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Abstract

Deep Learning Methods for Estimation of
Elasticity and Backscatter Quantitative Ultrasound
Ali Kafaei Zad Tehrani, Ph.D.

Concordia University, 2023

Ultrasound (US) imaging is increasingly attracting the attention of both academic and in-
dustrial researchers due to being a real-time and nonionizing imaging modality. It is also less
expensive and more portable compared to other medical imaging techniques. However, the
granular appearance hinders the interpretation of US images, hindering its wider adoption.
This granular appearance (also referred to as speckles) arises from the backscattered echo
from microstructural components smaller than the ultrasound wavelength, which are called
scatterers. While significant effort has been undertaken to reduce the appearance of speckles,
they contain scatterer properties that are highly correlated with the microstructure of the
tissue that can be employed to diagnose different types of disease. There are many properties
that can be extracted from speckles that are clinically valuable, such as the elasticity and
organization of scatterers. Analyzing the motion of scatterers in the presence of an internal
or external force can be used to obtain the elastic properties of the tissue. The technique
is called elastography and has been widely used to characterize the tissue. Estimating the
scatterer organization (scatterer number density and coherent to diffuse scattering power) is
also crucial as it provides information about tissue microstructure and potentially aids in dis-
ease diagnosis and treatment monitoring. This thesis proposes several deep learning-based
methods to facilitate and improve the estimation of speckle motion and scatterer proper-
ties, potentially simplifying the interpretation of US images. In particular, we propose new
methods for displacement estimation in Chapters 2 to 6 and introduce novel techniques in

Chapters 7 to 11 to quantify scatterers’ number density and organization.
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Chapter 1

Introduction

Ultrasound (US) imaging is a popular modality in diagnosis and image-guided interventions
thanks to its portability, affordability, and non-invasiveness. However, several types of ar-
tifacts make the interpretation of US images difficult. Cells, collagen, microcalcifications,
and other microstructures are often smaller than the wavelength of the US wave, and as
such, scatter the wave and create the granular appearance in B-mode images called speckles.
Although speckles make the interpretation and visual inspection of B-mode images difficult,
they provide useful information about the physical properties of the tissue which has been
used to characterize the tissue [1I, 2.

Quantitative ultrasound (QUS) aims to analyze the speckle and obtains parameters which
are highly correlated with the physical properties of the tissue. QUS parameters have been
utilized to diagnose different types of abnormalities including the breast tumors [3], and
fibrosis in the liver [4]. There are different QUS parameters including speed of sound, elas-
ticity, effective scatterer diameter (ESD), scatterer number density, coherent scattering ratio,
backscattering coefficient, and attenuation coefficient. These parameters can be obtained by
analyzing the backscattered signal in the time domain (scatterer number density and co-
herent scattering ratio), in frequency domain (backscattering coefficient and attenuation
coefficient) or by measuring the motion by an external/internal force (elasticity) [5H8].

In this thesis, we focus on two QUS parameters: elasticity and scatterer number density.
We aim to employ deep learning to improve motion estimation for elasticity quantification

and boost the scatterer number density estimation performance. The rest of the thesis is



organized in the following manner: we first introduce the elasticity and scatterer number
density parameters. In the next step, novel methods are proposed for improving the motion
estimation in Chapters 2, 3, 4, 5, and 6. New methods are then introduced for scatterer

number density estimation in Chapters 7, 8, 9, 10 and 11.

1.1 Strain imaging and elastography

Materials exhibit different behavior in the presence of an external force. Elastic materials
tend to return to their original shape after the external force is removed. The stress versus
strain curve for these materials is linear and the slope of this line is called elasticity modulus.
The linear relation between stress and strain is fixed and independent of time in elastic
materials, as opposed to viscoelastic materials in which the stress-strain relationship varies
by time. Elasticity represents the material’s resistance to deformation in the presence of
force. Materials with higher elasticity modulus tend to deform less than materials having
lower elasticity modulus [9]. Abnormalities in the tissue might have a different elasticity
modulus than normal tissue; therefore, quantifying the elasticity modulus can have clinical
values.

Ultrasound elastography (USE) aims to quantify the elasticity by finding the motion from
ultrasound data. The source of the force can be internal (motion of the heart in echocardio-
graphy), by the operator using the probe (free-hand palpation), or by an acoustic radiation
force. Among different USE methods, free-hand palpation has gained much popularity due
to its simplicity, low cost, and ease-of-use. The basic idea of the free-hand palpation method
is that the operator compresses the tissue by the US probe. The images before and af-
ter compression are compared to obtain the displacement of each individual sample. This
displacement can be used to obtain a strain map which has relative elasticity information

[10, [11].
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Figure 1.1: Summary of the distribution used to explain envelope data.

1.2 Scatterers number density and scatterer organiza-
tion

The US radio-frequency (RF) echo is the result of contribution from all scatterers and co-
herent strong reflectors inside the resolution cell which can be explained by a random walk
model. Each scatterer has a random phase and amplitude. In the absence of a coherent
strong reflector, the RF echo is the summation of all scatterers inside the resolution cell
having independent phases and amplitudes. The random walk model is given in Eq [1.1]
The phase (0O) is uniformly distributed over the interval [—m,7) and the amplitude (z) has

normal distribution having zero mean and standard deviation of o [12].

N-1
=0

If N is large enough (N > 10), the absolute (envelope) of X can be modeled by Rayleigh
distribution, and the scattering type is considered as the diffuse scattering [5]. If RF echo
reflected by the scatterers has a strong constant component, the random walk is changed to
the Eq The parameter S is the constant component which is also called coherent scat-
tering [12]. This type of scattering happens when there are specular reflectors or periodically

unresolved scatterers. Under this condition and assuming having large N, the distribution



of the echo envelope would be Rice distribution [5, 13].

N-1
X = S + Z :cl-ej@i (12)

=0
When the number of N is not large enough (N < 10), the N is modeled by a negative
binomial distribution [14]. If there is no coherent component (S = 0), K-distribution can be
used to model the echo envelope. While Homodyned K-distribution should be used when the
coherent component is present [14]. The Nakagami model has also been proposed to explain
the envelope data. This model is obtained experimentally by Dr.Nakagami to describe
fading in wireless channels [I5]. The diagram in Fig. summarizes the distribution used

to describe envelope data.

1.3 Thesis statement

High-quality and real-time visualization of QUS parametric images, such as elasticity and
scatterer number density, can be clinically significant since quantitative measurements are
not subject of interpretation. Current speckle tracking methods and QUS parameter extrac-
tions are computationally expensive, and their accuracy is limited. Deep learning methods
can be employed to tackle the mentioned problems. The deep learning models are efficiently
implemented on GPUs to be fast enough to work in real-time. Furthermore, they can find
highly non-linear relationships between the inputs and their corresponding outputs. In this

thesis, we employ deep learning models to accomplish the following objectives:
1. Improve the quality of the estimation of strain images in elastography.
2. Reduce the computation time to be able to estimate strain images in real-time.

3. Improve estimation of the scatterer number density parametric image using a limited

sample size.

4. Eliminating the need of patching for estimating scatterer number density and their

organization to avoid unreliable estimates in the boundary regions.



Table 1.1: The presented chapters and their corresponding publication. The journals are in

bold.
Summary Publication
. . . IEEE Transactions on Ultrasonics, Ferroelectrics,

Chapter 2 An Optical flow CNN is modified to adapt for USE and Frequency Control, 2021

) The proposed network in Chapter 1 is altered to T T .
Chapter 3 improve the network for large displacements SPIE (Ultrasonic Imaging and Tomography), 2021
Chapter 4 A bi-directional unsupervised method IEEE Transactions on Ultrasonics, Ferroelectrics,

apte is introduced for USE and Frequency Control, 2022

A novel regularization method is proposed to

Chapter 5 . . L
apter o improve lateral displacement estimation

IEEE Transactions on Medical Imaging, 2023

Chapter 6 Infusing known operators in deep networks

Under review in medical image computing
and computer-assisted intervention (MICCAT), 2023

A path-based CNN is proposed to

IEEE Transactions on Ultrasonics, Ferroelectrics,

Chapter 7 classify the scatterer number density and Frequency Control, 2021
Chanter 8 A novel method is proposed to segment the IEEE Transactions on Ultrasonics, Ferroelectrics,
pte US envelope data without patching and Frequency Control, 2022
A novel method is introduced to estimate the . .
Chapter 9 scatterer number density without patching SPIE (Ultrasonic Imaging and Tomography), 2023
HK—dls.trlbutlon pfxrameters are estimated [EEE Tnternational Symposium on
Chapter 10 using a Bayesian neural network, Biomedical Tmaging (ISBI), 2023
which can also quantify the uncertainty &g ’
Deep autoencoder feat.ure. P 1'0:]ect1on for IEEE Transactions on Ultrasonics, Ferroelectrics
Chapter 11 accurate HK-distribution .
and Frequency Control, (under preparation)

parameter estimation

1.4 Organization of the thesis

The remaining of the thesis is organized as follows. Chapters 2 to 6 are dedicated to motion
estimation in USE. Chapters 7 to 11 are allocated to scatterer number density classification,
segmentation, and regression. The summary of the chapters provided in this thesis is given
in Table[I.1] It should be noted that we did not include some of our publications to improve

the flow and eliminate overlap between different chapters.
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Chapter 2

Displacement Estimation in
Ultrasound Elastography using
Pyramidal Convolutional Neural

Network

Ultrasound imaging is being increasingly used as an inexpensive and easy-to-use imaging
modality in numerous diagnosis and image-guided intervention applications. Ultrasound
elastography (USE) is an imaging technique that reveals viscoelastic properties of tissue,
and has been applied to many applications including breast lesion characterization [16] and
ablation monitoring [I7-H20]. USE compliments B-mode ultrasound by providing biomechan-
ical properties of the tissue [21].

Among different USE methods, free-hand palpation has gained much popularity due its
simplicity, low cost and ease-of-use. The basic idea of free-hand palpation method is that
the operator compresses the tissue by the ultrasound probe. The images before and after
compression are compared to obtain the displacement of each individual sample. This dis-
placement can be used to obtain strain map which has relative elasticity information [10, [TT].
The quality of USE mainly depends on the fidelity of the displacement estimation. Window-
based [11], 22H25] and optimization-based [26H28] methods are two main approaches for dis-



placement estimation in USE. Window-based methods try to find the displacements of each
individual sample by considering a window around the sample in pre- and post-compression
images and assuming that the displacement within the window is constant. In the next
step, a similarity metric such as normalized cross correlation (NCC) is chosen to find the
corresponding windows [11, 22]. Optimization-based methods use a regularized cost function
to find the displacements, therefore they are more robust to signal decorrelation and out of
plane motion [26], 29 30]. Global ultrasound elastography (GLUE) is a recent optimization-
based method [27] with an implementation available online at code.sonography.ai. GLUE
aims to estimate sub-pixel displacement and requires initial estimate of the displacement
which is obtained by dynamic programming (DP) [28]. The displacement estimation in USE
can also be viewed as a non-rigid registration [31] or optical flow problem [32H34].

Convolutional neural network (CNN) models have been successfully trained to perform
many applications such as classification [35] and segmentation [36]. Recently, CNN has been
used for optical flow problem [37H40)]. FlowNet is among the first attempts to extract optical
flow using deep learning architectures [38]. Before FlowNet, patch- and point-based deep
learning methods were used. These methods were only able to extract optical flow of a
point or a small patch of the images. As such, they were computationally expensive as it
was necessary to run them many times to cover the entire image. Two variants of FlowNet
were proposed [38]: FlowNetS and FlowNetC. FlowNetS has a U-shape architecture with a
contracting and an expanding path, and as such, shares many similarities with U-Net [36].
FlowNetS uses coarse outputs in the refinement section to build the finer outputs and uses
multi-scale loss function for optimization. FlowNetC is the other variant of FlowNet that
differs from FlowNetS only in the contracting part. Instead of concatenating input images
and using a U-shape network, it extracts features of each input separately and exploits
a correlation layer to merge information from features of the two images. Although they
reported better performance with FlowNetS, Mayer et al. [39] show that with better learning
schedule and more training data, FlowNetC outperforms FlowNetS.

Following the success of FlowNet, Mayer et al. [39] stack several FlowNetS and FlowNetC
to improve the accuracy of FlowNet. They show that the optimum architecture is to use

FlowNetC as the first block, followed by two FlowNet blocks. This architecture is called
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FlowNet2CSS. In order to improve the network accuracy for small displacements, another
FlowNet is used and it is trained on a database with small displacements. A fusion network
is then proposed to fuse the outputs of FlowNet (trained to provide small displacements)
and FlowNet2CSS. This network called FlowNet2 achieves outstanding performance and is
the first CNN architecture that outperforms traditional optical flow algorithms. FlowNet2
performs well but with one drawback. It has many parameters (around 160 million), which
makes training difficult and renders inference both computationally expensive and memory
exhaustive.

Designing a network with fewer parameters is an active field of research. Ranjan and
Black [40] proposed spatial pyramide network (SPynet), which has much lower number of
parameters but with an accuracy close to that of FlowNet. Recently, pyramid, warping
and cost volume network (PWC-Net) [37] was proposed, which not only has fewer number
of parameters (around 9 million), but also achieves slightly better accuracy compared to
FlowNet2. The main idea of PWC-Net is to use pyramidal structure to estimate the optical
flow in each level and warp the features by the estimated flow to reduce the search range
of the next level. This network utilizes cost volumes (similar to correlation layer) in each
pyramid level to extract correlation between features of the two images, and unlike SPynet,
warps the features of the second image instead of the image itself.

There are two important differences between USE displacement estimation and optical
flow that limits the use of optical flow CNN models: 1) Accurate subsample displacement
estimation is paramount in USE; 2) RF data is characteristically different from images in
computer vision because it has a very large frequency content. Therefore, any optical flow
method used for USE must preserve and utilize the information of high frequency RF data
for an accurate and robust displacement estimation. USE is a new and less explored deep
learning application in medical image processing. At the time of writing this paper in 2019,
only a few papers tried to apply neural networks for USE [32H34] 41, 142].

A deep learning architecture was proposed by Wu et al. [4I] to estimate displacement
and strain. A patch around the sample of interest is fed to the network and the displacement
and the strain of the patch are estimated. Gao et al. [33] further improved this network

by introducing learning-using-privileged-information (LUPI). LUPI uses displacement as the
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intermediate loss, and results in better generalization and higher accuracy compared to [41],
as well as non-deep learning approaches of DP [28] and optical flow [43]. The main drawback
of the networks is that in order to compute the strain and the displacement of an image pair,
it is required to run the network many times since this network only takes small patches as
the input. In [32]44], we used FlowNet2 for USE. But since the displacement estimates were
not precise even after fine-tuning with Field II simulations [45, 46], they were used as the
initial estimator for GLUE, replacing dynamic programming [28] with FlowNet2. In [34],
FlowNetCSS is used for USE and it was shown that using simulated images for fine-tuning

can be beneficial. The main contribution of our work in this chapter can be summarized as:

e Two networks, namely Modified Pyramid Warping and Cost volume Network (MPWC-
Net) and RFMPWC-Net are proposed for USE, both based on PWC-Net. Both of our
proposed networks substantially outperform PWC-Net in USE.

e FlowNet2 has been recently exploited for USE [32 34]. Our proposed networks are
based on PWC-Net, and have more than 10 times fewer parameters compared to
FlowNet2 while substantially outperforming it in USE. This is paramount as GPU

memory is often a critical bottleneck.

e A fine-tuning strategy and a loss function are proposed to improve the displacement

estimation and the corresponding strain quality using simulated data.

e The performance of top optical low CNNs in USE is presented and analyzed.

2.1 Methods

2.1.1 PWC-Net

The core ideas of PWC-Net are to utilize pyramid structures, cost volume and a refinement
network. This leads to substantial reduction of number of the parameters and improvement in
the accuracy. Using the pyramid structure reduces the displacement required to be estimated
in each resolution, resulting in a smaller search range. The coarser resolution finds large

displacements and removes these displacements by warping the second image features with
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Figure 2.1: PWC-Net structure. The feature extraction layer of the final pyramid is outlined
by a red box (all kernels in the box are 3 x 3). m, n, d, denote image size in axial direction,
lateral direction and number of channels of the corresponding layer, respectively.

the estimated displacements, and the finer resolution estimates the smaller displacements
from the warped image. Unlike FlowNet2 that warps the moved images, PWC-Net warps
the features of the moved images so that fewer number of parameters are required for optical
flow estimation. PWC-Net utilizes cost volume in each pyramid level. Unlike FlowNet2
that uses correlation layer (cost volume) only as the first block and reports over fitting by
using more correlation layers, PWC-Net uses cost volume in all pyramid levels, substantially
reducing the number of parameters. Finally, PWC-Net employs a refinement network which
is a post processing stage to improve the quality of the estimated optical flow in the last
pyramid level [37]. As shown in Fig. PWC-Net is composed of 4 different blocks: feature
extraction, warping and cost volume, optical flow estimation and refinement network.

To compute each pyramid output, first the input images are fed into a CNN in order to
extract features from the image pyramid, transforming it to a feature pyramid. Then the
warping block warps the second image feature map toward the first one. At the next step,
a cost volume is created using the first image feature map and the warped one. This cost

volume is then used as an input to the optical flow estimator block in order to estimate the
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flow. Finally, a refinement network is used to post-process the optical flow. The loss function

used in PWC-Net is a multi-scale loss defined in [37]:

L
L(©) =) a||Ds(x) — Dgr(x)lle) + 18], (2.1)

I=lo
where © represents the learnable parameters and D} and DL denote the estimated and
the ground truth flows at the [th level, respectively. This is a regularized loss function
where ¢ < 2 is chosen to give less penalty to outliers. Also, [|©||, is the weight decay
which encourages the learnable weights to have small magnitude in order to improve the
generalization of the network. For each output resolution, a weight is considered to contribute
(c) in the loss function. Generally, higher weights are given to coarser outputs since coarser
outputs contribute to build finer ones. The coarse outputs are employed as intermediate

losses, and the corresponding ground truths are obtained by down sampling the displacement.

2.1.2 Proposed Methods for USE

It is common to modify a well-known network for a specific task. As an example, in [47],
VGG-16 and ResNet-101 are modified for semantic segmentation by changing the dilations
and strides of the convolution layers. In this work, PWC-Net structure is modified for USE
wherein accurate subsample displacement estimation using RF data is critical.

PWC-Net contains feature extraction, cost volume and optical flow estimation layer for
each pyramid. There are 5 levels and the coarser levels contribute to the estimation of finer
resolution levels. As depicted in Fig. 2.1} the output size is 4 times smaller than the input
images. The feature extraction part of the final pyramid level (the first feature extraction
layer with red outline, shown in the box) downsamples the input by a factor of 4 using two
convolution layers with stride = 2. The downsampling of the input images is quite reasonable
for computer vision images since there is negligible information in high frequencies. This
downsampling reduces the computation complexity, improves the network robustness to
noise, and more importantly decreases the displacement and the required search range of

the cost volume. However, in USE, accurate subsample displacement estimation is essential
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and there is valuable phase information in high frequencies, rendering this downsampling
detrimental. To cope with this issue, we replace the first two convolution layers with stride =
2 with convolution layers with stride = 1. This modification provides more information
related to displacement estimation for each pyramid level, and useful features can be obtained
from high frequency RF data.

An important aspect is the input of the network. RF data, B-mode image and enve-
lope of RF data can be used for displacement estimation. Generally, RF data is the most
informative signal for estimation of fine displacements, but using RF data might result in
unreliable regions in the pyramidal structures. Envelope and B-mode only contain low fre-
quency information of RF data that can be used for approximation of the displacement
but they cannot provide accurate displacement. B-mode and envelope can provide useful
information in coarse pyramid levels while RF data contains detailed information for high
resolution and high-quality displacement estimation. Consequently, two networks are pro-
posed to exploit RF, B-mode and envelope. In both networks, the downsampling operations
(strides = 2) of the final pyramid level are removed. In the first network, we concatenate
RF data, B-mode and envelope to generate a three-channel input for the network. We name
this network modified PWC-Net (MPWC-Net). This network uses information of B-mode
and envelope in low resolutions where RF data cannot provide useful information due to
information loss and the network exploits RF data in high resolutions to have high quality
subsample displacement estimation.

In the second network, RF data, B-mode and envelope are combined in a different fashion.
Concatenated RF, B-mode and envelope is used for displacement estimation of all pyramid
levels except for the last pyramid level which has the highest resolution and for that level,
only RF data is used for displacement estimation. A feature extraction layer is added to
extract useful information of only RF data in the final pyramid level. The block diagram of
this method is depicted in Fig. 2.2l The last layer has the same structure and weights as
the feature extraction layer of the main concatenated inputs so no more training is required.
This network produces more accurate displacement compared to MPWC-Net, especially in
noisy situations because although B-mode and envelope are helpful in low pyramid levels

and remove outlier regions, they reduce the accuracy of the network in the final pyramid
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sub-network and frozen network are specified.

level. We call this network RF Modified PWC-Net (REMPWC-Net).

2.1.3 Simulation Dataset

As part of the published manuscript of this chapter, we generate a simulation dataset using
Field II [45] 46]. The dataset consists of one or two inclusions with random positions. The
Young’s modulus of the tissue is randomly set between 18 to 23 kPa, and the Young’s
modulus of the hard inclusion is randomly set to a value in the range of 40 to 60 kPa.
The average strain varies between 0.5 to 4.5 % and displacements are estimated by finite
element method (FEM) using the ABAQUS software. The cubic interpolation method is
used to obtain the displacements of the scatterers from the nodes obtained by FEM. These
scatterers are utilized to simulate ultrasound images using the Field II toolbox [45] [46] with
a center frequency of 5 MHz.

24 different phantoms with 10 different average strain values and 10 different random
scatterer realizations with different positions are simulated (for each phantom 100 images

are simulated with a total of 2400 images). 1000 image pairs are randomly sampled from



the mentioned simulated images for training. The test set contains 70 image pairs and it has
four different models. The test phantoms have inclusions that differ from training phantom
in size, location and shape with average strain values between 1 to 2.5 %. We publicly release

this dataset at data.sonography.ai.

2.1.4 Experimental Phantom and In vivo Data

Phantom data is collected at Concordia University’s PERFORM Centre by an E-Cube R12
research ultrasound machine (Alpinion, Bothell, WA, USA) with a L3-12H linear array at the
center frequency of 10 MHz and sampling frequency of 40 MHz. A tissue mimicking breast
phantom made by Zerdine (Model 059, CIRS: Tissue Simulation & Phantom Technology,
Norfolk, VA) is used which has tissue elasticity of 20 + 5kPa and contains hard inclusions
with elasticity at least twice the elasticity of the tissue.

In vivo data was obtained at Johns Hopkins Hospital from a research Antares Siemens
system using a VF 10-5 linear array with a center frequency of 6.67 MHz and a sampling
frequency of 40 MHz. Data is collected from three patients in open-surgical RF thermal
ablation for liver cancer. More experimental details of the procedure can be found in [28].

The study was approved by the institutional review board with consent of all patients.

2.1.5 Fine-Tuning of the Network

It is common to fine-tune a network that is already trained on a similar task, as opposed
to training it from scratch, a process also known as transfer learning [48, 49]. Therefore,
we use the FEM and Field II dataset to fine-tune the proposed networks, which are trained
on computer vision data. We tested many settings and fine-tuning strategies and found out
that only fine-tuning the final resolution pyramid suffices since the network already performs
well and only small improvement to the displacement prediction is required. The fine-tuned
sub-network is specified in Fig. Data augmentation is performed by randomly mirroring
in lateral direction and adding white Gaussian noise to the RF data. Subsequently, envelope
and B-mode images are obtained and used as different input channels of CNNs.

Regarding the loss function selection, due to the fact that displacement error is small,
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MSE suppresses this small error and amplifies the outlier regions. In practice, we obtained
noisier strain by MSE even though the displacement error was reduced (higher displacement
variance with lower displacement error). Therefore, we use norm 0.4 similar to FlowNet2
small displacement network [39] as the main loss function since this norm amplifies small
error and attenuates large errors obtained by outliers. Another important point is that total
variation (TV) regularization similar to [29] 50] is used to reduce the displacement variations

and improve the quality of the strain. The final loss function used for fine-tuning is:

A
loss = | Doz — Delly, + 5 146 — =, + 7 [0, (2.2)

where Dgr and Dg are the ground truth and estimated displacements, respectively and
.|, denotes norm p. ADg is the axial derivative of the predicted axial displacement, N
is the number of samples used for TV computation, and A, v are regularization weights.
To avoid underestimation bias due to regularization, we regularize by average strain (¢)
similar to [28] 29]. We fine-tune the weights of the final pyramid of REMPWC-Net using
this simulation dataset. We also fine-tune MPWC-Net, but do not report the results in this
manuscript since fine-tuned REMPWC-Net performed better than MPWC-Net. We set the
weight decay to 0.01 and A to 0.2. NVIDIA Titan V with 12 GB RAM is used for training
and the image size is 2048 x256, which enforces us to use batch size of 1 due to memory

limits. The network is fine-tuned for 50 epochs and the learning rate is set to 2e-9.

2.2 Results

In this section, the proposed networks are evaluated and compared with existing methods.
NCC [22], GLUE [27], FlowNet2 [34} [39], original PWC-Net [37] and our proposed networks
(MPWC-Net, REMPWC-Net and fine-tuned REFMPWC-Net) are evaluated for simulated
phantoms, an experimental phantom and in vivo data. GLUE is a recent method that
has already been extensively used in several challenging simulation, phantom and in vivo
applications by different research groups [42, [HIH53].

To make the comparison fair, the input of deep learning methods (PWC-Net, FlowNet,
MPWC-Net and RFMPWC-Net) is the concatenation of B-mode, RF and envelope sig-
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nals. We use the trained FlowNet2 and PWC-Net weights publicly available on the Pytorch
framework [37]. The GLUE code is publicly available, and NCC implementation is similar
to [29] where we perform 2D cubic interpolation to calculate subsample displacements. Sub-
stantially better results are expected with a multi-level stretching NCC technique. In the
simulation experiments, the ground truth displacement is known. Therefore, Normalized
Root Mean Squared Error (NRMSE) of axial displacement [54] defined in [2.3|is used as the
metric for measuring the displacement prediction accuracy. The results are reported for two

different Peak Signal to Noise Ratios (PSNR).

NRMSE(%) = \/mean((DGZ—;TD@)Q) x 100 (2.3)

I
PSNR =20 x lOglo< nzsaa:) (24)

where ¢ denotes standard deviation of noise and I,,,, is the maximum of image intensity.

Noise with normal distribution is added to the RF data in order to obtain noisy simulation

images. It should be noted that NRMSE is computed for each test phantom, then mean and
standard deviation of NRMSE are reported for ideal and noisy simulated phantoms.

Two popular metrics, contrast to noise ratio (CNR) and strain ratio (SR) are also used

to show the strain quality in the experimental and in vivo results, which are defined as [10]:

5 2(Sp — 5;)2

SR=2L, CNR =

)
5, 0p2 + 042

(2.5)

where 5; and 5, are average values of strain in the target and background regions, and
o, and o0} are variance values of strain in the target and background regions, respectively.
The selected regions in the target and background must be uniform and large enough to
be statistically meaningful. It is important to note that CNR is sensitive to mean and
variance of the regions. Whereas, SR only measures the differences in the mean value of the
selected region. SR is a proper metric to measure the bias error of the strain. Whereas,
CNR shows the combination of bias and variance error of the strain. One basic property

of elastography methods is that they estimate lower difference between the tissue and the
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Figure 2.3: Strain images of a simulated phantom with PSNR = oc.

inclusion due to bias created by different smoothing operations (continuity constraints in
GLUE, median filtering or low-pass filtering in NCC and window-based methods, and least
squares differentiation). Therefore, in real experiments with unknown ground truth, higher
difference usually translates to smaller estimation bias. If a hard inclusion is chosen as the
target, the value of SR is less than 1, where lower SR represents higher difference in the
strain of the target and background (i.e. lower numbers are generally better). In order to
compute reliable CNR and SR, large windows are selected in Fig. [6.2] (h), Fig. [2.6| (h) and
Fig. (h). The windows are divided into small overlapping patches. CNR and SR are
computed for all combination of target and background patches. The mean and standard
deviation of the computed CNRs and SRs are reported. To better visualize the results, we
show strain images, which are the least squares derivatives of the axial displacement in axial

direction.

2.2.1 Simulation Results

In this section the results of the simulated phantoms are presented for different methods.
The strain image of a simulated phantom with the displacement calculated by the evaluated

methods is depicted in Fig. for PSNR= oco. Our proposed networks perform substantially
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Table 2.1: Comparison of different methods for 70 simulated phantoms.

PSNR=co PSNR=30 dB

Method NRMSE (%) NRMSE (%)
NCC 1.88+0.51 1.93+0.53
GLUE 1.10£0.53  1.1040.53
FlowNet2 1.654£0.46  1.6840.46
PWC-Net 1.8240.74  1.8240.74
MPWC-Net 1174054 1.2840.40
RFMPWC-Net  1.1840.61 1.19£0.62
RFMPWC-Net+ft  1.1540.33  1.18+0.34

better than stock deep learning methods in both simulation setups.

It is important to note that although the complexity of FlowNet2 is substantially more
than the four other networks (both in training and inference), its results are substantially
worse than our proposed networks. By closely inspecting the FlowNet2 results, it is evident
that there is a substantial underestimation of strain in hard inclusions, which are not as dark
as our proposed methods.

Another important point is that all networks except REMPWC-Net+{t are trained on
computer vision images and REMPWC-Net-+ft is fine-tuned by our dataset. Visually, the re-
sults of REMPWC-Net+ft and RFMPWC-Net are close but REMPWC-Net+ft is smoother.
The quantitative results are given in Table for 70 simulated phantoms. According to
these results, the results of RFMPWC-Net are close to GLUE even without fine-tuning
on ultrasound images, which shows the potential of the networks solely trained on com-
puter vision images. Our fine-tuned variant of REMPWC-Net performs slightly better than
RFMPWC-Net. It is important to note that GLUE results remain very similar for no-noise
and noisy conditions which indicates the robustness of GLUE due to optimizing all samples
simultaneously.

RFMPWC-Net is more robust to noise compared to MPWC-Net which NRMSE increases
0.09 % in noisy conditions. In order to show the effect of fine-tuning, the strain of one line us-
ing REMPWC-Net and RFMPWC-Net+{t is depicted in Fig. 2.4l As shown, the fine-tuned
RFMPWC-Net result (red) has less variations and it is closer to ground truth compared
to REMPWC-Net (blue), which indicates that fine-tuning improves the displacement esti-

mation accuracy. However, the improvements obtained by modifying the structure is more
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Figure 2.4: One line of strain using a small least square window. REFMPWC-Net (blue),
RFMPWC-Net+ft (red) and ground truth (black).

Table 2.2: SR and CNR of the experimental phantom.

Method CNR SR
NCC 10.65+£2.69  0.399+0.04
GLUE 26.75+7.86  0.459+0.02

FlowNet2 20.1943.70 0.48+0.02
PWC-Net 20.284+5.82 0.37640.05
MPWC-Net 17.1244.59  0.425+0.03
RFMPWC-Net 27.06£4.28  0.41040.03
RFMPWC-Net+ft 29.15+£5.77 0.38240.05

tangible (compare Fig. [2.3(d), (e) and (f)) than fine-tuning. The main reason is that the
networks trained on computer vision images are already performing well in mapping the in-
puts to the displacement. The modification of the structure brings substantial improvements

to the network accuracy by providing more information to the network.

2.2.2 Experimental Phantom Results

CNR and SR defined in Eq are used as quantitative metrics and the visual results are
demonstrated in Fig. [6.2l NCC and FlowNet2 fail to obtain acceptable strain and GLUE
produces smooth but underestimated strain, which is due to regularization. As such, GLUE
result does not have as low SR as the deep learning methods. Nevertheless, GLUE has

less variance, which makes the CNR very close to our proposed methods. The quantitative
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Figure 2.5: Strain images of the experimental phantom. The windows used for CNR and SR
computation are highlighted in the B-mode image (h). FlowNet2 (c) has high heterogeneity
and fails to obtain smooth and high quality strain and the proposed networks have higher
contrast compared to GLUE (b).

results in Table confirm the visual assessments. GLUE has good CNR (26.75) but
poor SR (0.459), whereas PWC-Net has the best SR (0.376) with a moderate CNR (20.28).
RFMPWC-Net has higher CNR and better SR than MPWC-Net. REMPWC-Net has higher
CNR than GLUE (27.06 compared to 26.75) and better SR (0.41 compared to 0.459) with-
out using any ultrasound images for training, which indicates the strength of the proposed
CNN networks. REMPWC-net+ft produces the most appealing result among deep learning
methods and outperforms all evaluated methods in terms of CNR (29.15) and has good SR
(0.382). This shows that fine-tuning of trained networks by ultrasound images has a positive

impact on the performance of the network.

2.2.3 In vivo Results

Considering Fig. GLUE estimates low-variance and high quality but blurry strain. The
strain estimated by FlowNet2 is too smooth and many details are lost. PWC-Net also fails to

estimate an acceptable strain. MPWC-Net has good strain quality but with a few artifacts,
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Figure 2.6: In vivo strain results of the liver of patient 1 before ablation. The tumors are
marked with arrows and the windows used for CNR and SR computation are highlighted in
the B-mode image (h).

and REFEMPWC-Net generates the best. RFEMPWC-Net+f{t further improves strain quality
compared to RFMPWC-Net. Regarding Fig. the GLUE result is acceptable but it is
over smooth especially in in the top right of image. NCC, FlowNet2 and PWC-Net all fail
to estimate strain, and MPWC-Net obtains a high-quality strain compared to PWC-Net.
This indicates that our changes in the structure of PWC-Net have substantial impact on
the network’s performance. REMPWC-Net has better strain compared to MPWC-Net and
most of artifacts are removed in the RFMPWC-Net result. REMPWC-Net+ft produces a

Table 2.3: Results of In wvivo data, patient 1 (Fig. and patient 2 (Fig. 2.7). GLUE
has higher CNR for tumor and REMPWC-Net results in higher CNR for the the vein. The
proposed networks perform comparable to GLUE for in vivo data.

24

Patient 1 Patient 2 (tumor) Patient 2 (vein)

Method CNR SR CNR SR CNR %
NCC 9.08+3.22 0.29+0.07 3.60+1.41 0.51+£0.09  11.844+6.66 0.590+0.14
GLUE 19.36+4.51 0.389+0.06 15.11£5.30 0.44140.02 11.54+£6.13  0.795%0.07

FlowNet2 12.86+£0.46 0.463+0.049  9.40+£2.04  0.415%0.05 fail fail
PWC-Net 10.7944.00  0.451+£0.09 590+ 2.45 0.5874+0.09  9.19+4.34  0.835£0.07
MPWC-Net 12.11£3.75  0.376+0.07 11.66+ 2.2 0.3384+0.03 11.98+£5.69 0.61040.06
RFMPWC-Net 13.55+4.34  0.396£0.06  12.484+3.23 0.4094+0.04 19.88+9.41 0.590=£0.05
RFMPWC-Net+ft  16.63+£5.53  0.380£0.05 15.58+2.58 0.395+0.04 12.52£3.71  0.601+£0.08
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Figure 2.7: In wvivo strain results of the liver of patient 2 before ablation. The tumor and
the vein are marked with arrows and the windows used for CNR and SR computation are
highlighted in the B-mode image (h). the GLUE (b) obtains smooth but blurry strain
especially close to the vein on the top right of the image. Fine-tuning reduces the artifacts
presented in REMPWC-Net (compare (f) and (g)).

very high-quality strain image and further removes the artifacts.

Considering the quantitative results of tumor presented in the first two columns of Table
2.3 GLUE obtains the high CNR in both patients (19.36 and 15.11) but the SR is poor (0.389
and 0.441). NCC and PWC-Net have poor CNR and FlowNet2 has higher CNR compared
to them but visually the strain images are not acceptable. MPWC-Net has poor CNR (12.11
and 11.66) but produces the best SR (0.376 and 0.338). This implies that MPWC-Net has
high variance in estimation which leads to low CNR but it has low bias in estimation which
results in low SR. RFMPWC-Net outperforms MPWC-Net in terms of CNR with slightly
worse SR. Fine-tuning improves the CNR with approximately similar SR. REMPWC-Net-+ft
produces CNR values very close or even better than GLUE (16.63 and 15.58) with better
SR (0.388 and 0.399).

By inspecting the results of the soft target (the vein in up right corner of Fig (h)),
it is inferred that our 3 networks substantially outperform GLUE in terms of both CNR
and SR. REFMPWC-Net has the highest CNR (19.88) by a large margin, which is 8.34 dB
and 7.36 dB better than GLUE and REFMPWC-Net+ft, respectively. The main reason that
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RFMPWC-Net performs better without fine-tuning is that our database only contains hard

inclusions and fine-tuning by this database deteriorates the cases with soft inclusions such
1

as veins. For the vein, SR is reported in order to be consistent with other results since the

SR value for veins is more than 1. Our networks have the best SR among the compared

methods and they have substantially better SR compared to GLUE.

2.2.4 Effect of sampling and center frequencies

The sampling and the center frequencies have critical role in displacement estimation accu-
racy. In the simulation results, the center and sampling frequency are 5 MHz and 50 MHz,
respectively. We simulate a phantom with two different center and sampling frequencies.
RFMPWC-Net, FlowNet2 and PWC-Net are tested for the center frequencies 5 and 10 MHz
and the sampling frequencies 25 and 50 MHz. As shown in Fig. strain obtained by
RFMPWCNet (a, d) are high quality and consistent compared to FlowNet2 and PWC-Net.
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Figure 2.8: Simulation results of REMPWC-Net, FlowNet2 and PWC-Net for different center
and sampling frequencies. (Network, Center frequency and Sampling frequency). REMPWC-
Net quality remains well when sampling frequency decreased (a) or center frequency increased
(d) in comparison to the other methods.
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2.3 Discussions

In this chapter, two networks based on PWC-Net are proposed for USE. Generally, USE
requires high accuracy subsample displacement estimation, which renders efficient use of
high frequency information in RF data critical. This is a challenge as stock optical flow
networks are not designed to handle RF data.

The PWC-Net is modified for USE displacement estimation by: 1) removing downsam-
pling of the first feature extraction layer (this layer is connected to the input directly) to
prevent loss of high frequency information; and 2) concatenating RF data, envelope and B-
mode images to feed to the network. by doing this, the low-resolution pyramid levels exploit
low-frequency B-mode and envelope information and high-resolution pyramid levels use RF
data to obtain accurate displacement.

The main drawback of MPWC-Net is that B-mode and envelope contribute to the final
resolution displacement estimation. B-mode and envelope are beneficial in low pyramid
levels where RF data cannot be used, but they result in less accurate estimated displacement
compared to RF data. Hence, in noisy conditions, MPWC results degrade considerably (as
given in Table . RFMPWC-Net is proposed to resolve this problem by adding a separate
sub-network to extract and use only RF data for the final pyramid level.

FlowNet2 network, which is extensively used by the researchers, obtains under-estimated
strain and fails for in vivo data. Although FlowNet2 has 18 times more learning parameters
than PWC-Net and achieves high accuracy in computer vision databases such as MPI-Sintel
[39], it performs poorly on ultrasound images. This emphasizes that less complex pyramidal
and warping structure is more suitable for ultrasound data.

Fine-tuning is another avenue that is investigated in this chapter, where the networks are
tuned by simulated ultrasound images. In the loss function of fine-tuning, TV regularization
is used to reduce the variance of displacement estimation. According to our results, fine-
tuning improves the strain quality both qualitatively and quantitatively. All ultrasound
simulation training data for fine-tuning the networks contain harder inclusions than the
background. Nevertheless, the fine-tuned network performed well in a variety of in wvivo

experiments with different kinds of tissue. In the future, we plan to add data with soft
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inclusions in our training database and expect this to further improve the results. These
new simulations will also strengthen the online database that we released.

Another important point about fine-tuning is that we only consider negative strain (post-
compression image is the second image) for fine-tuning. The network can be fine-tuned with
both positive and negative strain to be used for cases which post-compression image is not
determined.

It is also worth mentioning that our proposed networks are very close to GLUE in terms
of CNR and have better SR. By comparing the quantitative results presented in Table
and [2.3] it can be seen that GLUE has higher CNR than our proposed methods in the
tumor part of patient 1. However, GLUE has lower CNR than the fine-tuned network for
the experimental phantom data and data of patient 2. Another interesting conclusion is that
RFMPWC-Net outperforms GLUE and fine-tuned network by a large margin for the vein
(19.88 compared to 11.52 and 12.54). The reason for outperforming the fine-tuned network
can be explained by the fact that we performed transfer learning using simulation data that
only has hard inclusions.

In terms of SR, our proposed methods are the best among compared methods. MPWC-
Net has the best SR but moderate CNR. In contrast, REMPWC-Net and the fine-tuned
variant of the network have higher CNR and slightly worse SR compared to MPWC-Net.
The proposed methods perform similar to recent elastography methods without any need
for parameter tuning. The proposed architectures have very small memory footprints and

therefore can be implemented on inexpensive GPUs.

2.4 Summary

This chapter presents a deep learning approach for displacement estimation of the USE. The
structure of PWC-Net is modified for our application. Visual and quantitative assessments
of simulated phantoms, experimental phantom and in vivo data confirm that the proposed
methods are suitable for USE and can compete with current state-of-the-art elastography

methods.
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Chapter 3

MPWC-Net+-+: Evolution of Optical
Flow Pyramidal Convolutional Neural

Network for Ultrasound Elastography

3.1 Introduction

The architecture of optical flow CNNs are optimized for computer vision images and there is
a large domain gap between computer vision images and USE [55] [56]. To reduce the domain
gap, many researchers tried to fine-tune the network by ultrasound images [34, [57]. However,
their improvements were not significant. In Chapter 2 [55], we showed that the architecture
has a larger impact compared to simple fine-tuning. We proposed that by modifying the
structure of the network, substantial improvements can be achieved. We modified PWC-Net
by removing the strides to allow the network to use RF data. We named our architecture as
MPWC-Net.

MPWC-Net modification is straightforward and does not require re-training the network.
However, this simplicity is not without any cost. In this chapter, we introduce these problems
and try to mitigate them by some additional modifications. We named the new modified
network MPWC-Net++, which is based on MPWC-Net with additional changes to facilitate
use of optical low CNNs in USE.
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3.1.1 MPWC-Net

In USE, RF data which has high frequency content is required for accurate displacement
estimation. However, the input images are downsampled by a factor of 4 at the first feature
extraction blocks in PWC-Net. This leads to a loss of information and degrades the strain
image quality. In Chapter 2 [55], we proposed to remove the first two downsampling by
replacing stride=2 with stride=1 such that reliable feature can be extracted by the feature
extractor blocks. Furthermore, we proposed to use B-mode and envelope alongside RF data
to avoid unreliable displacement estimation in coarse levels where RF data does not provide

reliable information.

Limitations of MPWC-Net

In PWC-Net, each pyramid level is responsible to estimate the displacement in its range and
then remove this displacement by warping the feature map of the second image toward the
first one. This facilitates the task of the following pyramid level since it requires only to
estimate the residual displacement. This pyramidal structure also allows to limit the search
range of the cost volumes to further reduce the computation complexity. Let ¢, M and S be
the cost volume search range, the number of pyramid levels and rate of downsampling for
the first pyramid level, respectively. The higher bound of the maximum displacement (D,,)

that PWC-Net detects is: et
D, =) 2x8xc (3.1)

i=0

In the original PWC-Net, ¢ =4, M =5 and S = 4 which results in the maximum displace-
ment of 496. In MPWC-Net, S = 1 hence the higher bound of the maximum displacement
would be 124 pixels which limits the application of MPWC-Net to small displacements. This
is a limiting factor especially or large images and unsupervised training where the ground
truth and maximum displacement is unknown [56].

The optical flow networks are mostly trained on Flyingchair dataset and fine-tuned on
other available datasets such as Sintel [37]. Flyingchair is a synthetic dataset produced for
training the networks which its displacement range and distribution mimic Sintel dataset.

The maximum displacement of Sintel is around 450, and the histogram is shown in Fig. 3.1}
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We can see that only a few training data have displacements more than 310 and most of
maximum displacements are below 200. The network only sees very limited training data
that have displacements close to the higher bounds of PWC-Net (496 pixels). This means
that in large displacements, the network cannot perform as well as smaller displacements.
This is another factor that further limits the displacement range. The practical displacement

range of PWC-Net and MPWC-Net are lower than 496 and 126, respectively.
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Figure 3.1: Histogram of maximum displacement and average displacement of Sintel training
dataset.

Another limiting factor is the input image size. In original PWC-Net, the image is down-
sampled by 4 in the first two feature extraction convolution blocks. Whereas, in MPWC-Net
the is no downsamplping; therefore, there are 16 times more pixels in train and inference.
The much higher image and feature size results in significant reduction of speed in both

training and test. The inference times are reported in section [3.2.2]

3.1.2 MPWC-Net++

In order to solve the aforementioned problems, we proposed to modify MPWC-Net struc-
ture. We used PWC-Net-irr instead of original PWC-Net structure to reduce the number of
learning weights.

We also increased the maximum displacement range by changing values of ¢ and S. Differ-

ent values of these parameters are given in Table [3.1] The new structure must have a search
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Table 3.1: Maximum search range (D,,) for different ¢ and S.

Model c S D,,
PWC-Net 4 4 496
MPWC-Net 4 1 126
case 1 4 2 252
case 2 5 1 155
case 3 (MPWC-Net++) 5 2 310
case 4 6 2 372

range close to the Sintel and Flyingchair since it would be trained by these datasets and if it
cannot estimate large displacement values, the incorrect loss would be propagated during the
training. As shown in Table [3.1] case 3 has a good balance between maximum displacement
and the downsampling factor and can track a large portion of large displacements.

According to the selected value of S, we needed to decrease the S from 4 to 2. One of
the first two feature extraction blocks needed to have a stride of 2 and the other had the
stride of 1 (S : 2 x 1 = 2). We selected the first feature extraction layer and the second one
to have stride of 2 and 1, receptively. By this setting, smaller image size is fed to the second
feature extraction layer and the computation time is improved. While, this leads to loss of
information especially in axial direction which has a high frequency content. To avoid this
loss of information, we also changed the kernel size of first feature extraction layer from 3 x 3
to 5 x 3 to capture more information in axial direction.

Another modification is that we replaced the input B-mode image with the imaginary

part of the RF data which has been shown to improve the performance.

3.2 Results

3.2.1 Training and Results on Validation Set

Due to the change of parameters, we needed to train MPWC-Net++ from scratch. We fol-
lowed the same training schedule of PWC-Net-irr [58]. The decrease of stride (S) and having

higher search range (¢) had substantial impact on training time; therefore, we decreased the
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Table 3.2: The validation EPE of the networks trained on FlyingChairOcc.; FlowNet2 and
PWC-Net are reported from [58].

Network EPE of FlyingChairOcc
FlowNet2 2.39
PWC-Net 1.89
FlowNet2 (irr) 2.22
PWC-Net (irr) 1.83
MPWC-Net++ (irr) 1.51

number of epochs from 220 to 180. The network was trained using FlyingChairsOcc dataset
[58]. The dataset is composed of 22870 image pairs with forward and backward ground
truth flows. The displacement distribution is the same as original FlyingChair dataset.
The network was trained for 10 days (due to larger search range and reduced stride it
took longer time than PWC-Net-irr). We publicly available the trained network weights at
data.sonography.ai.

We also investigated the error on the validation set of the mentioned dataset. We used

end point error (EPE) which is defined as:

EPE = (T, — 0, + (V, - V,)? (32)

where ﬁ; , Uy, f‘}; , Vi denote estimated and ground truth displacement in axial and lateral,
receptively. The EPE of validation set of FlyingChairsOcc for different architecture are
given in Table . Using the blocks iteratively (irr) results in a modest improvement in
both FlowNet2 (2.22 vs 2.39) and PWC-Net (1.83 vs 1.89). MPWC-Net++ results in a
substantial improvements compared to PWC-Net with only a few small modifications. After
investigating the results, we found the the main reason of the improvement is that the stride
(S) is reduced from 4 to 2. This leads to larger input images in each pyramid level and more

accurate features can be extracted from the images even for computer vision images.
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USE Results

The problem with MPWC-Net is that it has high inference time due to large size of image
and cannot handle large displacements. We presents simulation and experimental phantom

results for large and small displacements.

Simulation Results

A simulation data with displacement range of 0 to -42 samples is chosen to compare the
methods. The results are shown in Fig[3.2l We can see that MPWC-Net has outlier regions
where the displacement is high. It should be noted that this network fails in displacement
values much lower than the computed higher bound (it fails around 35 which is much lower
than 126). PWC-Net does not fail but the strain image quality is low due to a limited use
of the high frequency information. MPWC-Net++ results in the strain image as good as
MPWC-Net without any outlier region.

. PWC-Net (irr) MPWC-Net {irr) MPWC-Met++ (irr) Ground truth
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Figure 3.2: Axial displacement (top) and strain images (bottom) of MPWC-Net, PWC-Net,
MPWC-Net++ and ground truth.
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Figure 3.3: Axial displacement (top) and strain images (bottom) of PWC-Net, MPWC-Net,
MPWC-Net++ and OVERWIND. Background 1 (B1), background 2 (B2) and the target
regions are specified by black windows. The 3D view of the region highlighted by the green
window is illustrated in Fig. (3.4

Experimental Phantom Results

PWC-Net, MPWC-Net and MPWC-Net++ are compared with OVERWIND which is con-
sidered as the state-of-the-art method in USE. OVERWIND is an optimization-based method
that has been proposed by Mirzaei et al [29]. The results are shown in Fig. As can be
seen from the figure, PWC-Net results in low-quality strain. MPWC-Net produces higher
quality strain image compared to PWC-Net but it fails when the displacement is high (bot-
ton of the phantom). MPWC-Net++ produces high quality strain without failure in regions
where the displacement is high. The strain quality of MPWC-Net++ is also comparable
with OVERWIND.

The quantitative results are reported in Table [3.3] The regions for computation of CNR
and SR are highlighted in Fig. (black windows). We used smaller windows inside the

specified regions to compute CNR and SR. The mean and standard deviation are reported.
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Figure 3.4: 3D side view of the strain of the region specified in the Fig. [3.3

Table 3.3: Quantitative results of the experimental phantom comparing target with
background 1 and background 2: mean+standard deviation.

Method Background 1 Background 2
CNR SR CNR SR

OVERWIND  25.21+4.82 0.413+0.019 12.86+1.85 0.639£0.022
PWC-Net 12.67£3.14  0.418+0.021  7.26+£2.60  0.624£0.074
MPWC-Net 20.59£3.46 0.392£0.023  8.63£4.17  0.526+0.209
MPWC-Net++  24.99£2.67 0.425£0.014 14.52+2.72 0.632=£ 0.029

The CNR and SR are reported for one target region against two background regions. OVER-
WIND outperforms other methods in terms of CNR for backgroundl (comparing the target
region with the background 1). MPWC-Net++ results in a CNR close to OVERWIND for
background 1. Whereas, MPWC-Net++ has the highest CNR for background 2 (compar-
ing the target region with the background 2). It is higher than OVERWIND by 1.66 db
and it is higher than other networks by a large margin. It is evident from the results that

MPWC-Net++ not only fixes the low displacement range of MPWC-Net, but also improves

the CNR and the overall quality of the strain image considerably.

Regarding SR, the lower value indicates lower bias. MPWC-Net has the lowest SR, value

among the compared methods which represents that it has the lowest bias error. MPWC-
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Net++ has SR values slightly higher than MPWC-Net but the SR values are very close to
MPWC-Net.

The 3D view of the region specified in Fig. by the green window is shown in Fig. [3.4]
It can be seen from the figure that OVERWIND and MPWC-Net++ have low heterogeneity

in the specified region.

Table 3.4: Inference time of different architectures in ms.

Method Time in ms

PWC-Net 42.28
MPWC-Net 1409.40
MPWC-Net++ 495.20

3.2.2 Inference Time

Inference time is another important factor that needs to be evaluated. The inference time
is crucial for real-time applications. We excluded OVERWIND due to the fact that it runs
on CPU, whereas the other methods run on GPU. The inference times of single image pair
of size 2048 x 256 are reported in Table [3.4 MPWC-Net++ is three times faster than
MPWC-Net due to the fact that S = 2 instead of S = 1.

3.3 Summary

In this chapter, we presented a modification to MPWC-Net based on physics of ultrasound
data and distribution of the computer vision training data. These modifications mitigated
the limitations of MPWC-Net in estimating large displacements in USE and improved the

inference time which is crucial for real-time applications such as image-guided surgery.
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Chapter 4

Bi-Directional Semi-Supervised
Training of Convolutional Neural
Networks for

Ultrasound Elastography

Displacement Estimation

4.1 Introduction

Deep learning-based methods, which have been recently proposed for USE, employ CNNs
to obtain the displacement map. The first few works used the optical flow CNNs as black
boxes for USE [34] or as the initial estimator for optimization-based methods instead of DP
[32, [44]. However, the computer vision images and US data are vastly different and the CNN
architectures used for the former are not optimized for high-frequency RF data. Motivated
to address this issue, we modified the well-known PWC-Net architecture [37] to be adapted
to USE, considering the physics of RF data [55] (Chapter 2). We called the network modified
PWC-Net (MPWC-Net) and obtained substantially more accurate displacement compared to

PWC-Net. In another work, we proposed MPWC-Net++ which was an improved version of
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MPWC-Net with a higher search range and more accurate output displacement [59] (Chapter
3). These methods require a GPU to run efficiently, and can perform high frame-rate USE
given the rapidly increasing computational power of GPUs. However, their main drawback
is that they have a larger variance compared to conventional methods due to the fact that
they are not regularized in contrast to conventional methods. Consequently, their strain
images have lower overall quality compared to conventional methods [59].

Unsupervised training was another avenue that has been followed by the researchers.
Delaunay et al. trained a U-Net using real US data [60] and developed a recurrent network
to deal with a sequence of frames [61]. In [62], we used a light network, referred to as
LiteFlowNet [63] and trained it in a semi-supervised fashion. We first used computer vision
datasets with known ground truths to train the network using supervised techniques. In the
next step, real US data was used to fine-tune the network using an unsupervised method.
We substantially improved the strain image quality by using this technique without requiring
a large amount of training data.

In this chapter, we follow the semi-supervised training approach. The overview of the
method is depicted in Fig. [I1.2l We first employ computer vision datasets to train the
network in a supervised fashion. We use MPWC-Net++, which has shown high performance
in USE. We then fine-tune the network by real US data, and extend our idea of semi-
supervised method by proposing bi-directional unsupervised fine-tuning. We change the
structure of MPWC-Net++ to estimate both forward and backward displacements, which
is more efficient than running the network two times to estimate them. Consistency loss is
also proposed which is obtained by comparing forward and backward strains. Furthermore,
we shed light on the choice of weights for regularization by relating some of them to others.
We demonstrate the high-performance of the proposed methods using experimental phantom

and in vivo data.
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Figure 4.1: Overview of the proposed semi-supervised training method. The network is
first trained using computer vision datasets by supervised methods (the block on top). The
network is fine-tuned by real US data using the proposed unsupervised training method
(bottom block). The network structure is altered to be able to estimate both forward and
backward flows. The layers connected by the dashed lines share weights. The cost volume
and optical flow estimation blocks with shared weights are used to estimate both forward
and backward flows.

4.2 Material and Method

4.2.1 Deep Supervised CNNs

In this section, several CNNs used in USE displacement estimation are explained.

PWC-Net

Sun et al. proposed using cost volume and warping of the features for optical flow estima-
tion [37]. They achieved state-of-the-art performance in different computer vision datasets.
PWC-Net used a pyramidal structure, in which the optical flow was estimated in different
resolution levels. At each pyramid level, the features of the second image were warped by

the estimated flow of the previous pyramid to reduce the flow in the next pyramid level. In
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the next step, cost volume was employed to compare features of the fixed and warped moved
images. In the last step, the optical low was estimated and used in the next pyramid. Using
pyramid structure resulted in the reduction of the number of learnable weights and improved
the performance of optical flow estimation [37]. Recently, a variant of PWC-Net called Tt-
erative Residual Refinement PWC-Net (IRR-PWC-Net) was proposed [58]. This network
reduced the number of learnable weights even further by using the optical flow estimation

block iteratively.

MPWC-Net

PWC-Net was proposed for computer vision images originally, and was not well suited to the
high-frequency RF data. We modified the structure of PWC-Net and proposed MPWC-Net
for. We removed the strides of the first feature extraction layer to preserve high-frequency
information in RF data. In order to avoid failure of the network in low pyramid levels,
where RF data does not have enough information due to downsampling, we used envelope
and B-mode images as additional input channels [55]. We obtained competitive performance
with conventional optimization-based methods. The code and the simulation dataset for

fine-tuning are available online at code.sonography.ai.

MPWC-Net++

MPWC-Net had a low displacement range since strides of the first feature extraction layer
were removed. In addition, we showed that the real displacement range is much lower than
the theoretical one since only a small quantity of training data have high displacement
ranges. Therefore, the network is not trained enough to deal well with large displacements,
and the predicted flows are noisy in this condition. To address these problems, instead
of removing both strides, we only removed one of them and kept the other one. Also,
the search range of the cost volume was increased from 4 to 5 in each pyramid level. By
doing these modifications, the network had higher search range and could work better for
large displacements. Furthermore, we used IRR-PWC-Net [58] since it has a more efficient
structure. Although we applied these modifications to improve the performance in the USE

application, they also led to an improvement even for the computer vision dataset. [59).
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However, the improvements came with costs. Due to modifying the network structure, we
had to train the network from scratch (MPWC-Net did not require training from scratch).
The training itself was slower compared to the original PWC-Net for two reasons: first,
having larger feature maps after removing strides; second, increasing the cost volume search
range. The MPWC-Net++ was trained from scratch using computer vision images while
LiteFlowNet used in [56] was pre-trained and we only fine-tuned it using real US data.
Training from scratch takes 840 hours using an NVIDIA Tesla P6 GPU, substantially more
time compared to the fine-tuning since the network is randomly initialized and a large dataset
(for MPWC-Net++ 22000 pairs) is employed to train the network. The network weights are

publicly available online at code.sonography.ai.

4.2.2 Semi-supervised Method

Simulation data does not model non-linear or multiple scattering effects present in real US
data [56], 60]. Therefore, we proposed to use real US data for fine-tuning. This method was
semi-supervised since we first used a pre-trained network trained on computer vision images
by supervised methods. In the next step, real US data were used to fine-tune the network.

The moved image was warped with the forward flow and compared with the first image
which is called photometric loss. This loss alone resulted in noisy displacements; therefore,
inspired by the physics of RF data, we proposed using the first second-order derivatives of
displacement in the axial and lateral direction as the regularization.

In order to preserve the information of high-frequency RF data, we were not allowed to
downsample images and had to use large image sizes during unsupervised fine-tuning which
is challenging due to GPU memory limitations. We used a light network (LiteFlowNet [63])
and gradient checkpointing [64] to be able to train the network on our GPU (Nvidia TITAN
V with 12 GB of RAM). Furthermore, we limited the training to only forward flow and the

backward flow was used to detect occluded regions.
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4.2.3 Proposed Method

Let I, I, € R®>*W>H denote the fixed and moved images having 3 channels with width W and
height H, W/ € RZWXH and W € R*>*W>H denote forward flow (I; — I5) and backward
flow (Iy — I), respectively. The data loss function for unsupervised fine-tuning can be
defined as [59]:

lossq = ®(1; — fz)wxw (4.1)

where I, is the second image warped by the W/ and unlike [56], a window of size (w x w)
around the sample of interest is selected to compute the loss to reduce the noise caused by
interpolation step of warping operation (here we use a 3 x 3 window). ® is the Charbonnier
loss that has been widely used in unsupervised optical flow training [65] and defined in Eq
4.2| [66].

O(x) = |(z* +€)°x (4.2)

where |.|; denotes the L1 norm and « can be altered to give different importance to x.
We used oo = 0.5 for the data loss (would be L1 norm) and o = 0.2 for smoothness and
consistency loss to emphasize small values of x. It should be mentioned that inspired by
[62], RF data, the envelope and imaginary part of Hilbert transform of RF data are utilized
as 3 separate channels of input images.

In order to have a smooth displacement field, the first-order derivatives of the displace-

ments in axial and lateral directions are used for regularization:

ow/S 0 ow/S
losst = A\ @ (5% — < WS >) + Xp® (—%)+
ow/ ow/ '
MA@ (1) + A ® 1
21P ( 94 )+ A2 ® ( ol )
where W/, I/Vlf , %, é and A denote axial, lateral displacements, the derivative in axial and

lateral directions and their corresponding weights, respectively. The axial derivative of the
axial displacement is subtracted by its mean (< . > denotes the mean value) to reduce the
bias of the regularization similar to [29].

The second-order derivatives of the displacements have been found useful for USE [56,

60, [67)]. Hence, they can be used to regularize the displacements:
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Unlike [61] that used the first and second-order derivatives of only axial displacement, we
used the first and second-order derivatives of both axial and lateral displacement in both
directions. The second-order derivatives do not introduce bias but they require higher weights

to be as effective as the first-order derivatives.

Hyper-Parameter Tuning

It can be seen that there are eight hyper parameters that we need to set before training the
network. In our recent work [56], we set them empirically, while in this chapter, we tried
to reduce the number of hyper-parameters by relating some of the them to others using US
principles.

The distance between two adjacent samples in the axial and lateral direction is also vastly
different since the sampling frequencies and the number of samples is widely dissimilar. The
distance between two adjacent samples in the axial direction can be obtained by c¢/(2fs),
where ¢ denotes sound speed and f, is the sampling frequency. A rough approximation of
the lateral distance between two samples would be the distance between two adjacent A-lines
which is much larger than the axial distance in a typical US image. Therefore, A5 and Ao
must be several times smaller than A\;; and Ao;.

As noted in [67], the second-order derivatives are much smaller than the first-order ones.
Therefore, to be as effective as the first-order derivatives, their weight should be several
times larger than the first-order derivatives. We set this weight to be A3; = 5A1;. We also
set the lateral derivative weights similar to the first-order derivatives (Ay; = SA31). Finally,

the smoothness regularizer can be written as:
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where 8 depends on the ratio of the sampling frequency in axial and lateral directions. Setting
the weights does not require an exact calculation of the sampling frequencies and should be
less than 1; we set this hyper parameter to 0.1. Finally, for incompressible materials, the
Poisson’s ratio is approximately 0.5 [68], which means that the strain in the lateral direction
is half of the axial one. Therefore, \y; can be substituted by 0.5A;. It should be noted that
the explained method to tune the weights of the regularizers is only a rough estimate of the
optimal values; therefore, the training is not too sensitive to the variations of these weights

and even changing the weights by as much as 100% yields similar results.

Bi-directional Strain Consistency

In this chapter, inspired by recent unsupervised methods in optical flow estimation [69], we
proposed to utilize forward and backward consistency in addition to the data and smoothness
losses. In unsupervised optical flow methods, the difference between forward and backward
displacement was used for consistency loss [69].

Strain images are often showed in USE as a surrogate of the elastic modulus. Therefore,
it would be useful to utilize the derivatives of the displacements for the consistency loss.
Assuming a uniform tissue, the estimated forward and backward axial strain can be written

as:
fF_ 2
g =g+ /\/(,u, o )
! (4.6)
gb = &gt +N<_:U’7 02)
where we assumed that the strain true value is €, and the error is modeled by a normal

distribution with the bias and variance of ;1 and o2, respectively. The forward and backward

consistency loss can be defined as:
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loss, = ®(f +&Y) (4.7)

Substituting Eq [4.6] into Eq [4.7], yields:
loss, = ®(N(0, 02/2)) (4.8)

This equation indicates that minimizing the loss., results in reducing the variance in esti-
mation of forward and backward strains. Similar to the smoothness loss (lossy), the strain
in both axial and lateral directions were employed which can be written as:

ow/ N ow?
Oa Oa

ow;/ N anb)
ol dl

loss. =@ ( )+ 0.58P ( (4.9)

where we used the same weights of the smoothness loss.
By using the loss functions defined in Eq [5.1)[5.3] and [£.9] the total loss function can be
written as:

loss = lossq + Nosss + yloss,. (4.10)

Thanks to reducing the number of hyper-parameters, only A and v should be tuned for
the training which can be done based on the training data. Too large values of A\ and ~
lead to a blurry strain image, while too small values result in noisy strain images. We set
these hyper-parameters (A = 0.03 and v = 0.05) by visually inspecting the strain images
of the validation set after training with different values of A and . It is worth mentioning
that similar data and smoothness loss can be used for the backward flow. However, the
consistency loss that we added has a similar behavior since it tries to make the backward
strain close to the inverse of the forward one.

Adding the consistency loss demands high memory since both forward and backward
flows are used for backpropagation. We utilized an NVIDIA A100 GPU with 40 GB of RAM
to be able to train using the proposed loss function and simultaneously avoid downsampling
to preserve RF data high frequency information. Since training this network might be
infeasible for some researchers, we will make the network’s weights publicly available online

at lcode.sonography.ai after acceptance of this manuscript.
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4.2.4 Data Collection

Experimental Phantom

We used a tissue-mimicking breast phantom made from Zerdine (Model 059, CIRS: Tissue
Simulation & Phantom Technology, Norfolk, VA) for data collection. The phantom con-
tained a number of hard inclusions. The background has elastic modulus of 20 kPa and the
inclusions have at least twice elastic modulus of the background. This phantom was utilized
to obtain training and test data. We made sure that different parts of the phantom were
imaged for training and testing to avoid data leakage.

We employed Alpinion E-Cube R12 research US machine (Bothell, WA, USA) for training
and test. The L3-12H linear array probe with the center frequency of 10 MHz and the

sampling frequency of 40 MHz was utilized for image acquisition.

In vivo data

In vivo data was collected at Johns Hopkins Hospital using a research Antares Siemens
system by a VF 10-5 linear array. The sampling frequency was 40 MHz and the center
frequency was 6.67 MHz. Data was collected from patients with liver cancer during open-
surgical RF thermal ablation. For more information, please see [2§]. The institutional review

board approved the study with the consent of the patients.

4.2.5 Training schedule

We first collected data using the Alpinion machine from the breast phantom. We then
selected image pairs having maximum axial displacement larger than 3 pixels. In total, 2200
image pairs were used for training. The networks were trained for 40 epochs and the learning
rate was set to 30e-6 which reduced by 1/2 every 10 epochs. For in vivo data results, we
also fine-tuned the network trained by the bi-directional method using in vivo data. This
network was fine-tuned using 500 in vivo image pairs for 20 epochs and the learning rate
was 20e-6 and reduced by a factor of 2 every 5 epochs. In our experiments, we named this

network as Bi-directional Unsupervised+ft.
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4.2.6 Compared methods

The compared methods are listed below.

1) OVERWIND is an optimization-based method that estimates sub-pixel displacement.
This method requires the initial displacement which is obtained by DP[28]. OVERWIND
considers a window around each sample and uses total variation for the regularization. This
method obtains high quality strain images [29].

2) The recently proposed network, MPWC-Net++ which is the modified version of
MPWC-Net. This network is only trained on computer vision images and no training on US
data is done [59].

3) We fine-tune MPWC-Net++ using the unsupervised technique without the consistency
loss. Also similar to [50], it has the second-order derivatives only in the direction of the
displacement (A3, Agy; = 0). In this case, the unsupervised fine-tuning would be similar to
the semi-supervised method [56] with some minor improvements. The difference is that a
better network (MPWC-Net++) with more suitable regularization weights is employed.

4) Our proposed bi-directional unsupervised fine-tuning method. In this method, the
consistency loss is added to the unsupervised loss function and all the second-order derivatives
are employed in the smoothness loss.

5) For in vivo data section, we also fine-tune the bi-directional network using in vivo
data.

We compare our bi-directional semi-supervised method with recent methods in USE:
OVERWIND is a high-performance and non-deep learning method. MPWC-Net++ is one
of the best networks used for USE without training on US data. The unsupervised variant of
MPWC-Net++ combines this high-performance network with the unsupervised fine-tuning
[56].
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Table 4.1: CNR results (higher is better). The bold font highlights the best, and the underline
indicates the best deep learning results. Numbers marked with asterisks indicate results that
are not statistically significant (p-value> 0.01), e.g. OVERWIND and the proposed method

in Fig. [£.2]

Fig. 1.2 Fig. 1.3 Fig. [14]  Fig. [I5](1)  Fig. [15](2)
OVERWIND 27.26+£4.27° 25.28+6.62 12.4042.38 12.8345.35* 27.8418.82
MPWC-Net++ 12.0241.59  8.74+1.85 5124111  4.83+2.09  7.82+3.66
Unsupervised 31.7847.47 15.1244.12  9.94+1.64  8.6744.09  14.37+£4.27

Bi-directional Unsupervised 27.71£5.20* 17.19+4.45 13.844+4.49 12.824+4.83*  21.40+£3.69

Table 4.2: SR(%) results (lower is better). The bold font highlights the best, and the
underline indicates the best deep learning results. Numbers marked with asterisks and star
indicate results that are not statistically significant (p-value> 0.01).

Fig. 4.2 Fig. [4.3 Fig. 4.4 Fig. 4.5|(1)  Fig. 4.5((2)
OVERWIND 62.26+0.71 40.21£3.2 50.044+3.08* 61.7845.74*  36.56+2.00
MPWC-Net++ 61.56+£1.70*  35.08+6.26  49.294+4.41*  69.43£8.46  40.20+10.3
Unsupervised 61.274+0.67* 25.89+3.97 48.154+6.16** 60.96+9.67*  32.06+£7.47

Bi-directional Unsupervised 59.244+0.50 28.12+4.12 45.82+2.53 58.794+5.72 30.32+2.90

4.3 Results

4.3.1 Experimental Phantom Results

The results of different parts and compression levels of the experimental phantom are shown
in Figs. [{.24.3]4.4 and A5 In Fig. .2 the inclusions are not visible in the B-mode
images, while they can be detected by USE methods. Comparing deep learning methods,
unsupervised training substantially improves the strain quality of MPWC-Net++. Our
proposed bi-directional method obtains similar or higher quality strain images compared to
the unsupervised method, and substantially better results in all experiments compared to
MPWC-Net++, especially when the compression is low (for example, Fig. and .
It can be seen that for those images MPWC-Net++ does not provide a clear image of the
inclusion, while the proposed method obtains the highest quality strain images among the
compared deep learning methods. OVERWIND obtains high-quality strain images and the
proposed method performs comparably to OVERWIND in terms of the strain quality.
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Figure 4.2: Phantom Result 1 with the maximum strain value of 3%. Green boxes indicate
windows for computing CNR and SR.

The quantitative results are listed in Table (for CNR) and (for SR). In terms
of CNR, our proposed method substantially increases the CNR of MPWC-Net++ and out-
performs the unsupervised method in most cases. To be more specific, the bi-directional
unsupervised method increases the CNR of MPWC-Net++ from 12.02, 8.74, 5.12, 3.73 and
10.25 to 27.71, 17.19, 13.84, 12.82, and 21.40, respectively. It also obtains CNR values close
to OVERWIND or even better (in Fig. 4.4)).

The SR results agree with [55] where we showed that MPWC-Net has better SR compared
to another optimization-based method. In most cases (except Fig. [4.3))), bi-directional
unsupervised method has the better SR and close to the lowest ones in that case.

The visual and quantitative results of the experimental phantoms confirm that our pro-

posed method improves the overall quality of the strain images.

Smoothing window effect on strain image

After displacement estimation, a smoothing window along with the derivative kernel are
used to reduce the error and compute the derivative of the displacement. Larger windows
smooth the displacement more but sacrifice the resolution of the strain image. Therefore,
displacement estimation methods that require smaller windows are preferred. When a USE

displacement estimation method does not require a large smoothing window, it shows that
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Figure 4.3: Phantom Result 2 with the maximum strain value of 0.4%. Green boxes indicate
windows for computing CNR and SR.
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Figure 4.4: Phantom Result 3 with the maximum strain value of 0.3%. Green boxes indicate
windows for computing CNR and SR.

the method produces a displacement map with a low variance error. To compare the methods,
we compute the strain image of two image pairs with smoothing windows of sizes 5, 15, 30,
and 40. The CNR values of different smoothing window lengths are shown in Fig. [.6
It can be seen that OVERWIND has high CNR values even when the smallest smoothing
window is employed. Unsupervised and bi-directional unsupervised methods have good CNR

values close to that of OVERWIND. It should be mentioned that the difference between the
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Figure 4.5: Phantom Result 4 with two inclusions having different elasticity with the maxi-
mum strain value of 0.5%. Green boxes indicate windows for computing CNR and SR.

unsupervised and bi-directional methods in Fig. was not statistically significant (p-
value = 0.112). MPWC-Net++ has very low CNR when the smoothing window is small.
It indicates that this method is highly sensitive to the length of smoothing window and
requires larger ones to produce acceptable strain images, whereas OVERWIND and the two
unsupervised methods do not need a large smoothing window to produce reliable strain
images and have low variance errors. The strain images are shown in Fig. for smoothing
windows of 5 (top), 15 (middle) and 30 (bottom), and the target and background windows
for computation of CNR are highlighted. We can see that MPWC-Net++ generates noisy
strain images for small smoothing windows, where the inclusion is not visually detectable.
However, both unsupervised fine-tuning methods provide a better performance, close to

OVERWIND, and generate less variations compared to MPWC-Net—++-.

4.3.2 Lateral Strain

The lateral strain (%) has much lower quality than the axial strain since the main movement

is in the axial direction, and the lateral sampling frequency and resolution are low. The lateral
strain can be utilized in inverse problem methods to find the elastic modulus [70]. Fig. 4.8

shows the lateral strain obtained by the compared methods. It can be seen that MPWC-
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Figure 4.6: CNR values of the compared method using different smoothing window lengths.
The strain images are shown in Fig. [£.7]
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Figure 4.7: The strain images of the compared methods. Smoothing window size is 5 (top),
15 (middle) and 30 (bottom).

Net+4 and the unsupervised method obtain very noisy strain images and the inclusion
is hardly visible. However the proposed bi-directional method and OVERWIND obtain

acceptable strain images and the inclusion can be detected.

4.3.3 In vivo Results

Compared methods are evaluated with two in vivo data belonging to two patients. We also

fine-tuned the bi-directional network using in vivo data to find out if further improvements
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Figure 4.8: The lateral strain results. The proposed bi-directional method provides a smooth
strain image close to OVERWIND, while MPWC-Net++ and the unsupervised method
generate noisy strain images and the inclusion is barely visible.

Table 4.3: Quantitative results of in vivo data. The pairs marked by asterisk or star are not
statistically significant (p-value> 0.01).

In vivo data 1 In vivo data 2
CNR SR(%) CNR SR(%)
OVERWIND 17.2845.31 21.80+4.16 7.184+1.58*  51.404+6.06*
MPWC-Net++ 11.51+£3.08 25.50+6.63  7.314+2.47 48.89+11.61*
Unsupervised 11.91+£2.62  19.2045.30  6.73+3.09  47.834+20.83**

Bi-directional Unsupervised 16.27£5.26  19.354+5.46  7.91+3.18 45.60+11.83
Bi-directional Unsupervised + ft 14.37£4.40 19.194+6.10 8.86+£2.64 46.14+12.91

can be achieved. The strain images of the compared methods are given in Fig. and [4.10
OVERWIND produces high-quality strain images with low noise, while the strain images
obtained by MPWC-Net++ have some over-smoothing especially in the lateral direction.
Both unsupervised methods substantially improve the strain image qualities of MPWC-
Net+4. The bi-directional+ft also obtains high quality strain images, but the difference
with the bi-directional method is not discernible.

The quantitative results are given in Table OVERWIND achieves the highest CNR
for in vivo data 1, while bi-directional unsupervised+ft has the best CNR for in vivo data
2. It can also be seen that fine-tuning on in vivo data does not results in considerable CNR

improvement (it has slightly better CNR than bi-directional for in vivo data 2 and worse
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Figure 4.9: Strain images of in vivo data 1. The tumor has a lower absolute strain value but
looks brighter since the strain is negative.

CNR for in vivo data 1). In terms of SR, bi-directional and bi-directional+ft have the best
SR values. MPWC-Net++ and OVERWIND have the highest SR among the compared

methods.

4.4 Discussion

In this chapter, we employed semi-supervised training to improve the performance of an
optical flow network for USE. Although we used MPWC-Net++, which outperformed other
networks for USE, the training method can be applied to other networks as well. It should be
mentioned that the optical low networks usually have pyramidal structure meaning that the
displacements are estimated in different resolutions. Similar to previous works [55] [56] and
unsupervised optical flow works [65], we only used the last output resolution for fine-tuning.

The optical flow CNNs trained on computer vision images do not employ regularizations

due to abrupt changes in scenes such as a moving car in front of a fixed background. How-
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Figure 4.10: Strain images of in vivo data 2. The tumor has a lower absolute strain value
and looks darker since the strain is positive.

ever, the displacement in USE is usually smooth without any sudden changes. The effect
of the absence of the regularization can be seen in Fig. (top), where the smoothing
window is very small. The strain estimated by MPWC-Net++ has a high variance, whereas
the bi-directional unsupervised method provides smooth and high-quality strain images by
incorporating smoothness and consistency constrain in the estimated displacement.

The values reported in Tables [.1], and are the mean and standard deviation
of CNR and SR values. We have conducted statistical analysis to find out that if the
difference between obtained values is statistically significant. We employ Friedman test [71]
for statistical analysis.

Regarding the choice of weights, the explained method of tuning the weights only gives a
rough estimate of the optimum weights. However, the output strain image is not considerably
sensitive to these weights and similar performance can be obtained by different weights.

Running time is another important aspect that needs to be investigated. The deep

learning methods shine in this aspect, our proposed method can provide high quality strain

56



images close to OVERWIND for real-time applications. To give a general view about the
computation time, OVERWIND takes 26 seconds for an image pair of size 1920 x 384 on
CPU (8" generation, core i7). It should be noted that this is a Matlab implementation, and
an optimized implementation in C will be much faster. MPWC-Net++ and bi-directional
MPWC-Net++ take 0.166 and 0.174 seconds on NVIDIA A100 GPU, respectively. The
bi-directional variant of MPWC-Net++ takes slightly more time than MPWC-Net++ since
it estimates both forward and backward displacements; however, it still takes much less time
than running the network two times and computing forward and backward displacements

separately.

4.5 Summary

In this chapter, we proposed a bi-directional semi-supervised deep learning method. We used
strain consistency along with data and smoothness loss. We also employed the second-order
derivatives regularization of axial and lateral displacements in both directions. Furthermore,
we reduced the number of hyper-parameters by relating some of them to others by taking
into account the underlying principles of the US. We showed that our proposed method
substantially improved current optical flow networks used for USE. We validated our method
using different experimental phantom and in vivo data. Our proposed method obtained

strain images close to OVERWIND.
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Chapter 5

Lateral Strain Imaging using
Self-supervised and Physically
Inspired Constraints in Unsupervised

Regularized Elastography

5.1 Introduction

In the previous chapter, we investigated unsupervised training on real ultrasound data which
prepares the trained model to extract more suitable features from RF data. Prior knowl-
edge of displacement map continuity is also utilized in the forms of different regularization
strategies. In [56], a combination of first and second-order derivatives of the displacements is
employed as the regularization, which has been found beneficial in the recent optimization-
based methods [67]. Wei et al. adapted MaskFlownet [72] to USE and trained the network
using an unsupervised method. They also performed a detailed comparison of their network
with MPWC-Net++ [73].

In classical methods, Babaniyi et al. [74] considered plane stress and incompressibility
assumptions to refine the estimated displacement. Guo et al. first introduced a refinement

method that incorporated the incompressibility and plane strain assumptions in an iterative
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approach [75] that substantially improved the lateral strain. Other lateral strain imaging
works mainly focus on modifying the imaging technique to have a higher resolution in lateral
direction [T6HT8|, and, as such, cannot be applied to the already available US data. The
smoothness of the derivatives of the displacements is the only prior knowledge of USE physics
used in previous unsupervised training. No deep learning work considers the physics of the
compression of the tissue into account. Also, no deep learning method has focused on
improving the quality of the lateral displacement estimation, which is challenging but it is
required for elasticity [70] and Poisson’s ratio imaging [54].

In our preliminary work, we investigated the feasibility of improving the lateral dis-
placement by employing the prior knowledge of compression physics [79], where we intro-
duced physically inspired constraint for unsupervised regularized elastography (PICTURE).
In this chapter, the method is explained in more detail, and new extensive experiments
are performed to better evaluate the effectiveness of the technique. We also introduce self-

supervision in USE and propose sPICTURE, which further boosts the performance.

5.2 Method

5.2.1 Unsupervised Training

Let I,,I, € R¥»*WXH denote the pre- and post-compression US data, respectively. The
subscript 3 refers to three channels of RF data, the envelope of RF data, and the imaginary
part of the analytic signal similar to [62]. The unsupervised cost function is composed of
data loss and smoothness regularization loss. The data loss (Lp) in unsupervised training
can be obtained by comparing I; with the warped I (fz) by the displacement map W. The

data loss can be written as [80, 81]:

Lp=||(5y — f2)||1(NxN) (5.1)

where ||.||; denotes norm 1 (as suggested by [37, 58], L2 norm is not suitable; therefore, a
norm lower is employed), and a window of size N x N (here 3 x 3) is considered around each

sample to reduce the effect of noise. For the regularization, we adopt the method of [56, [R1]
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where the strains and their first-order derivatives are employed. The strains can be obtained

by taking the derivative of displacement in direction (x) with respect to the direction (y):

I oW,
Ty —
9y (5.2)
r,y€e1,2,3

we assumed that the subscripts 1, 2, and 3 denote axial, lateral, and out-of-plane directions,
respectively. By this assumption, €11, €92 and, (g21 + €12)/2 are the axial, lateral and, shear

strains, respectively. The smoothness loss can be defined as:

LS’ = le + ’-)/LSQ

1 1
L = |leni— <en > |1+ Bllewallr + §||521||1 + §5H€22||1

L= {|| LN

Da M+
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Oeay
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where Lg is the total smoothness loss, < . > denotes averaging operation, and  depends
on the ratio of spatial distance between two samples in lateral to the axial direction and
it is set to 0.1 similar to [81]. L and Lgy are the regularization of first- and second-order
derivatives of the displacements. ~ is a hyperparameter that controls the weight of the

second-order derivatives smoothness loss.

5.2.2 Hooke’s Law and compression physics

Assuming that the tissue is linear elastic and isotropic, the following two sections show the

relation between the lateral and axial displacements under uniform compressions.

Homogeneous Material

Hooke’s law can be formulated as [9]:
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€11 1 —vU —U 0 0 0 011
€99 —v 1 —wv 0 0 0 099
€33 1 —v —U 1 0 0 0 033
=k (5.4)
2823 0 0 0 24+ 2v 0 0 023
2¢13 O 0 0 0 2+ 2v 0 013
2812 0 0 0 0 0 2+ 2v J192

where E, o, and v represent Young’s modulus, stress tensors, and Poisson’s ratio, respec-
tively. When there is a compression of the material in one direction, there is an expansion
in the other direction, which depends on the Poisson’s ratio of the material. In free-hand
palpation, it can be assumed that the external force is only in the axial direction (uniax-
ial stress); therefore, other stress components except o1 can be ignored. This assumption

simplifies Eq [5.4] and leads to [9]:

011 011 011
€11 — —=,822 = —VU—=,€&33 — —VU— 5.5
E’ E’ E (5:5)

which indicates that the lateral strain (e52) can be directly obtained by the axial one (e17)
using —v X €11.
Inhomogeneous Materials

Tissues cannot be assumed to be homogeneous due to the presence of irregularities and
boundary regions; therefore, the lateral strain cannot be directly obtained by the axial one
and Poisson’s ratio. In this condition, the total strain (e,,) is obtained by adding the elastic

strain (e,,) and eigenstrain (e},) [82]:

Epy = Coy + Epy (5.6)
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Figure 5.1: From left to right: the Poisson’s ratio, the EPR, and their absolute difference
for a simulated phantom. The Poisson’s ratio and the EPR have the same colorbar.

Eigenstrain is added to consider the variation of total strain from the elastic one in the
presence of inhomogeneity. It is maximum on the inhomogeneity boundaries and decays to
zero further from the boundaries [82]. Although the lateral strain does not linearly depend
on the axial one anymore, they are still highly correlated. Also, —e95/€11 does not obtain
the Poisson’s ratio anymore and it is called effective Poisson’s ratio (EPR) [54]. In uniform
regions far from inhomogeneities, EPR converges to Poisson’s ratio. For illustration purpose,
EPR and Poisson’s ratio of a finite element simulation using ABAQUS software (Providence,
RI) is depicted in Fig. [5.1] It can be observed that EPR is more dissimilar to Poisson’s
ratio at the top and bottom of the phantom and around the inclusion. Poisson’s ratio and
EPR under arbitrary deformation have the range between 0.2 and 0.5 [83, [84]. Although the
exact value of EPR is not known, it has been used as an approximation of Poisson’s ratio
to characterize tissues [54) [84]. We propose to use this range as a prior information to guide
the network to refine the lateral displacement. Guo et al. assumed tissue incompressibility
(Poisson’s ratio = 0.5) and plane strain (strain in out-of-plane direction = 0) to refine the
displacements. However, Poisson’s ratio depends on the type of the tissue (refer to [85] [R6]
for Poisson’s ratio of breast and liver). In this work, we do not make those assumptions, and

only a feasible range of Poisson’s ratio is enforced.

5.2.3 PICTURE

We propose to utilize the accepted range of EPR as a prior information in the form of

regularization. To do that, we first need to calculate EPR (V) from the estimated axial and
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lateral strains:

A— (5.7)

where €39 and €7; are the lateral and axial strains obtained from estimated displacements.
The parameter S denotes stop gradient operation, which is used to stop backpropagation
of the loss to the axial displacement estimation. It is used to avoid the estimated axial
displacement being altered by the noisy lateral one. To find out the EPR values outside the
accepted range, a mask (M) is defined using the minimum (V,,,;,) and maximum (V)
allowed EPR values.
. 0 Vemin < Ve(i, ) < Vemas
M(i,j) = (5.8)
1 otherwise

We assume the V,,,;, and V4. values to be 0.1 and 0.6 (no noticeable change was observed
by small changes of these values) to have a small margin of error. In order to penalize the

EPR values outside of the accepted range, PICTURE loss is defined as:

Lya = ||M ® (32 4+ Ve x S(en)) ||, (5.9)

where ® is the Kronecker product to select EPR values outside the accepted range, and V.
is an estimate of true average EPR. It is obtained by averaging EPR values that are inside

the accepted range, which can be formulated as:

Zz‘,j(l - M(z,]))‘/ve@’])
> (1= M)

V, = (5.10)

Eq tries to constrain EPR to be inside the accepted range.

The first-order derivatives of V, are also employed to enforce the smoothness of EPR.

oVe
da

oV,
o'
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The final PICTURE loss can be written as:
Ly = Lyg + A\ys X Lys (5.12)

where A\, is defined to weight the smoothness part.

5.2.4 Self-Supervised Learning

Self-supervised learning (SSL) is a technique that has recently been applied to unsupervised
optical flow networks [87, 88]. The basic procedure is that the input images are fed to the
network during the unsupervised training, and the displacements are obtained during the
first pass. In the next step, the input images are transformed to make them more challenging
than before and the new displacement is obtained during the second pass. In the last step,

the differences between the displacements of the first and second passes are penalized:
Lsst = ||S(W) = W1, (5.13)

where W is the estimated displacement in the first pass (no transformation), W is the ob-
tained displacement from the second pass (with transformed inputs), and stop gradient (S)
is used to avoid backpropagation into the first pass. Substantial improvements were reported
for unsupervised training employing SSL using different transformations. In [88], superpixels
[89] of input images were identified and the content of randomly selected superpixels were
replaced by pure noise. The method outperformed other unsupervised methods in different
optical flow benchmarks. In [87], cropping, affine, and other kinds of transformations were
utilized. SSL was also compared by data augmentation (instead of SSL, the transformed im-
ages were considered as new inputs). SSL outperformed data augmentation, which indicated
that SSL was not a simple synthetic data generation like data augmentation.

In this chapter, we employ two data transformations: cropping and adding noise to spe-
cific regions. Cropping may cause loss of information, especially in areas where displacement
is high. On those areas, estimating displacement is complex for the network since the cor-

responding part of the first image might be outside the cropped second image. We also add
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Figure 5.2: B-mode input image (a), cropped image (resized for the purpose of visualization)
(b) and, image with added noise (the area of added noise is highlighted) (c).

large Gaussian noise to randomly selected circular regions. An example of a transformed
image is shown in Fig. [5.2] SSL can guide the network to have a more reliable estimation

when there is a loss of information due to cropping or noisy data.

5.2.5 Loss Function And Network Architecture

The loss function is composed of data loss (Eq , smoothness loss (Eq , PICTURE
loss (Eq[5.9), and SSL regularization (Eq [5.13)):

loss = LD + )\sLS + >\vLV + AleSSL (514)
—— " sccond par
st pass secona pass

where the hyper-parameters, A;, A,, and Ay are the weights of smoothness regularization,
PICTURE loss, and SSL regularization, respectively. The SSL loss only affects the second
pass in which the input US data are transformed, while the other losses affect the first pass.

We employed MPWC-Net++ and it is trained for 25 epochs, the learning rate is set to
5 x 1075, which is halved every 5 epochs.

5.2.6 Datasets

Simulation data

A phantom is simulated using Field IT [45, 46], and the motion is obtained by the ABAQUS

finite element analysis software (Providence, RI). The phantom contains an inclusion with
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Figure 5.3: Axial (top row) and lateral (middle row) strains in a simulated phantom. Ground
truth EPR (bottom row), the absolute error, and the mean absolute error (MAE) shown for
each method.

Poisson’s ratio of 0.45 and the Young’s modulus of 40 kPa. The background has Poisson’s
ratio of 0.35 and the Young’s modulus of 21 kPa. The Poisson’s ratio and EPR of this
phantom are shown in Fig. [5.1] Different Poisson’s ratios for background and the inclusion
are chosen to investigate if it is detectable by the networks. Compared to our recent simula-
tion dataset [55], the number of lines in FIELD II is increased to 190, the number of active
elements is increased to 96, and the obtained US images are also upsampled in the lateral
direction by 2 to provide high lateral resolution.

In addition, 1200 pairs of publicly available simulated phantoms from [55] are employed
for training and 70 pairs for quantitative evaluation of the compared methods. These phan-
toms have a Poisson’s ratio of 0.49 and have one or two hard inclusions in different locations.
The Young’s modulus for the background and inclusions are around 20 kPa and 45-60 kPa,

respectively.
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Table 5.1: Quantitative results for 70 simulated phantoms. Mean and standard deviation
(£) of the MAE of displacements and SSIM of strains are reported. The pairs marked by
asterisk are not statistically significant (p-value>0.05, using Friedman test).

Axial Lateral
MAE (um)  SSIM (%)  MAE (um)  SSIM (%)
SOUL 2.2+1.5 99.80+0.06 8.00£4.1* 97.70 £ 1.56*

OVERWIND 2.2+1.5 99.80+£0.07  9.40+4.6 93.48+4.10
Unsupervised — 2.7£1.6*  99.43 + 2.10 8.70+4.1 96.42+1.79
sPICTURE 27177 99.55 £1.80 8.00£3.8° 97.73 £1.29*

Experimental phantom data

2200 frame pairs of experimental phantom data explained in Chapter 2 are employed for
training of the network. In order to avoid data leakage, different parts of the phantom were

imaged for evaluation and test.

in vivo data

Data were acquired from patients with liver cancer during open-surgical RF thermal ablation
at Johns Hopkins Hospital. A research Antares Siemens system by a VF 10-5 linear array was
used for data collection. The sampling and center frequencies were 40 MHz and 6.67 MHz,
respectively. The study was approved by the institutional review board with the consent of
all patients. 500 RF frame pairs from after ablation were selected for the training of the
networks, and RF data from 2 patients before ablations were employed for test to prevent

using similar data during the train and test phases.

5.3 Results

The evaluated methods are listed below:

e Second-order ultrasound elastography (SOUL) is an optimization-based method which
employs L2-norm and second-order regularization to have smooth strain images with

high target-background contrast [67].

e Total variation regularization and window-based time delay estimation (OVERWIND)
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Figure 5.4: The experimental phantom lateral strains obtained by the evaluated methods.
The target and background windows for calculation of CNR and SR are marked in the
B-mode images. The samples 1, 2 and 3 are taken from different locations of the tissue-
mimicking breast phantom. Hard inclusions have lower absolute values than the background.

is a method that incorporates windowing into the optimization cost function [29].

e Unsupervised method (A, = 0 and Ay = 0 in Eq [5.14] similar to the unsupervised
method in [81]).

e The PICTURE without SSL (Ay = 0 in Eq only used in ablation experiment).

e The proposed method named sPICTURE entails both PICTURE and SSL losses (Eq
5.14]).

It should be mentioned that for simulation results the network for unsupervised method and
sPICTURE is trained on simulation data. For the experimental phantom results, it is trained
on the experimental phantom dataset, and for in vivo results, it is trained on the available in
vivo dataset. We also tuned the hyperparameters of the optimization-based methods (SOUL
and OVERWIND) for each dataset separately to ensure that the best results are obtained

from those methods.
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Figure 5.5: MAE of lateral displacements (left), and SSIM of lateral strains (right) for
different SNR values of simulation test data.

5.3.1 Simulation Results

The axial, lateral strains, and the EPR of the simulated phantom obtained by the compared
methods are illustrated in Fig. [5.3] All methods obtain high-quality axial strains. The axial
strain of the unsupervised method and sPICTURE are quite similar since PICTURE is only
applied to the lateral displacement and keep the axial one untouched. Comparing the lateral
strains (second row), sSPICTURE reduces the noise presented in the unsupervised method.
The mean and standard deviations of quantitative metrics are reported for 70 simulated
phantoms. Since the ground truth is available, MAE of displacement and SSIM of strain are
reported for the axial and lateral displacements and strains. SOUL and OVERWIND have
the lowest MAE error and highest SSIM in the axial direction. sSPICTURE performs similar
to the unsupervised method since PICTURE does not affect the axial direction. In lateral
displacement estimation, sSPICTURE reduces the lateral MAE of unsupervised method from
25.0 to 7.9, a decrease of more than three folds. It also outperforms the optimization-based

methods in terms of MAE, with SSIM values close to those of SOUL.

simulation results for different signal to noise ratios (SNR)

Random Gaussian noise with different SNRs is added to the test RF data to evaluate the
robustness of the compared method to noise. MAE of lateral displacement and SSIM of
lateral strain are plotted in Fig. [5.5] It can be observed that sPICTURE has a low MAE
even for an SNR as low as 5 dB which demonstrates the high robustness of this method.
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Figure 5.6: SSIM of lateral strains versus different maximum strains.

Table 5.2: Quantitative results of lateral strains for experimental phantoms and in vivo
data. Mean and standard deviation (£) of CNR (higher is better) and SR (lower is better)
of lateral strains are reported. The pair marked by asterisk is not statistically significant
(p-value>0.05, using Friedman test).

Phantom 1 Phantom 2 Phantom 3 In vivo 1 In vivo 2
CNR SR CNR SR CNR SR CNR SR CNR SR
SOUL 11.01+4.52  0.483+0.038 3.63+£1.20 0.676+0.081* 2.33+0.81 0.3274+0.140 3.25+1.07  0.4284+0.137 1.26+ 0.843  1.110+0.124

OVERWIND  7.21£1.91  0.456£0.057 2.3540.68 0.676+£0.092* 3.38%£1.45 0.28540.155 1.9240.96 0.584+0.150  0.84+0.61 1.04840.202

Unsupervised — 2.31+0.30  0.45440.061 1.024+0.30  0.53040.105 0.26+£0.18  0.6774+0.743  0.24£0.18  0.905+0.159  0.50+0.36 1.125 £ 0.437
sPICTURE ~ 11.20+2.18 0.511£0.059 9.14+2.80 0.527+0.044 7.07+1.76 0.2784+0.065 7.80+2.01 0.24240.066 4.3441.39 0.640+0.075

simulation results for different compression

A phantom from simulation test data having different applied compressions, resulting in
different maximum strains, is selected, and SSIM of lateral strain are illustrated in Fig. [5.6]

By increasing the maximum strain, the SSIM of all compared method decreased which is
expected. It should be noted that the graph shows that sPICTURE has the highest SSIM

among the compared methods which is also robust to the variations of applied compression.

5.3.2 Experimental Phantom Results

The lateral strains of experimental phantom results are shown in Fig[5.4)and the quantitative

results are reported in Table
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Figure 5.7: The histograms of the EPR of different methods for phantom 3. sPICTURE has
limited the EPR to the feasible range for USE.
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Figure 5.8: Ablation experiment results. In (3), the inclusion is not visible in B-mode image
and arrows show that SSL improves the estimation in boundary regions. The samples 1, 2
and 3 are taken from different locations of the tissue-mimicking breast phantom.
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Figure 5.9: Normalized axial strain versus the corresponding lateral strain. The region where
the samples of the methods lie for experimental phantom 2 are specified. The regions are
obtained from convex hull of strain samples. EPR equals to 0.1 and 0.6 are highlighted by
the dashed lines.

Unsupervised method has unacceptable results in which the inclusions are not visually
detectable while it provides high-quality axial strain images comparable to optimization-
based methods. This is an important observation since this shows that the unsupervised loss
(composed of data and smoothness losses), which has been used widely in computer vision
optical flow estimation, is not a suitable loss in USE.

sPICTURE provides high-quality lateral strain images and performs the best in terms
of quantitative results among the compared methods. By comparing the unsupervised and
sPICTURE results, it can be seen how the added PICTURE regularization and the SSL
lead to the improvement of the obtained strain images. The added regularizations convert
the unreliable and noisy lateral strains obtained by unsupervised method to the high-quality
strain images. It should be mentioned that sPICTURE and unsupervised methods are
both trained using the same data and weights for smoothness regularization. Furthermore,
sPICTURE obtains substantially higher quality lateral strain images than the compared
optimization-based methods (both visually and quantitatively).

To further analyze the results, the histograms of the EPR of phantom data 3 are depicted
in Fig. . As mentioned earlier, EPR range is similar to the Poisson’s ratio range (0.2 to
0.5, excluding the boundary regions). In PICTURE loss, we penalize EPR values outside
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Figure 5.10: The wn vivo lateral strains obtained by the evaluated methods. The target and
background windows for calculation of CNR and SR are marked in the B-mode images.
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Figure 5.11: Lateral strains of OVERWIND and sPICTURE after applying the method of
Guo et al. [75] to real phantom data (1).

the 0.1-0.6 range. The histogram of EPR of unsupervised method covers a wide range of
positive and negative values which indicates that many lateral strain values obtained by this
method are incorrect. The histogram of the EPR values of OVERWIND and SOUL are
more limited than unsupervised method, but they contain values that are negative or higher
than 0.8 which is not possible in the phantom. sPICTURE has a more limited range of EPR
values but still has some values outside the specified range. The reason is that the proposed
PICTURE regularization is only applied during the training phase. Although the proposed
PICTURE regularization reduces the range of EPR values, it does not guarantee that all

the values fall into the specified range in test time.
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Ablation Experiment

In order to investigate the impact of PICTURE loss and SSL separately, an ablation exper-
iment is conducted. Fig. shows the visual comparison of unsupervised method (without
PICTURE and SSL), PICTURE (without SSL), and sPICTURE. It is visually clear that
both PICTURE and SSL contribute to the improvements obtained by sPICTURE. Without
PICTURE, unsupervised method provides noisy and impractical lateral strain images. PIC-
TURE substantially improves the lateral strain image quality and SSL further boosts the
quality of the lateral strain image. For instance, in sample (1), the inclusion location can
be detected more accurately in sSPICTURE compared to PICTURE. Also, the estimation in
boundary regions is improved in sSPICTURE since it is trained to deal with cropping with
SSL. It should be mentioned that SSL without PICTURE was also tested, but it performed
inferior to PICTURE.

Experimental Results after applying lateral displacement refinement

Lateral displacement refinement of Guo et al. [75)] is applied using the initial displacement
obtained by OVERWIND and sPICTURE. It can be observed that this method further im-
proves the lateral displacement estimation, and the initial displacement obtained by sPIC-

TURE provides a high-quality initial value for this method.

5.3.3 In vivo Results

The in vivo lateral strains of two patients with liver cancer are depicted in Fig. [5.10]
quantitative results are reported in Table The tumors are more visually detectable in
sPICTURE compared to the other methods. Also, quantitative results denote that sPIC-
TURE has the highest CNR and lowest SR values among the compared methods, which

confirms the visual analysis.
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5.4 Discussion

In this chapter, a physically inspired regularization to improve the lateral displacement
estimation has been proposed. It confines the range of EPR by employing the high-quality
axial strain and the known range of EPR values. One limitation of the proposed method
is that PICTURE similar to any other form of regularizations is only applied during the
training. Even though it limits the range of EPR values in the test time, it does not
guarantee that all EPR values be within that range. We observed only a few samples lie
outside of the defined range and fixing them during the test time inspired by known operators
[90] can be an area of future works.

It should be mentioned that PICTURE can also have statistical interpretation. The
lateral displacement prediction can be viewed as the estimation of a parameter from under
sampled and heavily smoothed observations. The conventional methods estimate this param-
eter in a maximum likelihood (ML) manner without any prior information (only smoothness
is considered). However, PICTURE can be viewed as maximum a posteriori (MAP) estimate
in which the prior information from compression physics is utilized to find the parameters.
Therefore, more reliable lateral displacement can be estimated compared to the conventional
methods. To clarify this, the graph of lateral versus axial strains is depicted in Fig. [5.9
PICTURE enforced the strain samples to lie within v = 0.6 and v = 0.1. The areas where
the samples of unsupervised method and sPICTURE lie for experimental phantom data 2
are illustrated in the figure. It can be observed that most of the strain samples of sSPICTURE
lie within the correct range. sSPICTURE moved the lateral sample values to the area of the
prior knowledge.

Self-supervision was another regularization that has been used in this work. SSL can
prepare the model to deal with corrupted data. In this chapter, we applied cropping and
added noise. Cropping helps the model deal with boundary regions where finding the cor-
respondence between pre and post-compression images is difficult. Adding noise can also
be useful in some scenarios for instance when there is a loss of signal due to high attenua-
tion or there is a cyst where clutter is stronger than the true signal. Applying other forms

of transformation such as acoustic noise (reverberation and multiple scattering), inducing
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decorrelation, and downsampling can be an area of future works.

In this chapter, the performance of lateral displacement refinement method of [75] using
initial value from sPICTURE and OVERWIND is also investigated. This method is consid-
ered as a post-processing method that relies on the initial displacements. We showed that
high-quality lateral displacement of sSPICTURE can be considered as a good initial value for
this method and improves the results of this refinement method.

The complexity of the training is another issue that should be discussed. We utilized two
parallel NVIDIA A100 GPUs with 40 GB of memory each. Even with this size of memory,
the maximum batch size that we could train the network was 8. The main reason is that the
image sizes are usually large to preserve high-frequency RF data contents and the memory
usage is also doubled by the second pass required in SSL. Only the training phase is memory
intensive, and inference can be performed with only 5 GB of memory in 140 ms (for an US

data of size 2048 x 256) similar to MPWC-Net++.

5.5 Summary

In this chapter, we proposed PICTURE to improve the lateral strain images in USE using
physically inspired priors. We further improved the method in sSPICTURE by adding the
self-supervision to the method. The effectiveness of the proposed method is validated using

simulation, experimental phantom, and in vivo data.
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Chapter 6

Infusing physically inspired known
operators for ultrasound elastography

displacement estimation

In this chapter, we aim to embed two lateral displacement refinement algorithms in the
CNNs to improve the lateral strains. The first algorithm limits the range EPR inside the
feasible range during the test time. It is important to note that in contrast to [79], the
EPR range is enforced using the regularization during the training phase and the known
operators framework during the test phase; therefore, it is enforced during both training and
test phases. The second algorithm employs the refinement method proposed be Gou et al.

[75] which exploits incompressibility constraint to refine the lateral displacement.

6.1 Materials and Methods

In this section, we first provide a brief overview of PICTURE and underlie some differences
to this work. We then introduce our method for incorporating known operators into our
deep model and outline our unsupervised training technique. We then present the training

and test datasets and finish the section by demonstrating the network architecture.
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6.1.1 PICTURE

Let €, denote axial (x = 1), lateral (z = 2), and out-of-plane (z = 3) strains. Assuming
linear elastic, isotropic, and homogeneous material, the lateral strain can be obtained from
the axial strain and the Poisson’s ratio by ¢ = —v x . Real tissues are inhomogeneous,
and boundary conditions exist; therefore, the lateral strain cannot be directly obtained by
the axial strain and the Poisson’s ratio alone. In such conditions, EPR, which is defined as
ve = —2 can be employed [82]. EPR is spatially variant, and it is not equal to Poisson’s
ratio, but it has a similar range of Poisson’s ratio, i.e., between 0.2 and 0.5 [83]. In PICTURE,
a regularization was defined to exploit this range and the out-of-range EPRs were penalized
[79]. PICTURE loss can be obtained from the following procedure:

1- Detect out-of-range EPRs by:

O Vemin < 1,}\;(2,]) < Vemaz

M(i, j) = (6.1)

otherwise

—_

where v, is the EPR obtained from the estimated displacements. Ve, and venme, are two
hyperparameters that specify the minimum and maximum accepted EPR values, which are
assumed to be 0.1 and 0.6, respectively.

2- Penalize the out-of-range lateral strains using:

Lvd - ‘(822+ < '&; > XS(&H))b
225 (1 = M y)Velis 5) (6.2)
> (L= M)

‘7@:

where < v, > is the average of EPR values within the feasible range. The operator S denotes
stop gradient operation, which is employed to avoid the axial strain being affected by this
regularization. It should be noted in contrast to [79] in which only out-of-range samples were
contributing to the loss, in this work, all samples contribute to L,4 to reduce the estimation

bias.
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3- Smoothness of EPR is considered by:

9ve
oa

Ov,

Lus =| ol

li+ 8 x|

1 (6.3)

4- PICTURE loss is defined as Ly = Lyg+ Ays X Lys, Where A4 is the weight of the smoothness

loss. PICTURE loss is added to the data and smoothness losses of unsupervised training.

6.1.2 Known Operators

The known operators are added to the network in the inference mode only due to the high
computational complexity of unsupervised training (outlined in the next section). We employ
two known operators to impose physically known constraints on the lateral displacement.

The first known operator (we refer to it as Poisson’s ratio clipper) limits the EPR to the
feasible range of Vemin — Vemae- Although PICTURE tries to move all EPR values to the
feasible range, in [79], it was shown that some samples in test time were still outside of the
feasible range. Poisson’s ratio clipper is an iterative algorithm since the lateral strains are
altered by clipping the EPR values and affecting the neighbor samples’ strain values.

The second algorithm employs the incompressibility of the tissue which can be formulated
by:

€1+ex+e3=0 (6.4)

In free-hand palpation, the force is approximately uniaxial (g3 =~ €5); therefore Eq can
be written as:

£14+2x%xe3=0 (6.5)

Guo et al. enforced incompressibility in an iterative algorithm [75]. We made a few changes
to increase the method’s robustness by adding Gaussian filtering in each iteration. It should
be noted that the algorithm can be employed for compressible tissues as well, and the
incompressibility constraint is employed for the refinement of the obtained displacement.
The proposed algorithms are outlined in Algorithm [T] and [2] The network architecture with
the known operators is illustrated in Fig. [6.1} It is worth highlighting that known operators

offer a compelling alternative to regularization. While the latter involves adjusting trained
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Figure 6.1: MPWC-Net++ architecture with known operators. The network is iterative with
5 pyramid levels. The known operators are added after optical flow estimation, and refine
the estimated lateral displacement in each pyramid level (added from level 3) to provide
improved lateral displacement to the next pyramid level.

weights based on the training data and keeping them fixed during testing, the former relies
on iterative refinement that is adaptable to the test data and does not require any learnable

weights.

Algorithm 1: Poisson’s ratio clipper
input : Lateral displacement w;, axial displacement wg,, Vemin,Vemaz, tteration
output: Refined lateral displacement w;.y

1 Wref < Wy

2 for ¢q < 1 to iteration do

3 €99 — % // gradient in lateral direction.
4 | e G // gradient in axial direction.
5 epr <+ %
6 €p’l“(6p7” < Uemin) < Vemin // Clip epr less than Vemin
7 epr(epr > Vemaz) < Vemaz // Clip epr less than e
8 Wref (2,2 to end) <— wyep(:, 1 to end — 1) + epr X eg;

// use the displacement of previous line and the clipped epr to

find the displacement of the next line

6.1.3 Unsupervised Training

We followed a similar unsupervised training approach presented in [79] for both PICTURE
and kPICTURE methods. The loss function can be written as:

Loss = Lp + AsLg + Ay Ly (66)
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Algorithm 2: Guo et al. refinement [75] employed as known operator

input : Lateral displacement w;, Axial displacement w, of size w x h, iteration, A\,

A2
output: Refined lateral displacement w;.y

1 Wpep < Wy

2 for q < 1 to iteration do

3 for i,j in w,h do

4 §=Wili,7 —1) =2Wy(4,5) + Wi(i, 5 + 1) + Wo(i + 1,5+ 1) = Wo(i — 1,j) —
Wali,j = 1)+ Wali = 1,5 = 1) + M (Wi, = W)

5 wl,, = Gauss(w?,} + Xy x §) // Gaussian filtering to reduce noise,
Ay controls the weight of updating wfef

where Lp denotes photometric loss which is obtained by comparing the pre-compressed and
warped compressed RF data, Lg is smoothness loss in both axial and lateral directions. Ag

and Ay specify the weights of the smoothness loss and PICTURE loss, respectively.

6.1.4 Network architecture and training

We employed MPWC-Net++ [59] which has been adapted from PWC-Net-irr [58] for USE.
The network architecture with the added known operators is shown in Fig. [6.1] The training
schedule is similar to [79], known operators are not present in the training and only employed
during the test phase. The known operators are added in different pyramid levels. This has
the advantage of correcting lateral displacements in different pyramid levels. The known
operators are added to the last 3 pyramid levels (there are 5 pyramid levels in this network)
since the estimate in the first 2 pyramid levels are not accurate enough and adding the known

operators would propagate the error.

6.2 Results and Discussions

6.2.1 Compared methods

kPICTURE is compared to the following methods:

e OVERWIND, an optimization-based USE method [29].
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Table 6.1: Quantitative results of lateral strains for experimental phantoms. Mean and
standard deviation (£) of CNR (higher is better) and SR (lower is better) of lateral strains
are reported. The pair marked by T is not statistically significant (p-value>0.05, using
Friedman test). The differences between all other numbers are statistically significant (p-
value<0.05).

sample (1) sample (2) sample (3) in vivo data
CNR SR CNR SR CNR SR CNR SR
OVERWIND 11.344+ 1.32  0.31840.030  3.71£1.07  0.505+0.089  3.61 £0.58 0.415+0.050 2.07£0.94 0.196+0.255
OVERWIND + Gou et al. 13.26 £ 1.89 0.313 £ 0.029 4.28+1.31  0.503+0.083  4.08+0.62 0.411+0.049 2.39+£0.89 0.170+0.233
PICTURE 9.037+£0.88  0.4074£0.022  5.37+1.33  0.44940.0607 1.63+£0.95 0.84040.077 4.36+1.81  0.334+0.149
kPICTURE 24.40+7.02 0.290+0.038 7.81+1.68 0.446+0.0567 5.4942.20 0.59840.123 5.5442.54 0.50440.141

e The post-processing method of Guo et al. [75], which employs the output of OVER-
WIND as the initial displacement (OVERWIND+ Guo et al.).

e PICTURE, which penalize EPR values outside of feasible range [79].

We decided to compare with PICTURE instead of sPICTURE [91] (PICTURE with self-
supervision) since self-supervision is not related to the physics of motion. To focus on the
effectiveness of the known operators, we, therefore, provide a comparison to its corresponding
method PICTURE. We also employed a similar hyper-parameters and training schedule for

experimental phantom and n vivo data.

6.2.2 Results and Discussions

The lateral strains of ultrasound RF data collected from three different locations of the tissue-
mimicking breast phantom are depicted in Fig. [6.2] and the quantitative results are given in
Table Visual inspection of Fig. denotes that the method proposed by Gou et al. [75]
improves the displacement obtained by OVERWIND. For example, the inclusion borders
in sample 2 are much more clearly visible. The strain images obtained by kPICTURE
have a much higher quality than those of PICTURE. Furthermore, kPICTURE has the
highest quality strain images among the compared methods. For example, the inclusion
on the bottom in sample 1 (highlighted by the arrows) is clearly visible in kPICTURE, a
substantial improvement over all other methods that do not even show the inclusion.

The histograms of EPR values of OVERWIND+Gou et al., PICTURE and kPICTURE

are illustrated for the experimental phantom sample (1). To improve visualization, OVER-
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Figure 6.2: Lateral strains in the experimental phantom obtained by different methods. The
target and background windows for the calculation of CNR and SR are marked in the B-
mode images. The inclusion on the bottom of sample (1) is highlighted in PICTURE and
kPICTURE strain images by purple and blue arrows. The samples 1, 2, and 3 are taken
from different locations of the tissue-mimicking breast phantom.

WIND results are not included because the histogram was similar to that of OVERWIND+Gou
et al.. Although PICTURE limits the range of EPR using a regularization (Eq , some
EPR values are outside the feasible range. kPICTURE further limits the EPR values; only
a small number of samples are outside of the physically plausible range.

The lateral strain results of in vivo data are depicted in Fig. [6.3| (b). While PICTURE
may produce an adequate strain image, it still contains noisy regions. On the other hand,
kPICTURE delivers exceptionally refined strain images and surpasses the other compared
methods. The quantitative results given in table also confirm the visual inspection.

It should be noted that after incorporating the known operators, the inference time of the
network increased from an average of 195 ms to 240 ms (having 10 iterations for algorithm

1 and 100 iterations for algorithm 2).

6.3 Summary

In this chapter, we proposed to incorporate two known operators inside a USE network.
The network is trained by physically inspired constraints specifically designed to tackle the

long-standing illusive problem of lateral strain imaging. The proposed operators provide a
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Figure 6.3: The histogram of EPR values for experimental phantom sample 1 (a). The in
vivo results of the compared methods (b).

refinement in each pyramid level of the architecture and substantially improve the lateral
strain image quality. Tissue mimicking phantom and n vivo results show that the method

substantially outperforms previous displacement estimation method in the lateral direction.
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Chapter 7

Ultrasound Scatterer Density

Classification Using Convolutional

Neural Networks and Patch Statistics

7.1 Introduction

Ultrasound imaging is increasingly attracting the attention of researchers and clinicians due
to being a real-time and non-ionizing imaging modality, and being less expensive and more
portable compared to other medical imaging techniques. However, several types of artifacts
make interpretation of ultrasound images difficult. Cells, collagen, microcalcifications, and
other microstuctural components are often smaller than the wavelength of the ultrasound
wave, and scatter the wave and create the granular appearance in B-mode images called
speckles. The scattered signal from scatterers provides useful information about charac-
teristics of the scatterers, which are highly related to the tissue properties. Quantitative
ultrasound (QUS) measures the tissue characteristics by analysing the ultrasound signal
[92H99]. Tt aims to provide quantitative estimations of tissue characteristics which cannot
be otherwise obtained from the B-mode image. It has been employed in many different ap-
plications such as liver fibrosis and steatosis assessment [2], [100], bone quality measurement

[1], breast tumor classification [I5], [10T] and cardiac tissue characterization [102]. Improv-
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ing QUS techniques can eventually broaden the applications of this safe and cost-effective
method in diagnosis and treatment of a large number of disorders.

QUS methods can be classified into two broad categories: spectral-based and envelope-
based methods [5]. Parameters such as the backscatter coefficient and attenuation coefficient
can be estimated by spectral-based methods, usually with a requirement of a reference phan-
tom to remove system-dependent effects|7, 96], O8] T03]. In envelope-based methods, different
characteristics of the tissue are usually estimated by analysing and modelling the envelope
of the RF data by fitting a probability density function. The sample size, wave frequency,
and the attenuation can affect the accuracy of the distribution modelling, and therefore its
parameter estimations [4] [104].

Among different QUS parameters, the scatterer density has attracted a great attention.
If there are many scatterers (more than 10 in a resolution cell (an ellipsoidal volume defined
by - 6 dB point of the beam profile[I3])), the envelope data is considered as a fully developed
speckle (FDS), and when the number of scatterers is low, it is considered as under-developed
speckle (UDS). Classifying scatterer density into FDS and UDS is very critical since for
estimation of the QUS parameters, different assumptions must be taken for UDS regions.
Disregarding the density of scatterers results in unreliable estimates of other QUS param-
eters [I05]. Reliable classification of UDS and FDS can pave the way for differentiating
tissues with many small scatterers from those with few strong scatterers, and potentially use
them as disease biomarkers. In addition, many downstream ultrasound applications usually
work better under FDS conditions, such as sensorless 3D ultrasound [106] and elastography
[T0]. Furthermore, the presence of UDS can also affect the accuracy and precision of other
biomarkers that are currently being explored in different clinical settings, such as the eval-
uation of fat infiltration in the liver. Detecting this condition during data acquisition can
help define ways to improve the accuracy of the biomarker by implementing spatial or angu-
lar compounding strategies to compensate for the limited samples of the scattering process
under UDS [107].

The statistics of echo-envelope data, extracted by either model-based or model-free pa-
rameters, provide information about tissue properties. Model-based parameters try to fit

a distribution to the envelope data. If envelope data is FDS, the RF data can be mod-
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elled by the Gaussian distribution; therefore, envelope values follow the Rayleigh distribu-
tion [92] [108] [109]. However, the Rayleigh distribution fails to model the envelope statis-
tics of UDS regions and other distributions such as K-distribution[102], Homodyned K-
distribution[I4) 110] and Nakagami distribution[I5] can be utilized. Among these, the Ho-
modyned K-distribution is the most comprehensive but the most complex one that does not
have a closed-form solution. The Nakagami distribution provides a good estimate of the
envelope signal with low-complexity and is widely used in QUS studies.

The Nakagami distribution, applied to ultrasound data for the first time by Shankar et
al. [15], can be used to describe different probability density functions, and to characterize
various scatterer patterns in tissues. It has been shown to be useful in discriminating different
scatterer and tissue types. The Nakagami image can depict tissue properties that are not
visible in ultrasound B-mode images, and has been employed in several studies for tissue
characterization [2} 3], T11], 112].

Model-free parameters such as the envelope signal to noise ratio (SNR), skewness (S) and
entropy [108], T13] are statistical parameters that change with different scatterer distributions.
Entropy-based parametric imaging is a QUS imaging technique, which uses a small sliding
window throughout the image to measure the entropy (the overall level of variations) of
the backscattered RF signal. It has been shown to be effective in differentiating tissues
with different scattering properties, and can provide higher accuracy in a smaller patch size
compared to Nakagami imaging [I13].

DL techniques have been utilised in many fields of medical image processing. They
have also proved useful in different ultrasound applications such as segmentation[114] [1T5],
super resolution imaging [116-118] and elastography [55, 119, 120]. A few studies have
also attempted to tackle the challenge of extracting quantitative measures from ultrasound
images using DL techniques. Byra et al. [121] used Nakagami images to train a convolutional
neural network for the task of breast lesion classification. Wang et al. [122] have proposed
a 3D convolutional network for breast cancer detection. However, the appearance and even
statistics of ultrasound images can change with changes in imaging parameters such as time
gain compensation and focal points. Such changes are well studied in DL and are referred

to as domain shift [I123]. If not accounted for, domain shift renders DL estimates grossly
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inaccurate. In fact, this is one of the reasons that DL is less explored in QUS compared to
other ultrasound applications.

In a recent work, we designed a CNN to classify FDS and UDS [124]. The CNN was
fed with envelope data and the RF data spectrum from small patches of RF data, and was
compared with a multi-layer perceptron (MLP) classifier, which used SNR and skewness as
inputs. We used patches to analyse a small area of the image and therefore, to provide a
high resolution. The effect of patch size was also investigated (with patches sized 5 to 10 x
wavelength). The results showed that in small patch sizes, the CNN outperformed the MLP
classifier, whereas for larger patch sizes, where the statistics of the patch could be reliably
estimated, the MLP classifier outperformed the CNN.

In another recent work, we segmented simulated images with three different scatterer
densities using a U-Net [114]. We found that the network was able to segment precisely
when the intensity difference between the inclusion and the background was high and thus
the network could associate the intensity to the scatterer density.

In [125], the mean scatterer intensity, which is another QUS parameter, was estimated
for the whole image. They assumed that all regions have FDS, which is a limiting factor
in real ultrasound images. In this study, we aim to classify FDS from UDS regions using
CNNs in small patches (Note that the patch size is different for simulation and experimental
phantom data) where classical statistical parameters commonly used in QUS studies cannot
be estimated accurately. Our ultimate goal is to reveal tissue scatterer information similar
to that of Table using ultrasound envelope patches. The intermediate goal of this chapter
is to quantitatively evaluate the scatterer density under arbitrary conditions (i.e. different
imaging settings). We use the ultrasound envelope data as the input to the network, since
statistics such as SNR and Nakagami parameters are histogram-based, meaning that they
ignore image texture. We hypothesize that the texture of the ultrasound envelope image
contains crucial information which can be useful to determine the density of scatterers.

We use a large amount of simulated data to train the networks, and test the networks
on simulated and experimental phantom data. We show that the CNN networks are more
robust to the domain shift [123] compared to statistics used in conventional QUS methods.

We modify well-known classification networks such as MobileNet V2 [126], Inception [127],
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DenseNet [128] and ResNext [129] for the task at hand, and train them using simulation
data. The aforementioned networks are tested on unseen phantom data which are being
imaged by a different imaging setting. In the next step, we combine statistics with CNNs
by two different methods: fusion strategy and deep supervision. Our contributions can be

summarized as follows:

e Different CNN architectures are utilized to classify scatterer density using envelope

data.

e A novel training strategy and input channel are proposed to avoid over-fitting on do-
main information which enabled us to classify ultrasound patches without any reference

phantom.
e The networks are further improved by exploiting patch statistics.

e The three different classifiers of support vector machine (SVM), random forest and

MLP are used to classify based on patch statistics.

e Experimental phantom data is employed to validate our work in different imaging

settings.

7.2 Methods

In this section, we first describe different datasets we analysed. We then present the scatterer
density classification methods developed in this work, which include both classical (SVM,
random forest and MLP) and DL methods (CNN and CNN with patch statistics as additional

inputs), and provide intuitions for using different inputs.

7.2.1 Data

We employed two different datasets to investigate the performance of our proposed methods

as outlined below.
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Simulation data

We simulated 200 phantoms of size 30 mmx 30 mmx 1 mm using the Field II pro toolbox
[45], with the center frequency of 6.67 MHz. The sampling frequency was 100 MHz and the
RF signals were then downsampled to 50 MHz.

We randomly distributed point scatteres in the phantoms. In 100 FDS phantoms, we
included 16 scatterers per resolution cell. In the remaining 100 UDS phantoms, we included
2 scatterers per resolution cell. The resolution cell size was determined by calculating the
correlation between the data and a moving window in different regions [I30]. The size was
0.15 mm? at the focal point (The out of plane resolution cell size is not computed). We
randomly cropped 5000 patches of size 256x32 (4.04 mm x 5 mm which is 17 and 21 X
wavelength in axial and lateral directions, respectively) from different depths as the training
set and 1000 patches as the validation set. For the test set, we simulated 20 more phantoms
with a random scatterer density value of 2 or 16 £+ 10% in order to make the test data
more challenging. We randomly selected 500 patches from these phantoms as the test set to

evaluate the methods. This dataset will be publicly available online at data.sonography.ai.

Experimental phantom

Three different phantoms were used to validate our method. The phantoms were of size
15ecmx 5ecmx 15¢m, built from homogeneous mixture of agarose gel media and glass beads
as scattering agents. The glass bead diameter range and bead concentration in the phantoms
are reported in Table [7.1 For more information on construction details, the speed of sound
and attenuation coefficient of these phantoms refer to [I31]. The phantoms were imaged
using an 18L6 transducer operating at 10 MHz frequency using an Acuson S2000 scanner
(Siemens Medical Solutions, Malvern, PA) and we used envelope of RF data which was
acquired using Axius Direct Ultrasound Research Interface [132]. There are 456 A lines,
separated by 0.1242 mm and the depth is 40mm. The sampling frequency is 40MHz and
the exact operation frequency was 8.89MHz. However, because of attenuation, the center
frequency of the spectrum was lower. We computed the resolution cell size using correlation

method at different depths and it varied between 0.284 mm? (at the top where resolution
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Table 7.1: Characteristics of the experimental phantoms and their scatterer concentration
per resolution cell using 18L6 transducer (the range shows the minimum and maximum
values derived from different depths).

Phantom  Diameter of Random Scatterers (m) Scatterers Concentration per mm3  Scatterers Concentration per resolution cell
A (High) 5-40 236 8.50-67

B (Medium) 75-90 9 0.32-2.55
C (Low) 126-151 3 0.11-0.85

was poor) and 0.036 mm? (at the focal point where resolution was the highest). This high
variation of the resolution cell size can have an adverse effect on the classification, especially
when this variation is not observed by the network during training. The numbers of scatterers
per resolution cell for different depth are given in Table [7.1]

We used the experimental phantoms as the test data to evaluate the performance of dif-
ferent models optimized or trained on the simulation data. Phantom A (high concentration)
belongs to the FDS class and Phantoms B (medium concentration) and C (low concentration)

belong to the UDS class.

7.2.2 Classical Statistical Parameters

Several parameters have been proposed in literature for estimating the scatterer density in
ultrasound images. SNR and skewness are among the most important parameters proposed

to classify different scatterer densities:

R:SNR: _Av_ )
AQ’U_(A'U)Q

(7.1)

@ — (@)

S = skewness =

where A is the envelope of RF data, v is the signal power and ﬁ denotes mean operation.
While in [92], v smaller than 1 was suggested due to having higher dynamic range and
lower estimation error, Prager et al. proposed 1.8 as the optimal value [133] in terms of
the estimation error. We analysed both recommended values of 0.5 and 1.8, and obtained

significantly better results on the validation set using the 0.5 value (area under curve (AUC)
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of 0.894 vs. 0.876 when employing the MLP, and 0.802 vs. 0.794 when employing the SVM
classifier). We, therefore, set v to 0.5 in this study.

When the patch size is big enough, the estimation error of R and S, and therefore
the classification error based on these parameters is low. But for small-size patches, the
classification becomes difficult [92 [124]. This is especially important in clinical applications
where tissues are rarely homogeneous and a large patch may include different scattering
properties [108], 110].

Entropy has been employed for scatterer density classification [134]:

N

E =Y p(i)loglp(i) (7.2)

n=1

where E denotes entropy, and statistical histogram of the envelope data square is represented
by p, and N is the number of bins for calculating the histogram, which is arbitrarily set to
100 in this study. Entropy increases as the density of scatterers increases (moving from UDS
to FDS). The entropy measure is shown to be effective when using a small window for QUS
analysis [113].

Another parameter that has been shown useful in estimation of scatterer density is the
Nakagami model parameters m (a maximum likelihood estimator of the shape parameter)

and T (a generalized likelihood ratio test statistic) [109]:

@y
var[A?])’
(7.3)
T = 2K(log% + (m — D[log(I) — log(I) — 1])

where A is the envelope data and I represents the Gamma function. [ is a vector representing
K independent and identically distributed samples of the intensity from a specific patch.
Different values of m explain different properties; when the m parameter approaches 1,
the distribution approaches the Rayleigh distribution. The m parameter above and below
1 represent post- and pre-Rayleigh distributions, respectively, which are forms of a more

general family of distributions, called Rician [13] [15, [92], 135].
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Figure 7.1: The distribution of the patch statistics for FDS and UDS in simulated training
data. The patch size is small enough such that FDS and UDS classes overlap.

There is a strong correlation between features m and 7. The features m and R are also
highly correlated. We therefore, remove the feature m from the feature list to eliminate the
redundancy between different features. We consider aforementioned parameters as a set of
features to classify FDS and UDS patches.

Fig. [7.1] shows the distribution of different features, extracted from the simulation train-
ing data for UDS and FDS classes. The patch size is small so that for all features, a
considerable overlap exists between the distributions of the two classes, which makes the
classification highly erroneous using only a single feature. As opposed to our previous work
[124] where only parameters R and S were used for classification, we use R, S, entropy and
T together to obtain higher performance in classification. As shown in Fig. [7.1] the dynamic
ranges of the features are not similar, hence we employ normalization (they are normalized
to be in range 0-1) across each feature in the training data. The test and validation data

were also normalized using the same coefficient obtained from the training data.
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7.2.3 Machine Learning Methods

In order to classify FDS and UDS classes, we developed classical machine learning techniques

in addition to DL methods. In this section, we describe the details of these classic techniques.

Support vector machine (SVM)

We used SVM as a classical machine learning algorithm to classify FDS versus UDS. We
analysed different SVMs with linear and non-linear (Radial Basic Function (RBF) and poly-
nomial) kernels. An SVM with an RBF kernel led to the best results on the validation set,
and was selected throughout this chapter. We did a search to find optimum value of the C'
parameter of SVM, and subsequently, C' = 2.65 was chosen.

Random forest classifier

Random forest is a learning method based on the decision tree algorithm and ensemble of
different trees’ outputs, and is among the top classification algorithms. By changing different
parameters of a random forest model, we found the best performing model on the validation
set, and used this model to classify different patches of simulation and experimental phantom

data.

7.2.4 Deep Learning Methods
Multi-layer perceptron (MLP)

We proposed an MLP structure to classify FDS and UDS groups. To find the best network
architecture for classifying scatterer density using the aforementioned features, we investi-
gated the performance of different MLP architectures on the validation data. We obtained
the best results with a 3-layer network. Further increase in the number of layers did not
improve the results and lead to overfitting, a common problem with MLPs. We also analysed
different numbers of neurons in each hidden layer. We incrementally increased the number
of neurons in two hidden layers. Including 128 neurons in the first hidden layer, and 32
neurons in the second hidden layer led to the best result. However, it is important to note

that the results reached a plateau and did not change substantially by changing the number
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of neurons. We employed Dropout [I36] in the second layer. The activation functions were
Leaky Relu for the first two layers and Sigmoid for the last layer. The loss function was

binary cross entropy and the network was optimized using the Adam optimizer.

Convolutional neural network (CNN)

We used different state-of-the-art pretrained CNN networks to classify scatterer density.
ResNext [129], MobileNet V2 [126], Inception [127] and DenseNet [I128] were employed. In
order to use these networks, we replaced the last fully connected layer with a fully connected
layer with one output having Sigmoid activation function. We used the pre-trained weights

of the networks for initialization to facilitate the training and avoid over-fitting.

CNN with patch statistics as additional inputs

To further enhance the network, we proposed to utilize the patch statistics (R, S, entropy
and T') as additional inputs. We tested different settings to determine the optimal way to
fuse the information of patch statistics to the CNN. Fig. shows the outcome (A denotes
envelope). The CNN part is the same as the CNN network described in Section and
the patch statistic classifier part is similar to the MLP explained in Section [7.2.4, These
parameters are fed to an MLP to generate a feature map, which is concatenated to the feature
map obtained from the CNN. The resulted feature map is then used for a final classification.

Our first intuition was to train the whole network end to end. However, the CNN and the
MLP have vastly different numbers of parameters and this resulted in a low generalization
and a large sensitivity to the initial seeds. To mitigate the imbalanced number of parameters,
we proposed training each part separately. We then trained the fusing part while the CNN
and MLP weights were kept fixed.

Deeply supervised CNN (Multi-task learning)

Another way of using patch statistics is that using them as additional outputs. Multi-
task learning [I37] and deep supervision [I38] have shown to improve the generality and
performance of CNNs. We added R, S and m as additional outputs to force the networks

learn in a way to have more generalization abilities. Values of R, S and m are highly
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Networks Number of
Parameters

CNN + Deep Supervision

DenseNet121 7978 M
Inception 6.624 M
MobileNetV2 3.504 M

Pre-Trained Resnext50_32x4d  25.028 M

0: UDS
1: FDS

Patch parameter Fusion

estimation Fully Connected

Layer

Figure 7.2: Proposed architectures for different networks. MLP, CNNs, CNNs with deep
supervision and CNNs with fusion with MLP. The pre-trained networks with their number
of parameters in Million are specified.

correlated with the scatterer density, which led us to train the network to learn these features
as additional outputs. The loss function for the networks with additional outputs was defined
as a weighted summation of scatterer classification loss and parameter estimation part which

can be written as:

N
1

loss = — yilog(yi) + (1 — yi)log(1 — y;)
w2 (7.4

+8 % (R=R)*+ (S—=85)*+ (m—m)?))
where y is the classification labels, y is the predicted scatterer density, R, R, S, S, m
and m are ground truth and estimated values of SNR, Skewness and Nakagami parameter,
respectively. N is the number of data in the corresponding mini-batch and g is the weight
associated to the axillary loss. The classification performance is not very sensitive to [,

which is set empirically to 0.2.

7.2.5 Training Schedule

To augment the data, random Gaussian noise, elastic deformation and random flipping in
lateral direction were employed. The networks were trained with the Adam optimizer and
the binary cross entropy was used as the loss function. Due to the fact that there were

different networks with different inputs and to have a good generalization, we adopted a
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variant of early stopping which could be considered as a form of implicit regularization [139].
For early stopping, the validation AUC was selected as the stopping criteria; when the best
validation AUC was reached during the training and remained the best after 20 epochs, we
stopped the training. The cyclic learning rate was also used in order to avoid bad local

minima [140].

Reduction of domain specific information

Batch normalization has been used widely in the classification networks. It has been found to
facilitate the training and remove covariance shift [I41]. During training, batch normalization
layers compute the mean and standard deviation of the layer. The output of the layer is
normalized by computed mean and standard deviation. During the test time, the computed
mean and variance of the training data are used for normalization. The networks we employed
contain several batch normalization layers. Domain information are mostly kept in the
estimated mean and standard deviation of batch normalization layers [142]. In order to avoid
learning domain specific information, we proposed not to update the mean and standard
deviation of batch normalization layers during the training. We used pre-trained values of
the mean and standard deviation for each batch normalization layers. The effect of batch

normalization is studied in Section [7.3.3l

7.2.6 Input Channels

In [14], log compression of envelope along with the envelope have been used (log(A) and
A% x log(A?)) for estimating statistics using the Homodyned K-distribution. Inspired by
their work, we used A X log(A) as a novel input to the proposed CNNs. We therefore used
the amplitude A and A X log(A). The effect of including A x log(A)) is studied in Section
(3.3

7.2.7 FEvaluation Metrics

To evaluate the classification performance, we used AUC of the Receiver operating charac-

teristic curve (ROC), accuracy, sensitivity (recall), precision and also Youden’s Index [143].

97



Table 7.2: Simulation Results

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index

SVM X X 0.892 (0.867-0.920) 0.816 0.800 0.802 0.620 (0.51)
Random Forest X X 0.894 (0.868-0.919) 0.816 0.806 0.806 0.620 (0.04)

MLP X X 0.890 (0.860-0.917) 0.850 0.786 0.806 0.610 (0.52)

"~ MobileNet V2~ X X 0949 (0.929-0.964)  0.867  0.870  0.866  0.7529 (0.31)
MobileNet V2 v X 0.905 (0.887-0.927) 0.831 0.830 0.828 0.656 (0.50)
MobileNet V2 X v 0.950 (0.930-0.965) 0.847 0.885 0.866 0.755 (0.38)

~Inception X X 0969 (0.952-0.981)  0.988  0.823  0.886  0.825(0.90)

Inception v X 0.970 (0.953-0.981) 0.906 0.913 0.908 0.837 (0.61)
Inception X v 0.945 (0.923-0.960) 0.914 0.857 0.878 0.766 (0.45)

ResNext50.32x4d1 X X 0.975 (0.957-0.984)  0.926 0920  0.920  0.848 (0.47)

ResNext50_32x4d1 v X 0.918 (0.893-0.939) 0.851 0.819 0.828 0.677 (0.52)

ResNext50_32x4d1 X v 0.973 (0.956-0.984) 0.988 0.850 0.906 0.855 (0.73)

"~ DenseNet121 X X 0964 (0.947-0.976)  0.863 0917 0889  0.798 (0.16)
DenseNet121 v X 0.947 (0.923-0.961) 0.925 0.840 0.872 0.759 (0.59)
DenseNet121 X v 0.967 (0.952-0.978) 0.851 0.923 0.888 0.801 (0.45)

We estimated the 95% confidence interval of the metrics by employing boot strapping (i.e.
sampling the data with replacement, for 1000 times). Youden’s Index is a measure of both
sensitivity and specificity:

TP TN
J = + -1
TP+FN TN+ FP (7.5)

= Sensitivity + Speci ficity — 1

where TP, FN, TN and FP denote true positive, false negative, true negative and false
positive, respectively. It should be noted that accuracy, sensitivity and precision are reported
for the threshold of 0.5. We calculated the Youden’s Index for different threshold values and
the highest values are compared between different models. The value of threshold which
results in highest Youden’s index can be considered as the optimal threshold value to have

highest average of sensitivity and specificity.

7.3 Results

In this section, we provide the results of the proposed models for classification of FDS
and UDS classes when analyzing different datasets. We tested three classifiers without
including any CNN (i.e. a SVM, a random forest and an MLP model). Different CNNs
were also analyzed, by exploiting the patch statistics using fusion (Fusion) and also deep

supervision (DS). All DL models were trained according to the training schedule explained

98



in Section [7.2.5] The weights of the top-performing networks will be publicly available online

at code.sonography.ai.

7.3.1 Simulation Results

All proposed models were evaluated on the simulation data. Envelope and envelope mul-
tiplied by log compressed envelope are the input channels of all CNNs. Networks alone,
fused with patch statistics (section and with axillary outputs (section are eval-
uated. The results are shown in Table [7.2l The values inside the parenthesis in the AUC
column represent the confidence interval and the value inside parenthesis in Youden’s index
represents the threshold which results in the highest Youden’s index. As seen in Table [7.2]
CNN-based models provide better results compared to the MLP and SVM and random for-
est models which use only patch statistics. ResNext50-32x4d1 has the highest AUC (0.975)
and accuracy (0.920). Whereas DenseNet121 with deep supervision has the highest precision
(0.923). Both sensitivity and precision of CNN models are high meaning that the networks
perform very well on identifying both positive and negative classes. The most of the opti-
mum threshold of the Youden’s Index was close to 0.5 which is the threshold value used for

classification.

7.3.2 Experimental Phantom Results

The results of classifying small patches from phantom A vs. phantoms B and C are provided
in Table [7.3] The patch size in terms of number of pixels is the same as the simulation
data but it differs in terms of size in mm (4.92 mmx 4.28 mm). Due to the presence
of domain shift, machine learning methods which use only patch statistics (SVM, random
forest and MLP) have good precision but poor sensitivity. While, CNN models have high
sensitivity and moderate precision (as opposed to simulation results where both sensitivity
and precision were high). we expected that by adding patch statistics information, the
sensitivity is decreased and precision improves. The effect of domain shift can be seen in the
optimal threshold value of Youden’s index. While in simulation the optimal values are close

to 0.5, in experimental results most of them are far from 0.5.
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Table 7.3: Experimental phantom results.

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index
SVM X X 0.646 (0.623-0.669) 0.235 0.873 0.733 0.350 (0.03)
Random Forest X X 0.895 (0.880-0.913) 0.389 0.821 0.768 0.710 (0.46)
MLP X X 0.887 (0.879-0.895) 0.303 0.558 0.744 0.716 (0.20)

~ MobileNet V2 X X 0941 (0.935-0.948)  0.978  0.562  0.733  0.830 (0.98)
MobileNet V2 v X 0.886 (0.878-0.894) 0.446 0.754 0.767 0.707 (0.11)
MobileNet V2 X v 0.947 (0.940-0.953) 0.978 0.530 0.703 0.830 (0.99)

~ Inception X X 0.895(0.886-0.901)  0.945  0.685  0.835  0.726 (0.51)
Inception v X 0.890 (0.883-0.897) 0.950 0.636 0.802 0.684 (0.54)
Inception X v 0.946 (0.939-0.952) 0.975 0.617 0.790 0.825 (0.96)

ResNext50 32x4dl X X 0.872(0.864-0.880)  0.967  0.576  0.752  0.720 (0.94)
ResNext50_32x4d1 4 X 0.905 (0.898-0.913) 0.467 0.809 0.786 0.746 (0.17)
ResNext50_32x4d1 X v 0.932 (0.924-0.938) 0.977 0.544 0.720 0.783 (0.98)

 DenseNet12l X X 0.875(0.866-0.883)  0.875  0.688  0.770  0.701 (0.15)
DenseNet121 v X 0.900 (0.893-0.908) 0.872 0.770 0.869 0.789 (0.27)
DenseNet121 X v 0.918 (0.911-0.925) 0.871 0.768 0.870 0.776 (0.21)

Comparing the networks, MobileNet V2 has the highest sensitivity but the precision is
low. Inception has the highest average of sensitivity and precision among the CNNs that do
not exploit patch statistics. DenseNet121 achieves the highest precision (0.688) compared
to other CNNs (without supervision or fusion). Exploiting patch statistics by fusion method
increases the precision of the most of the networks (except Inception) and decreases the sen-
sitivity in some models. By adding the patch statistics using deep supervision, the precision
which is low in CNN models (0.562-0.688) was improved (0.628-0.809) with a slight decrease
of sensitivity in some cases. Networks exploiting the patch statistics by deep supervision
have higher AUCs compared to CNNs and CNNs with fusion. DenseNet + deep supervision

achieves the highest accuracy among all the evaluated models.

7.3.3 Ablation Experiment

We conducted ablation experiments [144] (note that we are not referring to the thermal
ablation treatment) on one of the networks (DenseNet121) to validate the input choice
(Section and training strategy (Section . The results are listed in Table .
DenseNet121+BN denotes training DenseNet121 with updating batch normalization layers
(training all layers). DenseNet121-Alog(A) represents that the network input is only envelope
and the proposed input (Alog(A)) has been removed. Although precision of DenseNet121+BN
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Table 7.4: Ablation experiment on DenseNet121. DenseNet121+BN : Batch normalization
layers statistics are updated during training. DenseNet121-Alog(A) : Only envelope (A) is
used as input and Alog(A) is not employed. DenseNet121: Proposed training strategy which
batch normalization layers statistics are kept fixed during the training and Alog(A) is used
alongside the envelope as an input channel.

Simulation Experimental Phantom
Model AUC Sensitivity Precision Accuracy Youden’s Index AUC Sensitivity Precision Accuracy Youden’s Index
DenseNet1214+BN 0.955 (0.935-0.969) 0.894 0.884 0.886 0.782 (0.23) 0.751 (0.738-0.762) 0.223 0.755 0.717 0.421 (0.02)
DenseNet121-Alog(A) 0.966 (0.950-0.977) 0.922 0.900 0.908 0.816 (0.57) 0.781 (0.771-0.790) 0.445 0.568 0.702 0.529 (0.02)
DenseNet121 0.964 (0.947-0.976) 0.863 0.917 0.890 0.798 (0.16) 0.875 (0.866-0.883) 0.875 0.688 0.826 0.701 (0.15)

is slightly better than the proposed method (0.755 Vs 0.688), the sensitivity is very poor
(0.223 Vs 0.875). Accuracy is also lower (0.717 Vs 0.826); therefore, it can be concluded
that freezing batch normalization statistics is beneficial. Regarding the selection of the input
channels, it can be observed that adding envelope multiplied by log compressed envelope de-
teriorates the simulation results. However, it substantially improves the experimental phan-
tom results which indicates that adding Alog(A) can reduce over-fitting on the simulation

data.

7.3.4 Visualizing Experimental Phantoms and Ablation Experi-

ment Results

Fig. depicts some examples of the studied images using different models. We split each
image into overlapping patches (50% overlap), and feed all patches to the networks. As seen
in Fig. [7.3, CNNs perform very well in classification of patches from phantoms A and C
but they perform modestly for patches from phantom B which belongs to the class 0 (UDS).
Whereas, MLP produces low probability for all three phantoms. The main reason is that
the statistics are also system dependent. It can be observed that by using proposed training
strategy, the CNNs have less system dependency and produce better results compared to
MLP, which uses only patch statistics. Among the CNNs, the model with deep supervision
(DenseNet121+DS) has the best results on the challenging phantom B with introducing
slight error on the phantom A. DenseNet1214+BN which mean and standard deviation of
batch normalization layers are trained as well as other layers, produces poor results on
phantom A that shows the benefits of using the proposed training strategy.

We should also mention that the networks estimate higher probability of FDS in the top
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and bottom regions of the phantoms. The main reason is that in these regions, the resolution
cell size is larger than that at the focal region, leading to a larger number of scatterers per

resolution cell.
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Figure 7.3: The results of MLP, MobileNet V2, Inception, ResNext50, DenseNet121,
DenseNet121+4-DS (with deep supervision) and DenseNet121+BN (with updating batch norm
coefficients) models on the experimental phantoms. The color code represents the predicted
output of the networks, from 0 (UDS) to 1 (FDS). Correct classes are 0 (UDS) for phantoms
C and B, and 1 for phantom A.

7.4 Discussion

The density of scatterers in different parts of a tissue is an important property of that tissue
which may discriminate normal and abnormal regions. Ultrasound images can be utilized to
estimate this property non-invasively. This will eventually guide invasive procedures such as
biopsy, leading to less expensive and safer diagnosis methods for different types of diseases.

In this work, we employed DL techniques to classify the scatterer density in ultrasound
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images. Based on our results, different numbers of scatterers result in different texture
patterns in the ultrasound image. We used CNNs to detect texture patterns and employ
histogram-based features (SNR, skewness, entropy and 7') to improve the performance. Re-
garding the choice of features, we only used histogram-based features since CNNs can detect
texture-based features but they need a large receptive field (as large as the entire patch) to
be able to detect histogram-based features. Further investigations may reveal effectiveness
of other features for CNNs.

The network trained on simulation data was able to classify the experimental phantom
data, despite the fact that the number of scatterers and the imaging properties are completely
different in these two datasets.

Comparing the two methods of exploiting patch statistics, deep supervised networks
have higher AUCs than the fusion method. In addition to this, deep supervision does not
need calculation of the patch statistics separately which reduce computation overhead. The
networks we employed have a large receptive field which enables them to estimate statistic
information related to the entire patch. Networks with a small receptive field are not able
to estimate these statistics as well as deeper ones.

In a fixed imaging setting, a larger number of scatterers results in a brighter ultrasound
image. However, by changing the imaging machine settings, the image intensity can vary.
Even though the average density of ultrasound images contains information about the scat-
terers concentration, it is not a reliable feature for classifying the number of scatterers, as
it can be easily altered by changing the imaging setting. We eliminated the effect of the
average intensity by normalizing each individual patch such that the intensity of all studied
patches was in the range [0,1]. It should be noted that the normalization method is not
robust for regions having saturation. Those regions should be excluded to be able to use
the proposed method correctly. We also reduced the domain related information by avoid-
ing updating statistic coefficients of batch normalization layers during the training. Using
reference phantoms to reduce the system specific effects can be an area of future works.

The effective number of scatterers per resolution cell varies by depth. Generally, at the
focal point, the resolution cell is the smallest. Therefore, there are fewer scatterers per

resolution cell at the focal point compared to other regions.
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We included the data recorded from three phantoms in this study. The density of the
scatterers is not the only parameter which differs between these phantoms. The size of the in-
cluded scatterers is also different (Table . However, considering the operating frequency,
the size of the scatterers is still smaller than the wavelength, and does not substantially
affect the results. Phantoms with different scatterer sizes and densities warrants further

investigations.

7.5 Summary

In this chapter, we proposed different CNN models to classify small patches of ultrasound
images as FDS or UDS. We proposed to use both envelope and envelope multiplied by
log compressed envelope as two separate input channels to the proposed CNNs. We also
proposed to freeze batch normalization layers during the training to avoid learning domain
specific information. We further benefited from patch statistics using fusion and axillary
outputs (deep supervision). We did not use any data from experimental phantom during
the training phase, which can degrade the results due to the domain shift. Nevertheless, we
found that CNN models result in high sensitivity but moderate precision for experimental
phantoms, due to this domain shift. The precision is improved by using statistic information
as additional inputs/outputs with a slight decrease in sensitivity. On a broad picture, these
results show the ability of our model to learn scatterer density from simulation data alone

without the need to perform transfer learning on experimental data.

104



Chapter 8

Robust Scatterer Number Density

Segmentation of Ultrasound Images

8.1 Introduction

In conventional envelope-based methods, the envelope data is divided into small overlapping
windows (a strategy here we refer to as patching), and an inverse problem approach is
used to estimate the scatterer number density and other QUS parameters [14, [109]. The
size of the patch should be large enough to contain adequate independent samples. Large
patches reduce the spatial resolution and cannot identify small regions having different QUS
parameters. The size of the patch is an important hyper-parameter that the user should
optimize.

CNNs have been used rarely for QUS due to requirement of large training data and
the system specific nature of quantitative applications. Recently, a patch-based CNN was
developed by our group to classify regions in the ultrasound image according to their scatterer
number density [145]. This prior work was one of the first reports on the use of CNN
on QUS, particularly for scatterer number density classification and resulted in promising
results (AUC as high as 0.975 in tissue mimicking phantoms). However, the patch-based
nature of this work causes limitations especially when applying the method to real world
scenarios where there are regions with irregular shapes with heterogeneous composition. The

present work significantly advances QUS methods based on speckle statistics classification
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by avoiding the use of patches.

In this chapter, we segment the scatterer number density of the whole ultrasound image
using a fully convolutional neural network. A simple method is introduced to generate a large
dataset having different scatterer number density and mean scatterer amplitude shapes. The
generated dataset enables us to classify samples of ultrasound envelope data without patching
requirement. Furthermore, we uniformly sample the imaging parameters from a wide range
to make the trained network robust to change of imaging parameters. We then use the
Nakagami parameter in a multi-task manner to reduce over-fitting of the network. The idea
of the reference-based methods [96], 103}, (109, [146] is also adapted for CNNs to further boost
the performance. We validate our method using simulation data, experimental phantoms

and in vivo data. Our contributions are summarized as follows:

e The scatterer number density is estimated for the whole image instead of estimating
for each individual patch. To the best of our knowledge, this is the first approach

without patching for segmentation based on scatterer number density.

e The proposed method is evaluated for a variety of different computational and physical
phantoms and in vivo breast ultrasound, imaged with different ultrasound scanners and

transducers.

e Nakagami parametric imaging is employed as multi-task learning to improve the per-

formance of network.

e The reference phantom idea of conventional methods is adopted to CNN for domain
transformation to further enhance the performance using only a small amount of phan-

tom data.

e The proposed method is compared with a previously developed reference-based method

and a patch-based CNN recently proposed by our group.

e A fast and simple ultrasound image generation is employed which enables us to gen-
erate thousands of images with diverse imaging and scatterer properties for training
our segmentation network. The generated dataset contains different scatterer number

density and mean scatterer amplitude.
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8.2 Methods

8.2.1 Background
Conventional methods to evaluate the scatterer number density

Rosado-Mendez et al. used a window around the region of the interest (here, we call it a
patch) and employed echo amplitude signal-to-noise ratio, SNR, defined in Eq , the gen-
eralize spectrum and the first order statistics of the phase information to classify ultrasound
patches into different groups of low-scatterer number density, diffuse scattering and coherent

scattering [109].
(mean[A])

Var[A]

SNR = (8.1)

In Eq 8.1 A denotes envelope. The SNR increases with scatterer number density. If the
patch is FDS, this value would be close to 1.91 [I3]. A reference phantom with high scatterer
number density was used to account for spatial variations of the resolution cell size due to
diffraction effects. A patch of ultrasound envelope data was classified as FDS if the SNR
value was close to the SNR value of the reference phantom patch from the same depth. If
the SNR value was lower than the reference one, the patch was considered as UDS and if
it was higher, it was considered as non-resolved periodicity. Here, we assumed that if the
absolute difference was lower than 3% (it was set empirically) of the reference SNR, the
region is considered as FDS. Our method is compared with this algorithm (here it is called

“Reference Method”) for experimental phantom evaluations.

Deep learning methods

In [124] , we proposed a CNN to classify scatterer number density of a small patch of
envelope data. The network was fed with envelope data and the spectrum of RF data, and
was compared with a MLP classifier, which used two statistical parameters (signal to noise
ratio and skewness) as inputs. The method achieved a segmentation accuracy of 92.2% for
simulation test data with a patch size of 1.5mm x 1.5mm. However, it was limited to a single
imaging setting and was also a patch-based method that required to apply the network many

times over multiple patches to generate the scatterer number density map of the whole image.
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Furthermore, the variation of mean scatterer amplitude was not considered.

In [I14], we used a U-Net to segment scatterer number density of ultrasound images. Sim-
ulation data having inclusions with different densities were generated. The results showed
that the network was able to segment the simulation test data with 1 and 10 scatterers
per resolution cell with a precision of 99.2% and 67.5% and sensitivity of 98.8% and 79.7%,
respectively, provided that there was a noticeable difference in intensity of the correspond-
ing regions. However, the change of amplitude due to mean scatterer amplitude was not
considered.

Zhang et al. [125] recently used a U-Net to estimate the pixel-wise mean scattering
intensity. They generated a dataset with random shapes and considered different values of
mean scattering intensity for each region. They assumed that all areas were FDS; hence, the
network was able to associate different values of intensity to the mean scattering intensity
of the scatterer distribution. However, the FDS assumption does not hold for many organs
and limits the generalization to FDS tissues.

In our recent work [145] (Chapter 7), we used state-of-art CNN architectures as well as
patch statistics to classify scatterer number density of patches. We simulated a training
dataset with a fixed imaging parameters using Field II [45] which is available online at
code.sonography.ai. CNNs which employed envelope echo signals outperformed machine
learning methods such as SVM, Random Forest and MLP which only used patch statistics.
Fusion and multi-task learning (MTL) were also utilized to combine the information of the
statistics and textures. MTL was shown to be an appropirate choice for unseen experimental

phantom data. This method is used for comparison and is labeled as “Patch-based CNN”.

8.2.2 Datasets and Data Generation
Data Generation

A large and diverse dataset is required to train a fully convolutional neural network. In fact,
one of the reasons that patch based methods for scatterer classification were developed was
to reduce data requirements of CNNs.

In this section, a simple but effective data generation scheme is introduced. Ultrasound
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simulation tools such as Field IT [45] can be used to generate ultrasound simulation data.
These methods are computationally expensive but have been used to generate medium size
datasets such as the dataset proposed in [145]. Field II takes several minutes on a typical
machine to generate an image. A common trend to generate medium size datasets is to use
clusters but it is still infeasible to generate very large datasets (more than 10,000 images).

We employ a simple method to generate a large number of images in a short amount
of time. This data generation method shares some similarities with the method used in
[125], in that it considers variations in mean scatterer intensity. The main difference of the
method proposed here is that it also considers variations in scatterer number density. This
makes the data set more realistic and suitable for scatterer number density segmentation. It
should be mentioned that unlike Field II simulations, which are scatterer-based and defined
in arbitrary coordinates, the approach here (and in [125]) is grid-based, where each discrete
grid position is assigned scattering properties.

Assuming weak scattering (using the first order Born approximation), the interaction of
scatterers with ultrasound waves can be modeled by a 2D linear time varying convolution
[46], 147, [148].

rla, 1] = gla, 1] * hla, ] + n]a, ] (8.2)

where g[a, ] is the scatterer echogenicity map, h[a,!] is the spatially varying Point Spread
Function (PSF) at axial and lateral positions a, [, and n indicates additive white Gaussian
noise. The scatterer echogenicity in a specified location is a Gaussian random variable

sampled from a Bernoulli distribution which can be written as [125]:

g(a,l) = K(a,l) x A(a,l) (8.3)

where K (a,l) denotes a sample at the axial and lateral location a and [, respectively, from
a Bernoulli distribution with value of 1 with the probability of p (probability of presence of
a scatterer) and 0 with the probability of 1 — p. A denotes the amplitude of the scatterers
and it is sampled from N(u4,0?) where N denotes normal distribution with variance of o2
and mean of pg which corresponds to the mean scatterer amplitude.

Equation 8.3 can be used for a phantom having fixed values of mean scatterer amplitude
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(1s) and scatterer number density. In order to incorporate different shapes of scatterer
number densities and mean scattering intensity, we define a scatterer number density binary
mask (SC') and a mean scatterer amplitude binary mask (M.S) to control K (a,l) and us as

the following:
Kl (CL, l) SC =0

K(a,l) =
KQ(CL,Z) SC =1

(8.4)
Msl(aa l) MS=0

Ns(avl) =
psa(a,l) MS =1

where Kj(a,l) and Ks(a,l) are the Bernoulli distributions associated to the different val-
ues of scatterer number density binary mask. pg(a,l) and ps(a,l) are different values of

mean scatterer amplitude assigned to the different values of mean scatterer amplitude mask.

Inserting Eq[8.4] into Eq [8.3] leads to:

SN Ki(a,0) x Afa,l) SC =0,MS =0

S S, 5 Ki(a,1) x Afa,l) SC =0,MS =1 (5.5)
S, Ko(a, D) x Afa,l) SC=1,MS =0
SN Ko(a,l) x Afa,l) SC =1,MS =1

The Eq can be extended to more than 4 states by using non-binary SC' and M .S masks.
We consider the simplifying assumption that PSF (hla,l]) is constant throughout the
image. Therefore, the time varying convolution is converted to a time invariant one. The
PSF can be modelled by a 2D Gaussian function modulated by a cosine function in axial
direction [147, [148].
hla,l] = 6_%(%+%) X cos(2rm f.a) (8.6)
where f., 0,2 and 0;? denote the center frequency, axial and lateral width of the Gaussian
profile of the PSF, respectively.

We generated 7000 random binary shapes and assigned different scatterer number den-
sities and mean scatterer amplitude to each region. The imaging parameters o, o;, f. and
speed of sound (v) are also sampled from a uniform distribution. The imaging parameters
and their ranges are specified in Table We generated 15000 images for training and

validation using 6500 random binary masks, and an additional 500 test images using 500
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(A)

(B)

(90

Figure 8.1: Four examples of the generated dataset. Scatterer number density mask (A),
mean scatterer amplitude mask (us) (B) and obtained B-mode image (C).

binary masks. The test binary masks are not used in training data generation to avoid data
leakage. Some examples of the generated dataset are illustrated in Fig. [8.1] It can be seen
from the figure that the intensity of the output image largely depends on both scatterer
number density and mean scatterer amplitude; therefore, both of them must be taken into
account when dealing with ultrasound images.

In [125], the ultrasound images were assumed to be FDS; therefore, they associated the
intensity to the mean scatterer amplitude. In contrast to our recent work [114], it was
assumed that all ultrasound images had the same mean scatterer amplitude; therefore, the
images could be segmented by considering the intensity. In contrast to the previous works,
the present method considers that both mean scatterer amplitude and scatterer number
density can vary independently. Figure [8.2] part 1 depicts the training data generation step.
The test set of this dataset will be available online after acceptance of this manuscript at

code.sonography.ai similar to our previous works [55, [145].

Experimental Phantoms

Three homogeneous phantoms, A, B and C are employed for the evaluation (they were also

employed in Chapter 7). They had a size of 15cmx 5ecmx 15cm, made from a mixture of
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Table 8.1: Parameters of image generation and their ranges.

Parameter Range
Scatterer Number Density (UDS) 1-2
Scatterer Number Density (FDS) 11-16
Mean Scatterer Amplitude (p) 0.3-1.3
Standard Deviation of Scattering Amplitude (o) 0.03 (fixed)
Center Frequency (f.) 4 -7 MHz
Sampling Frequency (fs) 60 - 100 MHz
Speed of Sound (v) 1510 - 1560 m/s
F Number 1.5-25
Number of Excitation Pulses [3-5]
Standard Deviation of PSF in axial (o) 0.1-0.3 mm
Standard Deviation of PSF in lateral (o) 0.13 - 0.4 mm
( 1. Data Generation KZ. Training \ (" 3. Domain Transform )

Reference Set

Mean Scatterer 1
Amplitude Mask

Feature Extractor
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Figure 8.2: Overview of the framework used in this chapter.

agarose gel media and glass beads as scattering agents. For more information about these
phantoms refer to [I31]. An Acuson S2000 scanner (Siemens Medical Solutions, Malvern,
PA) with an 18L6 transducer having the center frequency of 8.89 MHz was used to image
the phantoms and RF data was acquired using Axius Direct Ultrasound Research Interface
[132]. We used the correlation method to compute the resolution cell size [I30]. The axial

and lateral correlation cell size were 0.26 mm and 0.49 mm at the focal point, respectively.
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Phantom with Inclusions (Phantom D)

This phantom was imaged by a Verasonics Vantage 128 system (Verasonics, Kirkland, WA)
using a L11-5v transducer operated at 8 MHz. This phantom has three inclusions with
different echogenicities and scatterer densities [146]. We computed the resolution cell size
using correlation method [130], which was 0.149 mm and 0.237 mm at the focal point in the

axial and lateral direction, respectively.

CIRS phantom (Phantom E)

A multi-purpose, multi-tissue CIRS phantom (model 040GSE, Norfolk, VA) was also used in
evaluating the performance of the proposed method. It contains inclusions with no scatterers
and different scatterer number densities. Data was collected with an E-CUBE 12 Alpinion
machine using L3-12H transducer. The center and sample frequencies were 8.5 MHz and 40
MHz, respectively.

The background has high scatterer number density (FDS) and there are inclusions with
different scatterer number densities. We selected this phantom to evaluate the proposed
method for the cases where the scatterer number density was between the lowest (no scat-
terer) and the highest (FDS).

The phantom was also imaged using Verasonics Vantage 256 system (Verasonics, Kirk-
land, WA) using a L11-5v transducer. No reference phantom is available for this phantom;

therefore, the proposed method is only compared with the patch-based CNN.

In vivo data

We used breast ultrasound images recorded by a Siemens Sonoline Elegra System (Issaquah,
WA) with the sampling frequency of 36 MHz, center frequency of 7.5 MHz and a lateral
beam spacing of 200 pm. I-Q echo data were recorded in a file on the imaging system when
data acquisition was stopped (frozen on the imaging system). The 1Q data were converted to
RF echo data offline using the known demodulation frequency of the imaging system. More

information about this dataset and the recording procedure is provided in [149].
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8.2.3 Nakagami Parametric image

The Nakagami distribution is a flexible tool to model different scatterer patterns based on

envelope amplitudes. It can be defined as [15]:

2m™

f(A,m,Q):W

P G o (8.7)

where A denotes the envelope amplitude, m represents the shape parameter, €2 is the scale
parameter and I' denotes the Gamma function. m is found to be correlated with scatterer
number density, values close to 1 reflect high scatterer number density, and low values
represent low scatterer number density. m can be estimated by the maximum likelihood
method [I5, 131]. The Nakagami parameter is also machine dependent meaning that machine
settings can change the value of m for the same tissue [4].

In order to obtain the parametric image of m, patches of envelope data with overlaps are
extracted and the m parameter is estimated using maximum likelihood estimator [109] 1T1].
The patches must be large enough to provide statistically reliable estimates of m. But very
large patches reduce the spatial resolution of the Nakagami parametric image and might
result in loss of information especially for small targets. We ensured that the window for
estimation of the Nakagami parameter is at least 8 times larger than the resolution cell size.
Some examples of the obtained parametric images are shown in Fig. which shows that
the Nakagami parameter is mostly sensitive to the c6hanges of scatterer number density,
whereas brightness changes in the envelop images have little effects on Nakagami parameter.
We used Nakagami parametric images in two different fashions; as the input of the network

and as an auxiliary output for multi-task learning [137].

8.2.4 Network Architecture and Training

Semantic segmentation networks are able to segment more than 200 different classes within an
image. Among different networks, the Pyramid attention network (PAN) [I50] has shown its
superior performance over other well-known networks such as PSPNet [I51] and DeepLabv2
[47]. We used this network for our segmentation task. The network is composed of three

main blocks.
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Figure 8.3: Four examples of the generated dataset. Scatterer number density mask (A),
mean scatterer amplitude mask (us) (B) and obtained Nakagami parametric image m (C).
The mean amplitude values in these 4 samples are either 0.9 or 1.1.

1) Feature extractor: this module is employed to extract features from raw input images.
ResNet50 [152] is utilized for the feature extraction. To avoid loss of information, features
from different levels of ResNet50 are used to keep both spatial and semantic information.

2) Feature pyramid attention (FPA): This module is an attention module and it is used
to have a precise pixel-level attention for high level features [151].

3) Global attention upsample (GAU): This module provides channel-wise attention mech-
anism to emphasize more important channels of low-level features using high-level features.

This network was employed to obtain scatterer number density segmentation with 1/4 of
the original input resolution. It should be noted that the aim of this chapter is to investigate
the performance of a state of the art CNN in scatterer number density segmentation, and
not to compare different networks for this task.

The loss function for the segmentation task is the summation of binary cross entropy and

the Dice loss. For the MTL network (with auxilary output), the loss is added by smooth L1
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loss of the Nakagami parametric image. The loss for this network can be written as:

loss = BCE(Ds, Dsg) + Dice(Ds, Dsgt) (55)
8.8

+ﬁ|m - mgt|17

where BCE, Dice and |.|; denote binary cross entropy, Dice loss and smooth L1 norm,
respectively. l/)\s, Dsg, m and my, represent predicted, ground truth scatterer number
density and predicted and ground truth Nakagami parametric image, respectively. [ is the
weight associated to the auxiliary loss (MTL) of the estimated Nakagami parametric image
which is set to 0.1 to have lower weight than the main task. The auxiliary loss can be viewed
as a regularizer that avoids over-fitting to the training data. The auxiliary task should be
related to the main task; therefore, we selected the Nakagami parameter since it is highly
correlated with the scatterer number density.

The networks were trained using the Adam optimizer for 20 epochs and the weights with
the best validation results were used for evaluation. The learning rate was set to le-5 for
the first 10 epochs and then reduced to le-6 for the last 10 epochs. It should be noted that
we used feature extraction block pre-trained on ImageNet to speed up the training. The top
performing network weights will be available online after acceptance of the manuscript at

code.sonography.ai.

8.2.5 Batch Normalization and Adaptive Batch Normalization

Batch normalization (BN) has been found to be very useful in deep learning networks. It
can speed up the training and remove covariance shift [I53]. Having the input of the BN
layer X € R™ "% where n is the number of data in a mini-batch, ¢, h and w denote
the number of channels, feature height and width, respectively. The BN layer performs the

following operation on X:

ti= \/Var[Xj] ’ (8.9)
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Figure 8.4: Four examples of the generated dataset with different imaging parameters. B-
mode images (A), mean scatterer amplitude mask (u,) (B), scatterer number density mask
(C) and the output of Baseline (D).
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where j is index of channel, z; and y; denote input/output of the BN layer for channel j of
one data sample. v; and 3, are learnable parameters that are optimized during the training.
The mean (E[X]) and variance (Var[X;]) of the mini-batch are computed in the training.
During the test time, the computed coefficients in the training are used for normalization. By
applying Eq[8.9, the distribution of all mini-batches remains the same. Considering a binary
classification problem, if the size of mini-batch is too small that data belonging to only one
class appears inside the mini batch, the obtained statistics would be biased toward that class
which degrades performance. To mitigate this problem, other normalization techniques such
as Group Normalization has been proposed for small mini-batch sizes [154].

Another aspect of BN is its impact on domain shift. The weights of the networks mostly
preserve information about the classes, whereas, the BN coefficients contain information
about the domain of the training data [142]. Motivated by this, the adaptive batch nor-
malization (AdaBN) has been proposed for domain adaptation. The basic idea of AdaBN

is that the coefficients of BN obtained during training are not suitable for the test data if
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Table 8.2: The mean and standard deviation of the simulation results of scatterer number
density segmentation. Baseline-nm, Baseline-ni and Baseline are from PAN network.

10U Accuracy Sensitivity Precision
top 100% top 10% top 5% top 100% top 10% top 5% top 100% top 10% top 5% top 100% top 10% top 5%
U-Net 0.950£0.038 0.7864-0.068 0.71140.076 0.973+0.023 0.8584-0.050 0.796+0.060 0.9734:0.020 0.82340.042 0.742+0.050 0.97640.031 0.90540.058 0.8784-0.066

Baseline-nm  0.976+0.023  0.922:£0.037  0.89840.040  0.98940.015  0.958+0.032  0.938+0.035  0.98740.019  0.945+0.037  0.922+0.041  0.988+0.012  0.959£0.017  0.94840.017
Baseline-ni ~ 0.967+0.041  0.87540.080  0.829+0.092  0.984+0.022  0.93140.044  0.898+0.048  0.986+0.028  0.93240.070  0.8954+0.090  0.980+0.031  0.918+0.060  0.89040.071

Baseline 0.981+0.017 0.941+0.023 0.92530.023 0.991+0.008 0.9724+0.015 0.962+0.015 0.990+0.012 0.963+0.022 0.948+0.024 0.990+0.011 0.966+0.016 0.955+0.017

there is a domain shift.

In AdaBN, the coefficients of the BN layers are updated using data belonging to the test
domain [142]. The main difference between AdaBN and transfer learning (fine-tuning) is that
the weights of the network are not altered; therefore, only a small amount of data belonging
to the test domain is required to update the BN coefficient. We call this data “reference set”
since it acts very similar to the reference phantoms used in QUS. The reference set must
have a balanced amount of data from each class to avoid a biased mean and variance. The
reference set can be as small as two frames of data for binary classification task. In fact,
for domain transformation only parameters of Eq are required to be learned. In our
experiment, two frames from phantom A (class 1) and phantom B (class 0) were employed.
This method of domain transformation requires very small amount of data and does not
leads to over-fitting since only a few parameters are learned by back propagation. AdaBN is
well-suited for our task since the effect of imaging parameters can be reduced using domain
transformation techniques. It can be used to transfer the baseline to any machine setting by

only small amount of data.

8.3 Results

8.3.1 Simulation Results
Ultrasound grid-based simulation

The test set of simulation data contains 500 test images obtained by the method explained in
section|8.2.2 Intersection over union (IOU), accuracy, sensitivity and precision are employed

to evaluate scatterer number density segmentation performance. Dice similarity score is
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Table 8.3: The summary of the networks employed in this chapter. The parameters A,
Alog(A) and m denote envelope, envelope multiplied by log compressed envelope and Nak-
agami parametric image, respectively.

Name Input Multi-task Training data
Baseline-nm A and Alog(A) No Grid-based Simulation
Baseline-ni A, Alog(A) and m No Grid-based Simulation

Baseline A and Alog(A) yes (m) Grid-based Simulation

Grid-based simulation -+

Bascline-AdaBN A and Alog(4) yes (m) updating BN layers using experimental data

excluded since it is highly correlated with IOU. All metrics are reported for the whole test
set, 10% and 5% of the test set having the worst results. The results are given in Table
8.2l The U-Net architecture is the same as [I55]. “Baseline-nm” denotes the network (PAN)
having A (envelope) and Alog(A) (envelope x log compressed envelope) as input channels.
“Baseline-ni” denotes the same network having Nakagami parametric image as well as A
and Alog(A) as input channels. “Baseline” is the proposed network with A and Alog(A)
as inputs but having Nakagami parametric image as an auxiliary output. A summary of
different methods is presented in Table [8.3]

According to Table B.2] PAN performs better than U-Net which is expected due to use
of different attention mechanism. Adding Nakagami parametric image as an input channel
(Baseline-ni) deteriorates the performance (compared with Baseline-nm); however, adding
Nakagami parametric images as an auxiliary output (Baseline) improves the performance in
all metrics. The lower performance of the network having Nakagami parametric image as an
additional input is ascociated to the fact that the texture of Nakagami parametric image does
not have valuable information about the scatterer number density, while, its value matters
for prediction of scatterer number density. This result also agrees with our recent work [145]
where we found that MTL performs better than adding the statistics as additional inputs.
Some examples of predicted segmentation results by Baseline are depicted in Fig. [8.4] It can
be seen that the network can segment the scatterer number density well even in presence of
different values of mean scatterer amplitude which results in different intensities. It should
be noted that in simulation results, there is no domain shift which leads to high performance

in all compared methods. Figure 8.2 part 2 depicts the simulation training and test step.
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Figure 8.5: The mean and the 95% confidence interval range of the output of the network
for the scatterer number density in the range 1 to 14.

The Network prediction for different values of scatterer number density

The training data only contained scatterer number densities of 1 to 2 scatterers per resolution
cell for UDS and 11 to 16 for FDS. To investigate the performance of the algorithm when
used on data with scatterer number densities from 1 to 14 scatterers per resolution cell, 10
phantoms were simulated with {1,2,..,14}, scatterers per resolution cell. Figure 6 shows
the mean value and the 95% confidence interval (as the shading) of the probability of FDS
produced by the network. It is clear that when the scatterer number density is close to 1 or 10,
the confidence interval (the shaded area) is small while, for scatterer number densities in the
range of 4-7, the confidence intervals are wider. The training data could have higher values
of scatterer number density for UDS class. For instance, the UDS class could contain values
of 4-6 scatterers per resolution cell. This would result in the reduction of the probability of
FDS of the network for those values. However, we simulated the training data which contains
the very low scatterer number density for UDS. In this way, the value provides some insights

about how far the scatterer number density is from FDS.

Field II simulation

A numerical phantom is simulated using Field II simulation toolbox [45]. The transmit
focus is at 15 mm, the F number is 2.12 and other imaging parameters are the same as

[145]. The proposed method is compared with the patch-based CNN trained on the Field
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Figure 8.6: The Field IT simulation results. B-mode image (A), the segmentation results of
the patch-based CNN (B) and our segmentation method (C).

IT dataset with the same imaging parameters. In contrast, the proposed method is only
trained on the proposed fast simulation method. The aim of this evaluation is to investigate
the performance of the segmentation network trained on the simplified fast US simulation
on data obtained by the Field II toolbox. The phantom has an inclusion with 2 scatterers
per resolution cell and the background having 11 scatterers per resolution cell. The results
are illustrated in Fig. The patch-based method cannot clearly identify the boundary
of the inclusion, while our proposed method clearly detects the inclusion. Another point is
that the patch-based CNN miss-classifies some of the patches outside of the boundary of the

inclusion while, the proposed method obtains consistent segmentation of the phantom.

8.3.2 Phantom Results

The networks with MTL output (Baseline) and without it (Baseline-nm) are employed for
the evaluation. The Baseline is also adapted to the new domain using AdaBN technique
(Section to evaluate the performance when BN layers are updated by the new domain
(Baseline+AdaBN). Figurepart 3 illustrates the general framework used for experimental
phantoms. We also used the recent reference phantom method [109] and the patch-based

CNN [145] for comparison (Section [8.2.1)).

Homogeneous Phantoms Results

Baseline, Baseline-nm, Baseline+AdaBN, patch-based CNN (DenseNet + deep supervision)
and the reference methods are compared for Phantoms A, B and C. AUC, Accuracy and F1
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Figure 8.7: Homogeneous phantom results. The color code represents the predicted output
of the networks, from 0 (UDS) to 1 (FDS). Correct classes are 0 (UDS) for phantoms C and
B, and 1 for phantom A. Using Nakagami parametric image as an axillary output (Baseline)
substantially improves the accuracy compared to the network without MTL (Baseline-nm).

prectsion—+sensitivity

(QLrecisionxsensitivity ) [TEG] are used as the quantitative metrics and given in Table . The
average of the results over 8 frames are shown in Fig. 8.7 Adding the Nakagami parametric
image (MTL) improves the results (compare Baseline and Baseline-nm) which demonstrates
that MTL helps networks to be more robust to domain shift. It can be seen that the
network trained only on the generated dataset performs well on this dataset without having
any domain-specific information which demonstrates the strength of the proposed method.
However, the network detected that the bottom of the phantom B to have relatively high
probability of FDS.

The reference phantom used for this evaluation has the same scatterer number density
as the phantom A (high). The imaging setting is also the same. The reference phantom
method can discriminate well phantoms C and B. Also, it performs acceptable on phantom

A. Tt should be mentioned that this method requires patching and each patch needs to be
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Table 8.4: Homogeneous phantom results

AUC Accuracy F1

Reference Method 0.987 0.912 0.848
Patch-based CNN  0.780 0.740 0.678
Baseline-nm 0.974 0.797 0.766
Baseline 1.00 0.957 0.934
Baseline+AdaBN  1.00 0.999 0.998

compared with reference phantom patch from the same depth to consider its variations.
Our network with adaBN (Baseline+AdaBN) performs better than Baseline especially for
phantom B. Furthermore, it outperforms the reference method on phantom A. It should be
noted that two frames of phantom A and B are utilized for updating the BN layer statistics
and weights of network are kept fixed. The BN impact can be observed by comparing the
Baseline and Basline+AdaBN. The only difference between these two networks is that in the
latter BN statistics are updated by the test domain.

The reference method requires a reference phantom imaged by the same ultrasound ma-
chine which may be not available. However, the patch-based CNN and our proposed network
trained on generated dataset (Baseline) performs well without any information about the
test domain. Comparing the proposed method and the patch-based CNN, Baseline performs
substantially better than the patch-based CNN especially on the phantom B which is more
challenging than phantom C and A. This demonstrates that the proposed method is more
robust to the change of domains compared to the patch-based CNN due to the fact that the

network is trained using the training dataset with diverse imaging parameters.

Phantom D Results

The B-mode image of the phantom with inclusions is shown in Fig. (a). This phantom
contains three inclusions which are specified in the figure. The scattering agent of inclusions
and the background are the same (mean scatterer amplitude is fixed); therefore, the intensity
can be associated to the density of scatterers. We know a prior: that the background is FDS.
The inclusions 2 and 3 have higher intensity which means that the have higher scatterer

number density than background; therefore, they are also FDS. The inclusion 1 has lower
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Figure 8.8: The phantom D results. B-mode image (a), SNR (mean) of reference phantoms
(b), SNR parametric image (c), reference phantom method (d), patch-based CNN (e) and
the proposed method (Baseline) (f). Inclusions are specified in the B-mode image. Inclusion
1 belongs to UDS class and other parts belong to FDS class. The inclusions are numbered
from the lowest to the highest scatterer number density.

density and it is UDS. For the reference method, we use other part of the phantom without
inclusion having high scatterer number density imaged by the same machine as the reference
phantom. The SNR parametric image of reference phantom is obtained by averaging the
SNR parametric image of 10 frames. The SNR of the reference phantom is illustrated in Fig.
8.8 (b). We also obtained the average SNR of 12 frames of the phantom D which are depicted
in Fig. 8.8 (c). The SNR value of the reference phantom is 1.725+0.225 which is expected
for phantoms with high scatterer number density. However, SNR of phantom D is as low as
1 in some regions. The main reason is that SNR on the borders of the regions with different
scatterer number densities, is not valid and reliable since on the borders of the inclusions the
patch contains two different distribution and the calculated value is not reliable anymore.
Therefore, patch-based methods usually fail in these regions. The output of the reference

phantom method is shown in Fig. (d). As anticipated, most of the background are
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correctly predicted as FDS. While, the inclusions 2 and 3 borders are incorrectly classified as
UDS. It should be noted that the drop of the predicted scatterer number density between the
inclusions 2 and 3 is an artifact. It can be caused by side lobes, off-axis scattering and having
limited number of samples between the two inclusion. It is worth mentioning that in the
grid-based simulation, the echogenicity is directly determined by the tissue scattering (mean
scattering and the scatterer number density). Therefore, artifacts such as refraction effects
caused by rounded boundaries and shadowing and enhancement caused by attenuation could
provide unreliable classifications.

The Baseline method which is trained on simulation data, is employed for obtaining the
predicted scatterer number density mask. The output segmentation mask of the proposed
method average and standard deviation across 12 frames are shown in Fig. (e) and (f).
The patch-based methods correctly shows that the inclusion 3 has higher scatterer number
density than the other regions. However, it fails to detect the lower scatterer number density
of inclusion 1. Our proposed network correctly classifies the background and inclusions
2 and 3. Inclusion 1 can be also well discriminated from the other two inclusions. It
should be mentioned that no reference phantoms have been employed for the proposed
method. Without any reference phantom requirement, the proposed method outperforms
the conventional reference phantom method which shows the potential of CNNs in QUS

analysis.

8.3.3 Phantom E Results

The average of the results over 25 frames are shown in Fig. 8.9 As shown in the B-mode
image, there are 4 inclusions. The first inclusion is anechoic, while the other inclusions have
fewer scatterer number density compared to the background. The inclusions are numbered
from the lowest scatterer number density to the highest. The patch-based CNN can detect
the approximate location of inclusions 1, 2 and 3. However, the boundaries of them are
not accurately identified due to the finite size of the patch. The proposed method provides
substantially higher quality scatterer number density segmentation compared to the patch-
based CNN.

It should be mentioned that the network is also able to discriminate the inclusions 1 and
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Figure 8.9: Scatterer-density segmentation of the CIRS phantoms scanned with the Alpinion
system. (A) B-mode image, (B) segmentation result using the patch-based CNN [145], and
(C) segmentation using the patch-less CNN (Baseline). Inclusions are numbered from the
lowest to the highest scatterer number density. The color bar indicates probability of FDS.

2 in Fig. The average of the network’s output for the inclusion 1 and 2 are 0.441 and
0.577, respectively, which indicates that the network gives higher probability of FDS for the
inclusion that has the higher scatterer number density. This can be employed to characterize

the US images having scatterer number densities between 0-10 within the resolution cell.

8.3.4 In wvivo Results

The patch-less CNN segmentation was tested on echo signals acquired from two breast
fibroadenomas. Reference phantoms with known scatterer number density imaged using the
same machine setting are not available for this dataset. According to [3], the Nakagami m
parameter, which is highly correlated with scatterer number density, of fibroadenomas tends
to be lower than values in normal breast tissues, which have high scatterer number density
close to FDS limit (here, we only considered fat regions and other regions such as ductal
cells are excluded from our study). Therefore, the network should be able to discriminate
fibroadenomas and normal breast tissue. The results are presented in Figs. and [8.11]
The network classifies normal breast tissue as FDS; while, the regions of the fibroadenomas
are segmented as UDS. The patch-based CNN method was also used in this data but it
failed at detecting the lesion from the background. It should be noted that knowing the
exact ground truth scatterer number density of the in vivo data requires acoustic microscopy

image analysis which is out of scope of this work.
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Figure 8.10: Scatterer-density segmentation of in wvivo breast fibroadenoma (1). B-mode
image (left) and the segmentation results of the proposed method overlaid on the B-mode
image (right). The green mask denotes predicted FDS regions. The fibroadenoma tumor is
specified on the B-mode image.
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Figure 8.11: Scatterer-density segmentation of in wvivo breast fibroadenoma (2). B-mode
image (left) and the segmentation results of the proposed method overlaid on the B-mode
image (right). The green mask denotes predicted FDS regions. The fibroadenoma tumor is
specified on the B-mode image.

8.4 Discussion

Segmentation of the density of scatterers is very important for estimation of other QUS
parameters since different considerations must be taken for areas with low scatterer number
density [I45]. In this chapter, the scatterer number density of US images are segmented.
The mean scatterer amplitude and scatterer number density both contribute to the intensity
of envelope data. Therefore, intensity cannot be used as a reliable feature and both must be
taken into account during the training.

In this chapter, we generated a very large dataset having varied mean scatterer amplitude
and scatterer number density. To the best of our knowledge, this is the first time such a

large dataset is generated which considers that both mean scatterer amplitude and scatterer
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number density are varied. The generated dataset can be used to train different networks.
The imaging settings are also varied and randomly sampled from uniform distributions to
increase the generalization of the dataset and improve the robustness of the network when
images are obtained from different machine settings. Generating such a large dataset (15000
images) is computationally prohibitive with ultrasound simulation toolboxes such as Field
I1. Therefore, a grid-based method was employed to generate such a large dataset within
manageable times. Field II takes 50 minutes to simulate a phantom (with imaging settings
of [T145]), whereas our simplified grid-based method only takes 1 second to simulate the same
phantom.

The performance of the network without having any information about the test domain
was investigated. The Nakagami parametric image was employed as an additional output
to reduce the system dependency. The network trained by the generated dataset was able
to correctly classify the homogeneous phantoms and segment the phantom with inclusions
without any information about the test domain.

The statistical parameters used in quantifying scatterer number density are system de-
pendent. Reference phantoms have been utilized to reduce the effects of machine settings.
We investigated how to use a few frames of test domain to update the network. We showed
that updating BN layers statistics is enough to adapt the network to the new domain. The
statistics of BN layers was updated using a reference set which is a mini-batch composed
of data belonging to both classes. Unlike transfer learning, this method only needs a few
frames of both classes which facilitates the utilization of reference phantoms for CNNs. The
network adopted by the reference set (Baseline+AdaBN) performs better than the network
trained on generated dataset especially for the phantom B.

Considering phantom D, We evaluated the reference phantom method using SNR of a
reference phantom averaged across 10 frames as well as a recent patch-based CNN. The prev