using the first image feature map and the warped one. This cost

volume is then used as an input to the optical flow estimator block in order to estimate the
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flow. Finally, a refinement network is used to post-process the optical flow. The loss function

used in PWC-Net is a multi-scale loss defined in [37]:

L(Θ) =
L∑︂

l=l0

αl(∥Dl
Θ(x)−Dl

GT (x)∥q) + ∥Θ∥2 (2.1)

where Θ represents the learnable parameters and Dl
Θ and Dl

GT denote the estimated and

the ground truth flows at the lth level, respectively. This is a regularized loss function

where q < 2 is chosen to give less penalty to outliers. Also, ∥Θ∥2 is the weight decay

which encourages the learnable weights to have small magnitude in order to improve the

generalization of the network. For each output resolution, a weight is considered to contribute

(α) in the loss function. Generally, higher weights are given to coarser outputs since coarser

outputs contribute to build finer ones. The coarse outputs are employed as intermediate

losses, and the corresponding ground truths are obtained by down sampling the displacement.

2.1.2 Proposed Methods for USE

It is common to modify a well-known network for a specific task. As an example, in [47],

VGG-16 and ResNet-101 are modified for semantic segmentation by changing the dilations

and strides of the convolution layers. In this work, PWC-Net structure is modified for USE

wherein accurate subsample displacement estimation using RF data is critical.

PWC-Net contains feature extraction, cost volume and optical flow estimation layer for

each pyramid. There are 5 levels and the coarser levels contribute to the estimation of finer

resolution levels. As depicted in Fig. 2.1, the output size is 4 times smaller than the input

images. The feature extraction part of the final pyramid level (the first feature extraction

layer with red outline, shown in the box) downsamples the input by a factor of 4 using two

convolution layers with stride = 2. The downsampling of the input images is quite reasonable

for computer vision images since there is negligible information in high frequencies. This

downsampling reduces the computation complexity, improves the network robustness to

noise, and more importantly decreases the displacement and the required search range of

the cost volume. However, in USE, accurate subsample displacement estimation is essential
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and there is valuable phase information in high frequencies, rendering this downsampling

detrimental. To cope with this issue, we replace the first two convolution layers with stride =

2 with convolution layers with stride = 1. This modification provides more information

related to displacement estimation for each pyramid level, and useful features can be obtained

from high frequency RF data.

An important aspect is the input of the network. RF data, B-mode image and enve-

lope of RF data can be used for displacement estimation. Generally, RF data is the most

informative signal for estimation of fine displacements, but using RF data might result in

unreliable regions in the pyramidal structures. Envelope and B-mode only contain low fre-

quency information of RF data that can be used for approximation of the displacement

but they cannot provide accurate displacement. B-mode and envelope can provide useful

information in coarse pyramid levels while RF data contains detailed information for high

resolution and high-quality displacement estimation. Consequently, two networks are pro-

posed to exploit RF, B-mode and envelope. In both networks, the downsampling operations

(strides = 2) of the final pyramid level are removed. In the first network, we concatenate

RF data, B-mode and envelope to generate a three-channel input for the network. We name

this network modified PWC-Net (MPWC-Net). This network uses information of B-mode

and envelope in low resolutions where RF data cannot provide useful information due to

information loss and the network exploits RF data in high resolutions to have high quality

subsample displacement estimation.

In the second network, RF data, B-mode and envelope are combined in a different fashion.

Concatenated RF, B-mode and envelope is used for displacement estimation of all pyramid

levels except for the last pyramid level which has the highest resolution and for that level,

only RF data is used for displacement estimation. A feature extraction layer is added to

extract useful information of only RF data in the final pyramid level. The block diagram of

this method is depicted in Fig. 2.2. The last layer has the same structure and weights as

the feature extraction layer of the main concatenated inputs so no more training is required.

This network produces more accurate displacement compared to MPWC-Net, especially in

noisy situations because although B-mode and envelope are helpful in low pyramid levels

and remove outlier regions, they reduce the accuracy of the network in the final pyramid
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Figure 2.2: Proposed RFMPWC-Net structure. A feature extraction layer is added to use
features of only RF data to estimate final resolution. The feature extraction layers with red
outline have the same weights. The output size of each feature extraction layer, fine-tuned
sub-network and frozen network are specified.

level. We call this network RF Modified PWC-Net (RFMPWC-Net).

2.1.3 Simulation Dataset

As part of the published manuscript of this chapter, we generate a simulation dataset using

Field II [45, 46]. The dataset consists of one or two inclusions with random positions. The

Young’s modulus of the tissue is randomly set between 18 to 23 kPa, and the Young’s

modulus of the hard inclusion is randomly set to a value in the range of 40 to 60 kPa.

The average strain varies between 0.5 to 4.5 % and displacements are estimated by finite

element method (FEM) using the ABAQUS software. The cubic interpolation method is

used to obtain the displacements of the scatterers from the nodes obtained by FEM. These

scatterers are utilized to simulate ultrasound images using the Field II toolbox [45, 46] with

a center frequency of 5 MHz.

24 different phantoms with 10 different average strain values and 10 different random

scatterer realizations with different positions are simulated (for each phantom 100 images

are simulated with a total of 2400 images). 1000 image pairs are randomly sampled from
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the mentioned simulated images for training. The test set contains 70 image pairs and it has

four different models. The test phantoms have inclusions that differ from training phantom

in size, location and shape with average strain values between 1 to 2.5 %. We publicly release

this dataset at data.sonography.ai.

2.1.4 Experimental Phantom and In vivo Data

Phantom data is collected at Concordia University’s PERFORM Centre by an E-Cube R12

research ultrasound machine (Alpinion, Bothell, WA, USA) with a L3-12H linear array at the

center frequency of 10 MHz and sampling frequency of 40 MHz. A tissue mimicking breast

phantom made by Zerdine (Model 059, CIRS: Tissue Simulation & Phantom Technology,

Norfolk, VA) is used which has tissue elasticity of 20 ± 5kPa and contains hard inclusions

with elasticity at least twice the elasticity of the tissue.

In vivo data was obtained at Johns Hopkins Hospital from a research Antares Siemens

system using a VF 10-5 linear array with a center frequency of 6.67 MHz and a sampling

frequency of 40 MHz. Data is collected from three patients in open-surgical RF thermal

ablation for liver cancer. More experimental details of the procedure can be found in [28].

The study was approved by the institutional review board with consent of all patients.

2.1.5 Fine-Tuning of the Network

It is common to fine-tune a network that is already trained on a similar task, as opposed

to training it from scratch, a process also known as transfer learning [48, 49]. Therefore,

we use the FEM and Field II dataset to fine-tune the proposed networks, which are trained

on computer vision data. We tested many settings and fine-tuning strategies and found out

that only fine-tuning the final resolution pyramid suffices since the network already performs

well and only small improvement to the displacement prediction is required. The fine-tuned

sub-network is specified in Fig. 2.2. Data augmentation is performed by randomly mirroring

in lateral direction and adding white Gaussian noise to the RF data. Subsequently, envelope

and B-mode images are obtained and used as different input channels of CNNs.

Regarding the loss function selection, due to the fact that displacement error is small,
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MSE suppresses this small error and amplifies the outlier regions. In practice, we obtained

noisier strain by MSE even though the displacement error was reduced (higher displacement

variance with lower displacement error). Therefore, we use norm 0.4 similar to FlowNet2

small displacement network [39] as the main loss function since this norm amplifies small

error and attenuates large errors obtained by outliers. Another important point is that total

variation (TV) regularization similar to [29, 50] is used to reduce the displacement variations

and improve the quality of the strain. The final loss function used for fine-tuning is:

loss = ∥DGT −DΘ∥0.4 +
λ

N
∥∆DΘ − ε∥1 + γ ∥Θ∥2 (2.2)

where DGT and DΘ are the ground truth and estimated displacements, respectively and

∥.∥p denotes norm p. ∆DΘ is the axial derivative of the predicted axial displacement, N

is the number of samples used for TV computation, and λ, γ are regularization weights.

To avoid underestimation bias due to regularization, we regularize by average strain (ε)

similar to [28, 29]. We fine-tune the weights of the final pyramid of RFMPWC-Net using

this simulation dataset. We also fine-tune MPWC-Net, but do not report the results in this

manuscript since fine-tuned RFMPWC-Net performed better than MPWC-Net. We set the

weight decay to 0.01 and λ to 0.2. NVIDIA Titan V with 12 GB RAM is used for training

and the image size is 2048×256, which enforces us to use batch size of 1 due to memory

limits. The network is fine-tuned for 50 epochs and the learning rate is set to 2e-9.

2.2 Results

In this section, the proposed networks are evaluated and compared with existing methods.

NCC [22], GLUE [27], FlowNet2 [34, 39], original PWC-Net [37] and our proposed networks

(MPWC-Net, RFMPWC-Net and fine-tuned RFMPWC-Net) are evaluated for simulated

phantoms, an experimental phantom and in vivo data. GLUE is a recent method that

has already been extensively used in several challenging simulation, phantom and in vivo

applications by different research groups [42, 51–53].

To make the comparison fair, the input of deep learning methods (PWC-Net, FlowNet,

MPWC-Net and RFMPWC-Net) is the concatenation of B-mode, RF and envelope sig-
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nals. We use the trained FlowNet2 and PWC-Net weights publicly available on the Pytorch

framework [37]. The GLUE code is publicly available, and NCC implementation is similar

to [29] where we perform 2D cubic interpolation to calculate subsample displacements. Sub-

stantially better results are expected with a multi-level stretching NCC technique. In the

simulation experiments, the ground truth displacement is known. Therefore, Normalized

Root Mean Squared Error (NRMSE) of axial displacement [54] defined in 2.3 is used as the

metric for measuring the displacement prediction accuracy. The results are reported for two

different Peak Signal to Noise Ratios (PSNR).

NRMSE(%) =

√︃
mean((

DGT −DΘ

DGT

)2)× 100 (2.3)

PSNR = 20× log10(
Imax

δ
) (2.4)

where δ denotes standard deviation of noise and Imax is the maximum of image intensity.

Noise with normal distribution is added to the RF data in order to obtain noisy simulation

images. It should be noted that NRMSE is computed for each test phantom, then mean and

standard deviation of NRMSE are reported for ideal and noisy simulated phantoms.

Two popular metrics, contrast to noise ratio (CNR) and strain ratio (SR) are also used

to show the strain quality in the experimental and in vivo results, which are defined as [10]:

SR =
st
sb
, CNR =

√︄
2(sb − st)2

σb
2 + σt

2
, (2.5)

where st and sb are average values of strain in the target and background regions, and

σt and σb are variance values of strain in the target and background regions, respectively.

The selected regions in the target and background must be uniform and large enough to

be statistically meaningful. It is important to note that CNR is sensitive to mean and

variance of the regions. Whereas, SR only measures the differences in the mean value of the

selected region. SR is a proper metric to measure the bias error of the strain. Whereas,

CNR shows the combination of bias and variance error of the strain. One basic property

of elastography methods is that they estimate lower difference between the tissue and the
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Figure 2.3: Strain images of a simulated phantom with PSNR =∞.

inclusion due to bias created by different smoothing operations (continuity constraints in

GLUE, median filtering or low-pass filtering in NCC and window-based methods, and least

squares differentiation). Therefore, in real experiments with unknown ground truth, higher

difference usually translates to smaller estimation bias. If a hard inclusion is chosen as the

target, the value of SR is less than 1, where lower SR represents higher difference in the

strain of the target and background (i.e. lower numbers are generally better). In order to

compute reliable CNR and SR, large windows are selected in Fig. 6.2 (h), Fig. 2.6 (h) and

Fig. 2.7 (h). The windows are divided into small overlapping patches. CNR and SR are

computed for all combination of target and background patches. The mean and standard

deviation of the computed CNRs and SRs are reported. To better visualize the results, we

show strain images, which are the least squares derivatives of the axial displacement in axial

direction.

2.2.1 Simulation Results

In this section the results of the simulated phantoms are presented for different methods.

The strain image of a simulated phantom with the displacement calculated by the evaluated

methods is depicted in Fig. 2.3 for PSNR=∞. Our proposed networks perform substantially
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Table 2.1: Comparison of different methods for 70 simulated phantoms.

PSNR=∞ PSNR=30 dB

Method NRMSE (%) NRMSE (%)
NCC 1.88±0.51 1.93±0.53
GLUE 1.10±0.53 1.10±0.53

FlowNet2 1.65±0.46 1.68±0.46
PWC-Net 1.82±0.74 1.82±0.74
MPWC-Net 1.17±0.54 1.28±0.40

RFMPWC-Net 1.18±0.61 1.19±0.62
RFMPWC-Net+ft 1.15±0.33 1.18±0.34

better than stock deep learning methods in both simulation setups.

It is important to note that although the complexity of FlowNet2 is substantially more

than the four other networks (both in training and inference), its results are substantially

worse than our proposed networks. By closely inspecting the FlowNet2 results, it is evident

that there is a substantial underestimation of strain in hard inclusions, which are not as dark

as our proposed methods.

Another important point is that all networks except RFMPWC-Net+ft are trained on

computer vision images and RFMPWC-Net+ft is fine-tuned by our dataset. Visually, the re-

sults of RFMPWC-Net+ft and RFMPWC-Net are close but RFMPWC-Net+ft is smoother.

The quantitative results are given in Table 2.1 for 70 simulated phantoms. According to

these results, the results of RFMPWC-Net are close to GLUE even without fine-tuning

on ultrasound images, which shows the potential of the networks solely trained on com-

puter vision images. Our fine-tuned variant of RFMPWC-Net performs slightly better than

RFMPWC-Net. It is important to note that GLUE results remain very similar for no-noise

and noisy conditions which indicates the robustness of GLUE due to optimizing all samples

simultaneously.

RFMPWC-Net is more robust to noise compared to MPWC-Net which NRMSE increases

0.09 % in noisy conditions. In order to show the effect of fine-tuning, the strain of one line us-

ing RFMPWC-Net and RFMPWC-Net+ft is depicted in Fig. 2.4. As shown, the fine-tuned

RFMPWC-Net result (red) has less variations and it is closer to ground truth compared

to RFMPWC-Net (blue), which indicates that fine-tuning improves the displacement esti-

mation accuracy. However, the improvements obtained by modifying the structure is more
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Figure 2.4: One line of strain using a small least square window. RFMPWC-Net (blue),
RFMPWC-Net+ft (red) and ground truth (black).

Table 2.2: SR and CNR of the experimental phantom.

Method CNR SR
NCC 10.65±2.69 0.399±0.04
GLUE 26.75±7.86 0.459±0.02

FlowNet2 20.19±3.70 0.48±0.02
PWC-Net 20.28±5.82 0.376±0.05
MPWC-Net 17.12±4.59 0.425±0.03

RFMPWC-Net 27.06±4.28 0.410±0.03
RFMPWC-Net+ft 29.15±5.77 0.382±0.05

tangible (compare Fig. 2.3(d), (e) and (f)) than fine-tuning. The main reason is that the

networks trained on computer vision images are already performing well in mapping the in-

puts to the displacement. The modification of the structure brings substantial improvements

to the network accuracy by providing more information to the network.

2.2.2 Experimental Phantom Results

CNR and SR defined in Eq 2.5 are used as quantitative metrics and the visual results are

demonstrated in Fig. 6.2. NCC and FlowNet2 fail to obtain acceptable strain and GLUE

produces smooth but underestimated strain, which is due to regularization. As such, GLUE

result does not have as low SR as the deep learning methods. Nevertheless, GLUE has

less variance, which makes the CNR very close to our proposed methods. The quantitative
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Figure 2.5: Strain images of the experimental phantom. The windows used for CNR and SR
computation are highlighted in the B-mode image (h). FlowNet2 (c) has high heterogeneity
and fails to obtain smooth and high quality strain and the proposed networks have higher
contrast compared to GLUE (b).

results in Table 6.1. confirm the visual assessments. GLUE has good CNR (26.75) but

poor SR (0.459), whereas PWC-Net has the best SR (0.376) with a moderate CNR (20.28).

RFMPWC-Net has higher CNR and better SR than MPWC-Net. RFMPWC-Net has higher

CNR than GLUE (27.06 compared to 26.75) and better SR (0.41 compared to 0.459) with-

out using any ultrasound images for training, which indicates the strength of the proposed

CNN networks. RFMPWC-net+ft produces the most appealing result among deep learning

methods and outperforms all evaluated methods in terms of CNR (29.15) and has good SR

(0.382). This shows that fine-tuning of trained networks by ultrasound images has a positive

impact on the performance of the network.

2.2.3 In vivo Results

Considering Fig. 2.6, GLUE estimates low-variance and high quality but blurry strain. The

strain estimated by FlowNet2 is too smooth and many details are lost. PWC-Net also fails to

estimate an acceptable strain. MPWC-Net has good strain quality but with a few artifacts,
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Figure 2.6: In vivo strain results of the liver of patient 1 before ablation. The tumors are
marked with arrows and the windows used for CNR and SR computation are highlighted in
the B-mode image (h).

and RFMPWC-Net generates the best. RFMPWC-Net+ft further improves strain quality

compared to RFMPWC-Net. Regarding Fig. 2.7, the GLUE result is acceptable but it is

over smooth especially in in the top right of image. NCC, FlowNet2 and PWC-Net all fail

to estimate strain, and MPWC-Net obtains a high-quality strain compared to PWC-Net.

This indicates that our changes in the structure of PWC-Net have substantial impact on

the network’s performance. RFMPWC-Net has better strain compared to MPWC-Net and

most of artifacts are removed in the RFMPWC-Net result. RFMPWC-Net+ft produces a

Table 2.3: Results of In vivo data, patient 1 (Fig. 2.6) and patient 2 (Fig. 2.7). GLUE
has higher CNR for tumor and RFMPWC-Net results in higher CNR for the the vein. The
proposed networks perform comparable to GLUE for in vivo data.

Patient 1 Patient 2 (tumor) Patient 2 (vein)

Method CNR SR CNR SR CNR
1

SR
NCC 9.08±3.22 0.29±0.07 3.60±1.41 0.51±0.09 11.84±6.66 0.590±0.14
GLUE 19.36±4.51 0.389±0.06 15.11±5.30 0.441±0.02 11.54±6.13 0.795±0.07

FlowNet2 12.86±0.46 0.463±0.049 9.40±2.04 0.415±0.05 fail fail
PWC-Net 10.79±4.00 0.451±0.09 5.90± 2.45 0.587±0.09 9.19±4.34 0.835±0.07
MPWC-Net 12.11±3.75 0.376±0.07 11.66± 2.2 0.338±0.03 11.98±5.69 0.610±0.06

RFMPWC-Net 13.55±4.34 0.396±0.06 12.48±3.23 0.409±0.04 19.88±9.41 0.590±0.05
RFMPWC-Net+ft 16.63±5.53 0.380±0.05 15.58±2.58 0.395±0.04 12.52±3.71 0.601±0.08
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Figure 2.7: In vivo strain results of the liver of patient 2 before ablation. The tumor and
the vein are marked with arrows and the windows used for CNR and SR computation are
highlighted in the B-mode image (h). the GLUE (b) obtains smooth but blurry strain
especially close to the vein on the top right of the image. Fine-tuning reduces the artifacts
presented in RFMPWC-Net (compare (f) and (g)).

very high-quality strain image and further removes the artifacts.

Considering the quantitative results of tumor presented in the first two columns of Table

2.3, GLUE obtains the high CNR in both patients (19.36 and 15.11) but the SR is poor (0.389

and 0.441). NCC and PWC-Net have poor CNR and FlowNet2 has higher CNR compared

to them but visually the strain images are not acceptable. MPWC-Net has poor CNR (12.11

and 11.66) but produces the best SR (0.376 and 0.338). This implies that MPWC-Net has

high variance in estimation which leads to low CNR but it has low bias in estimation which

results in low SR. RFMPWC-Net outperforms MPWC-Net in terms of CNR with slightly

worse SR. Fine-tuning improves the CNR with approximately similar SR. RFMPWC-Net+ft

produces CNR values very close or even better than GLUE (16.63 and 15.58) with better

SR (0.388 and 0.399).

By inspecting the results of the soft target (the vein in up right corner of Fig 2.7 (h)),

it is inferred that our 3 networks substantially outperform GLUE in terms of both CNR

and SR. RFMPWC-Net has the highest CNR (19.88) by a large margin, which is 8.34 dB

and 7.36 dB better than GLUE and RFMPWC-Net+ft, respectively. The main reason that
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RFMPWC-Net performs better without fine-tuning is that our database only contains hard

inclusions and fine-tuning by this database deteriorates the cases with soft inclusions such

as veins. For the vein,
1

SR
is reported in order to be consistent with other results since the

SR value for veins is more than 1. Our networks have the best SR among the compared

methods and they have substantially better SR compared to GLUE.

2.2.4 Effect of sampling and center frequencies

The sampling and the center frequencies have critical role in displacement estimation accu-

racy. In the simulation results, the center and sampling frequency are 5 MHz and 50 MHz,

respectively. We simulate a phantom with two different center and sampling frequencies.

RFMPWC-Net, FlowNet2 and PWC-Net are tested for the center frequencies 5 and 10 MHz

and the sampling frequencies 25 and 50 MHz. As shown in Fig. 2.8, strain obtained by

RFMPWCNet (a, d) are high quality and consistent compared to FlowNet2 and PWC-Net.

Figure 2.8: Simulation results of RFMPWC-Net, FlowNet2 and PWC-Net for different center
and sampling frequencies. (Network, Center frequency and Sampling frequency). RFMPWC-
Net quality remains well when sampling frequency decreased (a) or center frequency increased
(d) in comparison to the other methods.
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2.3 Discussions

In this chapter, two networks based on PWC-Net are proposed for USE. Generally, USE

requires high accuracy subsample displacement estimation, which renders efficient use of

high frequency information in RF data critical. This is a challenge as stock optical flow

networks are not designed to handle RF data.

The PWC-Net is modified for USE displacement estimation by: 1) removing downsam-

pling of the first feature extraction layer (this layer is connected to the input directly) to

prevent loss of high frequency information; and 2) concatenating RF data, envelope and B-

mode images to feed to the network. by doing this, the low-resolution pyramid levels exploit

low-frequency B-mode and envelope information and high-resolution pyramid levels use RF

data to obtain accurate displacement.

The main drawback of MPWC-Net is that B-mode and envelope contribute to the final

resolution displacement estimation. B-mode and envelope are beneficial in low pyramid

levels where RF data cannot be used, but they result in less accurate estimated displacement

compared to RF data. Hence, in noisy conditions, MPWC results degrade considerably (as

given in Table 2.1). RFMPWC-Net is proposed to resolve this problem by adding a separate

sub-network to extract and use only RF data for the final pyramid level.

FlowNet2 network, which is extensively used by the researchers, obtains under-estimated

strain and fails for in vivo data. Although FlowNet2 has 18 times more learning parameters

than PWC-Net and achieves high accuracy in computer vision databases such as MPI-Sintel

[39], it performs poorly on ultrasound images. This emphasizes that less complex pyramidal

and warping structure is more suitable for ultrasound data.

Fine-tuning is another avenue that is investigated in this chapter, where the networks are

tuned by simulated ultrasound images. In the loss function of fine-tuning, TV regularization

is used to reduce the variance of displacement estimation. According to our results, fine-

tuning improves the strain quality both qualitatively and quantitatively. All ultrasound

simulation training data for fine-tuning the networks contain harder inclusions than the

background. Nevertheless, the fine-tuned network performed well in a variety of in vivo

experiments with different kinds of tissue. In the future, we plan to add data with soft
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inclusions in our training database and expect this to further improve the results. These

new simulations will also strengthen the online database that we released.

Another important point about fine-tuning is that we only consider negative strain (post-

compression image is the second image) for fine-tuning. The network can be fine-tuned with

both positive and negative strain to be used for cases which post-compression image is not

determined.

It is also worth mentioning that our proposed networks are very close to GLUE in terms

of CNR and have better SR. By comparing the quantitative results presented in Table 6.1

and 2.3, it can be seen that GLUE has higher CNR than our proposed methods in the

tumor part of patient 1. However, GLUE has lower CNR than the fine-tuned network for

the experimental phantom data and data of patient 2. Another interesting conclusion is that

RFMPWC-Net outperforms GLUE and fine-tuned network by a large margin for the vein

(19.88 compared to 11.52 and 12.54). The reason for outperforming the fine-tuned network

can be explained by the fact that we performed transfer learning using simulation data that

only has hard inclusions.

In terms of SR, our proposed methods are the best among compared methods. MPWC-

Net has the best SR but moderate CNR. In contrast, RFMPWC-Net and the fine-tuned

variant of the network have higher CNR and slightly worse SR compared to MPWC-Net.

The proposed methods perform similar to recent elastography methods without any need

for parameter tuning. The proposed architectures have very small memory footprints and

therefore can be implemented on inexpensive GPUs.

2.4 Summary

This chapter presents a deep learning approach for displacement estimation of the USE. The

structure of PWC-Net is modified for our application. Visual and quantitative assessments

of simulated phantoms, experimental phantom and in vivo data confirm that the proposed

methods are suitable for USE and can compete with current state-of-the-art elastography

methods.
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Chapter 3

MPWC-Net++: Evolution of Optical

Flow Pyramidal Convolutional Neural

Network for Ultrasound Elastography

3.1 Introduction

The architecture of optical flow CNNs are optimized for computer vision images and there is

a large domain gap between computer vision images and USE [55, 56]. To reduce the domain

gap, many researchers tried to fine-tune the network by ultrasound images [34, 57]. However,

their improvements were not significant. In Chapter 2 [55], we showed that the architecture

has a larger impact compared to simple fine-tuning. We proposed that by modifying the

structure of the network, substantial improvements can be achieved. We modified PWC-Net

by removing the strides to allow the network to use RF data. We named our architecture as

MPWC-Net.

MPWC-Net modification is straightforward and does not require re-training the network.

However, this simplicity is not without any cost. In this chapter, we introduce these problems

and try to mitigate them by some additional modifications. We named the new modified

network MPWC-Net++, which is based on MPWC-Net with additional changes to facilitate

use of optical flow CNNs in USE.
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3.1.1 MPWC-Net

In USE, RF data which has high frequency content is required for accurate displacement

estimation. However, the input images are downsampled by a factor of 4 at the first feature

extraction blocks in PWC-Net. This leads to a loss of information and degrades the strain

image quality. In Chapter 2 [55], we proposed to remove the first two downsampling by

replacing stride=2 with stride=1 such that reliable feature can be extracted by the feature

extractor blocks. Furthermore, we proposed to use B-mode and envelope alongside RF data

to avoid unreliable displacement estimation in coarse levels where RF data does not provide

reliable information.

Limitations of MPWC-Net

In PWC-Net, each pyramid level is responsible to estimate the displacement in its range and

then remove this displacement by warping the feature map of the second image toward the

first one. This facilitates the task of the following pyramid level since it requires only to

estimate the residual displacement. This pyramidal structure also allows to limit the search

range of the cost volumes to further reduce the computation complexity. Let c, M and S be

the cost volume search range, the number of pyramid levels and rate of downsampling for

the first pyramid level, respectively. The higher bound of the maximum displacement (Dm)

that PWC-Net detects is:

Dm =
M−1∑︂
i=0

2i × S × c (3.1)

In the original PWC-Net, c = 4, M = 5 and S = 4 which results in the maximum displace-

ment of 496. In MPWC-Net, S = 1 hence the higher bound of the maximum displacement

would be 124 pixels which limits the application of MPWC-Net to small displacements. This

is a limiting factor especially or large images and unsupervised training where the ground

truth and maximum displacement is unknown [56].

The optical flow networks are mostly trained on Flyingchair dataset and fine-tuned on

other available datasets such as Sintel [37]. Flyingchair is a synthetic dataset produced for

training the networks which its displacement range and distribution mimic Sintel dataset.

The maximum displacement of Sintel is around 450, and the histogram is shown in Fig. 3.1.
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We can see that only a few training data have displacements more than 310 and most of

maximum displacements are below 200. The network only sees very limited training data

that have displacements close to the higher bounds of PWC-Net (496 pixels). This means

that in large displacements, the network cannot perform as well as smaller displacements.

This is another factor that further limits the displacement range. The practical displacement

range of PWC-Net and MPWC-Net are lower than 496 and 126, respectively.

Figure 3.1: Histogram of maximum displacement and average displacement of Sintel training
dataset.

Another limiting factor is the input image size. In original PWC-Net, the image is down-

sampled by 4 in the first two feature extraction convolution blocks. Whereas, in MPWC-Net

the is no downsamplping; therefore, there are 16 times more pixels in train and inference.

The much higher image and feature size results in significant reduction of speed in both

training and test. The inference times are reported in section 3.2.2.

3.1.2 MPWC-Net++

In order to solve the aforementioned problems, we proposed to modify MPWC-Net struc-

ture. We used PWC-Net-irr instead of original PWC-Net structure to reduce the number of

learning weights.

We also increased the maximum displacement range by changing values of c and S. Differ-

ent values of these parameters are given in Table 3.1. The new structure must have a search

31



Table 3.1: Maximum search range (Dm) for different c and S.

Model c S Dm

PWC-Net 4 4 496
MPWC-Net 4 1 126
case 1 4 2 252
case 2 5 1 155
case 3 (MPWC-Net++) 5 2 310
case 4 6 2 372

range close to the Sintel and Flyingchair since it would be trained by these datasets and if it

cannot estimate large displacement values, the incorrect loss would be propagated during the

training. As shown in Table 3.1, case 3 has a good balance between maximum displacement

and the downsampling factor and can track a large portion of large displacements.

According to the selected value of S, we needed to decrease the S from 4 to 2. One of

the first two feature extraction blocks needed to have a stride of 2 and the other had the

stride of 1 (S : 2× 1 = 2). We selected the first feature extraction layer and the second one

to have stride of 2 and 1, receptively. By this setting, smaller image size is fed to the second

feature extraction layer and the computation time is improved. While, this leads to loss of

information especially in axial direction which has a high frequency content. To avoid this

loss of information, we also changed the kernel size of first feature extraction layer from 3×3

to 5× 3 to capture more information in axial direction.

Another modification is that we replaced the input B-mode image with the imaginary

part of the RF data which has been shown to improve the performance.

3.2 Results

3.2.1 Training and Results on Validation Set

Due to the change of parameters, we needed to train MPWC-Net++ from scratch. We fol-

lowed the same training schedule of PWC-Net-irr [58]. The decrease of stride (S) and having

higher search range (c) had substantial impact on training time; therefore, we decreased the
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Table 3.2: The validation EPE of the networks trained on FlyingChairOcc.; FlowNet2 and
PWC-Net are reported from [58].

Network EPE of FlyingChairOcc

FlowNet2 2.39
PWC-Net 1.89

FlowNet2 (irr) 2.22
PWC-Net (irr) 1.83

MPWC-Net++ (irr) 1.51

number of epochs from 220 to 180. The network was trained using FlyingChairsOcc dataset

[58]. The dataset is composed of 22870 image pairs with forward and backward ground

truth flows. The displacement distribution is the same as original FlyingChair dataset.

The network was trained for 10 days (due to larger search range and reduced stride it

took longer time than PWC-Net-irr). We publicly available the trained network weights at

data.sonography.ai.

We also investigated the error on the validation set of the mentioned dataset. We used

end point error (EPE) which is defined as:

EPE =

√︂
(˜︂Ux − Ux)2 + (˜︂Vx − Vx)2 (3.2)

where ˜︂Ux , Ux, ˜︂Vx , Vx denote estimated and ground truth displacement in axial and lateral,

receptively. The EPE of validation set of FlyingChairsOcc for different architecture are

given in Table 3.2. Using the blocks iteratively (irr) results in a modest improvement in

both FlowNet2 (2.22 vs 2.39) and PWC-Net (1.83 vs 1.89). MPWC-Net++ results in a

substantial improvements compared to PWC-Net with only a few small modifications. After

investigating the results, we found the the main reason of the improvement is that the stride

(S) is reduced from 4 to 2. This leads to larger input images in each pyramid level and more

accurate features can be extracted from the images even for computer vision images.
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USE Results

The problem with MPWC-Net is that it has high inference time due to large size of image

and cannot handle large displacements. We presents simulation and experimental phantom

results for large and small displacements.

Simulation Results

A simulation data with displacement range of 0 to -42 samples is chosen to compare the

methods. The results are shown in Fig 3.2. We can see that MPWC-Net has outlier regions

where the displacement is high. It should be noted that this network fails in displacement

values much lower than the computed higher bound (it fails around 35 which is much lower

than 126). PWC-Net does not fail but the strain image quality is low due to a limited use

of the high frequency information. MPWC-Net++ results in the strain image as good as

MPWC-Net without any outlier region.

Figure 3.2: Axial displacement (top) and strain images (bottom) of MPWC-Net, PWC-Net,
MPWC-Net++ and ground truth.
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Figure 3.3: Axial displacement (top) and strain images (bottom) of PWC-Net, MPWC-Net,
MPWC-Net++ and OVERWIND. Background 1 (B1), background 2 (B2) and the target
regions are specified by black windows. The 3D view of the region highlighted by the green
window is illustrated in Fig. 3.4.

Experimental Phantom Results

PWC-Net, MPWC-Net and MPWC-Net++ are compared with OVERWIND which is con-

sidered as the state-of-the-art method in USE. OVERWIND is an optimization-based method

that has been proposed by Mirzaei et al [29]. The results are shown in Fig. 3.3. As can be

seen from the figure, PWC-Net results in low-quality strain. MPWC-Net produces higher

quality strain image compared to PWC-Net but it fails when the displacement is high (bot-

ton of the phantom). MPWC-Net++ produces high quality strain without failure in regions

where the displacement is high. The strain quality of MPWC-Net++ is also comparable

with OVERWIND.

The quantitative results are reported in Table 3.3. The regions for computation of CNR

and SR are highlighted in Fig. 3.3 (black windows). We used smaller windows inside the

specified regions to compute CNR and SR. The mean and standard deviation are reported.
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Figure 3.4: 3D side view of the strain of the region specified in the Fig. 3.3.

Table 3.3: Quantitative results of the experimental phantom comparing target with
background 1 and background 2: mean±standard deviation.

Method Background 1 Background 2
CNR SR CNR SR

OVERWIND 25.21±4.82 0.413±0.019 12.86±1.85 0.639±0.022
PWC-Net 12.67±3.14 0.418±0.021 7.26±2.60 0.624±0.074
MPWC-Net 20.59±3.46 0.392±0.023 8.63±4.17 0.526±0.209

MPWC-Net++ 24.99±2.67 0.425±0.014 14.52±2.72 0.632± 0.029

The CNR and SR are reported for one target region against two background regions. OVER-

WIND outperforms other methods in terms of CNR for background1 (comparing the target

region with the background 1). MPWC-Net++ results in a CNR close to OVERWIND for

background 1. Whereas, MPWC-Net++ has the highest CNR for background 2 (compar-

ing the target region with the background 2). It is higher than OVERWIND by 1.66 db

and it is higher than other networks by a large margin. It is evident from the results that

MPWC-Net++ not only fixes the low displacement range of MPWC-Net, but also improves

the CNR and the overall quality of the strain image considerably.

Regarding SR, the lower value indicates lower bias. MPWC-Net has the lowest SR value

among the compared methods which represents that it has the lowest bias error. MPWC-
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Net++ has SR values slightly higher than MPWC-Net but the SR values are very close to

MPWC-Net.

The 3D view of the region specified in Fig. 3.3 by the green window is shown in Fig. 3.4.

It can be seen from the figure that OVERWIND and MPWC-Net++ have low heterogeneity

in the specified region.

Table 3.4: Inference time of different architectures in ms.

Method Time in ms

PWC-Net 42.28
MPWC-Net 1409.40

MPWC-Net++ 495.20

3.2.2 Inference Time

Inference time is another important factor that needs to be evaluated. The inference time

is crucial for real-time applications. We excluded OVERWIND due to the fact that it runs

on CPU, whereas the other methods run on GPU. The inference times of single image pair

of size 2048 × 256 are reported in Table 3.4. MPWC-Net++ is three times faster than

MPWC-Net due to the fact that S = 2 instead of S = 1.

3.3 Summary

In this chapter, we presented a modification to MPWC-Net based on physics of ultrasound

data and distribution of the computer vision training data. These modifications mitigated

the limitations of MPWC-Net in estimating large displacements in USE and improved the

inference time which is crucial for real-time applications such as image-guided surgery.
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Chapter 4

Bi-Directional Semi-Supervised

Training of Convolutional Neural

Networks for

Ultrasound Elastography

Displacement Estimation

4.1 Introduction

Deep learning-based methods, which have been recently proposed for USE, employ CNNs

to obtain the displacement map. The first few works used the optical flow CNNs as black

boxes for USE [34] or as the initial estimator for optimization-based methods instead of DP

[32, 44]. However, the computer vision images and US data are vastly different and the CNN

architectures used for the former are not optimized for high-frequency RF data. Motivated

to address this issue, we modified the well-known PWC-Net architecture [37] to be adapted

to USE, considering the physics of RF data [55] (Chapter 2). We called the network modified

PWC-Net (MPWC-Net) and obtained substantially more accurate displacement compared to

PWC-Net. In another work, we proposed MPWC-Net++ which was an improved version of
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MPWC-Net with a higher search range and more accurate output displacement [59] (Chapter

3). These methods require a GPU to run efficiently, and can perform high frame-rate USE

given the rapidly increasing computational power of GPUs. However, their main drawback

is that they have a larger variance compared to conventional methods due to the fact that

they are not regularized in contrast to conventional methods. Consequently, their strain

images have lower overall quality compared to conventional methods [59].

Unsupervised training was another avenue that has been followed by the researchers.

Delaunay et al. trained a U-Net using real US data [60] and developed a recurrent network

to deal with a sequence of frames [61]. In [62], we used a light network, referred to as

LiteFlowNet [63] and trained it in a semi-supervised fashion. We first used computer vision

datasets with known ground truths to train the network using supervised techniques. In the

next step, real US data was used to fine-tune the network using an unsupervised method.

We substantially improved the strain image quality by using this technique without requiring

a large amount of training data.

In this chapter, we follow the semi-supervised training approach. The overview of the

method is depicted in Fig. 11.2. We first employ computer vision datasets to train the

network in a supervised fashion. We use MPWC-Net++, which has shown high performance

in USE. We then fine-tune the network by real US data, and extend our idea of semi-

supervised method by proposing bi-directional unsupervised fine-tuning. We change the

structure of MPWC-Net++ to estimate both forward and backward displacements, which

is more efficient than running the network two times to estimate them. Consistency loss is

also proposed which is obtained by comparing forward and backward strains. Furthermore,

we shed light on the choice of weights for regularization by relating some of them to others.

We demonstrate the high-performance of the proposed methods using experimental phantom

and in vivo data.
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Figure 4.1: Overview of the proposed semi-supervised training method. The network is
first trained using computer vision datasets by supervised methods (the block on top). The
network is fine-tuned by real US data using the proposed unsupervised training method
(bottom block). The network structure is altered to be able to estimate both forward and
backward flows. The layers connected by the dashed lines share weights. The cost volume
and optical flow estimation blocks with shared weights are used to estimate both forward
and backward flows.

4.2 Material and Method

4.2.1 Deep Supervised CNNs

In this section, several CNNs used in USE displacement estimation are explained.

PWC-Net

Sun et al. proposed using cost volume and warping of the features for optical flow estima-

tion [37]. They achieved state-of-the-art performance in different computer vision datasets.

PWC-Net used a pyramidal structure, in which the optical flow was estimated in different

resolution levels. At each pyramid level, the features of the second image were warped by

the estimated flow of the previous pyramid to reduce the flow in the next pyramid level. In
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the next step, cost volume was employed to compare features of the fixed and warped moved

images. In the last step, the optical flow was estimated and used in the next pyramid. Using

pyramid structure resulted in the reduction of the number of learnable weights and improved

the performance of optical flow estimation [37]. Recently, a variant of PWC-Net called It-

erative Residual Refinement PWC-Net (IRR-PWC-Net) was proposed [58]. This network

reduced the number of learnable weights even further by using the optical flow estimation

block iteratively.

MPWC-Net

PWC-Net was proposed for computer vision images originally, and was not well suited to the

high-frequency RF data. We modified the structure of PWC-Net and proposed MPWC-Net

for. We removed the strides of the first feature extraction layer to preserve high-frequency

information in RF data. In order to avoid failure of the network in low pyramid levels,

where RF data does not have enough information due to downsampling, we used envelope

and B-mode images as additional input channels [55]. We obtained competitive performance

with conventional optimization-based methods. The code and the simulation dataset for

fine-tuning are available online at code.sonography.ai.

MPWC-Net++

MPWC-Net had a low displacement range since strides of the first feature extraction layer

were removed. In addition, we showed that the real displacement range is much lower than

the theoretical one since only a small quantity of training data have high displacement

ranges. Therefore, the network is not trained enough to deal well with large displacements,

and the predicted flows are noisy in this condition. To address these problems, instead

of removing both strides, we only removed one of them and kept the other one. Also,

the search range of the cost volume was increased from 4 to 5 in each pyramid level. By

doing these modifications, the network had higher search range and could work better for

large displacements. Furthermore, we used IRR-PWC-Net [58] since it has a more efficient

structure. Although we applied these modifications to improve the performance in the USE

application, they also led to an improvement even for the computer vision dataset. [59].
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However, the improvements came with costs. Due to modifying the network structure, we

had to train the network from scratch (MPWC-Net did not require training from scratch).

The training itself was slower compared to the original PWC-Net for two reasons: first,

having larger feature maps after removing strides; second, increasing the cost volume search

range. The MPWC-Net++ was trained from scratch using computer vision images while

LiteFlowNet used in [56] was pre-trained and we only fine-tuned it using real US data.

Training from scratch takes 840 hours using an NVIDIA Tesla P6 GPU, substantially more

time compared to the fine-tuning since the network is randomly initialized and a large dataset

(for MPWC-Net++ 22000 pairs) is employed to train the network. The network weights are

publicly available online at code.sonography.ai.

4.2.2 Semi-supervised Method

Simulation data does not model non-linear or multiple scattering effects present in real US

data [56, 60]. Therefore, we proposed to use real US data for fine-tuning. This method was

semi-supervised since we first used a pre-trained network trained on computer vision images

by supervised methods. In the next step, real US data were used to fine-tune the network.

The moved image was warped with the forward flow and compared with the first image

which is called photometric loss. This loss alone resulted in noisy displacements; therefore,

inspired by the physics of RF data, we proposed using the first second-order derivatives of

displacement in the axial and lateral direction as the regularization.

In order to preserve the information of high-frequency RF data, we were not allowed to

downsample images and had to use large image sizes during unsupervised fine-tuning which

is challenging due to GPU memory limitations. We used a light network (LiteFlowNet [63])

and gradient checkpointing [64] to be able to train the network on our GPU (Nvidia TITAN

V with 12 GB of RAM). Furthermore, we limited the training to only forward flow and the

backward flow was used to detect occluded regions.
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4.2.3 Proposed Method

Let I1, I2 ∈ R3×W×H denote the fixed and moved images having 3 channels with widthW and

height H, W f ∈ R2×W×H and W b ∈ R2×W×H denote forward flow (I1 → I2) and backward

flow (I2 → I1), respectively. The data loss function for unsupervised fine-tuning can be

defined as [59]:

lossd = Φ(I1 − I2̂)w×w (4.1)

where I2̂ is the second image warped by the W f and unlike [56], a window of size (w × w)

around the sample of interest is selected to compute the loss to reduce the noise caused by

interpolation step of warping operation (here we use a 3× 3 window). Φ is the Charbonnier

loss that has been widely used in unsupervised optical flow training [65] and defined in Eq

4.2 [66].

Φ(x) = |(x2 + ε)α|1 (4.2)

where |.|1 denotes the L1 norm and α can be altered to give different importance to x.

We used α = 0.5 for the data loss (would be L1 norm) and α = 0.2 for smoothness and

consistency loss to emphasize small values of x. It should be mentioned that inspired by

[62], RF data, the envelope and imaginary part of Hilbert transform of RF data are utilized

as 3 separate channels of input images.

In order to have a smooth displacement field, the first-order derivatives of the displace-

ments in axial and lateral directions are used for regularization:

loss1s = λ11Φ (
∂W f

a

∂a
− <

∂

∂a
W f

a >) + λ12Φ (
∂W f

a

∂l
)+

λ21Φ (
∂W f

l

∂a
) + λ22Φ (

∂W f
l

∂l
)

(4.3)

where W f
a , W

f
l ,

1
∂a
, 1

∂l
and λ denote axial, lateral displacements, the derivative in axial and

lateral directions and their corresponding weights, respectively. The axial derivative of the

axial displacement is subtracted by its mean (< . > denotes the mean value) to reduce the

bias of the regularization similar to [29].

The second-order derivatives of the displacements have been found useful for USE [56,

60, 67]. Hence, they can be used to regularize the displacements:
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loss2s = λ31Φ (
∂2W f

a
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∂2W f
l

∂2l
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(4.4)

Unlike [61] that used the first and second-order derivatives of only axial displacement, we

used the first and second-order derivatives of both axial and lateral displacement in both

directions. The second-order derivatives do not introduce bias but they require higher weights

to be as effective as the first-order derivatives.

Hyper-Parameter Tuning

It can be seen that there are eight hyper parameters that we need to set before training the

network. In our recent work [56], we set them empirically, while in this chapter, we tried

to reduce the number of hyper-parameters by relating some of the them to others using US

principles.

The distance between two adjacent samples in the axial and lateral direction is also vastly

different since the sampling frequencies and the number of samples is widely dissimilar. The

distance between two adjacent samples in the axial direction can be obtained by c/(2fs),

where c denotes sound speed and fs is the sampling frequency. A rough approximation of

the lateral distance between two samples would be the distance between two adjacent A-lines

which is much larger than the axial distance in a typical US image. Therefore, λ12 and λ22

must be several times smaller than λ11 and λ21.

As noted in [67], the second-order derivatives are much smaller than the first-order ones.

Therefore, to be as effective as the first-order derivatives, their weight should be several

times larger than the first-order derivatives. We set this weight to be λ31 = 5λ11. We also

set the lateral derivative weights similar to the first-order derivatives (λ41 = βλ31). Finally,

the smoothness regularizer can be written as:
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where β depends on the ratio of the sampling frequency in axial and lateral directions. Setting

the weights does not require an exact calculation of the sampling frequencies and should be

less than 1; we set this hyper parameter to 0.1. Finally, for incompressible materials, the

Poisson’s ratio is approximately 0.5 [68], which means that the strain in the lateral direction

is half of the axial one. Therefore, λ21 can be substituted by 0.5λ11. It should be noted that

the explained method to tune the weights of the regularizers is only a rough estimate of the

optimal values; therefore, the training is not too sensitive to the variations of these weights

and even changing the weights by as much as 100% yields similar results.

Bi-directional Strain Consistency

In this chapter, inspired by recent unsupervised methods in optical flow estimation [69], we

proposed to utilize forward and backward consistency in addition to the data and smoothness

losses. In unsupervised optical flow methods, the difference between forward and backward

displacement was used for consistency loss [69].

Strain images are often showed in USE as a surrogate of the elastic modulus. Therefore,

it would be useful to utilize the derivatives of the displacements for the consistency loss.

Assuming a uniform tissue, the estimated forward and backward axial strain can be written

as:

εf = εgt +N (µ, σ2)

εb = −εgt +N (−µ, σ2)
(4.6)

where we assumed that the strain true value is εgt and the error is modeled by a normal

distribution with the bias and variance of µ and σ2, respectively. The forward and backward

consistency loss can be defined as:
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lossc = Φ(εf + εb) (4.7)

Substituting Eq 4.6 into Eq 4.7, yields:

lossc = Φ(N (0, σ2/2)) (4.8)

This equation indicates that minimizing the lossc, results in reducing the variance in esti-

mation of forward and backward strains. Similar to the smoothness loss (losss), the strain

in both axial and lateral directions were employed which can be written as:

lossc = Φ (
∂W f

a

∂a
+

∂W b
a

∂a
) + 0.5βΦ (

∂W f
l

∂l
+

∂W b
l

∂l
) (4.9)

where we used the same weights of the smoothness loss.

By using the loss functions defined in Eq 5.1,5.3, and 4.9, the total loss function can be

written as:

loss = lossd + λlosss + γlossc (4.10)

Thanks to reducing the number of hyper-parameters, only λ and γ should be tuned for

the training which can be done based on the training data. Too large values of λ and γ

lead to a blurry strain image, while too small values result in noisy strain images. We set

these hyper-parameters (λ = 0.03 and γ = 0.05) by visually inspecting the strain images

of the validation set after training with different values of λ and γ. It is worth mentioning

that similar data and smoothness loss can be used for the backward flow. However, the

consistency loss that we added has a similar behavior since it tries to make the backward

strain close to the inverse of the forward one.

Adding the consistency loss demands high memory since both forward and backward

flows are used for backpropagation. We utilized an NVIDIA A100 GPU with 40 GB of RAM

to be able to train using the proposed loss function and simultaneously avoid downsampling

to preserve RF data high frequency information. Since training this network might be

infeasible for some researchers, we will make the network’s weights publicly available online

at code.sonography.ai after acceptance of this manuscript.
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4.2.4 Data Collection

Experimental Phantom

We used a tissue-mimicking breast phantom made from Zerdine (Model 059, CIRS: Tissue

Simulation & Phantom Technology, Norfolk, VA) for data collection. The phantom con-

tained a number of hard inclusions. The background has elastic modulus of 20 kPa and the

inclusions have at least twice elastic modulus of the background. This phantom was utilized

to obtain training and test data. We made sure that different parts of the phantom were

imaged for training and testing to avoid data leakage.

We employed Alpinion E-Cube R12 research US machine (Bothell, WA, USA) for training

and test. The L3-12H linear array probe with the center frequency of 10 MHz and the

sampling frequency of 40 MHz was utilized for image acquisition.

In vivo data

In vivo data was collected at Johns Hopkins Hospital using a research Antares Siemens

system by a VF 10-5 linear array. The sampling frequency was 40 MHz and the center

frequency was 6.67 MHz. Data was collected from patients with liver cancer during open-

surgical RF thermal ablation. For more information, please see [28]. The institutional review

board approved the study with the consent of the patients.

4.2.5 Training schedule

We first collected data using the Alpinion machine from the breast phantom. We then

selected image pairs having maximum axial displacement larger than 3 pixels. In total, 2200

image pairs were used for training. The networks were trained for 40 epochs and the learning

rate was set to 30e-6 which reduced by 1/2 every 10 epochs. For in vivo data results, we

also fine-tuned the network trained by the bi-directional method using in vivo data. This

network was fine-tuned using 500 in vivo image pairs for 20 epochs and the learning rate

was 20e-6 and reduced by a factor of 2 every 5 epochs. In our experiments, we named this

network as Bi-directional Unsupervised+ft.
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4.2.6 Compared methods

The compared methods are listed below.

1) OVERWIND is an optimization-based method that estimates sub-pixel displacement.

This method requires the initial displacement which is obtained by DP[28]. OVERWIND

considers a window around each sample and uses total variation for the regularization. This

method obtains high quality strain images [29].

2) The recently proposed network, MPWC-Net++ which is the modified version of

MPWC-Net. This network is only trained on computer vision images and no training on US

data is done [59].

3) We fine-tune MPWC-Net++ using the unsupervised technique without the consistency

loss. Also similar to [56], it has the second-order derivatives only in the direction of the

displacement (λ32, λ41 = 0). In this case, the unsupervised fine-tuning would be similar to

the semi-supervised method [56] with some minor improvements. The difference is that a

better network (MPWC-Net++) with more suitable regularization weights is employed.

4) Our proposed bi-directional unsupervised fine-tuning method. In this method, the

consistency loss is added to the unsupervised loss function and all the second-order derivatives

are employed in the smoothness loss.

5) For in vivo data section, we also fine-tune the bi-directional network using in vivo

data.

We compare our bi-directional semi-supervised method with recent methods in USE:

OVERWIND is a high-performance and non-deep learning method. MPWC-Net++ is one

of the best networks used for USE without training on US data. The unsupervised variant of

MPWC-Net++ combines this high-performance network with the unsupervised fine-tuning

[56].
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Table 4.1: CNR results (higher is better). The bold font highlights the best, and the underline
indicates the best deep learning results. Numbers marked with asterisks indicate results that
are not statistically significant (p-value> 0.01), e.g. OVERWIND and the proposed method
in Fig. 4.2.

Fig. 4.2 Fig. 4.3 Fig. 4.4 Fig. 4.5 (1) Fig. 4.5 (2)

OVERWIND 27.26±4.27∗ 25.28±6.62 12.40±2.38 12.83±5.35∗ 27.84±8.82

MPWC-Net++ 12.02±1.59 8.74±1.85 5.12±1.11 4.83±2.09 7.82±3.66
Unsupervised 31.78±7.47 15.12±4.12 9.94±1.64 8.67±4.09 14.37±4.27

Bi-directional Unsupervised 27.71±5.20∗ 17.19±4.45 13.84±4.49 12.82±4.83∗ 21.40±3.69

Table 4.2: SR(%) results (lower is better). The bold font highlights the best, and the
underline indicates the best deep learning results. Numbers marked with asterisks and star
indicate results that are not statistically significant (p-value> 0.01).

Fig. 4.2 Fig. 4.3 Fig. 4.4 Fig. 4.5 (1) Fig. 4.5 (2)

OVERWIND 62.26±0.71 40.21±3.2 50.04±3.08⋆ 61.78±5.74∗ 36.56±2.00

MPWC-Net++ 61.56±1.70∗ 35.08±6.26 49.29±4.41∗ 69.43±8.46 40.20±10.3
Unsupervised 61.27±0.67∗ 25.89±3.97 48.15±6.16⋆∗ 60.96±9.67∗ 32.06±7.47

Bi-directional Unsupervised 59.24±0.50 28.12±4.12 45.82±2.53 58.79±5.72 30.32±2.90

4.3 Results

4.3.1 Experimental Phantom Results

The results of different parts and compression levels of the experimental phantom are shown

in Figs. 4.2,4.3,4.4 and 4.5. In Fig. 4.2, the inclusions are not visible in the B-mode

images, while they can be detected by USE methods. Comparing deep learning methods,

unsupervised training substantially improves the strain quality of MPWC-Net++. Our

proposed bi-directional method obtains similar or higher quality strain images compared to

the unsupervised method, and substantially better results in all experiments compared to

MPWC-Net++, especially when the compression is low (for example, Fig. 4.4 and 4.5).

It can be seen that for those images MPWC-Net++ does not provide a clear image of the

inclusion, while the proposed method obtains the highest quality strain images among the

compared deep learning methods. OVERWIND obtains high-quality strain images and the

proposed method performs comparably to OVERWIND in terms of the strain quality.
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Figure 4.2: Phantom Result 1 with the maximum strain value of 3%. Green boxes indicate
windows for computing CNR and SR.

The quantitative results are listed in Table 4.1 (for CNR) and 4.2 (for SR). In terms

of CNR, our proposed method substantially increases the CNR of MPWC-Net++ and out-

performs the unsupervised method in most cases. To be more specific, the bi-directional

unsupervised method increases the CNR of MPWC-Net++ from 12.02, 8.74, 5.12, 3.73 and

10.25 to 27.71, 17.19, 13.84, 12.82, and 21.40, respectively. It also obtains CNR values close

to OVERWIND or even better (in Fig. 4.4).

The SR results agree with [55] where we showed that MPWC-Net has better SR compared

to another optimization-based method. In most cases (except Fig. 4.3)), bi-directional

unsupervised method has the better SR and close to the lowest ones in that case.

The visual and quantitative results of the experimental phantoms confirm that our pro-

posed method improves the overall quality of the strain images.

Smoothing window effect on strain image

After displacement estimation, a smoothing window along with the derivative kernel are

used to reduce the error and compute the derivative of the displacement. Larger windows

smooth the displacement more but sacrifice the resolution of the strain image. Therefore,

displacement estimation methods that require smaller windows are preferred. When a USE

displacement estimation method does not require a large smoothing window, it shows that
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Figure 4.3: Phantom Result 2 with the maximum strain value of 0.4%. Green boxes indicate
windows for computing CNR and SR.
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Figure 4.4: Phantom Result 3 with the maximum strain value of 0.3%. Green boxes indicate
windows for computing CNR and SR.

the method produces a displacement map with a low variance error. To compare the methods,

we compute the strain image of two image pairs with smoothing windows of sizes 5, 15, 30,

and 40. The CNR values of different smoothing window lengths are shown in Fig. 4.6.

It can be seen that OVERWIND has high CNR values even when the smallest smoothing

window is employed. Unsupervised and bi-directional unsupervised methods have good CNR

values close to that of OVERWIND. It should be mentioned that the difference between the
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Figure 4.5: Phantom Result 4 with two inclusions having different elasticity with the maxi-
mum strain value of 0.5%. Green boxes indicate windows for computing CNR and SR.

unsupervised and bi-directional methods in Fig. 4.6 was not statistically significant (p-

value = 0.112). MPWC-Net++ has very low CNR when the smoothing window is small.

It indicates that this method is highly sensitive to the length of smoothing window and

requires larger ones to produce acceptable strain images, whereas OVERWIND and the two

unsupervised methods do not need a large smoothing window to produce reliable strain

images and have low variance errors. The strain images are shown in Fig. 4.7 for smoothing

windows of 5 (top), 15 (middle) and 30 (bottom), and the target and background windows

for computation of CNR are highlighted. We can see that MPWC-Net++ generates noisy

strain images for small smoothing windows, where the inclusion is not visually detectable.

However, both unsupervised fine-tuning methods provide a better performance, close to

OVERWIND, and generate less variations compared to MPWC-Net++.

4.3.2 Lateral Strain

The lateral strain (∂Wl

∂l
) has much lower quality than the axial strain since the main movement

is in the axial direction, and the lateral sampling frequency and resolution are low. The lateral

strain can be utilized in inverse problem methods to find the elastic modulus [70]. Fig. 4.8

shows the lateral strain obtained by the compared methods. It can be seen that MPWC-
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Figure 4.6: CNR values of the compared method using different smoothing window lengths.
The strain images are shown in Fig. 4.7.

Figure 4.7: The strain images of the compared methods. Smoothing window size is 5 (top),
15 (middle) and 30 (bottom).

Net++ and the unsupervised method obtain very noisy strain images and the inclusion

is hardly visible. However the proposed bi-directional method and OVERWIND obtain

acceptable strain images and the inclusion can be detected.

4.3.3 In vivo Results

Compared methods are evaluated with two in vivo data belonging to two patients. We also

fine-tuned the bi-directional network using in vivo data to find out if further improvements
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Figure 4.8: The lateral strain results. The proposed bi-directional method provides a smooth
strain image close to OVERWIND, while MPWC-Net++ and the unsupervised method
generate noisy strain images and the inclusion is barely visible.

Table 4.3: Quantitative results of in vivo data. The pairs marked by asterisk or star are not
statistically significant (p-value> 0.01).

In vivo data 1 In vivo data 2
CNR SR(%) CNR SR(%)

OVERWIND 17.28±5.31 21.80±4.16 7.18±1.58∗ 51.40±6.06⋆

MPWC-Net++ 11.51±3.08 25.50±6.63 7.31±2.47∗ 48.89±11.61∗

Unsupervised 11.91±2.62 19.20±5.30 6.73±3.09 47.83±20.83⋆∗

Bi-directional Unsupervised 16.27±5.26 19.35±5.46 7.91±3.18 45.60±11.83
Bi-directional Unsupervised + ft 14.37±4.40 19.19±6.10 8.86±2.64 46.14±12.91

can be achieved. The strain images of the compared methods are given in Fig. 4.9 and 4.10.

OVERWIND produces high-quality strain images with low noise, while the strain images

obtained by MPWC-Net++ have some over-smoothing especially in the lateral direction.

Both unsupervised methods substantially improve the strain image qualities of MPWC-

Net++. The bi-directional+ft also obtains high quality strain images, but the difference

with the bi-directional method is not discernible.

The quantitative results are given in Table 4.3. OVERWIND achieves the highest CNR

for in vivo data 1, while bi-directional unsupervised+ft has the best CNR for in vivo data

2. It can also be seen that fine-tuning on in vivo data does not results in considerable CNR

improvement (it has slightly better CNR than bi-directional for in vivo data 2 and worse
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Figure 4.9: Strain images of in vivo data 1. The tumor has a lower absolute strain value but
looks brighter since the strain is negative.

CNR for in vivo data 1). In terms of SR, bi-directional and bi-directional+ft have the best

SR values. MPWC-Net++ and OVERWIND have the highest SR among the compared

methods.

4.4 Discussion

In this chapter, we employed semi-supervised training to improve the performance of an

optical flow network for USE. Although we used MPWC-Net++, which outperformed other

networks for USE, the training method can be applied to other networks as well. It should be

mentioned that the optical flow networks usually have pyramidal structure meaning that the

displacements are estimated in different resolutions. Similar to previous works [55, 56] and

unsupervised optical flow works [65], we only used the last output resolution for fine-tuning.

The optical flow CNNs trained on computer vision images do not employ regularizations

due to abrupt changes in scenes such as a moving car in front of a fixed background. How-
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Figure 4.10: Strain images of in vivo data 2. The tumor has a lower absolute strain value
and looks darker since the strain is positive.

ever, the displacement in USE is usually smooth without any sudden changes. The effect

of the absence of the regularization can be seen in Fig. 4.7 (top), where the smoothing

window is very small. The strain estimated by MPWC-Net++ has a high variance, whereas

the bi-directional unsupervised method provides smooth and high-quality strain images by

incorporating smoothness and consistency constrain in the estimated displacement.

The values reported in Tables 4.1, 4.2 and 4.3 are the mean and standard deviation

of CNR and SR values. We have conducted statistical analysis to find out that if the

difference between obtained values is statistically significant. We employ Friedman test [71]

for statistical analysis.

Regarding the choice of weights, the explained method of tuning the weights only gives a

rough estimate of the optimum weights. However, the output strain image is not considerably

sensitive to these weights and similar performance can be obtained by different weights.

Running time is another important aspect that needs to be investigated. The deep

learning methods shine in this aspect, our proposed method can provide high quality strain
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images close to OVERWIND for real-time applications. To give a general view about the

computation time, OVERWIND takes 26 seconds for an image pair of size 1920 × 384 on

CPU (8th generation, core i7). It should be noted that this is a Matlab implementation, and

an optimized implementation in C will be much faster. MPWC-Net++ and bi-directional

MPWC-Net++ take 0.166 and 0.174 seconds on NVIDIA A100 GPU, respectively. The

bi-directional variant of MPWC-Net++ takes slightly more time than MPWC-Net++ since

it estimates both forward and backward displacements; however, it still takes much less time

than running the network two times and computing forward and backward displacements

separately.

4.5 Summary

In this chapter, we proposed a bi-directional semi-supervised deep learning method. We used

strain consistency along with data and smoothness loss. We also employed the second-order

derivatives regularization of axial and lateral displacements in both directions. Furthermore,

we reduced the number of hyper-parameters by relating some of them to others by taking

into account the underlying principles of the US. We showed that our proposed method

substantially improved current optical flow networks used for USE. We validated our method

using different experimental phantom and in vivo data. Our proposed method obtained

strain images close to OVERWIND.
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Chapter 5

Lateral Strain Imaging using

Self-supervised and Physically

Inspired Constraints in Unsupervised

Regularized Elastography

5.1 Introduction

In the previous chapter, we investigated unsupervised training on real ultrasound data which

prepares the trained model to extract more suitable features from RF data. Prior knowl-

edge of displacement map continuity is also utilized in the forms of different regularization

strategies. In [56], a combination of first and second-order derivatives of the displacements is

employed as the regularization, which has been found beneficial in the recent optimization-

based methods [67]. Wei et al. adapted MaskFlownet [72] to USE and trained the network

using an unsupervised method. They also performed a detailed comparison of their network

with MPWC-Net++ [73].

In classical methods, Babaniyi et al. [74] considered plane stress and incompressibility

assumptions to refine the estimated displacement. Guo et al. first introduced a refinement

method that incorporated the incompressibility and plane strain assumptions in an iterative
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approach [75] that substantially improved the lateral strain. Other lateral strain imaging

works mainly focus on modifying the imaging technique to have a higher resolution in lateral

direction [76–78], and, as such, cannot be applied to the already available US data. The

smoothness of the derivatives of the displacements is the only prior knowledge of USE physics

used in previous unsupervised training. No deep learning work considers the physics of the

compression of the tissue into account. Also, no deep learning method has focused on

improving the quality of the lateral displacement estimation, which is challenging but it is

required for elasticity [70] and Poisson’s ratio imaging [54].

In our preliminary work, we investigated the feasibility of improving the lateral dis-

placement by employing the prior knowledge of compression physics [79], where we intro-

duced physically inspired constraint for unsupervised regularized elastography (PICTURE).

In this chapter, the method is explained in more detail, and new extensive experiments

are performed to better evaluate the effectiveness of the technique. We also introduce self-

supervision in USE and propose sPICTURE, which further boosts the performance.

5.2 Method

5.2.1 Unsupervised Training

Let I1, I2 ∈ R3×W×H denote the pre- and post-compression US data, respectively. The

subscript 3 refers to three channels of RF data, the envelope of RF data, and the imaginary

part of the analytic signal similar to [62]. The unsupervised cost function is composed of

data loss and smoothness regularization loss. The data loss (LD) in unsupervised training

can be obtained by comparing I1 with the warped I2 (I2̂) by the displacement map W . The

data loss can be written as [80, 81]:

LD = ||(I1 − I2̂)||1(N×N) (5.1)

where ||.||1 denotes norm 1 (as suggested by [37, 58], L2 norm is not suitable; therefore, a

norm lower is employed), and a window of size N ×N (here 3×3) is considered around each

sample to reduce the effect of noise. For the regularization, we adopt the method of [56, 81]
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where the strains and their first-order derivatives are employed. The strains can be obtained

by taking the derivative of displacement in direction (x) with respect to the direction (y):

εxy =
∂Wx

∂y

x, y ∈ 1, 2, 3

(5.2)

we assumed that the subscripts 1, 2, and 3 denote axial, lateral, and out-of-plane directions,

respectively. By this assumption, ε11, ε22 and, (ε21 + ε12)/2 are the axial, lateral and, shear

strains, respectively. The smoothness loss can be defined as:

LS = Ls1 + γLs2

Ls1 = ||ε11− < ε11 > ||1 + β||ε12||1 +
1

2
||ε21||1 +

1

2
β||ε22||1

Ls2 =

{︃
|| (∂ε11

∂a
)||1 + β|| (∂ε11

∂l
)||1+

0.5|| (∂ε22
∂a

)||1 + 0.5β|| (∂ε22
∂l

)||1
}︃

(5.3)

where LS is the total smoothness loss, < . > denotes averaging operation, and β depends

on the ratio of spatial distance between two samples in lateral to the axial direction and

it is set to 0.1 similar to [81]. Ls1 and Ls2 are the regularization of first- and second-order

derivatives of the displacements. γ is a hyperparameter that controls the weight of the

second-order derivatives smoothness loss.

5.2.2 Hooke’s Law and compression physics

Assuming that the tissue is linear elastic and isotropic, the following two sections show the

relation between the lateral and axial displacements under uniform compressions.

Homogeneous Material

Hooke’s law can be formulated as [9]:
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(5.4)

where E, σ, and v represent Young’s modulus, stress tensors, and Poisson’s ratio, respec-

tively. When there is a compression of the material in one direction, there is an expansion

in the other direction, which depends on the Poisson’s ratio of the material. In free-hand

palpation, it can be assumed that the external force is only in the axial direction (uniax-

ial stress); therefore, other stress components except σ11 can be ignored. This assumption

simplifies Eq 5.4 and leads to [9]:

ε11 =
σ11

E
, ε22 = −v

σ11

E
, ε33 = −v

σ11

E
(5.5)

which indicates that the lateral strain (ε22) can be directly obtained by the axial one (ε11)

using −v × ε11.

Inhomogeneous Materials

Tissues cannot be assumed to be homogeneous due to the presence of irregularities and

boundary regions; therefore, the lateral strain cannot be directly obtained by the axial one

and Poisson’s ratio. In this condition, the total strain (εxy) is obtained by adding the elastic

strain (exy) and eigenstrain (ε∗xy) [82]:

εxy = exy + ε∗xy (5.6)
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Figure 5.1: From left to right: the Poisson’s ratio, the EPR, and their absolute difference
for a simulated phantom. The Poisson’s ratio and the EPR have the same colorbar.

Eigenstrain is added to consider the variation of total strain from the elastic one in the

presence of inhomogeneity. It is maximum on the inhomogeneity boundaries and decays to

zero further from the boundaries [82]. Although the lateral strain does not linearly depend

on the axial one anymore, they are still highly correlated. Also, −ε22/ε11 does not obtain

the Poisson’s ratio anymore and it is called effective Poisson’s ratio (EPR) [54]. In uniform

regions far from inhomogeneities, EPR converges to Poisson’s ratio. For illustration purpose,

EPR and Poisson’s ratio of a finite element simulation using ABAQUS software (Providence,

RI) is depicted in Fig. 5.1. It can be observed that EPR is more dissimilar to Poisson’s

ratio at the top and bottom of the phantom and around the inclusion. Poisson’s ratio and

EPR under arbitrary deformation have the range between 0.2 and 0.5 [83, 84]. Although the

exact value of EPR is not known, it has been used as an approximation of Poisson’s ratio

to characterize tissues [54, 84]. We propose to use this range as a prior information to guide

the network to refine the lateral displacement. Guo et al. assumed tissue incompressibility

(Poisson’s ratio = 0.5) and plane strain (strain in out-of-plane direction = 0) to refine the

displacements. However, Poisson’s ratio depends on the type of the tissue (refer to [85, 86]

for Poisson’s ratio of breast and liver). In this work, we do not make those assumptions, and

only a feasible range of Poisson’s ratio is enforced.

5.2.3 PICTURE

We propose to utilize the accepted range of EPR as a prior information in the form of

regularization. To do that, we first need to calculate EPR (Ve) from the estimated axial and
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lateral strains:

Ve =
−ε22˜
S(ε11˜ )

(5.7)

where ε22˜ and ε11˜ are the lateral and axial strains obtained from estimated displacements.

The parameter S denotes stop gradient operation, which is used to stop backpropagation

of the loss to the axial displacement estimation. It is used to avoid the estimated axial

displacement being altered by the noisy lateral one. To find out the EPR values outside the

accepted range, a mask (M) is defined using the minimum (Vemin) and maximum (Vemax)

allowed EPR values.

M(i, j) =

⎧⎨⎩0 Vemin < Ve(i, j) < Vemax

1 otherwise

⎫⎬⎭ (5.8)

We assume the Vemin and Vemax values to be 0.1 and 0.6 (no noticeable change was observed

by small changes of these values) to have a small margin of error. In order to penalize the

EPR values outside of the accepted range, PICTURE loss is defined as:

Lvd =
⃓⃓⃓⃓
M ⊗ (ε22˜ + Vē × S(ε11˜ ))

⃓⃓⃓⃓
2

(5.9)

where ⊗ is the Kronecker product to select EPR values outside the accepted range, and Vē

is an estimate of true average EPR. It is obtained by averaging EPR values that are inside

the accepted range, which can be formulated as:

Vē =

∑︁
i,j(1−M(i,j))Ve(i, j)∑︁

i,j(1−M(i,j))
(5.10)

Eq 5.9 tries to constrain EPR to be inside the accepted range.

The first-order derivatives of Ve are also employed to enforce the smoothness of EPR.

Lvs = ||
∂Ve

∂a
||1 + β × ||∂Ve

∂l
||1 (5.11)
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The final PICTURE loss can be written as:

LV = Lvd + λvs × Lvs (5.12)

where λvs is defined to weight the smoothness part.

5.2.4 Self-Supervised Learning

Self-supervised learning (SSL) is a technique that has recently been applied to unsupervised

optical flow networks [87, 88]. The basic procedure is that the input images are fed to the

network during the unsupervised training, and the displacements are obtained during the

first pass. In the next step, the input images are transformed to make them more challenging

than before and the new displacement is obtained during the second pass. In the last step,

the differences between the displacements of the first and second passes are penalized:

LSSL = ||S(W )− W̃ ||1 (5.13)

where W is the estimated displacement in the first pass (no transformation), W̃ is the ob-

tained displacement from the second pass (with transformed inputs), and stop gradient (S)

is used to avoid backpropagation into the first pass. Substantial improvements were reported

for unsupervised training employing SSL using different transformations. In [88], superpixels

[89] of input images were identified and the content of randomly selected superpixels were

replaced by pure noise. The method outperformed other unsupervised methods in different

optical flow benchmarks. In [87], cropping, affine, and other kinds of transformations were

utilized. SSL was also compared by data augmentation (instead of SSL, the transformed im-

ages were considered as new inputs). SSL outperformed data augmentation, which indicated

that SSL was not a simple synthetic data generation like data augmentation.

In this chapter, we employ two data transformations: cropping and adding noise to spe-

cific regions. Cropping may cause loss of information, especially in areas where displacement

is high. On those areas, estimating displacement is complex for the network since the cor-

responding part of the first image might be outside the cropped second image. We also add
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Figure 5.2: B-mode input image (a), cropped image (resized for the purpose of visualization)
(b) and, image with added noise (the area of added noise is highlighted) (c).

large Gaussian noise to randomly selected circular regions. An example of a transformed

image is shown in Fig. 5.2. SSL can guide the network to have a more reliable estimation

when there is a loss of information due to cropping or noisy data.

5.2.5 Loss Function And Network Architecture

The loss function is composed of data loss (Eq 5.1), smoothness loss (Eq 5.3), PICTURE

loss (Eq 5.9), and SSL regularization (Eq 5.13):

loss = LD + λsLS + λvLV⏞ ⏟⏟ ⏞
first pass

+ λslLSSL⏞ ⏟⏟ ⏞
second pass

(5.14)

where the hyper-parameters, λs, λv, and λsl are the weights of smoothness regularization,

PICTURE loss, and SSL regularization, respectively. The SSL loss only affects the second

pass in which the input US data are transformed, while the other losses affect the first pass.

We employed MPWC-Net++ and it is trained for 25 epochs, the learning rate is set to

5× 10−6, which is halved every 5 epochs.

5.2.6 Datasets

Simulation data

A phantom is simulated using Field II [45, 46], and the motion is obtained by the ABAQUS

finite element analysis software (Providence, RI). The phantom contains an inclusion with
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Figure 5.3: Axial (top row) and lateral (middle row) strains in a simulated phantom. Ground
truth EPR (bottom row), the absolute error, and the mean absolute error (MAE) shown for
each method.

Poisson’s ratio of 0.45 and the Young’s modulus of 40 kPa. The background has Poisson’s

ratio of 0.35 and the Young’s modulus of 21 kPa. The Poisson’s ratio and EPR of this

phantom are shown in Fig. 5.1. Different Poisson’s ratios for background and the inclusion

are chosen to investigate if it is detectable by the networks. Compared to our recent simula-

tion dataset [55], the number of lines in FIELD II is increased to 190, the number of active

elements is increased to 96, and the obtained US images are also upsampled in the lateral

direction by 2 to provide high lateral resolution.

In addition, 1200 pairs of publicly available simulated phantoms from [55] are employed

for training and 70 pairs for quantitative evaluation of the compared methods. These phan-

toms have a Poisson’s ratio of 0.49 and have one or two hard inclusions in different locations.

The Young’s modulus for the background and inclusions are around 20 kPa and 45-60 kPa,

respectively.
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Table 5.1: Quantitative results for 70 simulated phantoms. Mean and standard deviation
(±) of the MAE of displacements and SSIM of strains are reported. The pairs marked by
asterisk are not statistically significant (p-value>0.05, using Friedman test).

Axial Lateral
MAE (µm) SSIM (%) MAE (µm) SSIM (%)

SOUL 2.2±1.5 99.80±0.06 8.00±4.1∗ 97.70 ± 1.56∗

OVERWIND 2.2±1.5 99.80±0.07 9.40±4.6 93.48±4.10
Unsupervised 2.7±1.6∗ 99.43 ± 2.10 8.70±4.1 96.42±1.79
sPICTURE 2.7±1.7∗ 99.55 ± 1.80 8.00±3.8∗ 97.73 ±1.29∗

Experimental phantom data

2200 frame pairs of experimental phantom data explained in Chapter 2 are employed for

training of the network. In order to avoid data leakage, different parts of the phantom were

imaged for evaluation and test.

in vivo data

Data were acquired from patients with liver cancer during open-surgical RF thermal ablation

at Johns Hopkins Hospital. A research Antares Siemens system by a VF 10-5 linear array was

used for data collection. The sampling and center frequencies were 40 MHz and 6.67 MHz,

respectively. The study was approved by the institutional review board with the consent of

all patients. 500 RF frame pairs from after ablation were selected for the training of the

networks, and RF data from 2 patients before ablations were employed for test to prevent

using similar data during the train and test phases.

5.3 Results

The evaluated methods are listed below:

• Second-order ultrasound elastography (SOUL) is an optimization-based method which

employs L2-norm and second-order regularization to have smooth strain images with

high target-background contrast [67].

• Total variation regularization and window-based time delay estimation (OVERWIND)
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(1)

(2)

(3)

Figure 5.4: The experimental phantom lateral strains obtained by the evaluated methods.
The target and background windows for calculation of CNR and SR are marked in the
B-mode images. The samples 1, 2 and 3 are taken from different locations of the tissue-
mimicking breast phantom. Hard inclusions have lower absolute values than the background.

is a method that incorporates windowing into the optimization cost function [29].

• Unsupervised method (λv = 0 and λsl = 0 in Eq 5.14, similar to the unsupervised

method in [81]).

• The PICTURE without SSL (λsl = 0 in Eq 5.14, only used in ablation experiment).

• The proposed method named sPICTURE entails both PICTURE and SSL losses (Eq

5.14).

It should be mentioned that for simulation results the network for unsupervised method and

sPICTURE is trained on simulation data. For the experimental phantom results, it is trained

on the experimental phantom dataset, and for in vivo results, it is trained on the available in

vivo dataset. We also tuned the hyperparameters of the optimization-based methods (SOUL

and OVERWIND) for each dataset separately to ensure that the best results are obtained

from those methods.
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Figure 5.5: MAE of lateral displacements (left), and SSIM of lateral strains (right) for
different SNR values of simulation test data.

5.3.1 Simulation Results

The axial, lateral strains, and the EPR of the simulated phantom obtained by the compared

methods are illustrated in Fig. 5.3. All methods obtain high-quality axial strains. The axial

strain of the unsupervised method and sPICTURE are quite similar since PICTURE is only

applied to the lateral displacement and keep the axial one untouched. Comparing the lateral

strains (second row), sPICTURE reduces the noise presented in the unsupervised method.

The mean and standard deviations of quantitative metrics are reported for 70 simulated

phantoms. Since the ground truth is available, MAE of displacement and SSIM of strain are

reported for the axial and lateral displacements and strains. SOUL and OVERWIND have

the lowest MAE error and highest SSIM in the axial direction. sPICTURE performs similar

to the unsupervised method since PICTURE does not affect the axial direction. In lateral

displacement estimation, sPICTURE reduces the lateral MAE of unsupervised method from

25.0 to 7.9, a decrease of more than three folds. It also outperforms the optimization-based

methods in terms of MAE, with SSIM values close to those of SOUL.

simulation results for different signal to noise ratios (SNR)

Random Gaussian noise with different SNRs is added to the test RF data to evaluate the

robustness of the compared method to noise. MAE of lateral displacement and SSIM of

lateral strain are plotted in Fig. 5.5. It can be observed that sPICTURE has a low MAE

even for an SNR as low as 5 dB which demonstrates the high robustness of this method.
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Figure 5.6: SSIM of lateral strains versus different maximum strains.

Table 5.2: Quantitative results of lateral strains for experimental phantoms and in vivo
data. Mean and standard deviation (±) of CNR (higher is better) and SR (lower is better)
of lateral strains are reported. The pair marked by asterisk is not statistically significant
(p-value>0.05, using Friedman test).

Phantom 1 Phantom 2 Phantom 3 In vivo 1 In vivo 2
CNR SR CNR SR CNR SR CNR SR CNR SR

SOUL 11.01±4.52 0.483±0.038 3.63±1.20 0.676±0.081∗ 2.33±0.81 0.327±0.140 3.25±1.07 0.428±0.137 1.26± 0.843 1.110±0.124
OVERWIND 7.21±1.91 0.456±0.057 2.35±0.68 0.676±0.092∗ 3.38±1.45 0.285±0.155 1.92±0.96 0.584±0.150 0.84±0.61 1.048±0.202

Unsupervised 2.31±0.30 0.454±0.061 1.02±0.30 0.530±0.105 0.26±0.18 0.677±0.743 0.24±0.18 0.905±0.159 0.50±0.36 1.125 ± 0.437
sPICTURE 11.20±2.18 0.511±0.059 9.14±2.80 0.527±0.044 7.07±1.76 0.278±0.065 7.80±2.01 0.242±0.066 4.34±1.39 0.640±0.075

simulation results for different compression

A phantom from simulation test data having different applied compressions, resulting in

different maximum strains, is selected, and SSIM of lateral strain are illustrated in Fig. 5.6.

By increasing the maximum strain, the SSIM of all compared method decreased which is

expected. It should be noted that the graph shows that sPICTURE has the highest SSIM

among the compared methods which is also robust to the variations of applied compression.

5.3.2 Experimental Phantom Results

The lateral strains of experimental phantom results are shown in Fig 5.4 and the quantitative

results are reported in Table 5.2.
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Figure 5.7: The histograms of the EPR of different methods for phantom 3. sPICTURE has
limited the EPR to the feasible range for USE.

(1)

(2)

(3)

Figure 5.8: Ablation experiment results. In (3), the inclusion is not visible in B-mode image
and arrows show that SSL improves the estimation in boundary regions. The samples 1, 2
and 3 are taken from different locations of the tissue-mimicking breast phantom.
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Figure 5.9: Normalized axial strain versus the corresponding lateral strain. The region where
the samples of the methods lie for experimental phantom 2 are specified. The regions are
obtained from convex hull of strain samples. EPR equals to 0.1 and 0.6 are highlighted by
the dashed lines.

Unsupervised method has unacceptable results in which the inclusions are not visually

detectable while it provides high-quality axial strain images comparable to optimization-

based methods. This is an important observation since this shows that the unsupervised loss

(composed of data and smoothness losses), which has been used widely in computer vision

optical flow estimation, is not a suitable loss in USE.

sPICTURE provides high-quality lateral strain images and performs the best in terms

of quantitative results among the compared methods. By comparing the unsupervised and

sPICTURE results, it can be seen how the added PICTURE regularization and the SSL

lead to the improvement of the obtained strain images. The added regularizations convert

the unreliable and noisy lateral strains obtained by unsupervised method to the high-quality

strain images. It should be mentioned that sPICTURE and unsupervised methods are

both trained using the same data and weights for smoothness regularization. Furthermore,

sPICTURE obtains substantially higher quality lateral strain images than the compared

optimization-based methods (both visually and quantitatively).

To further analyze the results, the histograms of the EPR of phantom data 3 are depicted

in Fig. 5.7. As mentioned earlier, EPR range is similar to the Poisson’s ratio range (0.2 to

0.5, excluding the boundary regions). In PICTURE loss, we penalize EPR values outside
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Figure 5.10: The in vivo lateral strains obtained by the evaluated methods. The target and
background windows for calculation of CNR and SR are marked in the B-mode images.

Figure 5.11: Lateral strains of OVERWIND and sPICTURE after applying the method of
Guo et al. [75] to real phantom data (1).

the 0.1-0.6 range. The histogram of EPR of unsupervised method covers a wide range of

positive and negative values which indicates that many lateral strain values obtained by this

method are incorrect. The histogram of the EPR values of OVERWIND and SOUL are

more limited than unsupervised method, but they contain values that are negative or higher

than 0.8 which is not possible in the phantom. sPICTURE has a more limited range of EPR

values but still has some values outside the specified range. The reason is that the proposed

PICTURE regularization is only applied during the training phase. Although the proposed

PICTURE regularization reduces the range of EPR values, it does not guarantee that all

the values fall into the specified range in test time.
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Ablation Experiment

In order to investigate the impact of PICTURE loss and SSL separately, an ablation exper-

iment is conducted. Fig. 5.8 shows the visual comparison of unsupervised method (without

PICTURE and SSL), PICTURE (without SSL), and sPICTURE. It is visually clear that

both PICTURE and SSL contribute to the improvements obtained by sPICTURE. Without

PICTURE, unsupervised method provides noisy and impractical lateral strain images. PIC-

TURE substantially improves the lateral strain image quality and SSL further boosts the

quality of the lateral strain image. For instance, in sample (1), the inclusion location can

be detected more accurately in sPICTURE compared to PICTURE. Also, the estimation in

boundary regions is improved in sPICTURE since it is trained to deal with cropping with

SSL. It should be mentioned that SSL without PICTURE was also tested, but it performed

inferior to PICTURE.

Experimental Results after applying lateral displacement refinement

Lateral displacement refinement of Guo et al. [75] is applied using the initial displacement

obtained by OVERWIND and sPICTURE. It can be observed that this method further im-

proves the lateral displacement estimation, and the initial displacement obtained by sPIC-

TURE provides a high-quality initial value for this method.

5.3.3 In vivo Results

The in vivo lateral strains of two patients with liver cancer are depicted in Fig. 5.10,

quantitative results are reported in Table 5.2. The tumors are more visually detectable in

sPICTURE compared to the other methods. Also, quantitative results denote that sPIC-

TURE has the highest CNR and lowest SR values among the compared methods, which

confirms the visual analysis.
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5.4 Discussion

In this chapter, a physically inspired regularization to improve the lateral displacement

estimation has been proposed. It confines the range of EPR by employing the high-quality

axial strain and the known range of EPR values. One limitation of the proposed method

is that PICTURE similar to any other form of regularizations is only applied during the

training. Even though it limits the range of EPR values in the test time, it does not

guarantee that all EPR values be within that range. We observed only a few samples lie

outside of the defined range and fixing them during the test time inspired by known operators

[90] can be an area of future works.

It should be mentioned that PICTURE can also have statistical interpretation. The

lateral displacement prediction can be viewed as the estimation of a parameter from under

sampled and heavily smoothed observations. The conventional methods estimate this param-

eter in a maximum likelihood (ML) manner without any prior information (only smoothness

is considered). However, PICTURE can be viewed as maximum a posteriori (MAP) estimate

in which the prior information from compression physics is utilized to find the parameters.

Therefore, more reliable lateral displacement can be estimated compared to the conventional

methods. To clarify this, the graph of lateral versus axial strains is depicted in Fig. 5.9.

PICTURE enforced the strain samples to lie within v = 0.6 and v = 0.1. The areas where

the samples of unsupervised method and sPICTURE lie for experimental phantom data 2

are illustrated in the figure. It can be observed that most of the strain samples of sPICTURE

lie within the correct range. sPICTURE moved the lateral sample values to the area of the

prior knowledge.

Self-supervision was another regularization that has been used in this work. SSL can

prepare the model to deal with corrupted data. In this chapter, we applied cropping and

added noise. Cropping helps the model deal with boundary regions where finding the cor-

respondence between pre and post-compression images is difficult. Adding noise can also

be useful in some scenarios for instance when there is a loss of signal due to high attenua-

tion or there is a cyst where clutter is stronger than the true signal. Applying other forms

of transformation such as acoustic noise (reverberation and multiple scattering), inducing
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decorrelation, and downsampling can be an area of future works.

In this chapter, the performance of lateral displacement refinement method of [75] using

initial value from sPICTURE and OVERWIND is also investigated. This method is consid-

ered as a post-processing method that relies on the initial displacements. We showed that

high-quality lateral displacement of sPICTURE can be considered as a good initial value for

this method and improves the results of this refinement method.

The complexity of the training is another issue that should be discussed. We utilized two

parallel NVIDIA A100 GPUs with 40 GB of memory each. Even with this size of memory,

the maximum batch size that we could train the network was 8. The main reason is that the

image sizes are usually large to preserve high-frequency RF data contents and the memory

usage is also doubled by the second pass required in SSL. Only the training phase is memory

intensive, and inference can be performed with only 5 GB of memory in 140 ms (for an US

data of size 2048× 256) similar to MPWC-Net++.

5.5 Summary

In this chapter, we proposed PICTURE to improve the lateral strain images in USE using

physically inspired priors. We further improved the method in sPICTURE by adding the

self-supervision to the method. The effectiveness of the proposed method is validated using

simulation, experimental phantom, and in vivo data.
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Chapter 6

Infusing physically inspired known

operators for ultrasound elastography

displacement estimation

In this chapter, we aim to embed two lateral displacement refinement algorithms in the

CNNs to improve the lateral strains. The first algorithm limits the range EPR inside the

feasible range during the test time. It is important to note that in contrast to [79], the

EPR range is enforced using the regularization during the training phase and the known

operators framework during the test phase; therefore, it is enforced during both training and

test phases. The second algorithm employs the refinement method proposed be Gou et al.

[75] which exploits incompressibility constraint to refine the lateral displacement.

6.1 Materials and Methods

In this section, we first provide a brief overview of PICTURE and underlie some differences

to this work. We then introduce our method for incorporating known operators into our

deep model and outline our unsupervised training technique. We then present the training

and test datasets and finish the section by demonstrating the network architecture.
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6.1.1 PICTURE

Let εx denote axial (x = 1), lateral (x = 2), and out-of-plane (x = 3) strains. Assuming

linear elastic, isotropic, and homogeneous material, the lateral strain can be obtained from

the axial strain and the Poisson’s ratio by ε2 = −v × ε. Real tissues are inhomogeneous,

and boundary conditions exist; therefore, the lateral strain cannot be directly obtained by

the axial strain and the Poisson’s ratio alone. In such conditions, EPR, which is defined as

ve = −ε22
ε11

can be employed [82]. EPR is spatially variant, and it is not equal to Poisson’s

ratio, but it has a similar range of Poisson’s ratio, i.e., between 0.2 and 0.5 [83]. In PICTURE,

a regularization was defined to exploit this range and the out-of-range EPRs were penalized

[79]. PICTURE loss can be obtained from the following procedure:

1- Detect out-of-range EPRs by:

M(i, j) =

⎧⎨⎩0 vemin < ˜︁ve(i, j) < vemax

1 otherwise

⎫⎬⎭ (6.1)

where ˜︁ve is the EPR obtained from the estimated displacements. vemin and vemax are two

hyperparameters that specify the minimum and maximum accepted EPR values, which are

assumed to be 0.1 and 0.6, respectively.

2- Penalize the out-of-range lateral strains using:

Lvd = |(ε22+ < ˜︁ve > ×S(ε11))|2
Vē =

∑︁
i,j(1−M(i,j))Ve(i, j)∑︁

i,j(1−M(i,j))

(6.2)

where < ˜︁ve > is the average of EPR values within the feasible range. The operator S denotes

stop gradient operation, which is employed to avoid the axial strain being affected by this

regularization. It should be noted in contrast to [79] in which only out-of-range samples were

contributing to the loss, in this work, all samples contribute to Lvd to reduce the estimation

bias.
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3- Smoothness of EPR is considered by:

Lvs = |
∂ve
∂a
|1 + β × |∂ve

∂l
|1 (6.3)

4- PICTURE loss is defined as LV = Lvd+λvs×Lvs, where λvs is the weight of the smoothness

loss. PICTURE loss is added to the data and smoothness losses of unsupervised training.

6.1.2 Known Operators

The known operators are added to the network in the inference mode only due to the high

computational complexity of unsupervised training (outlined in the next section). We employ

two known operators to impose physically known constraints on the lateral displacement.

The first known operator (we refer to it as Poisson’s ratio clipper) limits the EPR to the

feasible range of vemin − vemax. Although PICTURE tries to move all EPR values to the

feasible range, in [79], it was shown that some samples in test time were still outside of the

feasible range. Poisson’s ratio clipper is an iterative algorithm since the lateral strains are

altered by clipping the EPR values and affecting the neighbor samples’ strain values.

The second algorithm employs the incompressibility of the tissue which can be formulated

by:

ε1 + ε2 + ε3 = 0 (6.4)

In free-hand palpation, the force is approximately uniaxial (ε3 ≃ ε2); therefore Eq 6.4 can

be written as:

ε1 + 2× ε2 = 0 (6.5)

Guo et al. enforced incompressibility in an iterative algorithm [75]. We made a few changes

to increase the method’s robustness by adding Gaussian filtering in each iteration. It should

be noted that the algorithm can be employed for compressible tissues as well, and the

incompressibility constraint is employed for the refinement of the obtained displacement.

The proposed algorithms are outlined in Algorithm 1 and 2. The network architecture with

the known operators is illustrated in Fig. 6.1. It is worth highlighting that known operators

offer a compelling alternative to regularization. While the latter involves adjusting trained
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Figure 6.1: MPWC-Net++ architecture with known operators. The network is iterative with
5 pyramid levels. The known operators are added after optical flow estimation, and refine
the estimated lateral displacement in each pyramid level (added from level 3) to provide
improved lateral displacement to the next pyramid level.

weights based on the training data and keeping them fixed during testing, the former relies

on iterative refinement that is adaptable to the test data and does not require any learnable

weights.

Algorithm 1: Poisson’s ratio clipper

input : Lateral displacement wl, axial displacement wa, vemin,vemax, iteration
output: Refined lateral displacement wref

1 wref ← wl

2 for q ← 1 to iteration do

3 e22 ← ∂wl

∂l
// gradient in lateral direction.

4 e11 ← ∂wa

∂a
// gradient in axial direction.

5 epr ← −e22
e11

6 epr(epr < vemin)← vemin // Clip epr less than vemin

7 epr(epr > vemax)← vemax // Clip epr less than vemax

8 wref (:, 2 to end)← wref (:, 1 to end− 1) + epr × e11
// use the displacement of previous line and the clipped epr to

find the displacement of the next line

6.1.3 Unsupervised Training

We followed a similar unsupervised training approach presented in [79] for both PICTURE

and kPICTURE methods. The loss function can be written as:

Loss = LD + λSLS + λVLV (6.6)
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Algorithm 2: Guo et al. refinement [75] employed as known operator

input : Lateral displacement wl, Axial displacement wa of size w× h, iteration, λ1,
λ2

output: Refined lateral displacement wref

1 wref ← wl

2 for q ← 1 to iteration do
3 for i, j in w, h do
4 δ = Wl(i, j − 1)− 2Wl(i, j) +Wl(i, j + 1) +Wa(i+ 1, j + 1)−Wa(i− 1, j)−

Wa(i, j − 1) +Wa(i− 1, j − 1) + λ1(W
q−1
ref −W q−2

ref )

5 wq
ref = Gauss(wq−1

ref + λ2 × δ) // Gaussian filtering to reduce noise,

λ2 controls the weight of updating wq
ref

where LD denotes photometric loss which is obtained by comparing the pre-compressed and

warped compressed RF data, LS is smoothness loss in both axial and lateral directions. λS

and λV specify the weights of the smoothness loss and PICTURE loss, respectively.

6.1.4 Network architecture and training

We employed MPWC-Net++ [59] which has been adapted from PWC-Net-irr [58] for USE.

The network architecture with the added known operators is shown in Fig. 6.1. The training

schedule is similar to [79], known operators are not present in the training and only employed

during the test phase. The known operators are added in different pyramid levels. This has

the advantage of correcting lateral displacements in different pyramid levels. The known

operators are added to the last 3 pyramid levels (there are 5 pyramid levels in this network)

since the estimate in the first 2 pyramid levels are not accurate enough and adding the known

operators would propagate the error.

6.2 Results and Discussions

6.2.1 Compared methods

kPICTURE is compared to the following methods:

• OVERWIND, an optimization-based USE method [29].
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Table 6.1: Quantitative results of lateral strains for experimental phantoms. Mean and
standard deviation (±) of CNR (higher is better) and SR (lower is better) of lateral strains
are reported. The pair marked by † is not statistically significant (p-value>0.05, using
Friedman test). The differences between all other numbers are statistically significant (p-
value<0.05).

sample (1) sample (2) sample (3) in vivo data
CNR SR CNR SR CNR SR CNR SR

OVERWIND 11.34± 1.32 0.318±0.030 3.71±1.07 0.505±0.089 3.61 ±0.58 0.415±0.050 2.07±0.94 0.196±0.255
OVERWIND + Gou et al. 13.26 ± 1.89 0.313 ± 0.029 4.28±1.31 0.503±0.083 4.08±0.62 0.411±0.049 2.39±0.89 0.170±0.233

PICTURE 9.037±0.88 0.407±0.022 5.37±1.33 0.449±0.060† 1.63±0.95 0.840±0.077 4.36±1.81 0.334±0.149
kPICTURE 24.40±7.02 0.290±0.038 7.81±1.68 0.446±0.056† 5.49±2.20 0.598±0.123 5.54±2.54 0.504±0.141

• The post-processing method of Guo et al. [75], which employs the output of OVER-

WIND as the initial displacement (OVERWIND+ Guo et al.).

• PICTURE, which penalize EPR values outside of feasible range [79].

We decided to compare with PICTURE instead of sPICTURE [91] (PICTURE with self-

supervision) since self-supervision is not related to the physics of motion. To focus on the

effectiveness of the known operators, we, therefore, provide a comparison to its corresponding

method PICTURE. We also employed a similar hyper-parameters and training schedule for

experimental phantom and in vivo data.

6.2.2 Results and Discussions

The lateral strains of ultrasound RF data collected from three different locations of the tissue-

mimicking breast phantom are depicted in Fig. 6.2, and the quantitative results are given in

Table 6.1. Visual inspection of Fig. 6.2 denotes that the method proposed by Gou et al. [75]

improves the displacement obtained by OVERWIND. For example, the inclusion borders

in sample 2 are much more clearly visible. The strain images obtained by kPICTURE

have a much higher quality than those of PICTURE. Furthermore, kPICTURE has the

highest quality strain images among the compared methods. For example, the inclusion

on the bottom in sample 1 (highlighted by the arrows) is clearly visible in kPICTURE, a

substantial improvement over all other methods that do not even show the inclusion.

The histograms of EPR values of OVERWIND+Gou et al., PICTURE and kPICTURE

are illustrated for the experimental phantom sample (1). To improve visualization, OVER-
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(2)

(3)

(1)

Figure 6.2: Lateral strains in the experimental phantom obtained by different methods. The
target and background windows for the calculation of CNR and SR are marked in the B-
mode images. The inclusion on the bottom of sample (1) is highlighted in PICTURE and
kPICTURE strain images by purple and blue arrows. The samples 1, 2, and 3 are taken
from different locations of the tissue-mimicking breast phantom.

WIND results are not included because the histogram was similar to that of OVERWIND+Gou

et al.. Although PICTURE limits the range of EPR using a regularization (Eq 6.2), some

EPR values are outside the feasible range. kPICTURE further limits the EPR values; only

a small number of samples are outside of the physically plausible range.

The lateral strain results of in vivo data are depicted in Fig. 6.3 (b). While PICTURE

may produce an adequate strain image, it still contains noisy regions. On the other hand,

kPICTURE delivers exceptionally refined strain images and surpasses the other compared

methods. The quantitative results given in table 6.1 also confirm the visual inspection.

It should be noted that after incorporating the known operators, the inference time of the

network increased from an average of 195 ms to 240 ms (having 10 iterations for algorithm

1 and 100 iterations for algorithm 2).

6.3 Summary

In this chapter, we proposed to incorporate two known operators inside a USE network.

The network is trained by physically inspired constraints specifically designed to tackle the

long-standing illusive problem of lateral strain imaging. The proposed operators provide a
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Figure 6.3: The histogram of EPR values for experimental phantom sample 1 (a). The in
vivo results of the compared methods (b).

refinement in each pyramid level of the architecture and substantially improve the lateral

strain image quality. Tissue mimicking phantom and in vivo results show that the method

substantially outperforms previous displacement estimation method in the lateral direction.
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Chapter 7

Ultrasound Scatterer Density

Classification Using Convolutional

Neural Networks and Patch Statistics

7.1 Introduction

Ultrasound imaging is increasingly attracting the attention of researchers and clinicians due

to being a real-time and non-ionizing imaging modality, and being less expensive and more

portable compared to other medical imaging techniques. However, several types of artifacts

make interpretation of ultrasound images difficult. Cells, collagen, microcalcifications, and

other microstuctural components are often smaller than the wavelength of the ultrasound

wave, and scatter the wave and create the granular appearance in B-mode images called

speckles. The scattered signal from scatterers provides useful information about charac-

teristics of the scatterers, which are highly related to the tissue properties. Quantitative

ultrasound (QUS) measures the tissue characteristics by analysing the ultrasound signal

[92–99]. It aims to provide quantitative estimations of tissue characteristics which cannot

be otherwise obtained from the B-mode image. It has been employed in many different ap-

plications such as liver fibrosis and steatosis assessment [2, 100], bone quality measurement

[1], breast tumor classification [15, 101] and cardiac tissue characterization [102]. Improv-
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ing QUS techniques can eventually broaden the applications of this safe and cost-effective

method in diagnosis and treatment of a large number of disorders.

QUS methods can be classified into two broad categories: spectral-based and envelope-

based methods [5]. Parameters such as the backscatter coefficient and attenuation coefficient

can be estimated by spectral-based methods, usually with a requirement of a reference phan-

tom to remove system-dependent effects[7, 96, 98, 103]. In envelope-based methods, different

characteristics of the tissue are usually estimated by analysing and modelling the envelope

of the RF data by fitting a probability density function. The sample size, wave frequency,

and the attenuation can affect the accuracy of the distribution modelling, and therefore its

parameter estimations [4, 104].

Among different QUS parameters, the scatterer density has attracted a great attention.

If there are many scatterers (more than 10 in a resolution cell (an ellipsoidal volume defined

by - 6 dB point of the beam profile[13])), the envelope data is considered as a fully developed

speckle (FDS), and when the number of scatterers is low, it is considered as under-developed

speckle (UDS). Classifying scatterer density into FDS and UDS is very critical since for

estimation of the QUS parameters, different assumptions must be taken for UDS regions.

Disregarding the density of scatterers results in unreliable estimates of other QUS param-

eters [105]. Reliable classification of UDS and FDS can pave the way for differentiating

tissues with many small scatterers from those with few strong scatterers, and potentially use

them as disease biomarkers. In addition, many downstream ultrasound applications usually

work better under FDS conditions, such as sensorless 3D ultrasound [106] and elastography

[10]. Furthermore, the presence of UDS can also affect the accuracy and precision of other

biomarkers that are currently being explored in different clinical settings, such as the eval-

uation of fat infiltration in the liver. Detecting this condition during data acquisition can

help define ways to improve the accuracy of the biomarker by implementing spatial or angu-

lar compounding strategies to compensate for the limited samples of the scattering process

under UDS [107].

The statistics of echo-envelope data, extracted by either model-based or model-free pa-

rameters, provide information about tissue properties. Model-based parameters try to fit

a distribution to the envelope data. If envelope data is FDS, the RF data can be mod-
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elled by the Gaussian distribution; therefore, envelope values follow the Rayleigh distribu-

tion [92, 108, 109]. However, the Rayleigh distribution fails to model the envelope statis-

tics of UDS regions and other distributions such as K-distribution[102], Homodyned K-

distribution[14, 110] and Nakagami distribution[15] can be utilized. Among these, the Ho-

modyned K-distribution is the most comprehensive but the most complex one that does not

have a closed-form solution. The Nakagami distribution provides a good estimate of the

envelope signal with low-complexity and is widely used in QUS studies.

The Nakagami distribution, applied to ultrasound data for the first time by Shankar et

al. [15], can be used to describe different probability density functions, and to characterize

various scatterer patterns in tissues. It has been shown to be useful in discriminating different

scatterer and tissue types. The Nakagami image can depict tissue properties that are not

visible in ultrasound B-mode images, and has been employed in several studies for tissue

characterization [2, 3, 111, 112].

Model-free parameters such as the envelope signal to noise ratio (SNR), skewness (S) and

entropy [108, 113] are statistical parameters that change with different scatterer distributions.

Entropy-based parametric imaging is a QUS imaging technique, which uses a small sliding

window throughout the image to measure the entropy (the overall level of variations) of

the backscattered RF signal. It has been shown to be effective in differentiating tissues

with different scattering properties, and can provide higher accuracy in a smaller patch size

compared to Nakagami imaging [113].

DL techniques have been utilised in many fields of medical image processing. They

have also proved useful in different ultrasound applications such as segmentation[114, 115],

super resolution imaging [116–118] and elastography [55, 119, 120]. A few studies have

also attempted to tackle the challenge of extracting quantitative measures from ultrasound

images using DL techniques. Byra et al. [121] used Nakagami images to train a convolutional

neural network for the task of breast lesion classification. Wang et al. [122] have proposed

a 3D convolutional network for breast cancer detection. However, the appearance and even

statistics of ultrasound images can change with changes in imaging parameters such as time

gain compensation and focal points. Such changes are well studied in DL and are referred

to as domain shift [123]. If not accounted for, domain shift renders DL estimates grossly
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inaccurate. In fact, this is one of the reasons that DL is less explored in QUS compared to

other ultrasound applications.

In a recent work, we designed a CNN to classify FDS and UDS [124]. The CNN was

fed with envelope data and the RF data spectrum from small patches of RF data, and was

compared with a multi-layer perceptron (MLP) classifier, which used SNR and skewness as

inputs. We used patches to analyse a small area of the image and therefore, to provide a

high resolution. The effect of patch size was also investigated (with patches sized 5 to 10 ×

wavelength). The results showed that in small patch sizes, the CNN outperformed the MLP

classifier, whereas for larger patch sizes, where the statistics of the patch could be reliably

estimated, the MLP classifier outperformed the CNN.

In another recent work, we segmented simulated images with three different scatterer

densities using a U-Net [114]. We found that the network was able to segment precisely

when the intensity difference between the inclusion and the background was high and thus

the network could associate the intensity to the scatterer density.

In [125], the mean scatterer intensity, which is another QUS parameter, was estimated

for the whole image. They assumed that all regions have FDS, which is a limiting factor

in real ultrasound images. In this study, we aim to classify FDS from UDS regions using

CNNs in small patches (Note that the patch size is different for simulation and experimental

phantom data) where classical statistical parameters commonly used in QUS studies cannot

be estimated accurately. Our ultimate goal is to reveal tissue scatterer information similar

to that of Table 7.1 using ultrasound envelope patches. The intermediate goal of this chapter

is to quantitatively evaluate the scatterer density under arbitrary conditions (i.e. different

imaging settings). We use the ultrasound envelope data as the input to the network, since

statistics such as SNR and Nakagami parameters are histogram-based, meaning that they

ignore image texture. We hypothesize that the texture of the ultrasound envelope image

contains crucial information which can be useful to determine the density of scatterers.

We use a large amount of simulated data to train the networks, and test the networks

on simulated and experimental phantom data. We show that the CNN networks are more

robust to the domain shift [123] compared to statistics used in conventional QUS methods.

We modify well-known classification networks such as MobileNet V2 [126], Inception [127],
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DenseNet [128] and ResNext [129] for the task at hand, and train them using simulation

data. The aforementioned networks are tested on unseen phantom data which are being

imaged by a different imaging setting. In the next step, we combine statistics with CNNs

by two different methods: fusion strategy and deep supervision. Our contributions can be

summarized as follows:

• Different CNN architectures are utilized to classify scatterer density using envelope

data.

• A novel training strategy and input channel are proposed to avoid over-fitting on do-

main information which enabled us to classify ultrasound patches without any reference

phantom.

• The networks are further improved by exploiting patch statistics.

• The three different classifiers of support vector machine (SVM), random forest and

MLP are used to classify based on patch statistics.

• Experimental phantom data is employed to validate our work in different imaging

settings.

7.2 Methods

In this section, we first describe different datasets we analysed. We then present the scatterer

density classification methods developed in this work, which include both classical (SVM,

random forest and MLP) and DL methods (CNN and CNN with patch statistics as additional

inputs), and provide intuitions for using different inputs.

7.2.1 Data

We employed two different datasets to investigate the performance of our proposed methods

as outlined below.
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Simulation data

We simulated 200 phantoms of size 30 mm× 30 mm× 1 mm using the Field II pro toolbox

[45], with the center frequency of 6.67 MHz. The sampling frequency was 100 MHz and the

RF signals were then downsampled to 50 MHz.

We randomly distributed point scatteres in the phantoms. In 100 FDS phantoms, we

included 16 scatterers per resolution cell. In the remaining 100 UDS phantoms, we included

2 scatterers per resolution cell. The resolution cell size was determined by calculating the

correlation between the data and a moving window in different regions [130]. The size was

0.15 mm2 at the focal point (The out of plane resolution cell size is not computed). We

randomly cropped 5000 patches of size 256×32 (4.04 mm × 5 mm which is 17 and 21 ×

wavelength in axial and lateral directions, respectively) from different depths as the training

set and 1000 patches as the validation set. For the test set, we simulated 20 more phantoms

with a random scatterer density value of 2 or 16 ± 10% in order to make the test data

more challenging. We randomly selected 500 patches from these phantoms as the test set to

evaluate the methods. This dataset will be publicly available online at data.sonography.ai.

Experimental phantom

Three different phantoms were used to validate our method. The phantoms were of size

15cm× 5cm× 15cm, built from homogeneous mixture of agarose gel media and glass beads

as scattering agents. The glass bead diameter range and bead concentration in the phantoms

are reported in Table 7.1. For more information on construction details, the speed of sound

and attenuation coefficient of these phantoms refer to [131]. The phantoms were imaged

using an 18L6 transducer operating at 10 MHz frequency using an Acuson S2000 scanner

(Siemens Medical Solutions, Malvern, PA) and we used envelope of RF data which was

acquired using Axius Direct Ultrasound Research Interface [132]. There are 456 A lines,

separated by 0.1242 mm and the depth is 40mm. The sampling frequency is 40MHz and

the exact operation frequency was 8.89MHz. However, because of attenuation, the center

frequency of the spectrum was lower. We computed the resolution cell size using correlation

method at different depths and it varied between 0.284 mm3 (at the top where resolution
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Table 7.1: Characteristics of the experimental phantoms and their scatterer concentration
per resolution cell using 18L6 transducer (the range shows the minimum and maximum
values derived from different depths).

Phantom Diameter of Random Scatterers (m) Scatterers Concentration per mm3 Scatterers Concentration per resolution cell

A (High) 5-40 236 8.50-67
B (Medium) 75-90 9 0.32-2.55
C (Low) 126-151 3 0.11-0.85

was poor) and 0.036 mm3 (at the focal point where resolution was the highest). This high

variation of the resolution cell size can have an adverse effect on the classification, especially

when this variation is not observed by the network during training. The numbers of scatterers

per resolution cell for different depth are given in Table 7.1.

We used the experimental phantoms as the test data to evaluate the performance of dif-

ferent models optimized or trained on the simulation data. Phantom A (high concentration)

belongs to the FDS class and Phantoms B (medium concentration) and C (low concentration)

belong to the UDS class.

7.2.2 Classical Statistical Parameters

Several parameters have been proposed in literature for estimating the scatterer density in

ultrasound images. SNR and skewness are among the most important parameters proposed

to classify different scatterer densities:

R = SNR =
Av√︂

A2v − (Av)2
,

S = skewness =
(Av − Av)3

(A2v − (Av)2)1.5

(7.1)

where A is the envelope of RF data, v is the signal power and (...) denotes mean operation.

While in [92], v smaller than 1 was suggested due to having higher dynamic range and

lower estimation error, Prager et al. proposed 1.8 as the optimal value [133] in terms of

the estimation error. We analysed both recommended values of 0.5 and 1.8, and obtained

significantly better results on the validation set using the 0.5 value (area under curve (AUC)
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of 0.894 vs. 0.876 when employing the MLP, and 0.802 vs. 0.794 when employing the SVM

classifier). We, therefore, set v to 0.5 in this study.

When the patch size is big enough, the estimation error of R and S, and therefore

the classification error based on these parameters is low. But for small-size patches, the

classification becomes difficult [92, 124]. This is especially important in clinical applications

where tissues are rarely homogeneous and a large patch may include different scattering

properties [108, 110].

Entropy has been employed for scatterer density classification [134]:

E =
N∑︂

n=1

p(i)log[p(i)] (7.2)

where E denotes entropy, and statistical histogram of the envelope data square is represented

by p, and N is the number of bins for calculating the histogram, which is arbitrarily set to

100 in this study. Entropy increases as the density of scatterers increases (moving from UDS

to FDS). The entropy measure is shown to be effective when using a small window for QUS

analysis [113].

Another parameter that has been shown useful in estimation of scatterer density is the

Nakagami model parameters m (a maximum likelihood estimator of the shape parameter)

and T (a generalized likelihood ratio test statistic) [109]:

m =
(A2)2

var[A2]
,

T = 2K(log
mm

Γ(m)
+ (m− 1)[log(I)− log(I)− 1])

(7.3)

where A is the envelope data and Γ represents the Gamma function. I is a vector representing

K independent and identically distributed samples of the intensity from a specific patch.

Different values of m explain different properties; when the m parameter approaches 1,

the distribution approaches the Rayleigh distribution. The m parameter above and below

1 represent post- and pre-Rayleigh distributions, respectively, which are forms of a more

general family of distributions, called Rician [13, 15, 92, 135].
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Figure 7.1: The distribution of the patch statistics for FDS and UDS in simulated training
data. The patch size is small enough such that FDS and UDS classes overlap.

There is a strong correlation between features m and T . The features m and R are also

highly correlated. We therefore, remove the feature m from the feature list to eliminate the

redundancy between different features. We consider aforementioned parameters as a set of

features to classify FDS and UDS patches.

Fig. 7.1 shows the distribution of different features, extracted from the simulation train-

ing data for UDS and FDS classes. The patch size is small so that for all features, a

considerable overlap exists between the distributions of the two classes, which makes the

classification highly erroneous using only a single feature. As opposed to our previous work

[124] where only parameters R and S were used for classification, we use R, S, entropy and

T together to obtain higher performance in classification. As shown in Fig. 7.1, the dynamic

ranges of the features are not similar, hence we employ normalization (they are normalized

to be in range 0-1) across each feature in the training data. The test and validation data

were also normalized using the same coefficient obtained from the training data.
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7.2.3 Machine Learning Methods

In order to classify FDS and UDS classes, we developed classical machine learning techniques

in addition to DL methods. In this section, we describe the details of these classic techniques.

Support vector machine (SVM)

We used SVM as a classical machine learning algorithm to classify FDS versus UDS. We

analysed different SVMs with linear and non-linear (Radial Basic Function (RBF) and poly-

nomial) kernels. An SVM with an RBF kernel led to the best results on the validation set,

and was selected throughout this chapter. We did a search to find optimum value of the C

parameter of SVM, and subsequently, C = 2.65 was chosen.

Random forest classifier

Random forest is a learning method based on the decision tree algorithm and ensemble of

different trees’ outputs, and is among the top classification algorithms. By changing different

parameters of a random forest model, we found the best performing model on the validation

set, and used this model to classify different patches of simulation and experimental phantom

data.

7.2.4 Deep Learning Methods

Multi-layer perceptron (MLP)

We proposed an MLP structure to classify FDS and UDS groups. To find the best network

architecture for classifying scatterer density using the aforementioned features, we investi-

gated the performance of different MLP architectures on the validation data. We obtained

the best results with a 3-layer network. Further increase in the number of layers did not

improve the results and lead to overfitting, a common problem with MLPs. We also analysed

different numbers of neurons in each hidden layer. We incrementally increased the number

of neurons in two hidden layers. Including 128 neurons in the first hidden layer, and 32

neurons in the second hidden layer led to the best result. However, it is important to note

that the results reached a plateau and did not change substantially by changing the number
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of neurons. We employed Dropout [136] in the second layer. The activation functions were

Leaky Relu for the first two layers and Sigmoid for the last layer. The loss function was

binary cross entropy and the network was optimized using the Adam optimizer.

Convolutional neural network (CNN)

We used different state-of-the-art pretrained CNN networks to classify scatterer density.

ResNext [129], MobileNet V2 [126], Inception [127] and DenseNet [128] were employed. In

order to use these networks, we replaced the last fully connected layer with a fully connected

layer with one output having Sigmoid activation function. We used the pre-trained weights

of the networks for initialization to facilitate the training and avoid over-fitting.

CNN with patch statistics as additional inputs

To further enhance the network, we proposed to utilize the patch statistics (R, S, entropy

and T ) as additional inputs. We tested different settings to determine the optimal way to

fuse the information of patch statistics to the CNN. Fig. 7.2 shows the outcome (A denotes

envelope). The CNN part is the same as the CNN network described in Section 7.2.4 and

the patch statistic classifier part is similar to the MLP explained in Section 7.2.4. These

parameters are fed to an MLP to generate a feature map, which is concatenated to the feature

map obtained from the CNN. The resulted feature map is then used for a final classification.

Our first intuition was to train the whole network end to end. However, the CNN and the

MLP have vastly different numbers of parameters and this resulted in a low generalization

and a large sensitivity to the initial seeds. To mitigate the imbalanced number of parameters,

we proposed training each part separately. We then trained the fusing part while the CNN

and MLP weights were kept fixed.

Deeply supervised CNN (Multi-task learning)

Another way of using patch statistics is that using them as additional outputs. Multi-

task learning [137] and deep supervision [138] have shown to improve the generality and

performance of CNNs. We added R, S and m as additional outputs to force the networks

learn in a way to have more generalization abilities. Values of R, S and m are highly
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Figure 7.2: Proposed architectures for different networks. MLP, CNNs, CNNs with deep
supervision and CNNs with fusion with MLP. The pre-trained networks with their number
of parameters in Million are specified.

correlated with the scatterer density, which led us to train the network to learn these features

as additional outputs. The loss function for the networks with additional outputs was defined

as a weighted summation of scatterer classification loss and parameter estimation part which

can be written as:

loss =
1

N

N∑︂
i=1

(yilog(y˜︁i) + (1− yi)log(1− y˜︁i)
+β × ((R˜︁−R)2 + (S˜︁− S)2 + (m˜︁−m)2))

(7.4)

where y is the classification labels, y˜︁ is the predicted scatterer density, R, R˜︁, S, S˜︁, m

and m˜︁are ground truth and estimated values of SNR, Skewness and Nakagami parameter,

respectively. N is the number of data in the corresponding mini-batch and β is the weight

associated to the axillary loss. The classification performance is not very sensitive to β,

which is set empirically to 0.2.

7.2.5 Training Schedule

To augment the data, random Gaussian noise, elastic deformation and random flipping in

lateral direction were employed. The networks were trained with the Adam optimizer and

the binary cross entropy was used as the loss function. Due to the fact that there were

different networks with different inputs and to have a good generalization, we adopted a
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variant of early stopping which could be considered as a form of implicit regularization [139].

For early stopping, the validation AUC was selected as the stopping criteria; when the best

validation AUC was reached during the training and remained the best after 20 epochs, we

stopped the training. The cyclic learning rate was also used in order to avoid bad local

minima [140].

Reduction of domain specific information

Batch normalization has been used widely in the classification networks. It has been found to

facilitate the training and remove covariance shift [141]. During training, batch normalization

layers compute the mean and standard deviation of the layer. The output of the layer is

normalized by computed mean and standard deviation. During the test time, the computed

mean and variance of the training data are used for normalization. The networks we employed

contain several batch normalization layers. Domain information are mostly kept in the

estimated mean and standard deviation of batch normalization layers [142]. In order to avoid

learning domain specific information, we proposed not to update the mean and standard

deviation of batch normalization layers during the training. We used pre-trained values of

the mean and standard deviation for each batch normalization layers. The effect of batch

normalization is studied in Section 7.3.3.

7.2.6 Input Channels

In [14], log compression of envelope along with the envelope have been used (log(A) and

A2 × log(A2)) for estimating statistics using the Homodyned K-distribution. Inspired by

their work, we used A× log(A) as a novel input to the proposed CNNs. We therefore used

the amplitude A and A × log(A). The effect of including A × log(A)) is studied in Section

7.3.3.

7.2.7 Evaluation Metrics

To evaluate the classification performance, we used AUC of the Receiver operating charac-

teristic curve (ROC), accuracy, sensitivity (recall), precision and also Youden’s Index [143].
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Table 7.2: Simulation Results

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index

SVM ✗ ✗ 0.892 (0.867-0.920) 0.816 0.800 0.802 0.620 (0.51)
Random Forest ✗ ✗ 0.894 (0.868-0.919) 0.816 0.806 0.806 0.620 (0.04)

MLP ✗ ✗ 0.890 (0.860-0.917) 0.850 0.786 0.806 0.610 (0.52)
MobileNet V2 ✗ ✗ 0.949 (0.929-0.964) 0.867 0.870 0.866 0.7529 (0.31)
MobileNet V2 ✓ ✗ 0.905 (0.887-0.927) 0.831 0.830 0.828 0.656 (0.50)
MobileNet V2 ✗ ✓ 0.950 (0.930-0.965) 0.847 0.885 0.866 0.755 (0.38)

Inception ✗ ✗ 0.969 (0.952-0.981) 0.988 0.823 0.886 0.825 (0.90)
Inception ✓ ✗ 0.970 (0.953-0.981) 0.906 0.913 0.908 0.837 (0.61)
Inception ✗ ✓ 0.945 (0.923-0.960) 0.914 0.857 0.878 0.766 (0.45)

ResNext50 32x4d1 ✗ ✗ 0.975 (0.957-0.984) 0.926 0.920 0.920 0.848 (0.47)
ResNext50 32x4d1 ✓ ✗ 0.918 (0.893-0.939) 0.851 0.819 0.828 0.677 (0.52)
ResNext50 32x4d1 ✗ ✓ 0.973 (0.956-0.984) 0.988 0.850 0.906 0.855 (0.73)

DenseNet121 ✗ ✗ 0.964 (0.947-0.976) 0.863 0.917 0.889 0.798 (0.16)
DenseNet121 ✓ ✗ 0.947 (0.923-0.961) 0.925 0.840 0.872 0.759 (0.59)
DenseNet121 ✗ ✓ 0.967 (0.952-0.978) 0.851 0.923 0.888 0.801 (0.45)

We estimated the 95% confidence interval of the metrics by employing boot strapping (i.e.

sampling the data with replacement, for 1000 times). Youden’s Index is a measure of both

sensitivity and specificity:

J =
TP

TP + FN
+

TN

TN + FP
− 1

= Sensitivity + Specificity − 1

(7.5)

where TP , FN , TN and FP denote true positive, false negative, true negative and false

positive, respectively. It should be noted that accuracy, sensitivity and precision are reported

for the threshold of 0.5. We calculated the Youden’s Index for different threshold values and

the highest values are compared between different models. The value of threshold which

results in highest Youden’s index can be considered as the optimal threshold value to have

highest average of sensitivity and specificity.

7.3 Results

In this section, we provide the results of the proposed models for classification of FDS

and UDS classes when analyzing different datasets. We tested three classifiers without

including any CNN (i.e. a SVM, a random forest and an MLP model). Different CNNs

were also analyzed, by exploiting the patch statistics using fusion (Fusion) and also deep

supervision (DS). All DL models were trained according to the training schedule explained
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in Section 7.2.5. The weights of the top-performing networks will be publicly available online

at code.sonography.ai.

7.3.1 Simulation Results

All proposed models were evaluated on the simulation data. Envelope and envelope mul-

tiplied by log compressed envelope are the input channels of all CNNs. Networks alone,

fused with patch statistics (section 7.2.4) and with axillary outputs (section 7.2.4) are eval-

uated. The results are shown in Table 7.2. The values inside the parenthesis in the AUC

column represent the confidence interval and the value inside parenthesis in Youden’s index

represents the threshold which results in the highest Youden’s index. As seen in Table 7.2,

CNN-based models provide better results compared to the MLP and SVM and random for-

est models which use only patch statistics. ResNext50 32x4d1 has the highest AUC (0.975)

and accuracy (0.920). Whereas DenseNet121 with deep supervision has the highest precision

(0.923). Both sensitivity and precision of CNN models are high meaning that the networks

perform very well on identifying both positive and negative classes. The most of the opti-

mum threshold of the Youden’s Index was close to 0.5 which is the threshold value used for

classification.

7.3.2 Experimental Phantom Results

The results of classifying small patches from phantom A vs. phantoms B and C are provided

in Table 7.3. The patch size in terms of number of pixels is the same as the simulation

data but it differs in terms of size in mm (4.92 mm× 4.28 mm). Due to the presence

of domain shift, machine learning methods which use only patch statistics (SVM, random

forest and MLP) have good precision but poor sensitivity. While, CNN models have high

sensitivity and moderate precision (as opposed to simulation results where both sensitivity

and precision were high). we expected that by adding patch statistics information, the

sensitivity is decreased and precision improves. The effect of domain shift can be seen in the

optimal threshold value of Youden’s index. While in simulation the optimal values are close

to 0.5, in experimental results most of them are far from 0.5.

99



Table 7.3: Experimental phantom results.

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index

SVM ✗ ✗ 0.646 (0.623-0.669) 0.235 0.873 0.733 0.350 (0.03)
Random Forest ✗ ✗ 0.895 (0.880-0.913) 0.389 0.821 0.768 0.710 (0.46)

MLP ✗ ✗ 0.887 (0.879-0.895) 0.303 0.558 0.744 0.716 (0.20)
MobileNet V2 ✗ ✗ 0.941 (0.935-0.948) 0.978 0.562 0.738 0.830 (0.98)
MobileNet V2 ✓ ✗ 0.886 (0.878-0.894) 0.446 0.754 0.767 0.707 (0.11)
MobileNet V2 ✗ ✓ 0.947 (0.940-0.953) 0.978 0.530 0.703 0.830 (0.99)

Inception ✗ ✗ 0.895 (0.886-0.901) 0.945 0.685 0.835 0.726 (0.51)
Inception ✓ ✗ 0.890 (0.883-0.897) 0.950 0.636 0.802 0.684 (0.54)
Inception ✗ ✓ 0.946 (0.939-0.952) 0.975 0.617 0.790 0.825 (0.96)

ResNext50 32x4d1 ✗ ✗ 0.872 (0.864-0.880) 0.967 0.576 0.752 0.720 (0.94)
ResNext50 32x4d1 ✓ ✗ 0.905 (0.898-0.913) 0.467 0.809 0.786 0.746 (0.17)
ResNext50 32x4d1 ✗ ✓ 0.932 (0.924-0.938) 0.977 0.544 0.720 0.783 (0.98)

DenseNet121 ✗ ✗ 0.875 (0.866-0.883) 0.875 0.688 0.770 0.701 (0.15)
DenseNet121 ✓ ✗ 0.900 (0.893-0.908) 0.872 0.770 0.869 0.789 (0.27)
DenseNet121 ✗ ✓ 0.918 (0.911-0.925) 0.871 0.768 0.870 0.776 (0.21)

Comparing the networks, MobileNet V2 has the highest sensitivity but the precision is

low. Inception has the highest average of sensitivity and precision among the CNNs that do

not exploit patch statistics. DenseNet121 achieves the highest precision (0.688) compared

to other CNNs (without supervision or fusion). Exploiting patch statistics by fusion method

increases the precision of the most of the networks (except Inception) and decreases the sen-

sitivity in some models. By adding the patch statistics using deep supervision, the precision

which is low in CNN models (0.562-0.688) was improved (0.628-0.809) with a slight decrease

of sensitivity in some cases. Networks exploiting the patch statistics by deep supervision

have higher AUCs compared to CNNs and CNNs with fusion. DenseNet + deep supervision

achieves the highest accuracy among all the evaluated models.

7.3.3 Ablation Experiment

We conducted ablation experiments [144] (note that we are not referring to the thermal

ablation treatment) on one of the networks (DenseNet121) to validate the input choice

(Section 7.2.6) and training strategy (Section 7.2.5). The results are listed in Table 7.4.

DenseNet121+BN denotes training DenseNet121 with updating batch normalization layers

(training all layers). DenseNet121-Alog(A) represents that the network input is only envelope

and the proposed input (Alog(A)) has been removed. Although precision of DenseNet121+BN
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Table 7.4: Ablation experiment on DenseNet121. DenseNet121+BN : Batch normalization
layers statistics are updated during training. DenseNet121-Alog(A) : Only envelope (A) is
used as input and Alog(A) is not employed. DenseNet121: Proposed training strategy which
batch normalization layers statistics are kept fixed during the training and Alog(A) is used
alongside the envelope as an input channel.

Simulation Experimental Phantom

Model AUC Sensitivity Precision Accuracy Youden’s Index AUC Sensitivity Precision Accuracy Youden’s Index

DenseNet121+BN 0.955 (0.935-0.969) 0.894 0.884 0.886 0.782 (0.23) 0.751 (0.738-0.762) 0.223 0.755 0.717 0.421 (0.02)
DenseNet121-Alog(A) 0.966 (0.950-0.977) 0.922 0.900 0.908 0.816 (0.57) 0.781 (0.771-0.790) 0.445 0.568 0.702 0.529 (0.02)

DenseNet121 0.964 (0.947-0.976) 0.863 0.917 0.890 0.798 (0.16) 0.875 (0.866-0.883) 0.875 0.688 0.826 0.701 (0.15)

is slightly better than the proposed method (0.755 Vs 0.688), the sensitivity is very poor

(0.223 Vs 0.875). Accuracy is also lower (0.717 Vs 0.826); therefore, it can be concluded

that freezing batch normalization statistics is beneficial. Regarding the selection of the input

channels, it can be observed that adding envelope multiplied by log compressed envelope de-

teriorates the simulation results. However, it substantially improves the experimental phan-

tom results which indicates that adding Alog(A) can reduce over-fitting on the simulation

data.

7.3.4 Visualizing Experimental Phantoms and Ablation Experi-

ment Results

Fig. 7.3 depicts some examples of the studied images using different models. We split each

image into overlapping patches (50% overlap), and feed all patches to the networks. As seen

in Fig. 7.3, CNNs perform very well in classification of patches from phantoms A and C

but they perform modestly for patches from phantom B which belongs to the class 0 (UDS).

Whereas, MLP produces low probability for all three phantoms. The main reason is that

the statistics are also system dependent. It can be observed that by using proposed training

strategy, the CNNs have less system dependency and produce better results compared to

MLP, which uses only patch statistics. Among the CNNs, the model with deep supervision

(DenseNet121+DS) has the best results on the challenging phantom B with introducing

slight error on the phantom A. DenseNet121+BN which mean and standard deviation of

batch normalization layers are trained as well as other layers, produces poor results on

phantom A that shows the benefits of using the proposed training strategy.

We should also mention that the networks estimate higher probability of FDS in the top
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and bottom regions of the phantoms. The main reason is that in these regions, the resolution

cell size is larger than that at the focal region, leading to a larger number of scatterers per

resolution cell.

Phantom APhantom BPhantom C

MLP

MobileNet
V2

Inception

ResNext50
(32x4d1)

DenseNet121

DenseNet121
+DS

DenseNet121
+BN

D
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m

)
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Figure 7.3: The results of MLP, MobileNet V2, Inception, ResNext50, DenseNet121,
DenseNet121+DS (with deep supervision) and DenseNet121+BN (with updating batch norm
coefficients) models on the experimental phantoms. The color code represents the predicted
output of the networks, from 0 (UDS) to 1 (FDS). Correct classes are 0 (UDS) for phantoms
C and B, and 1 for phantom A.

7.4 Discussion

The density of scatterers in different parts of a tissue is an important property of that tissue

which may discriminate normal and abnormal regions. Ultrasound images can be utilized to

estimate this property non-invasively. This will eventually guide invasive procedures such as

biopsy, leading to less expensive and safer diagnosis methods for different types of diseases.

In this work, we employed DL techniques to classify the scatterer density in ultrasound
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images. Based on our results, different numbers of scatterers result in different texture

patterns in the ultrasound image. We used CNNs to detect texture patterns and employ

histogram-based features (SNR, skewness, entropy and T ) to improve the performance. Re-

garding the choice of features, we only used histogram-based features since CNNs can detect

texture-based features but they need a large receptive field (as large as the entire patch) to

be able to detect histogram-based features. Further investigations may reveal effectiveness

of other features for CNNs.

The network trained on simulation data was able to classify the experimental phantom

data, despite the fact that the number of scatterers and the imaging properties are completely

different in these two datasets.

Comparing the two methods of exploiting patch statistics, deep supervised networks

have higher AUCs than the fusion method. In addition to this, deep supervision does not

need calculation of the patch statistics separately which reduce computation overhead. The

networks we employed have a large receptive field which enables them to estimate statistic

information related to the entire patch. Networks with a small receptive field are not able

to estimate these statistics as well as deeper ones.

In a fixed imaging setting, a larger number of scatterers results in a brighter ultrasound

image. However, by changing the imaging machine settings, the image intensity can vary.

Even though the average density of ultrasound images contains information about the scat-

terers concentration, it is not a reliable feature for classifying the number of scatterers, as

it can be easily altered by changing the imaging setting. We eliminated the effect of the

average intensity by normalizing each individual patch such that the intensity of all studied

patches was in the range [0,1]. It should be noted that the normalization method is not

robust for regions having saturation. Those regions should be excluded to be able to use

the proposed method correctly. We also reduced the domain related information by avoid-

ing updating statistic coefficients of batch normalization layers during the training. Using

reference phantoms to reduce the system specific effects can be an area of future works.

The effective number of scatterers per resolution cell varies by depth. Generally, at the

focal point, the resolution cell is the smallest. Therefore, there are fewer scatterers per

resolution cell at the focal point compared to other regions.
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We included the data recorded from three phantoms in this study. The density of the

scatterers is not the only parameter which differs between these phantoms. The size of the in-

cluded scatterers is also different (Table 7.1). However, considering the operating frequency,

the size of the scatterers is still smaller than the wavelength, and does not substantially

affect the results. Phantoms with different scatterer sizes and densities warrants further

investigations.

7.5 Summary

In this chapter, we proposed different CNN models to classify small patches of ultrasound

images as FDS or UDS. We proposed to use both envelope and envelope multiplied by

log compressed envelope as two separate input channels to the proposed CNNs. We also

proposed to freeze batch normalization layers during the training to avoid learning domain

specific information. We further benefited from patch statistics using fusion and axillary

outputs (deep supervision). We did not use any data from experimental phantom during

the training phase, which can degrade the results due to the domain shift. Nevertheless, we

found that CNN models result in high sensitivity but moderate precision for experimental

phantoms, due to this domain shift. The precision is improved by using statistic information

as additional inputs/outputs with a slight decrease in sensitivity. On a broad picture, these

results show the ability of our model to learn scatterer density from simulation data alone

without the need to perform transfer learning on experimental data.
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Chapter 8

Robust Scatterer Number Density

Segmentation of Ultrasound Images

8.1 Introduction

In conventional envelope-based methods, the envelope data is divided into small overlapping

windows (a strategy here we refer to as patching), and an inverse problem approach is

used to estimate the scatterer number density and other QUS parameters [14, 109]. The

size of the patch should be large enough to contain adequate independent samples. Large

patches reduce the spatial resolution and cannot identify small regions having different QUS

parameters. The size of the patch is an important hyper-parameter that the user should

optimize.

CNNs have been used rarely for QUS due to requirement of large training data and

the system specific nature of quantitative applications. Recently, a patch-based CNN was

developed by our group to classify regions in the ultrasound image according to their scatterer

number density [145]. This prior work was one of the first reports on the use of CNN

on QUS, particularly for scatterer number density classification and resulted in promising

results (AUC as high as 0.975 in tissue mimicking phantoms). However, the patch-based

nature of this work causes limitations especially when applying the method to real world

scenarios where there are regions with irregular shapes with heterogeneous composition. The

present work significantly advances QUS methods based on speckle statistics classification
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by avoiding the use of patches.

In this chapter, we segment the scatterer number density of the whole ultrasound image

using a fully convolutional neural network. A simple method is introduced to generate a large

dataset having different scatterer number density and mean scatterer amplitude shapes. The

generated dataset enables us to classify samples of ultrasound envelope data without patching

requirement. Furthermore, we uniformly sample the imaging parameters from a wide range

to make the trained network robust to change of imaging parameters. We then use the

Nakagami parameter in a multi-task manner to reduce over-fitting of the network. The idea

of the reference-based methods [96, 103, 109, 146] is also adapted for CNNs to further boost

the performance. We validate our method using simulation data, experimental phantoms

and in vivo data. Our contributions are summarized as follows:

• The scatterer number density is estimated for the whole image instead of estimating

for each individual patch. To the best of our knowledge, this is the first approach

without patching for segmentation based on scatterer number density.

• The proposed method is evaluated for a variety of different computational and physical

phantoms and in vivo breast ultrasound, imaged with different ultrasound scanners and

transducers.

• Nakagami parametric imaging is employed as multi-task learning to improve the per-

formance of network.

• The reference phantom idea of conventional methods is adopted to CNN for domain

transformation to further enhance the performance using only a small amount of phan-

tom data.

• The proposed method is compared with a previously developed reference-based method

and a patch-based CNN recently proposed by our group.

• A fast and simple ultrasound image generation is employed which enables us to gen-

erate thousands of images with diverse imaging and scatterer properties for training

our segmentation network. The generated dataset contains different scatterer number

density and mean scatterer amplitude.
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8.2 Methods

8.2.1 Background

Conventional methods to evaluate the scatterer number density

Rosado-Mendez et al. used a window around the region of the interest (here, we call it a

patch) and employed echo amplitude signal-to-noise ratio, SNR, defined in Eq 8.1, the gen-

eralize spectrum and the first order statistics of the phase information to classify ultrasound

patches into different groups of low-scatterer number density, diffuse scattering and coherent

scattering [109].

SNR =
(mean[A])√︁

V ar[A]
(8.1)

In Eq 8.1, A denotes envelope. The SNR increases with scatterer number density. If the

patch is FDS, this value would be close to 1.91 [13]. A reference phantom with high scatterer

number density was used to account for spatial variations of the resolution cell size due to

diffraction effects. A patch of ultrasound envelope data was classified as FDS if the SNR

value was close to the SNR value of the reference phantom patch from the same depth. If

the SNR value was lower than the reference one, the patch was considered as UDS and if

it was higher, it was considered as non-resolved periodicity. Here, we assumed that if the

absolute difference was lower than 3% (it was set empirically) of the reference SNR, the

region is considered as FDS. Our method is compared with this algorithm (here it is called

“Reference Method”) for experimental phantom evaluations.

Deep learning methods

In [124] , we proposed a CNN to classify scatterer number density of a small patch of

envelope data. The network was fed with envelope data and the spectrum of RF data, and

was compared with a MLP classifier, which used two statistical parameters (signal to noise

ratio and skewness) as inputs. The method achieved a segmentation accuracy of 92.2% for

simulation test data with a patch size of 1.5mm×1.5mm. However, it was limited to a single

imaging setting and was also a patch-based method that required to apply the network many

times over multiple patches to generate the scatterer number density map of the whole image.
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Furthermore, the variation of mean scatterer amplitude was not considered.

In [114], we used a U-Net to segment scatterer number density of ultrasound images. Sim-

ulation data having inclusions with different densities were generated. The results showed

that the network was able to segment the simulation test data with 1 and 10 scatterers

per resolution cell with a precision of 99.2% and 67.5% and sensitivity of 98.8% and 79.7%,

respectively, provided that there was a noticeable difference in intensity of the correspond-

ing regions. However, the change of amplitude due to mean scatterer amplitude was not

considered.

Zhang et al. [125] recently used a U-Net to estimate the pixel-wise mean scattering

intensity. They generated a dataset with random shapes and considered different values of

mean scattering intensity for each region. They assumed that all areas were FDS; hence, the

network was able to associate different values of intensity to the mean scattering intensity

of the scatterer distribution. However, the FDS assumption does not hold for many organs

and limits the generalization to FDS tissues.

In our recent work [145] (Chapter 7), we used state-of-art CNN architectures as well as

patch statistics to classify scatterer number density of patches. We simulated a training

dataset with a fixed imaging parameters using Field II [45] which is available online at

code.sonography.ai. CNNs which employed envelope echo signals outperformed machine

learning methods such as SVM, Random Forest and MLP which only used patch statistics.

Fusion and multi-task learning (MTL) were also utilized to combine the information of the

statistics and textures. MTL was shown to be an appropirate choice for unseen experimental

phantom data. This method is used for comparison and is labeled as “Patch-based CNN”.

8.2.2 Datasets and Data Generation

Data Generation

A large and diverse dataset is required to train a fully convolutional neural network. In fact,

one of the reasons that patch based methods for scatterer classification were developed was

to reduce data requirements of CNNs.

In this section, a simple but effective data generation scheme is introduced. Ultrasound
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simulation tools such as Field II [45] can be used to generate ultrasound simulation data.

These methods are computationally expensive but have been used to generate medium size

datasets such as the dataset proposed in [145]. Field II takes several minutes on a typical

machine to generate an image. A common trend to generate medium size datasets is to use

clusters but it is still infeasible to generate very large datasets (more than 10,000 images).

We employ a simple method to generate a large number of images in a short amount

of time. This data generation method shares some similarities with the method used in

[125], in that it considers variations in mean scatterer intensity. The main difference of the

method proposed here is that it also considers variations in scatterer number density. This

makes the data set more realistic and suitable for scatterer number density segmentation. It

should be mentioned that unlike Field II simulations, which are scatterer-based and defined

in arbitrary coordinates, the approach here (and in [125]) is grid-based, where each discrete

grid position is assigned scattering properties.

Assuming weak scattering (using the first order Born approximation), the interaction of

scatterers with ultrasound waves can be modeled by a 2D linear time varying convolution

[46, 147, 148].

r[a, l] = g[a, l] ∗ h[a, l] + η[a, l] (8.2)

where g[a, l] is the scatterer echogenicity map, h[a, l] is the spatially varying Point Spread

Function (PSF) at axial and lateral positions a, l, and η indicates additive white Gaussian

noise. The scatterer echogenicity in a specified location is a Gaussian random variable

sampled from a Bernoulli distribution which can be written as [125]:

g(a, l) = K(a, l)× A(a, l) (8.3)

where K(a, l) denotes a sample at the axial and lateral location a and l, respectively, from

a Bernoulli distribution with value of 1 with the probability of p (probability of presence of

a scatterer) and 0 with the probability of 1 − p. A denotes the amplitude of the scatterers

and it is sampled from N(µs, σ
2) where N denotes normal distribution with variance of σ2

and mean of µs which corresponds to the mean scatterer amplitude.

Equation 8.3 can be used for a phantom having fixed values of mean scatterer amplitude
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(µs) and scatterer number density. In order to incorporate different shapes of scatterer

number densities and mean scattering intensity, we define a scatterer number density binary

mask (SC) and a mean scatterer amplitude binary mask (MS) to control K(a, l) and µs as

the following:

K(a, l) =

⎧⎨⎩K1(a, l) SC = 0

K2(a, l) SC = 1

⎫⎬⎭
µs(a, l) =

⎧⎨⎩µs1(a, l) MS = 0

µs2(a, l) MS = 1

⎫⎬⎭
(8.4)

where K1(a, l) and K2(a, l) are the Bernoulli distributions associated to the different val-

ues of scatterer number density binary mask. µs1(a, l) and µs2(a, l) are different values of

mean scatterer amplitude assigned to the different values of mean scatterer amplitude mask.

Inserting Eq 8.4 into Eq 8.3 leads to:

g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︁
a

∑︁
l K1(a, l)× A(a, l) SC = 0,MS = 0∑︁

a

∑︁
l K1(a, l)× A(a, l) SC = 0,MS = 1∑︁

a

∑︁
l K2(a, l)× A(a, l) SC = 1,MS = 0∑︁

a

∑︁
l K2(a, l)× A(a, l) SC = 1,MS = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.5)

The Eq 8.5 can be extended to more than 4 states by using non-binary SC and MS masks.

We consider the simplifying assumption that PSF (h[a, l]) is constant throughout the

image. Therefore, the time varying convolution is converted to a time invariant one. The

PSF can be modelled by a 2D Gaussian function modulated by a cosine function in axial

direction [147, 148].

h[a, l] = e
− 1

2
( a2

σa2+
l2

σl
2 ) × cos(2πfca) (8.6)

where fc, σa
2 and σl

2 denote the center frequency, axial and lateral width of the Gaussian

profile of the PSF, respectively.

We generated 7000 random binary shapes and assigned different scatterer number den-

sities and mean scatterer amplitude to each region. The imaging parameters σs, σl, fc and

speed of sound (v) are also sampled from a uniform distribution. The imaging parameters

and their ranges are specified in Table 8.1. We generated 15000 images for training and

validation using 6500 random binary masks, and an additional 500 test images using 500
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Figure 8.1: Four examples of the generated dataset. Scatterer number density mask (A),
mean scatterer amplitude mask (µs) (B) and obtained B-mode image (C).

binary masks. The test binary masks are not used in training data generation to avoid data

leakage. Some examples of the generated dataset are illustrated in Fig. 8.1. It can be seen

from the figure that the intensity of the output image largely depends on both scatterer

number density and mean scatterer amplitude; therefore, both of them must be taken into

account when dealing with ultrasound images.

In [125], the ultrasound images were assumed to be FDS; therefore, they associated the

intensity to the mean scatterer amplitude. In contrast to our recent work [114], it was

assumed that all ultrasound images had the same mean scatterer amplitude; therefore, the

images could be segmented by considering the intensity. In contrast to the previous works,

the present method considers that both mean scatterer amplitude and scatterer number

density can vary independently. Figure 8.2 part 1 depicts the training data generation step.

The test set of this dataset will be available online after acceptance of this manuscript at

code.sonography.ai similar to our previous works [55, 145].

Experimental Phantoms

Three homogeneous phantoms, A, B and C are employed for the evaluation (they were also

employed in Chapter 7). They had a size of 15cm× 5cm× 15cm, made from a mixture of
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Table 8.1: Parameters of image generation and their ranges.

Parameter Range

Scatterer Number Density (UDS) 1-2
Scatterer Number Density (FDS) 11-16
Mean Scatterer Amplitude (µs) 0.3-1.3

Standard Deviation of Scattering Amplitude (σs) 0.03 (fixed)
Center Frequency (fc) 4 - 7 MHz

Sampling Frequency (fs) 60 - 100 MHz
Speed of Sound (v) 1510 - 1560 m/s

F Number 1.5 - 2.5
Number of Excitation Pulses [3-5]

Standard Deviation of PSF in axial (σa) 0.1 - 0.3 mm
Standard Deviation of PSF in lateral (σl) 0.13 - 0.4 mm
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Figure 8.2: Overview of the framework used in this chapter.

agarose gel media and glass beads as scattering agents. For more information about these

phantoms refer to [131]. An Acuson S2000 scanner (Siemens Medical Solutions, Malvern,

PA) with an 18L6 transducer having the center frequency of 8.89 MHz was used to image

the phantoms and RF data was acquired using Axius Direct Ultrasound Research Interface

[132]. We used the correlation method to compute the resolution cell size [130]. The axial

and lateral correlation cell size were 0.26 mm and 0.49 mm at the focal point, respectively.
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Phantom with Inclusions (Phantom D)

This phantom was imaged by a Verasonics Vantage 128 system (Verasonics, Kirkland, WA)

using a L11-5v transducer operated at 8 MHz. This phantom has three inclusions with

different echogenicities and scatterer densities [146]. We computed the resolution cell size

using correlation method [130], which was 0.149 mm and 0.237 mm at the focal point in the

axial and lateral direction, respectively.

CIRS phantom (Phantom E)

A multi-purpose, multi-tissue CIRS phantom (model 040GSE, Norfolk, VA) was also used in

evaluating the performance of the proposed method. It contains inclusions with no scatterers

and different scatterer number densities. Data was collected with an E-CUBE 12 Alpinion

machine using L3-12H transducer. The center and sample frequencies were 8.5 MHz and 40

MHz, respectively.

The background has high scatterer number density (FDS) and there are inclusions with

different scatterer number densities. We selected this phantom to evaluate the proposed

method for the cases where the scatterer number density was between the lowest (no scat-

terer) and the highest (FDS).

The phantom was also imaged using Verasonics Vantage 256 system (Verasonics, Kirk-

land, WA) using a L11-5v transducer. No reference phantom is available for this phantom;

therefore, the proposed method is only compared with the patch-based CNN.

In vivo data

We used breast ultrasound images recorded by a Siemens Sonoline Elegra System (Issaquah,

WA) with the sampling frequency of 36 MHz, center frequency of 7.5 MHz and a lateral

beam spacing of 200 µm. I-Q echo data were recorded in a file on the imaging system when

data acquisition was stopped (frozen on the imaging system). The IQ data were converted to

RF echo data offline using the known demodulation frequency of the imaging system. More

information about this dataset and the recording procedure is provided in [149].
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8.2.3 Nakagami Parametric image

The Nakagami distribution is a flexible tool to model different scatterer patterns based on

envelope amplitudes. It can be defined as [15]:

f(A,m,Ω) =
2mm

Γ(m)Ωm
A(2m−1) × e−

m
Ω
A2

(8.7)

where A denotes the envelope amplitude, m represents the shape parameter, Ω is the scale

parameter and Γ denotes the Gamma function. m is found to be correlated with scatterer

number density, values close to 1 reflect high scatterer number density, and low values

represent low scatterer number density. m can be estimated by the maximum likelihood

method [15, 131]. The Nakagami parameter is also machine dependent meaning that machine

settings can change the value of m for the same tissue [4].

In order to obtain the parametric image of m, patches of envelope data with overlaps are

extracted and the m parameter is estimated using maximum likelihood estimator [109, 111].

The patches must be large enough to provide statistically reliable estimates of m. But very

large patches reduce the spatial resolution of the Nakagami parametric image and might

result in loss of information especially for small targets. We ensured that the window for

estimation of the Nakagami parameter is at least 8 times larger than the resolution cell size.

Some examples of the obtained parametric images are shown in Fig. 8.3, which shows that

the Nakagami parameter is mostly sensitive to the c6hanges of scatterer number density,

whereas brightness changes in the envelop images have little effects on Nakagami parameter.

We used Nakagami parametric images in two different fashions; as the input of the network

and as an auxiliary output for multi-task learning [137].

8.2.4 Network Architecture and Training

Semantic segmentation networks are able to segment more than 200 different classes within an

image. Among different networks, the Pyramid attention network (PAN) [150] has shown its

superior performance over other well-known networks such as PSPNet [151] and DeepLabv2

[47]. We used this network for our segmentation task. The network is composed of three

main blocks.
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Figure 8.3: Four examples of the generated dataset. Scatterer number density mask (A),
mean scatterer amplitude mask (µs) (B) and obtained Nakagami parametric image m (C).
The mean amplitude values in these 4 samples are either 0.9 or 1.1.

1) Feature extractor: this module is employed to extract features from raw input images.

ResNet50 [152] is utilized for the feature extraction. To avoid loss of information, features

from different levels of ResNet50 are used to keep both spatial and semantic information.

2) Feature pyramid attention (FPA): This module is an attention module and it is used

to have a precise pixel-level attention for high level features [151].

3) Global attention upsample (GAU): This module provides channel-wise attention mech-

anism to emphasize more important channels of low-level features using high-level features.

This network was employed to obtain scatterer number density segmentation with 1/4 of

the original input resolution. It should be noted that the aim of this chapter is to investigate

the performance of a state of the art CNN in scatterer number density segmentation, and

not to compare different networks for this task.

The loss function for the segmentation task is the summation of binary cross entropy and

the Dice loss. For the MTL network (with auxilary output), the loss is added by smooth L1
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loss of the Nakagami parametric image. The loss for this network can be written as:

loss = BCE(ˆ︂Ds,Dsgt) +Dice(ˆ︂Ds,Dsgt)

+β|ˆ︁m−mgt|1,
(8.8)

where BCE, Dice and |.|1 denote binary cross entropy, Dice loss and smooth L1 norm,

respectively. ˆ︂Ds, Dsgt, ˆ︁m and mgt represent predicted, ground truth scatterer number

density and predicted and ground truth Nakagami parametric image, respectively. β is the

weight associated to the auxiliary loss (MTL) of the estimated Nakagami parametric image

which is set to 0.1 to have lower weight than the main task. The auxiliary loss can be viewed

as a regularizer that avoids over-fitting to the training data. The auxiliary task should be

related to the main task; therefore, we selected the Nakagami parameter since it is highly

correlated with the scatterer number density.

The networks were trained using the Adam optimizer for 20 epochs and the weights with

the best validation results were used for evaluation. The learning rate was set to 1e-5 for

the first 10 epochs and then reduced to 1e-6 for the last 10 epochs. It should be noted that

we used feature extraction block pre-trained on ImageNet to speed up the training. The top

performing network weights will be available online after acceptance of the manuscript at

code.sonography.ai.

8.2.5 Batch Normalization and Adaptive Batch Normalization

Batch normalization (BN) has been found to be very useful in deep learning networks. It

can speed up the training and remove covariance shift [153]. Having the input of the BN

layer X ∈ Rn×c×h×w, where n is the number of data in a mini-batch, c, h and w denote

the number of channels, feature height and width, respectively. The BN layer performs the

following operation on X: ˆ︁xj =
xj − E[Xj]√︁

V ar[Xj]
,

yj = γjˆ︁xj + βj,

(8.9)
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Figure 8.4: Four examples of the generated dataset with different imaging parameters. B-
mode images (A), mean scatterer amplitude mask (µs) (B), scatterer number density mask
(C) and the output of Baseline (D).

where j is index of channel, xj and yj denote input/output of the BN layer for channel j of

one data sample. γj and βj are learnable parameters that are optimized during the training.

The mean (E[Xj]) and variance (V ar[Xj]) of the mini-batch are computed in the training.

During the test time, the computed coefficients in the training are used for normalization. By

applying Eq 8.9, the distribution of all mini-batches remains the same. Considering a binary

classification problem, if the size of mini-batch is too small that data belonging to only one

class appears inside the mini batch, the obtained statistics would be biased toward that class

which degrades performance. To mitigate this problem, other normalization techniques such

as Group Normalization has been proposed for small mini-batch sizes [154].

Another aspect of BN is its impact on domain shift. The weights of the networks mostly

preserve information about the classes, whereas, the BN coefficients contain information

about the domain of the training data [142]. Motivated by this, the adaptive batch nor-

malization (AdaBN) has been proposed for domain adaptation. The basic idea of AdaBN

is that the coefficients of BN obtained during training are not suitable for the test data if
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Table 8.2: The mean and standard deviation of the simulation results of scatterer number
density segmentation. Baseline-nm, Baseline-ni and Baseline are from PAN network.

IOU Accuracy Sensitivity Precision
top 100% top 10% top 5% top 100% top 10% top 5% top 100% top 10% top 5% top 100% top 10% top 5%

U-Net 0.950±0.038 0.786±0.068 0.711±0.076 0.973±0.023 0.858±0.050 0.796±0.060 0.973±0.020 0.823±0.042 0.742±0.050 0.976±0.031 0.905±0.058 0.878±0.066

Baseline-nm 0.976±0.023 0.922±0.037 0.898±0.040 0.989±0.015 0.958±0.032 0.938±0.035 0.987±0.019 0.945±0.037 0.922±0.041 0.988±0.012 0.959±0.017 0.948±0.017

Baseline-ni 0.967±0.041 0.875±0.080 0.829±0.092 0.984±0.022 0.931±0.044 0.898±0.048 0.986±0.028 0.932±0.070 0.895±0.090 0.980±0.031 0.918±0.060 0.890±0.071

Baseline 0.981±0.017 0.941±0.023 0.925±0.023 0.991±0.008 0.972±0.015 0.962±0.015 0.990±0.012 0.963±0.022 0.948±0.024 0.990±0.011 0.966±0.016 0.955±0.017

there is a domain shift.

In AdaBN, the coefficients of the BN layers are updated using data belonging to the test

domain [142]. The main difference between AdaBN and transfer learning (fine-tuning) is that

the weights of the network are not altered; therefore, only a small amount of data belonging

to the test domain is required to update the BN coefficient. We call this data “reference set”

since it acts very similar to the reference phantoms used in QUS. The reference set must

have a balanced amount of data from each class to avoid a biased mean and variance. The

reference set can be as small as two frames of data for binary classification task. In fact,

for domain transformation only parameters of Eq 8.9 are required to be learned. In our

experiment, two frames from phantom A (class 1) and phantom B (class 0) were employed.

This method of domain transformation requires very small amount of data and does not

leads to over-fitting since only a few parameters are learned by back propagation. AdaBN is

well-suited for our task since the effect of imaging parameters can be reduced using domain

transformation techniques. It can be used to transfer the baseline to any machine setting by

only small amount of data.

8.3 Results

8.3.1 Simulation Results

Ultrasound grid-based simulation

The test set of simulation data contains 500 test images obtained by the method explained in

section 8.2.2. Intersection over union (IOU), accuracy, sensitivity and precision are employed

to evaluate scatterer number density segmentation performance. Dice similarity score is

118



Table 8.3: The summary of the networks employed in this chapter. The parameters A,
Alog(A) and m denote envelope, envelope multiplied by log compressed envelope and Nak-
agami parametric image, respectively.

Name Input Multi-task Training data

Baseline-nm A and Alog(A) No Grid-based Simulation
Baseline-ni A, Alog(A) and m No Grid-based Simulation
Baseline A and Alog(A) yes (m) Grid-based Simulation

Baseline-AdaBN A and Alog(A) yes (m)
Grid-based simulation +

updating BN layers using experimental data

excluded since it is highly correlated with IOU. All metrics are reported for the whole test

set, 10% and 5% of the test set having the worst results. The results are given in Table

8.2. The U-Net architecture is the same as [155]. “Baseline-nm” denotes the network (PAN)

having A (envelope) and Alog(A) (envelope × log compressed envelope) as input channels.

“Baseline-ni” denotes the same network having Nakagami parametric image as well as A

and Alog(A) as input channels. “Baseline” is the proposed network with A and Alog(A)

as inputs but having Nakagami parametric image as an auxiliary output. A summary of

different methods is presented in Table 8.3.

According to Table 8.2, PAN performs better than U-Net which is expected due to use

of different attention mechanism. Adding Nakagami parametric image as an input channel

(Baseline-ni) deteriorates the performance (compared with Baseline-nm); however, adding

Nakagami parametric images as an auxiliary output (Baseline) improves the performance in

all metrics. The lower performance of the network having Nakagami parametric image as an

additional input is ascociated to the fact that the texture of Nakagami parametric image does

not have valuable information about the scatterer number density, while, its value matters

for prediction of scatterer number density. This result also agrees with our recent work [145]

where we found that MTL performs better than adding the statistics as additional inputs.

Some examples of predicted segmentation results by Baseline are depicted in Fig. 8.4. It can

be seen that the network can segment the scatterer number density well even in presence of

different values of mean scatterer amplitude which results in different intensities. It should

be noted that in simulation results, there is no domain shift which leads to high performance

in all compared methods. Figure 8.2 part 2 depicts the simulation training and test step.
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Figure 8.5: The mean and the 95% confidence interval range of the output of the network
for the scatterer number density in the range 1 to 14.

The Network prediction for different values of scatterer number density

The training data only contained scatterer number densities of 1 to 2 scatterers per resolution

cell for UDS and 11 to 16 for FDS. To investigate the performance of the algorithm when

used on data with scatterer number densities from 1 to 14 scatterers per resolution cell, 10

phantoms were simulated with {1, 2, .., 14}, scatterers per resolution cell. Figure 6 shows

the mean value and the 95% confidence interval (as the shading) of the probability of FDS

produced by the network. It is clear that when the scatterer number density is close to 1 or 10,

the confidence interval (the shaded area) is small while, for scatterer number densities in the

range of 4-7, the confidence intervals are wider. The training data could have higher values

of scatterer number density for UDS class. For instance, the UDS class could contain values

of 4-6 scatterers per resolution cell. This would result in the reduction of the probability of

FDS of the network for those values. However, we simulated the training data which contains

the very low scatterer number density for UDS. In this way, the value provides some insights

about how far the scatterer number density is from FDS.

Field II simulation

A numerical phantom is simulated using Field II simulation toolbox [45]. The transmit

focus is at 15 mm, the F number is 2.12 and other imaging parameters are the same as

[145]. The proposed method is compared with the patch-based CNN trained on the Field
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Figure 8.6: The Field II simulation results. B-mode image (A), the segmentation results of
the patch-based CNN (B) and our segmentation method (C).

II dataset with the same imaging parameters. In contrast, the proposed method is only

trained on the proposed fast simulation method. The aim of this evaluation is to investigate

the performance of the segmentation network trained on the simplified fast US simulation

on data obtained by the Field II toolbox. The phantom has an inclusion with 2 scatterers

per resolution cell and the background having 11 scatterers per resolution cell. The results

are illustrated in Fig. 8.6. The patch-based method cannot clearly identify the boundary

of the inclusion, while our proposed method clearly detects the inclusion. Another point is

that the patch-based CNN miss-classifies some of the patches outside of the boundary of the

inclusion while, the proposed method obtains consistent segmentation of the phantom.

8.3.2 Phantom Results

The networks with MTL output (Baseline) and without it (Baseline-nm) are employed for

the evaluation. The Baseline is also adapted to the new domain using AdaBN technique

(Section 8.2.5) to evaluate the performance when BN layers are updated by the new domain

(Baseline+AdaBN). Figure 8.2 part 3 illustrates the general framework used for experimental

phantoms. We also used the recent reference phantom method [109] and the patch-based

CNN [145] for comparison (Section 8.2.1).

Homogeneous Phantoms Results

Baseline, Baseline-nm, Baseline+AdaBN, patch-based CNN (DenseNet + deep supervision)

and the reference methods are compared for Phantoms A, B and C. AUC, Accuracy and F1
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Figure 8.7: Homogeneous phantom results. The color code represents the predicted output
of the networks, from 0 (UDS) to 1 (FDS). Correct classes are 0 (UDS) for phantoms C and
B, and 1 for phantom A. Using Nakagami parametric image as an axillary output (Baseline)
substantially improves the accuracy compared to the network without MTL (Baseline-nm).

(2precision×sensitivity
precision+sensitivity

) [156] are used as the quantitative metrics and given in Table 8.4. The

average of the results over 8 frames are shown in Fig. 8.7. Adding the Nakagami parametric

image (MTL) improves the results (compare Baseline and Baseline-nm) which demonstrates

that MTL helps networks to be more robust to domain shift. It can be seen that the

network trained only on the generated dataset performs well on this dataset without having

any domain-specific information which demonstrates the strength of the proposed method.

However, the network detected that the bottom of the phantom B to have relatively high

probability of FDS.

The reference phantom used for this evaluation has the same scatterer number density

as the phantom A (high). The imaging setting is also the same. The reference phantom

method can discriminate well phantoms C and B. Also, it performs acceptable on phantom

A. It should be mentioned that this method requires patching and each patch needs to be
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Table 8.4: Homogeneous phantom results

AUC Accuracy F1

Reference Method 0.987 0.912 0.848
Patch-based CNN 0.780 0.740 0.678

Baseline-nm 0.974 0.797 0.766
Baseline 1.00 0.957 0.934

Baseline+AdaBN 1.00 0.999 0.998

compared with reference phantom patch from the same depth to consider its variations.

Our network with adaBN (Baseline+AdaBN) performs better than Baseline especially for

phantom B. Furthermore, it outperforms the reference method on phantom A. It should be

noted that two frames of phantom A and B are utilized for updating the BN layer statistics

and weights of network are kept fixed. The BN impact can be observed by comparing the

Baseline and Basline+AdaBN. The only difference between these two networks is that in the

latter BN statistics are updated by the test domain.

The reference method requires a reference phantom imaged by the same ultrasound ma-

chine which may be not available. However, the patch-based CNN and our proposed network

trained on generated dataset (Baseline) performs well without any information about the

test domain. Comparing the proposed method and the patch-based CNN, Baseline performs

substantially better than the patch-based CNN especially on the phantom B which is more

challenging than phantom C and A. This demonstrates that the proposed method is more

robust to the change of domains compared to the patch-based CNN due to the fact that the

network is trained using the training dataset with diverse imaging parameters.

Phantom D Results

The B-mode image of the phantom with inclusions is shown in Fig. 8.8 (a). This phantom

contains three inclusions which are specified in the figure. The scattering agent of inclusions

and the background are the same (mean scatterer amplitude is fixed); therefore, the intensity

can be associated to the density of scatterers. We know a priori that the background is FDS.

The inclusions 2 and 3 have higher intensity which means that the have higher scatterer

number density than background; therefore, they are also FDS. The inclusion 1 has lower
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Figure 8.8: The phantom D results. B-mode image (a), SNR (mean) of reference phantoms
(b), SNR parametric image (c), reference phantom method (d), patch-based CNN (e) and
the proposed method (Baseline) (f). Inclusions are specified in the B-mode image. Inclusion
1 belongs to UDS class and other parts belong to FDS class. The inclusions are numbered
from the lowest to the highest scatterer number density.

density and it is UDS. For the reference method, we use other part of the phantom without

inclusion having high scatterer number density imaged by the same machine as the reference

phantom. The SNR parametric image of reference phantom is obtained by averaging the

SNR parametric image of 10 frames. The SNR of the reference phantom is illustrated in Fig.

8.8 (b). We also obtained the average SNR of 12 frames of the phantom D which are depicted

in Fig. 8.8 (c). The SNR value of the reference phantom is 1.725±0.225 which is expected

for phantoms with high scatterer number density. However, SNR of phantom D is as low as

1 in some regions. The main reason is that SNR on the borders of the regions with different

scatterer number densities, is not valid and reliable since on the borders of the inclusions the

patch contains two different distribution and the calculated value is not reliable anymore.

Therefore, patch-based methods usually fail in these regions. The output of the reference

phantom method is shown in Fig. 8.8 (d). As anticipated, most of the background are
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correctly predicted as FDS. While, the inclusions 2 and 3 borders are incorrectly classified as

UDS. It should be noted that the drop of the predicted scatterer number density between the

inclusions 2 and 3 is an artifact. It can be caused by side lobes, off-axis scattering and having

limited number of samples between the two inclusion. It is worth mentioning that in the

grid-based simulation, the echogenicity is directly determined by the tissue scattering (mean

scattering and the scatterer number density). Therefore, artifacts such as refraction effects

caused by rounded boundaries and shadowing and enhancement caused by attenuation could

provide unreliable classifications.

The Baseline method which is trained on simulation data, is employed for obtaining the

predicted scatterer number density mask. The output segmentation mask of the proposed

method average and standard deviation across 12 frames are shown in Fig. 8.8 (e) and (f).

The patch-based methods correctly shows that the inclusion 3 has higher scatterer number

density than the other regions. However, it fails to detect the lower scatterer number density

of inclusion 1. Our proposed network correctly classifies the background and inclusions

2 and 3. Inclusion 1 can be also well discriminated from the other two inclusions. It

should be mentioned that no reference phantoms have been employed for the proposed

method. Without any reference phantom requirement, the proposed method outperforms

the conventional reference phantom method which shows the potential of CNNs in QUS

analysis.

8.3.3 Phantom E Results

The average of the results over 25 frames are shown in Fig. 8.9. As shown in the B-mode

image, there are 4 inclusions. The first inclusion is anechoic, while the other inclusions have

fewer scatterer number density compared to the background. The inclusions are numbered

from the lowest scatterer number density to the highest. The patch-based CNN can detect

the approximate location of inclusions 1, 2 and 3. However, the boundaries of them are

not accurately identified due to the finite size of the patch. The proposed method provides

substantially higher quality scatterer number density segmentation compared to the patch-

based CNN.

It should be mentioned that the network is also able to discriminate the inclusions 1 and
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Figure 8.9: Scatterer-density segmentation of the CIRS phantoms scanned with the Alpinion
system. (A) B-mode image, (B) segmentation result using the patch-based CNN [145], and
(C) segmentation using the patch-less CNN (Baseline). Inclusions are numbered from the
lowest to the highest scatterer number density. The color bar indicates probability of FDS.

2 in Fig. 8.9. The average of the network’s output for the inclusion 1 and 2 are 0.441 and

0.577, respectively, which indicates that the network gives higher probability of FDS for the

inclusion that has the higher scatterer number density. This can be employed to characterize

the US images having scatterer number densities between 0-10 within the resolution cell.

8.3.4 In vivo Results

The patch-less CNN segmentation was tested on echo signals acquired from two breast

fibroadenomas. Reference phantoms with known scatterer number density imaged using the

same machine setting are not available for this dataset. According to [3], the Nakagami m

parameter, which is highly correlated with scatterer number density, of fibroadenomas tends

to be lower than values in normal breast tissues, which have high scatterer number density

close to FDS limit (here, we only considered fat regions and other regions such as ductal

cells are excluded from our study). Therefore, the network should be able to discriminate

fibroadenomas and normal breast tissue. The results are presented in Figs. 8.10 and 8.11.

The network classifies normal breast tissue as FDS; while, the regions of the fibroadenomas

are segmented as UDS. The patch-based CNN method was also used in this data but it

failed at detecting the lesion from the background. It should be noted that knowing the

exact ground truth scatterer number density of the in vivo data requires acoustic microscopy

image analysis which is out of scope of this work.
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Figure 8.10: Scatterer-density segmentation of in vivo breast fibroadenoma (1). B-mode
image (left) and the segmentation results of the proposed method overlaid on the B-mode
image (right). The green mask denotes predicted FDS regions. The fibroadenoma tumor is
specified on the B-mode image.
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Figure 8.11: Scatterer-density segmentation of in vivo breast fibroadenoma (2). B-mode
image (left) and the segmentation results of the proposed method overlaid on the B-mode
image (right). The green mask denotes predicted FDS regions. The fibroadenoma tumor is
specified on the B-mode image.

8.4 Discussion

Segmentation of the density of scatterers is very important for estimation of other QUS

parameters since different considerations must be taken for areas with low scatterer number

density [145]. In this chapter, the scatterer number density of US images are segmented.

The mean scatterer amplitude and scatterer number density both contribute to the intensity

of envelope data. Therefore, intensity cannot be used as a reliable feature and both must be

taken into account during the training.

In this chapter, we generated a very large dataset having varied mean scatterer amplitude

and scatterer number density. To the best of our knowledge, this is the first time such a

large dataset is generated which considers that both mean scatterer amplitude and scatterer
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number density are varied. The generated dataset can be used to train different networks.

The imaging settings are also varied and randomly sampled from uniform distributions to

increase the generalization of the dataset and improve the robustness of the network when

images are obtained from different machine settings. Generating such a large dataset (15000

images) is computationally prohibitive with ultrasound simulation toolboxes such as Field

II. Therefore, a grid-based method was employed to generate such a large dataset within

manageable times. Field II takes 50 minutes to simulate a phantom (with imaging settings

of [145]), whereas our simplified grid-based method only takes 1 second to simulate the same

phantom.

The performance of the network without having any information about the test domain

was investigated. The Nakagami parametric image was employed as an additional output

to reduce the system dependency. The network trained by the generated dataset was able

to correctly classify the homogeneous phantoms and segment the phantom with inclusions

without any information about the test domain.

The statistical parameters used in quantifying scatterer number density are system de-

pendent. Reference phantoms have been utilized to reduce the effects of machine settings.

We investigated how to use a few frames of test domain to update the network. We showed

that updating BN layers statistics is enough to adapt the network to the new domain. The

statistics of BN layers was updated using a reference set which is a mini-batch composed

of data belonging to both classes. Unlike transfer learning, this method only needs a few

frames of both classes which facilitates the utilization of reference phantoms for CNNs. The

network adopted by the reference set (Baseline+AdaBN) performs better than the network

trained on generated dataset especially for the phantom B.

Considering phantom D, We evaluated the reference phantom method using SNR of a

reference phantom averaged across 10 frames as well as a recent patch-based CNN. The previ-

ously proposed reference phantom method was able to correctly classify most of background

regions. However, the inclusions especially on the borders were not classified correctly. Also,

the patch-based CNN was able to detect inclusion 3 but fails on the other inclusions. Also,

it did not predict the background as FDS with a high confidence (the average of the output

of the network for background region was around 0.5). The reason was that the network was
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trained on fixed imaging settings. The proposed method correctly segmented this phantom

without using any patching. Our results confirmed that the proposed segmentation method

was more robust than the patch-based CNN since it was trained on a large dataset comprised

of diverse imaging settings, scatterer number densities and mean scattering amplitudes.

The recent patch-based CNN [145] is also employed for evaluation. The AUC of this

method for homogeneous phantom results (0.78) was lower than the value obtained in [145].

The reason is that in [145], the results are reported for single frame while, in this chapter

the average of the results over multiple frames are reported. The drop of performance of

patch-based method can also be observed in Fig. 8.6 due to the beam divergence in the

bottom of the simulated phantom.

This work demonstrates the potential of using CNNs for QUS. The goal of the chapter

is not evaluating different available segmentation networks for scatterer number density

segmentation but to provide a general framework to segment scatterer number density using

CNNs. Other segmentation networks can also be employed for this task. To the best of our

knowledge, this is the first work that segments the scatterer number density of the whole

image without patching.

The proposed method has various limitations. First, the simulation approach used to

generate the training dataset assumed a homogeneous point spread function within each

image. However, different PSF sizes were used in generating different images in the training

set. In practice, the PSF changes with depth, resulting in a variation of the effective number

of scatterers inside the resolution cell. Despite this limitation, the simplified model shows

promising results in Field II simulations and experimental phantoms where the PSF changes

because the task here is the segmentation based on FDS and UDS, and not estimating the

scatterer number density per resolution cell.

8.5 Summary

In this chapter, the scatterer number density of ultrasound images was segmented using

CNN without any patching. To be able to train the network, a large and diverse dataset was

required hence different shapes of mean scatterer amplitude and scatterer number density was
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considered to generate this dataset. We also investigated how to use statistical parametric

images such as the Nakagami parametric image to improve the performance in presence of

domain shift. In addition to this, inspired by reference methods used in QUS algorithms, we

proposed to use a reference set composed of a few frames from both classes. This reference

set was utilized to update the statistics of BN layers. We showed that updating the BN

layers is adequate and there is no need to update the network weights (fine-tuning) which

substantially reduces the amount of data required for domain adaptation. The method was

tested on five experimental phantoms and two in vivo data imaged by different US scanners.

The network was only trained on simulations using the grid approach. Despite this limitation,

our method was able to segment the scatterer number density of different simulated data,

experimental phantoms and in vivo data.
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Chapter 9

A deep learning approach for

patchless estimation of ultrasound

quantitative parametric image with

uncertainty measurement

9.1 Introduction

The HK-distribution parametric images are formed by dividing the envelope data into small

overlapping patches and estimating parameters within the patches independently. Estimat-

ing the parametric images is challenging and the parametric images are often noisy but still

have been found useful in clinical applications to detect different abnormalities [111]. The

main challenge in estimating the HK-distribution parametric images is the small size of the

patches. Increasing the size of the patches might not be helpful since the spatial resolution

will be lost and the heterogeneity inside the patch is increased (due to heterogeneity of tissue

types or spatially variant nature of point spread function). Correlated samples also should be

skipped since they introduce bias to the estimation of HK-distribution parameters. There-

fore, a large number of samples inside each patch should be ignored to reduce the correlation

between the samples which further reduces the number of samples.
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In this chapter, an ultrasound simulation method is employed to generate the training

data. Unlike sampling from HK-distribution, this method of simulation data generation

contains correlated samples which is a more realistic method and closer to the real ultra-

sound data [157]. In addition to this, multiple frames from experimental phantom data are

employed to obtain a more accurate parametric images and quantify the uncertainty map of

the network. The uncertainty map would enable the clinicians to find out how reliable the

estimations are in each region.

9.2 Materials and Methods

9.2.1 HK-distribution

The HK-distribution can be formulated as [14]:

PHK(A|ε, σ2, α) = A

∫︂ ∞

0

uJ0(uϵ)J0(uA)(1 +
u2σ2

2
)−αdu (9.1)

where A denotes the envelope of the backscattered echo ultrasound data, u is the variable

of integral that needs to be integrated from zero to infinity, J0(.) is the zero-order Bessel

function, and α is the scatterer clustering parameter which reflects to the scatterer number

density. The parameter α and the ratio of coherent signal power (ϵ2) to the diffuse one (2σ2α)

denoted as k have been employed as the parameters of HK-distribution to characterize the

tissues.

9.2.2 Data Generation

A diverse dataset with known scatterer number density is required to train the network.

We followed the fast grid-based method of Chapter 8 [157] with the difference that here the

scatterer number density can be any value in the range of 1-20. Assuming weak scattering,

the ultrasound RF data can be obtained by the 2D convolution of point spread function

(PSF) and the tissue reflectivity function (TRF) [139, 157].

s(a,l) = TRF(a,l) ∗ h(a,l) (9.2)
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Figure 9.1: One example of generated simulation data.

Where h denotes the PSF. In order to have a known scatterer number density, the PSF is

assumed to be spatially invariant which can be described as:

h[a, l] = e
− 1

2
( a2

σa2+
l2

σl
2 ) × cos(2πfca) (9.3)

where the PSF is modeled as a 2D Gaussian modulated with a cosine with the center fre-

quency of fc in the axial direction. The parameters σa
2, and σl

2 denote the axial and lateral

width of the Gaussian function and they are related to the resolution cell. The TRF is the

2D map that contains all point scatterers. In each grid point, only one scatterer is allowed to

be present and its amplitude is sampled from normal distribution. The mean of the normal

distribution is randomly selected from values 1 to 5, the variance is fixed to 0.02 of the mean

value. The TRF is constructed using shapes having different values of scatterer number den-

sity and mean scattering amplitudes. One sample generated by this method is shown in Fig.

9.1. We generated 11000 samples to train the network. It should be noted that the ground

truth value of scatterer number density is known and depends on how the resolution cell size

is defined. Here, we define the resolution cell in each direction as 3×σx, where x is the axial

or lateral directions. Different definition of the resolution cell results in different value of the

scatterer number density. Please refer to [157] for more information about the grid-based

simulation method. In order to reduce the correlation, samples are skipped from both axial

and lateral directions to have an image of size 256×128, and an average correlation between

samples of 0.28 is obtained.
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9.2.3 Conventional Patch-based Methods

Hruska et al. employed SNR, skewness, and kurtosis to estimate HK-distribution parameters

[158]. Destrempes et al. proposed XU estimator in which two log moment statistics (named

as X and U) were employed, and reported improved parameter estimation [14]. The X, and

U can be defined as:

X =< Ilog(I) > / < I > − < log(I) >,

U =< log(I) > −log(< I >),
(9.4)

where < . > denotes sample mean, and I = A2 is the intensity of backscattered signal. The

XU estimator iteratively solves a constraint optimization using bisection method to find the

parameters. We employed this method for comparison.

9.2.4 Experimental Phantom Data

Several experimental phantoms have been employed to evaluate the method.

1) Layered Phantom: A phantom with a middle layer having different properties than

the top and bottom layers reported in previous publication [159] has been employed. The

phantom was constructed by an emulsion of ultrafiltered milk and water-based gelatin, and

5–43 µm diameter glass beads were utilized as the source of scattering. A Siemens Acuson

S2000 scanner (Siemens Medical Solutions USA, Inc.) with 18L6 probe linear transducer

having the center frequency of 8.9 MHz was used for data collection. The layer with higher

intensity has a higher backscattering coefficient and scatterer concentration. The backscat-

tering coefficient of this layer is 6.37 × 10−3 cm−1sr−1 and it is 3.52 × 10−3 cm−1 sr−1 for

other parts at the center frequency.

2) CIRS Phantom: Data from a multipurpose CIRS phantom (model 040GSE, Norfolk,

VA, USA) was collected at Concordia university using E-CUBE 12 Alpinion machine by an

L3-12H transducer with a sampling rate of 40 MHz and center frequency of 8.5 MHz.

3) Gammex Phantom: Data was collected at university of Wisconsin using a Verasonics

Vantage 128 System (Verasonics,Kirkland, WA, USA) machine with an L11-5v transducer

operating at 8 MHz.
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Figure 9.2: Layered phantom before the system effect compensation (a). The envelope
amplitude average of reference phantoms and the fitted curve (b). The compensated layered
phantom (c). The intensity variation of the phantom before compensation is clear and
the area with lower intensity is marked. The phantom data has been reported in previous
publication [159].

9.2.5 Pre-Processing of experimental phantom data

Experimental phantom data may contain variations of intensity due to beamforming, focus-

ing and time gain control (TGC) which are not present in the simulation data and leads

to performance decay of parameter estimation. Inspired by the reference phantom method

which cancels out the system effect [109], we employ an intensity normalization technique

to reduce the system effect on the envelope data intensity. First, the average of envelope

amplitudes in each depth is computed across several frames of uniform reference phantoms

imaged by the same imaging settings. In the next step, a curve is fitted to the obtained

average envelope amplitude. The inverse of the fitted curve can be utilized to normalize the

experimental phantom data imaged by the same settings. The procedure is depicted in the

Fig. 9.2. It can be observed that the normalized data has a more uniform intensity across

different depth compared to the pre-normalized one.
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9.2.6 Multi-frame acquisition and data processing for experimen-

tal phantoms

For the layered phantom, the probe is moved in the out-of-plane direction to collect 12 frames

from this phantom. We skipped 7 samples in the axial and 1 sample in the lateral direction

from the acquired envelope data to reduce the correlation from 0.75 (no skipping) to 0.141.

The patch size for XU algorithm is 4.5× 4.5 mm with 75% overlap.

For the CIRS phantom, the probe is moved in the out-of-plane direction to collect 10

frames from this phantom. The patch size for XU algorithm is 4.5 × 4.5 mm with 75%

overlap. We skipped 4 samples in the axial and 0 sample in the lateral direction from the

acquired envelope data to reduce the correlation from 0.95 (no skipping) to 0.49. In another

experiment, we skipped 5 samples in the axial and 1 sample in the lateral direction to have

the correlation of 0.36 to see the effect of different correlations. It should be noted that

skipping more samples results in reduction of the bias but lower number of samples would

be available to estimate the scatterer number density which makes estimation of small parts

challenging.

For the Gammex phantom, the probe is moved in the out-of-plane direction to collect

12 frames from this phantom. The patch size for XU algorithm is 4.0 × 4.0 mm with 75%

overlap. We skipped 6 samples in the axial and 1 sample in the lateral direction from the

acquired envelope data to reduce the correlation from 0.95 (no skipping) to 0.55. In another

experiment, we skipped 13 samples in the axial and 1 sample in the lateral direction to have

the correlation of 0.19 to see the effect of different correlations.

9.2.7 Prediction and uncertainty quantification

For experimental phantom data, several frames are collected by sweeping the probe in the

out-of-plane direction. The final estimate and its corresponding uncertainty can be quantified

as: ˜︁S =
1

Nf

Nf∑︂
i=1

˜︁Si,

Uncertainty =

√︂
1
Nf

∑︁Nf

i=1(
˜︁Si − ˜︁S)2˜︁S ,

(9.5)
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where the final estimate (˜︁S) is calculated by averaging the estimates (˜︁Si) obtained from Nf

frames. The proposed uncertainty measures how different the estimates are across different

frames. If the estimates from all frames are similar, the uncertainty will be low. On the

contrary, high uncertainty is expected when the estimates are different. It should be noted

that this is a frame-wise uncertainty measurement meaning that if there is no difference

in the estimated value across different frames, the uncertainty is low even if the estimated

values are incorrect.

9.2.8 Network architecture and training

We employed DeeplabV3 which has shown excellent performance in semantic segmentation

[160]. The last layer of the model is altered to have one output as the scatterer number

density. The following loss function is employed:

loss =
1

N

∑︂
(log10(˜︁S)− log10(S))

2 (9.6)

where ˜︁S and S are the predicted and ground truth scatterer number density, respectively.

The log compression is employed to avoid the bias toward high scatterer number density val-

ues. Rectified adam (RAdam) is employed as the optimizer which has shown outperforming

Adam and be robust to the selection of learning rate [161]. The network is trained on single

NVIDIA RTX 3090 with 24 GB of memory.

9.3 Results

9.3.1 Simulation Results

The method is evaluated on 1000 test data generated in a similar way of training data.

Due to the fact that the value of the parameter α is not known for the simulation data, we

cannot compare it with the XU estimator. The results are given in Table 9.1. The metrics

are evaluated on each sample of test dataset and, the average and standard deviation are

reported. Four samples of the simulation results are depicted in Fig. 9.3.
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Table 9.1: The simulation results of the proposed method.

RMSE RRMSE MAE

Patchless CNN 1.12±0.59 0.42±0.19 0.85±0.55

Figure 9.3: Four examples of the patchless CNN estimation of scatterer number density. The
parametric image values are underestimated in the forth sample.

9.3.2 Experimental phantom results

Layered phantom results

The predicted results of the CNN and XU are the average across the collected frames. The

uncertainty is measured by dividing the standard deviation of the results by their mean value.

The results of the patchless CNN and XU algorithm are given in Fig. 9.4. The uncertainty

map has a higher value in the region where the CNN incorrectly estimates a lower value in

the phantom (the region is marked with red arrows).

In order to quantitatively investigate the presented results, the ratio of the mean of

obtained values in regions R2 and R1 (highlighted in the B-mode image) are computed and

compared with the ratio of their known backscattering coefficient. The ratio is 6.37
3.52

= 1.81 for

the backscattering coefficient, it is 16.34±3.72
10.99±2.73

= 1.61± 0.63 for XU, and 5.19±0.31
1.81±0.03

= 1.81± 0.11

for the patchless CNN. It can be seen that the ratio for the patchless CNN is closer to the

true backscattering coefficient ratio compared to the XU method which demonstrates that

this method has a lower bias compared to XU.
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Figure 9.4: From left to right: B-mode image, estimated α by XU algorithm, patchless CNN,
and uncertainty. The area that patchless CNN incorrectly underestimated the scatterer
number density is marked and uncertainty is higher in that area.

Figure 9.5: Results of CIRS phantom. B-mode image (1), estimated α by XU algorithm
(b), patchless CNN using samples with correlation 0.49 (skip 4 samples in axial direction)
(c), patchless CNN using samples with correlation 0.36 (skip 5 samples in axial and 1 in the
lateral direction) (d), and uncertainty obtained from c (e).

CIRS phantom results

The results are shown in Fig. 9.5. The XU algorithm fails to obtain reliable values on the

borders (marked in b) of the inclusions due to presence of two different distributions inside

the patches of those regions, while the CNN results do not suffer from this issue. The CNN

provides higher contrast and less bias with the samples with lower correlation, but due to

skipping more samples, the inclusion borders are not as clear as with the higher correlation

one. This demonstrates a trade off between skipping the samples to reduce the correlation

(lower bias) and spatial resolution. This issue was less identifiable in the layered phantom

since there were adequate samples in each layer; therefore, we were able to skip enough

samples to reduce the bias.
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Figure 9.6: Results of Gammex phantom. B-mode image (1), estimated α by XU algorithm
(b), patchless CNN using samples with correlation 0.55 (skip 6 samples in axial and 1 in
lateral direction) (c), patchless CNN using samples with correlation 0.19 (skip 13 samples in
axial and 1 in the lateral direction) (d), and uncertainty obtained from c (e).

Gammex phantom results

The results are shown in Fig. 9.6. The parametric image obtained by XU algorithm has arti-

facts around the inclusions similar to Fig. 9.5. The parametric image with higher correlation

(c) has higher spatial resolution but it has more biased values (compare the inclusion 1 in

(c) and (d)). The inclusion 1 is clearly detected by the CNN for both inputs (c and d), but

in (c) the inclusion has a more biased values than (d) due to presence of higher correlation.

The inclusion 2 is also hardly detected by the CNN since only part of it is available.

9.4 Discussion

In this chapter, a deep learning frame work is proposed to quantify the scatterer number

density. One important thing to note is that the method of calculating the scatterer number

density in simulation data generation dictates the output of the network. In other word,

different definition of resolution cell in simulation data generation can change the ground

truth value which also alters the output of the network.

Another crucial point is that the correlation between samples can affect the results.

Most of recent work focus on estimating the scatterer number density using training data

obtained from i.i.d samples. Although these samples contain more information than the

correlated ones, achieving this condition in real data is difficult and requires skipping many
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samples which is not efficient in parametric image reconstruction. In this work, the approach

is changed by generating simulation data using the grid-based method to have correlation

between the samples. The disadvantage of this approach is that the exact value of α is not

known, and generating coherent component is complex.

The impact of different correlations for the experimental phantoms is also investigated.

Generally, lower correlation can help having less bias in estimation but achieving this might

cause losing spatial resolution due to requiring skipping many samples.

9.4.1 Summary

In this chapter, a patchless deep learning solution was proposed to obtain scatterer number

density parametric images. The method was validated using simulation data and three

experimental phantoms. Frame-wise uncertainty map was also obtained from the parametric

images of the multiple frames. In order to enable the network to predict the experimental

phantom data having correlated samples, a grid-based simulation in which correlated samples

were present was employed for training data generation. The proposed method was trained

on simulation data and was able to reconstruct scatterer number density parametric image

of experimental phantoms imaged by different scanners.
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Chapter 10

Homodyned K-distribution:

parameter estimation and uncertainty

quantification using Bayesian neural

networks

In our previous works, we employed CNN to classify and segment the US data into fully de-

veloped (high scatterer number density) and underdeveloped (low scatterer number density)

speckle [145, 157]. Recently, an artificial neural network (ANN) was introduced by Zhou et

al. [162]. The proposed method was a MLP that employed speckle statistics to estimate the

parameters of HK-distribution.

The ANN estimator employs MLP layers which are prone to overfitting. In addition to

this, there is no metric to investigate the reliability of the estimated value. In this chapter,

we address these two issues and aim to improve the estimation of the HK-distribution pa-

rameters and quantify the uncertainty using bayesian neural networks (BNN). The proposed

method can also be used to extract QUS parametric images, and detect the regions with

high uncertainty.

142



10.1 Material and Method

10.1.1 Homodyned K-distribution parameters

The Homodyned K-distribution (HK-distribution) is defined as [14]:

PHK(A|ε, σ2, α) = A

∫︂ ∞

0

uJ0(uϵ)J0(uA)(1 +
u2σ2

2
)−αdu (10.1)

where α is the scatterer clustering parameter that depends on the scatterer number density,

A is the envelope of the backscattered echo signal, and J0(.) denotes the zero-order Bessel

function. The coherent signal power is ϵ2, and the diffuse signal power can be obtained

by 2σ2α [14]. The parameter k is defined as the ratio of coherent to diffuse signal power

( ϵ2

2σ2α
) and along with α has been employed widely for tissue characterization and we refer

to them as HK-distribution parameters. The main purpose of this chapter is to estimate k

and log10(α) (similar to [162]) and quantify the uncertainty of their estimation.

In order to generate training data for both ANN and BNN, sampling from HK-distribution

is required. Similar to [158, 162], we employed the following equation produce synthetic sam-

ples from HK-distribution.

ai =

√︃(︂
ε+Xσ

√︁
Z/α

)︂2

+
(︂
Y σ

√︁
Z/α

)︂2

(10.2)

where X and Y are independent and identically distributed (i.i.d) samples from unit Normal

distribution, ai is the generated sample from HK-distribution, and Z is sampled from the

Gamma distribution with shape parameter α and scale parameter of 1. To generate training

data, log10(α) is randomly selected from values ranging -0.3 to 1.4 which corresponds to α

of 0.5 to 25. k is also randomly selected from values ranging 0 to 1.

Different sizes of data, results in different values for the calculated feature. We generated

different sizes of data (we refer to it as Ns) to train the networks (similar to [162]). The

network is trained for each size separately using 10000 generated training data. The test

data is generated with the same range of parameters, on total 31 and 11 distinct log10(α)

and k values, respectively. For each value of log10(α) and k, 100 test sets are generated;
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therefore there are 31× 11× 100 samples of test data for each Ns.

10.1.2 ANN estimator

In [162], Zhou et al. proposed an ANN approach to estimated HK-distribution parameters

and out-performed the XU optimization method [14]. The procedure was as follows. First,

SNR, skewness, Kurtosis, X and U statistics were computed. The equations to compute the

parameters are given as:

Rv =
Av√︂

A2v − (Av)2
, Sv =

(Av − Av)3

(A2v − (Av)2)1.5
,

Kv =
A4v − 4Av × A3v + 6A2v × Av2 − 3Av4

(A2v − Av2)2
,

U = log(I)− log(I), X = I × log(I)/I − log(I),

(10.3)

where A is the envelope data, I is the intensity (I = A2), and v is {0.72, 0.88} as suggested

by Hruska et al. [158] and Gao et al. [163].

In the next step, R0.88, R0.72, S0.88, S0.72, K0.88, K0.72, X, and U were employed as inputs

of a MLP (ANN) as suggested by [163] to train the network which estimated the log10(α)

and k. We implemented this method for comparison and used the same network architecture

(2 hidden layers with 10 and 4 nodes). We refer to this method as ANN .

10.1.3 Bayesian neural network (BNN)

Let Y , W , and X be the target, weights and input vectors, respectively. Assuming the

training data be D = {Xi, Yi}, training a NN can be defined as:

W ∗ = argmax
W
{P (D|W )} (10.4)

where the optimum weights (W ∗) are learned during the training and used in the test to

predict Y . In BNN, the weights of the neural network are not fixed, and each weight

is sampled from a distribution. During the training instead of learning the weights, the
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parameters of the distribution, from which the weights are sampled, are learned. Predicting

Y can be formulated as [164]:

P (Y |D) =

∫︂
W

P (Y |W )P (W |D) (10.5)

where p(W |D) is the posterior distribution of the weights which is learned during the training.

The integration over all possible values of W is intractable and computationally expensive.

To resolve this issue, the posterior distribution P (W |D) is sampled and the prediction Ỹ

can be obtained by:

Ỹ ≃ 1

N

N∑︂
i=1

Yĩ,

Wi ∼ P (W |D), Yĩ ∼ P (Y |Wi),

(10.6)

where the operator ∼ denotes sampling from the distribution. Eq 10.6 can be simply ex-

plained as running the trained network multiple times (each forward pass of the network

gives Yĩ) and computing the mean value of predictions as the final estimated value. Uncer-

tainty can also be quantified as the standard deviation of the predictions Yĩ which can be

written as:

uncertainty =
√︁
V ar(Yi), (10.7)

The Mean absolute error (MAE) loss is utilized for training which is also sampled multiple

times by forwarding the inputs and sampling from the weights multiple times (here 6) to

have a better approximation of the loss value. Two Bayesian hidden layers having 64 and 200

nodes with leaky Relu activation functions were employed and Adam optimizer is utilized

for optimization.

10.2 Results

10.2.1 Simulation Results

The accuracy of the estimators of HK-distribution parameters heavily depends on the number

of available i.i.d samples. We evaluated the methods using different number of samples (Ns).

The relative root mean square error (RRMSE) and MAE are employed as the metrics which
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Table 10.1: RRMSE and MAE of log10(α) using different numbers of HK-distribution samples
(Ns).

ANN BNN

RRMSE MAE RRMSE MAE
Ns = 65536 0.054 0.048 0.012 0.035
Ns = 16384 0.052 0.061 0.029 0.054
Ns = 4096 0.125 0.091 0.090 0.083
Ns = 1024 0.393 0.129 0.388 0.123

Table 10.2: RRMSE and MAE of k using different numbers of HK-distribution samples (Ns).

ANN BNN

RRMSE MAE RRMSE MAE
Ns = 65536 0.143 0.074 0.122 0.053
Ns = 16384 0.218 0.084 0.235 0.073
Ns = 4096 0.359 0.118 0.291 0.103
Ns = 1024 0.538 0.153 0.460 0.139

can be defined as [158, 162]:

RRMSE =

√︄
< (y − ˜︁y)2 >
|y|+ ε

,

MAE =< |y − ˜︁y| >,

(10.8)

where < . > denote averaging operation and ε is a small number (here 0.001) to avoid

division by zero. The simulation results for log10(α) and k are given in Tables 10.1 and 10.2,

respectively. According to the tables, the proposed BNN has lower error compared to ANN

for estimation of both log10(α) and k in the most of sample sizes.

The RRMSE and MAE error maps are shown for Ns = 16384 and different ground truth

values of log10(α) and k . RRMSEs high values around the ground truth zero are due to the

division by the small number. For better visualization, RRMSEs are plotted in log scale.

Fig. 10.1 shows that the proposed BNN method has lower error than ANN (notice the blue

regions in RRMSEs).

The proposed method can also provide uncertainty of the prediction (Eq 10.7). Fig. 10.2

shows the uncertainty of the estimation of the parameters. It can be seen that areas in Fig.
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Figure 10.1: The RRMSE and MAE error maps of BNN (top) and ANN (bottom) for
Ns = 16384. The RRMSEs are shown in log scale for better visualization.
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Figure 10.2: The estimated uncertainty (standard deviation of predictions) of log10(α) and
k for Ns = 16384 using BNN. The areas with high uncertainty correspond to areas with high
error in Fig. 10.1.

10.1 that high error is presents, the uncertainty is high which can provide an insight about

the reliability of the estimation.

10.2.2 Experimental Phantom Results

The two layered phantom used in the previous chapter was employed for the evaluation. The

middle layer was made to have a higher backscattering coefficient than the other two layers

by increasing the concentration of scatterers (higher α). The backscattering coefficient of

top and bottom layers is 3.52×10−3 cm−1 sr−1 and it is 6.37×10−3 cm−1sr−1 for the middle

layer at the center frequency. Data from this phantom has been reported in the previous

publication [159].

147



Figure 10.3: B-mode image of the layered phantom (left) and predictions for the patches
specified in the b-mode image (right) for BNN and ANN trained on Ns = 16384. The shaded
areas show two times of the standard deviation of the predictions.

The B-mode image of the phantom is shown in Fig. 10.3 (top). Two large patches of size

14.40× 13.6 mm (patch 1) and 12.68× 13.6 mm are extracted from low and high scatterer

concentration layers, respectively. In order to avoid introducing bias, neighbor samples (14

samples in axial and 3 in lateral) are skipped to reduce the correlation between samples

before computing the features. The obtained features are averaged over 12 frames and then

given to the networks. The features were passed to the BNN multiple times to acquire

different samples of the predicted distribution. The results are shown in Fig. 10.3.

The patch 2 has higher α than the patch 1 which is expected since patch 2 has A higher

scatterer concentration. Although the phantom has very low coherent components, the

predicted k parameter is discernible. One possible explanation could be the false coherency

due to low number of samples [109]. Comparing the two methods, ANN only provides a

single estimate of the parameters while, BNN offers the distribution of the parameters which

can be sampled multiple times. By looking closely at the BNN results, it can be observed

that the network has a higher uncertainty for patch 2. This has physical interpretation that

by increasing the scatterer number density, the estimation would be more difficult and a

higher uncertainty is obtained.

The exact value of α is not known for the phantom but the ratio of high to low scatterer

density is close to the ratio of their corresponding backscattering coefficients which is known.

The mean value ± standard deviation of the BNN prediction of log10(α) for the patch 1

is 0.749 ± 0.0206, and it is 0.967 ± 0.0273 for the patch 2. The ratio of backscattering
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coefficients of patch 2 to patch 1 is 6.37
3.52

= 1.81. The ratio of the predicted α values is

100.967±0.0273

100.749±0.0206 = 1.65 ± 0.128. It can be observed that the ratio of the estimated α values is

very close to the ground truth ratio of backscattering coefficients.

10.3 Summary

In this chapter, a Bayesian Neural Network (BNN) is proposed to estimate HK-distribution

parameters. The method provides the distribution of estimated parameters which can be

sampled multiple times to acquire the mean prediction and uncertainty. It is compared with

a recent neural network approach using simulation and experimental phantom data.
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Chapter 11

Deep Autoencoder Feature Projection

for Accurate Homodyned

K-distribution Parameter

Estimation in Quantitative

Ultrasound

11.1 Introduction

HK-distribution parameters are physically meaningful, the scatterer clustering parameter

(α) and the ratio of the coherent to diffuse scattering power (k) are two parameters of this

distribution that are related to scatterer number density, and microstructrual organization of

scatterers, respectively. They have been used extensively for tissue characterization including

non-alcholic fatty liver disease (NAFLD) staging [165]. Envelope statistics such as point-

wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments are usually

employed to estimate HK parameters. Hruska et al. employed SNR, skewness, and kurtosis

to estimate the HK parameters by minimizing the difference between their sample estimates

and the theoretical values [158]. Destrempes et al. proposed to employ two log-based
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moments X and U and used bi-section interpolation to estimate the parameters [14]. They

reported improved estimation by using these two moments (we refer to this method as

XU method). Liu et al. proposed to utilize several statistics (on total 16) and compared

them with the theoretical values using table search [166]. They also performed an extensive

analysis about the feature selection for each HK parameter estimation.

Recently, deep learning methods are being used more frequently for HK parameter esti-

mation. Zhou et al. used a MLP that takes envelope statistics as input, and outputs the

HK parameters [162]. We proposed a Bayesian neural network (BNN) to do the task which

also was able to quantify the uncertainty of the estimation [167], where we reported lower

error compared to the method of Zhou et al. [162].

In this chapter, we consider the feature space as a high-dimensional space where each

patch is represented by a point. We show that the envelope statistics features lie in a

hyperplane that covers only small volume of feature space, and hypothesize that points

deviate from this hyperplane because of statistical errors. We then proposed to project the

points into this hyperplane using an autoencoder. This novel method is validated using

simulations, experimental phantoms, and in vivo data.

11.2 Material and Method

11.2.1 Homodyned K-distribution Parameters Estimation Prob-

lem Formulation

Homodyned K-distribution

The Homodyned K-distribution can be defined as [14]:

PHK(A|ε, σ2, α) = A

∫︂ ∞

0

uJ0(uϵ)J0(uA)(1 +
u2σ2

2
)−αdu (11.1)

where A is the envelope of the backscattered echo signal, α is the scatterer clustering param-

eter that is related to the scatterer number density, and J0(.) denotes the zero-order Bessel

function. The coherent signal power can is represented by ϵ2, and the diffuse signal power is

2σ2α [14]. The scatterer clustering parameter (α), and coherent to diffuse scattering ratio

151



k = ϵ
σ
√
α
are the HK-distribution parameters that are required to be estimated. The envelope

statistics (SNR, skewness, kurtosis of the fractional amplitude, and log-based moments) can

be obtained by:

Rv =
E[Av]√︁

E[A2v]− (E[Av])2
,

Sv =
E[(Av − E[Av])3]

(E[A2v]− (E[Av])2)1.5
,

Kv =
E[A4v]− 4E[Av]× E[A3v] + 6E[A2v]× E[Av]2 − 3E[Av]4

(E[A2v]− E[Av]2)2
,

U = E[log(I)]− log(E[I]),

X = E[I × log(I)]/E[I]− E[log(I)],

(11.2)

where I = A2 and v is the power where we selected the values 0.72, 0.88 suggested by [158].

HK parameters inverse problem

Let the envelope statistic features of single patch be:

F ∈ RM×1 = [R0.72, R0.88, S0.72, S0.88, K0.72, K0.88, X, U ]T (11.3)

and the HK parameters be denoted as θ ∈ R2×1 = [log10(α), k]
T . The forward and inverse

problems can be illustrated as:

θ ∈ R2×1 forward−−−−−→ F ∈ RM×1,˜︁θ ∈ R2×1 inverse←−−−− ˜︁F ∈ RM×1,
(11.4)

where ˜︁F denotes the sample estimate of the envelope statistics, and ˜︁θ represents the estimated

θ. M is the number of envelope statistic features which we employed eight features similar
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to [162]. The forward problem can be viewed as obtaining the envelope statistics from the

known parameters of the distribution. Hruska et al. showed that moments of HK-distribution

can be analytically obtained from a known HK-distribution by [158]:

E[Av] =

∫︂ ∞

0

(
2σ2

α
)v/2

Γ(1 + v/2)xv/2+α−1

Γ(α)ex

1F1(−v/2; 1;
−αε2

2σ2x
)dx,

(11.5)

where 1F1(a, b, x) is confluent hypergeometric function of the first kind. The feature vector

then can be obtained by inserting E[Av] obtained from Eq 11.5 into Eq 11.2. The sample

mean is used to approximate E[Av], and the calculated sample envelope statistic features

( ˜︁F ) is employed to estimate HK parameters (˜︁θ).
Estimation of HK parameters from envelope statistics can be viewed as an inverse problem

which maps F from feature space with M dimension to the 2-dimensional HK parameter

space. The low dimensional space of HK parameters enforces the feasible feature values to

lie in a low dimensional manifold. Inspired by this, we designed a model projection neural

network based on denoising autoencoder to project the noisy features (F ) into the feasible

hyperplane.

11.2.2 Model Projection Autoencoder (MPAE)

Autoencoders are neural networks that receive the input and map them to a lower-dimensional

representation by transforming into more informative lower dimensional features. In the en-

coder part, the input dimension is reduced using several hidden layers, and in the decoder

part, the input is reconstructed using the lower-dimensional representation. These networks

have been found useful in many applications, such as denoising and dimensionality reduc-

tion, where it was shown that they act like a non-linear principal component analysis (PCA)

[168]. Denoising autoencoders employ the corrupted data and try to reconstruct the clean

data. Vincent et al. showed that if data lie in a low-dimensional manifold, the corrupted

data will be further away from this manifold, and denoising autoencoders can project the

corrupted data into the low-dimensional manifold [169]. This idea is illustrated in Fig. 11.1.

153



Our proposed method based on autoencoders is illustrated in Fig. 11.2. We consider the

sample estimates of the features as the corrupted input data and the theoretical value from

the forward problem as the clean output features. A model projection autoencoder (MPAE)

is utilized to obtain clean features (Projection step). An estimator is employed to estimate

the HK parameters from the reconstructed features.

Network architecture and training schedule

The network comprises seven layers; the encoder part has four layers with 64, 32, 32, b nodes,

and the decoder has three layers with 32, 32, 8 nodes. The parameter b is the number of nodes

in the bottleneck, which determines the size of a low-dimensional manifold. We investigate

different sizes of bottlenecks in the result section. The activation functions of all layers were

leaky ReLu except the last layer, which does not have any activation function. We test

placing dropouts in different layers and obtain the best performance on placing a dropout

on the second encoder layer with the probability of 0.2. The features are normalized to have

zero mean and standard deviation of 1. We employed the combination of smooth L1 and

MSE as the loss function. For each sample size of Ns = 65536, Ns = 4096, and Ns = 1024,

a separate MPAE is trained since the noise distribution is different for each sample size.

11.2.3 HK Parameters Estimators

We employ BNN as the estimator after MPAE feature reconstruction. The method is also

compared with XU estimator.

BNN estimator

In [167], we developed a BNN to estimate the HK parameters. The BNN estimator outper-

formed the ANN counterpart [162] and was able to quantify the uncertainty. In BNN, the

network weights are sampled from a distribution learned in the training phase. Each time the

network runs, the weights would be different; therefore, the network is run for each feature

vector multiple times during the inference, and the average value and standard deviations

are considered as the prediction and uncertainty, respectively.
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Noisy sample estimate

Model projection

Low-dimensional manifold

Figure 11.1: The theoretical values of envelope statistics lie in a low-dimensional manifold.
Sample estimates are corrupted by noise and lie further away from the manifold. The MPAE
projects the noisy sample estimates into the low-dimensional manifold.

The theoretical values of the statistical features were employed for training the BNN,

which allowed us to use one network for all sample sizes, similar to the generalized neural

network in [170].

XU estimator

Destrempes et al. proposed to employ two log-based moments, X and U as the statistical

features [14]. They used bi-section interpolation to find the intersection between the the-

oretical values and the sample estimates of X and U . They reported improved estimation

using these two moments compared to R, S, and K. We compared our proposed method

with this algorithm.

11.2.4 Datasets and data generation

Simulation data

Training data is generated by sampling from HK-distribution. The equation suggested by

[158, 162] is usually employed to generate the simulation data:

ai =

√︃(︂√
2k +Xσ

√︁
Z/α

)︂2

+
(︂
Y σ

√︁
Z/α

)︂2

(11.6)

where α and k are the scatterer clustering parameter and coherent to diffuse scattering

ratio. ai is the generated sample, X and Y are independent and identically distributed

155



.

.

.

.

.

.

.

.

.

.

.

.

Sample 

Estimates of 

statistical 

features

Correct 

theoretical 

value of 

statistical 

features from 

forward 

problem
Bottleneck

Estimator

Projection step

Estimation step

Figure 11.2: The proposed framework for estimation of HK parameters. The sample estimate
of envelope statistical features (F ) is projected into a low-dimensional space (bottleneck) and
the clean feature is reconstructed (projection step). The reconstructed features are given to
the estimators of HK parameters (estimation step).

(i.i.d) samples from Normal distribution. Z is sampled from the Gamma distribution with

scale parameter of 1 and shape parameter of α. This equation generates i.i.d samples from

HK-distribution, which differs from real envelope samples from experimental echo signals

due to the correlation among samples. Generating correlated samples from HK-distribution

directly is not straightforward; therefore, in order to generate more realistic samples, we

propose to generate correlated samples by employing correlated normal distributions of X

and Y :

ai =

√︃(︂√
2k +Xiσ

√︁
Z/α

)︂2

+
(︂
Yiσ

√︁
Z/α

)︂2

,

Xi = ρXi−1 +
√︁
1− ρ2N (0, 1),

Yi = ρYi−1 +
√︁

1− ρ2N (0, 1),

(11.7)

where Xi and Yi are correlated with previous samples and ρ controls the correlation. The

correlation coefficient of HK-distribution versus ρ is illustrated in Fig. 11.3 for α = 3, k = 0.1.

We select a small value of ρ = 0.2 for training and evaluate the performance for different

values of ρ for the evaluation.

To generate training data, log10(α) is randomly selected from values ranging -0.3 to 1.3,

corresponding to α of 0.5 to 20. k is also randomly selected from values ranging from 0 to

1.25. Results are reported for the sample sizes of Ns = 65536, Ns = 4096, and Ns = 1024.

The simulation test data is generated for 31 different values of log10(α) ∈ {−0.3, ..., 1.3},
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and 11 values of k ∈ {0, ..., 1.25}. For each value of log10(α) and k, 10 realizations are

generated, giving 3410 sample sets for each sample size and ρ. Data is generated for three

sample sizes, Ns ∈ {65536, 4096, 1024}, and two correlation values, ρ ∈ {0.2, 0.6}.

Evaluation metric for simulation test data: The Relative Root Mean Square Error

(RRMSE) and the Mean Absolute Error (MAE) are employed to evaluate the methods for

simulation test data in which the ground truth is known, and they can be defined as:

RRMSE =

√︄
< (y − ˜︁y)2 >
|y|+ γ

,

MAE =< |y − ˜︁y| >,

(11.8)

where y and ˜︁y are the ground truth and estimated parameter, respectively, < . > is the

averaging operation and γ is a small non-negative value (here we use 0.05) to avoid division

by zero.

Experimental Phantom Data

A three-layered phantom having different scatterer number density was constructed from an

emulsion of ultrafiltered milk and water-based gelatin. 5-43 µm diameter glass beads (3000E,

Potters Industries, Valley Forge, PA, USA) were used as the source of scattering. Data was

acquired by a 18L6 probe, linear array transducer operating at the center frequency of 8.9

MHz, using a Siemens Acuson S2000 scanner (Siemens Medical Solutions USA, Inc.). Data

collected from this phantom was primarily reported in [159]. The top and bottom layers

have the same properties, whereas the middle layer has a higher backscattering coefficient

and scatterer concentration. The backscattering coefficient of the middle layer is 6.37×10−3

cm−1sr−1 and it is 3.52 × 10−3 cm−1sr−1 for the top and bottom layers at the center fre-

quency. In this phantom, the only source of intensity change to have different backscattering

coefficients is the density of scatterers. Therefore, the ratio of backscattering coefficients,

6.37×10−3cm−1sr−1

3.52×10−3cm−1sr−1 = 1.81, can be an indicator of the true ratio of α which we employ as a

metric to verify the estimated α.
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Figure 11.3: The correlation coefficient of HK-distribution samples generated by Eq 11.7
versus ρ for α = 3, k = 0.1.

Table 11.1: p-values Wilcoxon sign tests for log10(α) and ρ = 0.2. If a p-value is less than
0.0001, it is shown by * to represent high statistical significance.

Methods Ns = 65536 Ns = 4096 Ns = 1024

XU vs BNN * * *

XU vs MPAE-b3 * * *

XU vs MPAE-b2 * * *

MPAE-b3 vs BNN * * *

MPAE-b3 vs MPAE-b2 * * *

MPAE-b2 vs BNN * * *

In vivo Data

Duck liver data were used to compare the performance of the evaluated methods. The proto-

col was approved by the animal ethical care committee of the University of Montreal hospital

research centre, Montreal, QC, Canada. The ducks’ liver data were collected before and 14

days after force feeding to study the formation of fatty liver. Data acquisition was performed

as part of a study conducted by Bhattet et al. [171]. A Verasonics Vantage programmable

system (Verasonics Inc., Kirkland, WA) with an ATL L7-4 linear probe (Philips, Bothell,

WA) operating at the center frequency of 5 MHz was employed for data acquisition. Two

ducks were randomly selected to investigate the performance of the compared methods.

158



(a) (b)

(c) (d)

Figure 11.4: The plots of the median and 25%-75% percentile of MAE errors of different
evaluated methods. The median and 25%-75% percentile of MAE of log10(α) of different
sample sizes (a). The median and 25%-75% percentile of MAE of k for different sample
sizes (b). The median and 25%-75% percentile of MAE of log10(α) for ρ = 0.2, 0.6 using
the sample size of Ns = 1024 (c). The median and 25%-75% percentile of MAE of k for
ρ = 0.2, 0.6 using the sample size of Ns = 1024 (d). MPAE − b2 and MPAE − b3 denote
MPAE with bottleneck size of 2 and 3 is used for feature reconstruction and BNN is employed
as the estimator.

11.3 Results

In this section, we evaluate the performance of the proposed method and compare it with

the XU method.

11.3.1 Simulation Results

Three methods, XU, BNN, and MPAE are evaluated. It should be noted that for MPAE

method, we employ BNN as the estimator after the feature reconstruction of MPAE.

The median MAE of simulation test data are illustrated in Fig. 11.4. By inspecting the

results we can observe:

MPAE performance: from Fig. 11.4 (a) and (b), it can be seen that MPAE substantially
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Table 11.2: p-values of Wilcoxon sign tests for k and ρ = 0.2. If a p-value is less than 0.0001,
it is shown by * to represent high statistical significance.

Methods Ns = 65536 Ns = 4096 Ns = 1024

XU vs BNN * * *

XU vs MPAE-b3 * * *

XU vs MPAE-b2 * 0.140 *

MPAE-b3 vs BNN * * *

MPAE-b3 vs MPAE-b2 * * *

MPAE-b2 vs BNN 0.012 * *

(A)

(B)

Figure 11.5: The MAE error map of log10(α) (A), and k (B) for Ns = 1024, ρ = 0.2. The
error is averaged over 10 realizations for each grid point. MPAE has the bottleneck size of
3.

improves the performance of BNN estimator. For a large sample size of Ns = 65536, XU

estimator has the lowest error among the compared methods but the sample size is decreased,

MPAE outperforms the XU estimator.

Bottleneck size: Two bottleneck sizes of 2 (MPAE−b2) and 3 (MPAE−b3) are evaluated.

The error of the bottleneck size of 3 is lower than 2 in all cases, indicating that at least three

variables are needed to encode QUS properties.

Correlation (ρ): To see the effect of correlation, we trained MPAE on low correlation value

(ρ = 0.2), and the method is evaluated on ρ = 0.2, 0.6. It can be seen from Fig. 11.4 (c)

and (d) that increasing the correlation results in a slight increase in the log10(α) error, while

there is no significant change for k.

Error map: The reported results are the overall error that do not show the error variations

for different HK parameter values. The error map for different values of log10(α) and k are
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Figure 11.6: The B-mode image of the layered phantom. Two patches for extraction of the
statistical features are specified. The patches are moved laterally across several frames to
extract multiple features.
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Figure 11.7: The boxplot of α of the layered phantom using the evaluated methods. MPAE
denotes using MPAE with bottleneck of 3 and trained with Ns = 4096. The correct ratio
of α of R1 and R2 is 1.81. The average ratios of the estimated α are 2.73, 3.51, and 1.67
for XU, BNN, and MPAE, respectively (using 90% percentile). MPAE provides the lowest
variance in estimation and has the closest ratio to the correct one.

illustrated for Ns = 1024, ρ = 0.2 in Fig. 11.5. MPAE substantially decreases BNN’s error,

yielding a lower error than the XU method.

Statistical test: Wilcoxon sign test is performed to see if the difference between the median

of the errors of the methods is statistically significant. Wilcoxon sign test is a paired test

that is chosen since the MAE errors are not normally distributed [172]. The p-values are

reported in Table 11.1 for log10(α) and in Table 11.2 for k. The majority of the pairs are

statistically different (except XU vs MPAE-b2 and MPAE-b2 vs BNN for k)
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Table 11.3: The correlation between the parametric images of the evaluated methods.

Methods
Duck A

before force feeding
Duck B

before force feeding
Duck A

after force feeding
Duck B

after force feeding

XU, BNN 0.495 0.399 0.619 0.674
MPAE, BNN 0.499 0.692 0.831 0.897
MPAE, XU 0.752 0.774 0.563 0.742

11.3.2 Experimental Phantom Results

The B-mode image of the phantom is illustrated in Fig. 11.6. A 12.56 × 7.81mm patch is

employed for statistical feature extraction. To reduce the correlation, 5 samples in the axial

direction corresponding to 1 pulse length and 1 sample in the lateral direction are skipped,

which gives 3400 samples (Ns). The patch is moved laterally across 12 frames to obtain 60

samples of feature statistics for each of the two regions (R1 and R2). Although the exact

value of α is unknown, the backscattering coefficient ratio can be used to verify the results.

XU BNN MPAE

Figure 11.8: The parametric image of log10(α) of duck A before force feeding (top row), and
after (bottom row).

The box plot of the evaluated methods is illustrated in Fig. 11.7. MPAE denotes using

MPAE with the bottleneck of 3, trained with Ns = 4096. The correct ratio of α of R1 and

R2 is 1.81 (obtained from the backscattering coefficient). The average ratios of estimated α

are 2.73, 3.51, and 1.67 for XU, BNN, and MPAE, respectively (using 90% percentile).

The variances of R1 region are 3.32, 5.76, and 2.78 for XU, BNN, and MPAE, respectively,
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XU BNN MPAE

Figure 11.9: The parametric image of log10(α) of duck B before force feeding (top row), and
after (bottom row).

and they are 12.15, 12.37, and 3.15 for region R2. MPAE provides a close average ratio of α

values and has substantially lower variance compared to the other methods, which confirms

that using this network prior to an estimator (here, BNN is employed) is beneficial. The

over-estimation of α and the high variance can be observed in XU and BNN results. Zhou

et al. showed that when the sample size is not large enough, over-estimation of α occurs

[165], which is also confirmed by our results. MPAE has a substantially lower bias, and the

average α values (1.67) ratio is close to the actual ratio (1.81).

11.3.3 In vivo Results

To compute statistical features, we selected patches of size 5.5mm× 5.5mm. These patches

were moved with a 63% overlap to ensure complete coverage of the liver area. To minimize

the impact of sample heterogeneity, we employed a patchless deep neural network, previously

developed for scatterer number density regression (Chapter 9), and applied a k-medoid clus-

tering algorithm to select only samples that belong to the same class as the center sample.

This allowed us to compute feature statistics accurately and avoid errors arising from sample

heterogeneity.

The parametric images of log10(α) are illustrated in Fig. 11.8 for duck A and duck B
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BNN MPAE

Figure 11.10: The parametric image of the uncertainty of BNN of duck A before force feeding
(top row), and after (bottom row).

BNN MPAE

Figure 11.11: The parametric image of the uncertainty of BNN of duck B before force feeding
(top row), and after (bottom row).

in Fig. 11.9 before force feeding (top row) and after (bottom row). The exact parametric

image is unknown; Gesnik et al. reported that the average of 1/α of the whole liver region

considering all studied ducks increases from 1/α = 0.69 ± 0.10 to 1/α = 0.94 ± 0.07 after

14 days of force feeding [173]. Therefore, generally, lower α is expected after force feeding

than before that. According to the given parametric images, XU and MPAE results are
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highly correlated. XU and MPAE both produce high values in the same locations; while

BNN produces very high values of log10(α) in most parts.

The correlation between different pairs are reported in Table 11.3 which indicates that the

correlation between MPAE and XU is higher than the correlation between XU and BNN for

most cases (except duck A after force feeding). Both ducks’ liver log10(α) parametric images

obtained by XU and MPAE have reduction of portion of high values after force feeding (Figs.

11.8 and 11.9) which is expected as the reduction was reported in [173].

Uncertainty of the estimation is another aspect that can be investigated. As discussed

earlier, BNN estimator can also provide the uncertainty by taking the variance of the es-

timates using different realizations of the network’s weights. The parametric image of the

uncertainty is illustrated in Fig. 11.10 for duck A, and in Fig. 11.11 for duck B. It is clear

that BNN has substantially lower uncertainty when the features are reconstructed using

MPAE.

11.4 Discussion

In this chapter, we proposed a model projection autoencoder to reconstruct clean statistical

features from the noisy sample estimate. Any estimator can be used after the proposed

method to estimate HK parameters. In the manuscript, we investigated BNN for the esti-

mation step. However, any method could be used in the estimation step.

Source of noise is another aspect that should be investigated further. In this chapter, the

noise emanates from the low sample size. Other sources of noise, including the presence of

samples from other HK-distributions can be used as the source of noise and requires further

investigation.

11.5 Summary

In this chapter, we propose a model projection neural network based on denoising autoen-

coders to reconstruct refined statistical features to improve HK-distribution parameter esti-

mation. The method is validated using simulation data, experimental phantom, and clinical

data.
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Chapter 12

Conclusion and Future Work

In this thesis, novel methods were developed for ultrasound-based displacement estimation

and QUS parameter estimation from backscattered envelope data. The presented methods

were either under review or published in peer-reviewed journals and conferences. In this

chapter, we first provide concluding remarks, and then suggest avenues for future work.

12.1 Conclusion

In this thesis, several innovative methods were proposed to improve displacement estimation

in USE and enveloped-based QUS parameters. In USE displacement estimation, networks’

architecture was modified to facilitate RF data feature extraction [55, 59]. Two modified net-

works, MPWC-Net and RFMPWC-Net were proposed. We also improved the displacement

range of MPWC-Net by increasing the search range of the correlation layer. Semi-supervised

training was another avenue we followed to enhance the performance further [56, 81], and

the improvement was validated using experimental phantom and in vivo data. Lateral strain

images obtained by semi-supervised training were noisy and unreliable; therefore, we focused

on improving the lateral displacement by incorporating the physical constraints [79, 91]. We

demonstrated that by adding the constraint as a regularization, the lateral strain, which is

required for effective Poisson’s ratio imaging and for solving the inverse problem of estimat-

ing the elasticity modulus, can be improved substantially. The method was evaluated using

simulation data, experimental phantom, and in vivo data.
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On the QUS front, we started with patch-based classification [145] and extended that

to full image segmentation of scatterer number density [157]. A fast grid-based simulation

method was proposed that enabled us to generate thousands of US envelope data in a short

amount of time with diverse imaging settings. In the next step, scatterer number density

regression was accomplished [174] by using the fast grid-based simulation as the training data

generation method. Improving the patch-based estimation and quantifying the uncertainty

was a problem we addressed in the next step [167]. Uncertainty quantification is essential and

clinically relevant since it allows the clinician to effectively utilize the parametric images only

when the results are reliable enough. The proposed architecture obtained the uncertainty

by sampling the network’s weights from distributions whose parameters were learned during

the training. Furthermore, a model projection autoencoder was proposed to reduce the noise

due to the low sample size on the estimated statistical features. The autoencoder tried to

map the noisy sample estimate to the theoretical values. We validated the method using

simulation, experimental phantom, and duck liver data.

12.2 Future Work

Regarding USE, improved network architecture can be an area of future work. More ad-

vanced architectures such as Transformers [175], which have first been used in ultrasound

images in for the classification of breast cancer with promising results [176], can be employed

to improve the feature extraction or optical flow estimation part of the network.

Another modification in the network architecture is to consider the ambiguity in the

warping operation. Asymmetric feature matching, proposed in [72], can be a good choice.

In this work, the correlation layers considered the ambiguity in the optical flow caused by

occlusion in the warping operation. The proposed module can be integrated into any optical

flow network. Another area of modifying the architecture is to employ a more sophisticated

correlation module. Globally optimized correspondence is a recent correlation module [177]

that has been recently utilized in optical flow networks for USE [178]. We hypothesize that

by using this module, small displacement tracking can be improved since a higher quality

correlation between features can be achieved.
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Large displacements are also complex to estimate; in MPWC-Net++, we alleviated this

issue at the expense of increasing the computation cost by enlarging the correlation search

range. Registration methods can be employed to compensate for the large motion and then

a more compact network architecture can be used to find the residual motion [179].

Beamforming also affects displacement estimation, especially in the lateral direction.

The beamforming method we used was delay and sum (DAS). More advanced beamforming

methods can produce narrower PSF which improves the displacement estimation.

Regarding the QUS parameter estimation, we assumed that there is a single distribution

within a patch. However, this assumption is not valid for in vivo data which is highly

heterogeneous. We partially alleviated this issue by using the patchless estimator as a pre-

processing step to find where there were changes of scatterer number density. Clustering

was used in the next step to select only samples that belong to the same class. Further

investigation is required since the patchless estimator only finds large variations across the

region of interest. There might be samples that are sparsely distributed and cause errors,

especially when the size of the patch is small. A possible approach is to have a network

that clusters and segments the samples based on their distribution. In our previous work,

we segmented the entire data by high- and low-number of scatterers, but here the problem

is a more complex one since the network should be able to segment each individual sample

separately.

Aberration and other ultrasound artifacts can adversely affect the QUS estimation meth-

ods. Aberration correction methods can be utilized before the QUS parameter estimation

network to compensate for the aberration effect.

In Chapter 10, we investigated an autoencoder to reconstruct the statistical features from

the sample estimates. The network was trained in a supervised manner. Self-supervision

can be used to employ experimental phantom and in vivo data during training to mitigate

the domain shift problem.

The presence of the domain shift is also another problem that we partially alleviated in

Chapters 7 and 8. We mainly focused on BN layers and proposed to employ AdaBN layers,

but more complicated methods, such as zone training and calibration, can be employed. Zone

training presented in [180] can aid in reducing the diffraction effect and reduce the impact
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of changing the imaging settings. Reference phantom normalization has also been recently

applied to deep learning methods in QUS [181], and their influence can be investigated in

our methods.

Estimating other QUS parameters, such as attenuation and backscattering coefficients,

can be an area of future work. Currently, we investigated the estimation of coherent to

diffuse scattering ratio and scatterer number density. Different QUS parameters should be

employed to diagnose the abnormalities in the tissue and using only one QUS biomarker

would not be reliable enough.
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