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Montréal, Québec, Canada

June 2023

© William Flageol, 2023



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: William Flageol

Entitled: Improving Object-Oriented Programming by Integrating

Language Features to Support Immutability

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Govind Gopakumar
Chair

Dr. Yann-Gaël Guéheuneuc
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Abstract

Improving Object-Oriented Programming by Integrating Language Features to

Support Immutability

William Flageol, Ph.D.

Concordia University, 2023

Nowadays developers consider Object-Oriented Programming (OOP) the de-facto gen-

eral programming paradigm. While successful, OOP is not without problems. In 1994,

Gamma et al. published a book with a set of 23 design patterns addressing recurring

problems found in OOP software. These patterns are well-known in the industry and are

taught in universities as part of software engineering curricula. Despite their usefulness in

solving recurring problems, these design patterns bring a certain complexity in their imple-

mentation. That complexity is influenced by the features available in the implementation

language. In this thesis, we want to decrease this complexity by focusing on the problems

that design patterns attempt to solve and the language features that can be used to solve

them. Thus, we aim to investigate the impact of specific language features on OOP and

contribute guidelines to improve OOP language design.

We first perform a mapping study to catalogue the language features that have been

proposed in the literature to improve design pattern implementations. From those features,

we focus on investigating the impact of immutability-related features on OOP.

We then perform an exploratory study measuring the impact of introducing immutability

in OOP software with the objective of establishing the advantages and drawbacks of using

immutability in the context of OOP. Results indicate that immutability may produce more

granular and easier-to-understand programs.

We also perform an experiment to measure the impact of new language features added

into the C# language for better immutability support. Results show that these specific

language features facilitate developers’ tasks when aiming to implement immutability in

OOP.

We finally present a new design pattern aimed at solving a problem with method overrid-

ing in the context of immutable hierarchies of objects. We discuss the impact of language

features on the implementations of this pattern by comparing these implementations in

different programming languages, including Clojure, Java, and Kotlin.
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Finally, we implement these language features as a language extension to Common Lisp

and discuss their usage.
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Chapter 1

Introduction

For the last three decades, developers have widely considered object-oriented program-

ming (OOP) the de-facto general programming paradigm. This paradigm is often used

in industry and is taught in universities as an important part of computer science and

software engineering. Most mainstream programming languages, such as C++, C#, Java,

JavaScript, Python are (mainly) object-oriented.

OOP is not the only programming paradigm, however. Functional programming (FP)

has gained in popularity in recent years, with many mainstream languages, like C# and

Java, introducing new FP features, and new languages, like Kotlin and Rust, also hav-

ing many features from the paradigm. Meta-programming is another paradigm that has

seen some use throughout the years, for example with the high interest in aspect-oriented

programming in research between 2002 and 2016.

Thus, modern programming languages are adopting features from multiple paradigms

and combining them with OOP. Is this only a matter of preference of programmers, or are

there situations where OOP struggles to provide clear solutions? We believe we can find

the answer by looking at OOP design patterns.

Design patterns are generic solutions to recurring problems in software engineering. The

most popular set of design patterns was published in 1994 by Gamma et al. [31]. In their

book, they describe a set of 23 design patterns, each a solution to a problem found in

OOP software. In this thesis, we study these design patterns and choose to focus on their

1



underlying problems instead of their solutions. These underlying problems show situations

where OOP does not have a clear solution: these situations require the use of design patterns

to solve efficiently.

However, design pattern implementations vary depending on the programming language

used. Some language features might make a design pattern trivial or obsolete [67]. We

are interested in studying which language features have the most potential to

improve OOP by solving the underlying problems of various design patterns.

We initially considered making the combination of functional and object-oriented pro-

gramming the main focus of this thesis. However, there also seemed to be promising trends

with meta-programming and aspect-oriented programming. To gain a better understanding

of the current knowledge of language features to improve OOP, we opted to start with a

mapping study.

Figure 1 shows the flow of the studies in this thesis discussed in Chapters 3, 4, 5, and 6.

We first performed a mapping study of the suggested language features to improve de-

sign pattern implementations and catalogued 18 language features with the potential to

improve OOP. These features were divided into FP, meta-programming, and OOP fea-

tures. These features include Aspect Annotations, Aspect Mixins, Aspect Join-points, Case

Classes, Chameleon Objects, Class Extension, Closures, Default Implementation, Extended

Initialization, Immutability, Layer Objects, Multiple Inheritance, Object Interaction Styles,

OOP Mixins, Pattern Keywords, Reflection, Signals, and Subclassing members in a sub-

class. It would be impossible to study every feature in a single work, thus we chose to focus

on only one. Because our initial idea was the combination of FP and OOP, we opted to

take a deeper look into Immutability, one of the FP features.

Immutability is a property of FP where programs are considered as compositions of

functions with no side effects. In an immutable program, a function may not modify (or

mutate) the value of any of its arguments, or modify its environment in any way. While

many advantages of immutability have been claimed [1, 11], using both immutability and

OOP poses interesting challenges. In particular, we are interested in knowing if there

would be significant disadvantages, such as an increase in complexity or a decrease in the
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understandability of programs.

We performed an exploratory study on the impact of immutability on OOP software de-

velopment. This study involved an experiment with a group of 67 undergraduate students.

The goal was to determine whether any disadvantages of using immutability outweighed the

possible advantages. Our results showed the opposite: we could not find any concrete disad-

vantage in using immutability, while we found some advantages with team communication

and code granularity.

Knowing that immutability has advantages when used with OOP, we then studied how

language features could be used to improve immutability support in OOP languages. We

studied specific language features related to immutability support recently added to C#.

These features were Records, Record Updating (also known as Functional Updating), Pat-

tern Matching (also known as Case Classes), and Multiple Values Return. We performed an

empirical study to determine the impact of adding these features to the language. The ex-

periment involved 10 graduate students and two professional developers. We found that the

immutability-related language features had a positive impact when used to implement im-

mutable programs. In particular, immutable programs implemented using the new features

had a higher maintainability index, lower cyclomatic complexity, and lower code size.

Finally, we came across a problem with the reusability of methods when combining

immutability and OOP. We examined the problem and found that combining immutability

with OOP subtyping lead to code duplication and scalability issues. We first proposed a new

design pattern to solve this problem in Java. While the code duplication and scalability

issues were mitigated, they were not eliminated completely, and the solution had some

added complexity. By studying how other languages would solve this situation, in particular

Clojure and Kotlin, we concluded that dynamic typing and functional updating were key

features in solving the problem. We then created an extension to add functional updating

to Common Lisp and implemented a solution with no scalability or code duplication issues.
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Figure 1: Overall flow of the thesis

1.1 Research Hypothesis

Our thesis statement is: Object-Oriented Programming can be improved by

adding language features that solve the underlying issues behind design pat-

terns. Among many features, in this thesis, we focus on immutability, which

we demonstrate can increase understandability and granularity of the code.

Immutability-related features, such as records, functional updating, pattern

matching, and multiple values return, can be added to OOP languages to im-

prove maintainability, reduce code duplication and improve scalability. We show

this by performing a multi-method study in which we contribute the following:

(1) A catalogue of 18 language features suggested to improve OOP design pattern imple-

mentations.

(2) An exploratory study on the impact of immutability on OOP.

(3) An empirical study on the impact of adding immutability-related features to C#.

(4) A new design pattern to solve a problem that emerges with the combination of OOP

and immutability.

(5) An extension to Common Lisp that adds functional updating to the language.
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1.2 Thesis Overview and Contributions

This section presents an overview of the structure of this thesis and its contributions.

We summarize each chapter of the thesis in what follows.

1.2.1 Chapter 2: Background

In this chapter, we present an overview of object-oriented programming. We discuss

the basic principles of the paradigm (SOLID, GRASP) and present the 23 design patterns,

which will be the focus of the next chapter. We also discuss our initial ideas for improvement

on these design patterns using language features. Finally, we present an overview of the

concept of immutability and the research that has been done on the subject in the literature.

1.2.2 Chapter 3: Mapping Suggested Language Features for Improving

Object-Oriented Design Patterns

To gain a better understanding of the current knowledge of language features to improve

OOP, we opted to start with a mapping study. We present in this chapter our mapping

study on the language features suggested by researchers to improve OOP design patterns.

We ask the Main Research Question 1: What language features have been suggested to

improve design pattern implementations? We perform a systematic mapping study to cata-

logue language features in the literature claiming to improve object-oriented design pattern

implementations, as well as how primary studies measure these improvements. We perform

a search in three databases, yielding a total of 874 papers, from which we obtained 34 rele-

vant primary studies. We extract and study data about the language features claiming to

improve design pattern implementations, the most often cited design patterns, the measures

used to assess the improvements, and the case studies and experiments with which these

improvements were studied.

Using the results, we catalogue 18 language features claimed to improve design patterns

and categorize them into paradigms. We find that some design patterns are more prevalent

than others, such as Observer and Visitor. Measures related to code size, code scattering
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and understandability are the most popular. Case studies are done in-vitro, and experiments

are rare.

This chapter is the basis of a paper sent to the Information and Software Technology

journal. The paper has been accepted for publication on March 31st.

1.2.3 Chapter 4: Exploring the Impact of Immutability on Object-oriented

Software Development

In this chapter, we present a multi-method exploratory study on the impact of im-

mutability in OOP software development. We ask the Main Research Question 2: What

is the impact of immutability on object-oriented development? We perform an experiment

using a class of 67 undergraduate software-engineering students. We divide the participants

into two groups: one (treatment group), which will develop a program following the rules

established by Bloch [11] to achieve transitive immutability, and the other (control group),

which will develop the same program using mutable objects. We collect data from the

developed software and survey the participants.

Results show that the treatment group had a lighter workload, less difficulty in im-

plementing the specifications, and less complex code than the control group. They show

that the negative impact of immutability on software development is outweighed by its

positive impact. They support implementing immutability in object-oriented programming

languages and using it in software development.

This chapter is the basis of a paper sent to the Empirical Software Engineering journal.

It is currently under review.

1.2.4 Chapter 5: Studying Features for Immutability Support in C#

In this chapter, we present a multi-method empirical study on the impact of a set of

new immutability-related features recently added to C#. We ask the Main Research

Question 3: Do the recently added immutability-related features have a positive impact on

writing immutable code in C#? We perform a multi-method empirical experiment with

10 students and two professional developers. The experiment consists of inspecting and
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understanding a base program written in immutable OOP and extending it by adding new

functionalities. The participants were separated between a treatment and a control group.

Only the treatment group would use the new features to develop their program. We collect

qualitative and quantitative data from the program using manual analysis and static code

analysis. We also survey the participants to collect subjective data on their experience. We

finally perform an interview with one of the professional developers to obtain their opinion

on the new features.

Results indicate that the new features may have a positive impact on software maintain-

ability. Quantitative data shows that the Maintainability Index of the programs submitted

by the treatment group is generally higher. Qualitative analysis shows that the control

group, which did not have access to the new features, used ad-hoc implementations of the

new features to solve the problem, instead of going for the more traditional design patterns-

based based approach (i.e., the Visitor pattern).

This chapter is the basis of a paper sent for a special issue of Journal of Systems and

Software on Software Languages Engineering. It is currently under review.

1.2.5 Chapter 6: Solving Immutable Method Reusability Problems with

a New Design Pattern

In this chapter, we present a problem with method overriding when combining im-

mutability and OOP. Non-destructive mutators (methods used on immutable objects which

return a new object instead of modifying the receiver) cannot easily be reused through in-

heritance. We ask the Main Research Question 4: Is it possible to reuse non-destructive

mutators via polymorphism when combining immutability and OOP subtyping? A naive

approach creates code duplication and has scalability issues. We analyse an example of this

overriding problem and propose a solution in a new design pattern based on the factory

method pattern. We also discuss the advantages and limitations of this pattern, as well as

implementations in Clojure, Java, and Kotlin. We also identify and discuss the language

features that mostly affect the implementation of this pattern.

Our proposed design pattern helps mitigate some of the code duplication and scalability
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problems of a naive approach. However, the inclusion of a functional updating language

feature is required to completely remove the scalability issues. We demonstrate this by

extending Common Lisp by integrating functional updating as a new feature and solving

the code duplication and scalability issues.

This chapter is the basis of a paper sent for the EuroPLoP 2023 conference. The paper

was accepted and will be presented at the conference on July 2023.

1.2.6 Chapter 7: Conclusion and Future Work

In this chapter, we summarize the results and contributions of this thesis. We then

discuss potential avenues for future research.

8



Chapter 2

Background

To answer our thesis statement, we first present an overview of OOP. In this chapter, we

discuss the basic principles of OOP and present the 23 design patterns. We then present an

overview of the concept of immutability and the research that has been done on the subject

in the literature.

2.1 On Object-Oriented Programming

Object-oriented programming is a programming paradigm that was first implemented

in the Simula, Smalltalk, and Lisp languages in the late 1960s and 1970s. In this paradigm,

the data and behaviours of a program are divided into smaller, understandable pieces called

objects. This composition allows programmers to eschew global data and free functions and

increase code cohesion. Programmers give “responsibilities” to objects, reflecting their data

and behaviours, a concept to which we will come back later when we take a look at the

SOLID principles. Objects can communicate with other objects through “messages” or

“methods“ (to avoid confusion, and because the distinction is not relevant to our thesis, we

will use the term method only from now on).

Objects can be created through a special kind of object, called a “class”. Classes are

objects that can define and create other objects. In some OOP languages, classes are full-

fledged objects and are manipulated as any other objects, without specialized keywords. In
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other OOP implementations, such as C++ and Java, classes are a special kind of construct,

outside of the object system, that require special keywords, such as new. This distinction

between languages may in part be due to the addition of static typing, which was not

present in earlier OOP languages. Making classes special constructs gives them a special

status in these languages and makes it more difficult for a developer to control how objects

are created. We will discuss the consequences of this when we take a look at design patterns.

Because of this special status given to classes, perhaps these later OOP implementations

would be better called ”class-oriented languages”, or ”class-based OOP”.

In Smalltalk, every operation is executed by method calling. For example, arithmetic

operations are methods called on objects representing numbers. Creating an object is a

method called on a class object. A programmer can create new object types (i.e., classes)

and extend existing ones by adding new methods. Most OOP languages use “single dis-

patch” method calling. This means that each method is associated to only one object type

(i.e. the method is declared as part of the type) and will typically only have access to

the internals of objects of this particular type (sometimes through a special keyword such

as “this“). This is not a mandatory property of OOP; some OOP implementations (e.g.,

CLOS) support “multimethods”, with which a method can be associated to any number

of object types. These methods ”dispatch” the method calls towards multiple arguments,

instead of a single target object.

This method calling style used by OOP may lend itself more naturally to imperative-

style programming, where each line of code is executed one after the other (as opposed to

declarative-style where the order of execute does not matter). This is likely why the vast

majority of OOP languages are imperative languages. This also leads to another significant

property of OOP languages: mutability.

Mutability is a property present in imperative languages. A program can modify (or

“mutate”) data as it executes. A line of code can change the value of a binding (a value

given a specific name, often called ”variables”, although they do not always vary) at any

time. When a method does this in OOP, we call it a “side-effect”, and the method is also

said to “mutate” the object(s). In contrast, a method that only returns a value and does no

10



mutation can be said to be “side-effect free” or “referentially transparent”. This distinction

is important because referentially transparent, or “immutable”, objects have some desirable

properties, such as being easier to compose and easier to persist in databases, as well as

sometimes making code easier to understand. We will discuss immutability in depth in

Section 2.4.

The last concept we will look into in OOP is inheritance. When defining an object type,

OOP languages allow it to “inherit” another type. This inheritance relationship makes it

so that objects of the inheriting, or child, type has access to (some of) the methods and

data of its parent type. This allows code reuse between object types and is one of the main

reusability mechanisms in OOP. There are many different implementations of inheritance

in OOP languages. Most modern languages only allow single inheritance, where an object

type can only inherit from one other type. Some languages, such as C++ and Common

Lisp, allow for multiple inheritance, where object types can inherit from as many types as

wanted.

Single inheritance is often preferred by programming languages because of its simplic-

ity, but multiple inheritance can model certain situations much more efficiently. This is

why single inheritance languages also usually introduce the concept of “interfaces”, special

object types that contain method definitions, usually allowing no implementation. In these

languages, objects can be subtypes of, or “implement”, as many interfaces as they like, but

can still only inherit from one class. Subtyping helps alleviate the limitations of single in-

heritance, but can sometimes lead to code duplication when multiple objects have the same

method implementation (which interfaces typically cannot hold, so they must be replicated

in each implementing object).

Code reuse in OOP is not limited to only sharing method implementation. Inheritance

and subtyping also introduce the concept of object polymorphism, where a method passed

to an object will look-up a different implementation depending on the class of the target

object. This allows a piece of controlling code to be reused in multiple ways by changing

the type of its target objects (for instance, by passing different object types as method

parameters). Object polymorphism is perhaps the most important concept in OOP, as it
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gives the paradigm much of its flexibility and power.

2.1.1 SOLID and GRASP Principles

Over the years, principles have been established to help develop software efficiently using

OOP. These guidelines have been typically taught in schools and referred to in books about

OOP under the form of the “GRASP” and “SOLID” principles.

GRASP principles, sometimes referred to as “GRASP design patterns”, are a set of 9

specific guidelines on how to design object-oriented programs. These principles are interest-

ing to us because they describe what programmers aim for when developing programs and

can give an idea of which metrics to use to measure object-oriented code. The following is

a short summary of the 9 GRASP principles:

Information Expert. Suggests that related methods and data should be kept together in

the same object types.

Creator. A set of rules suggesting where objects should be created (e.g. by its parent object

in a hierarchy, or by the object already containing the data required to initialize it).

Low coupling. An object X is said to be “coupled” to an object Y when X contains an

attribute of type Y, when X has a method using Y or when X is a subtype of Y.

This guideline suggests minimizing these kind of relationship as much as possible.

There also exist other definitions of coupling outside of GRASP principles, such as

coupling between modules or coupling between files. Thus, the GRASP principle is

often referred to as “coupling between objects”.

Controller. Suggests separating the internal workings of a software from its external in-

terface (e.g. a web site or a graphical interface). In this context, the controller

object will mediate communication between the interface and the business code. In

its general form, this principle suggests that interfaces should be decoupled from their

implementation details.
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High cohesion. A highly cohesive object possesses responsibilities that are closely related

to each other. There is no one measure of cohesion, but it is often calculated by

counting the number of shared attributes used by the methods of an object.

Polymorphism. Suggests using the most generic version of an object possible, as to allow

the caller to replace it by other similar objects. This usually takes the form, in stati-

cally typed languages, of declaring objects by their most generic type (e.g. declaring

an ArrayList as a generic List instead, if the specific functionalities of ArrayList are

not important).

Pure fabrication. Sometimes, business code can be improved by adding objects that are

not tied to any physical concept. The controller object mentionned earlier is an

example of this. Many specific design patterns, which we’ll see later in this document,

could be said to fall into this category.

Indirection. Objects can sometimes be decoupled by introducing an intermediary object

to mediate between them. Again, this is used in the controller pattern to separate

(i.e. decouple) the business logic from the user interface.

Protected variations. To make software evolution easier, it is possible to protect a sub-

system by wrapping some of its functionality so that various implementations can be

created, without having to depend on a single specific one.

Some of these principles are simple guidelines on how to design programs (such as low

coupling, high cohesion) while others are more akin to design patterns (such as indirection

and protected variations).

Another set of principles often cited in software engineering are the SOLID principles.

These are 5 principles introduced in a 2000 paper about object-oriented design [63]. Al-

though sharing no specific link with GRASP principles, they address very similar concepts.

Following is a description of each of the SOLID principles:

Single responsibility. This principle states that a given object should only ever have one
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responsibility. If multiple responsibilities are required, multiple objects are needed.

This principle can be related to the high cohesion GRASP principle.

Open-closed. This principles states that objects should keep their internal data closed to

modification. This is usually achieved in languages by access protection modifiers,

such as “private”. To allow for flexibility, instead of allowing itself to be modified, an

object should offer a way to be extended, typically by either composition or inheri-

tance.

Liskov substitution. This principle is based upon a rule found in a paper published by

Liskov and Wing [57]. Here is the rule: “Let ϕ(z) be a property provable about objects

x of type T. Then ϕ(y) should be true for objects y of type S where S is a subtype of

T”. In other words, every object in a program should be able to be replaced by an

object of a subtype without the program breaking.

Interface segregation. This principle states that a large class should implement multiple

interfaces, each with its own sub-responsibility. User of the class can instead reference

the required interface. This principle helps achieve the low coupling GRASP principle.

Dependency injection. This principle states that instead of creating its own dependency

by instantiating objects of a specific type, an object can instead defer this instantiation

to its creator (usually by way of constructor parameters). This allows more flexibility

in minimizing coupling and controlling which object calls which interface.

The SOLID principles take for granted certain language features when compared to

other principles and design patterns. For example, the “open-closed” principle requires

a language to have some form of access protection for attributes and methods (although,

it could arguably still be used in other languages by relying on the “good will” of the

programmers). The interface segregation principle is only possible in languages that either

support multiple inheritance or subtyping via interfaces (like Java and C#). Finally, these

principles strongly imply that the language is statically typed.
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From the GRASP and SOLID principles, we can already see some hints as to what

“good” object-oriented code looks like: it has low coupling, high cohesion, objects have few

responsibilities and code is kept as generic and reusable as possible. These will be good

starting criteria in determining how to measure improvements later on.

2.2 On Design Patterns

In 1994, Design Patterns: Elements of Reusable Object-Oriented Software was pub-

lished [31]. It has been cited in numerous papers and has been the basis for many courses

in software engineering curricula. It contains an analysis and description of 23 “design

patterns” commonly found in object-oriented programs. A design pattern is defined as a

solution to a recurring problem. Based on their experience and analysis of software source

code, the authors came up with these solutions, which they explain in detail and illustrate

with examples.

There are two main parts to the book. The first part is an example of an object-

oriented WYSIWYG text editor, going somewhat in-depth in the source code and showing

some examples of the design patterns used and their advantages. The second part, which

makes up most of the book, is a pattern-by-pattern description of the 23 design patterns,

with some running examples, and the trade-offs for implementing them.

These examples are mostly made using the C++ language. The authors often make

references to Smalltalk and sometimes some examples are given in that language too, but

they are few and far between. While design patterns typically strive to be language ag-

nostic, some of them are particular to specific programming languages or features. The

Smalltalk examples are interesting because they often are much simpler and require much

less “boilerplate code” than the C++ examples, which hints that language features are an

important factor in simplifying and improving object-oriented implementations.

The design patterns are divided into three sections: creational patterns, structural pat-

terns, and behavioral patterns. Creational patterns govern object creation. They provide
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solutions to problems that can arise when generating new objects dynamically, while mini-

mizing coupling between classes. For example, the user of a creational pattern will be able

to request new objects, without having to know what exact class will be instantiated or how

exactly the object will be built. Structural patterns are about how objects are composed

with one another. They allow low-coupling composition between different classes and can

be used as a form of data structure to model trees, lists, and other useful structures. Finally,

behavioral patterns allow the user to dynamically change the behavior of an object without

having to resort to changing its class at run-time (which is impossible in many programming

languages).

This book has been a major influence in shaping modern object-oriented programming,

both in the industry, where design patterns are often seen as an ideal way to code, and in

academia, where they are often taught as a more advanced topic for software engineering.

We will see in the systematic literature review in the next section that the design patterns

from this book, often called the “Gang of Four” (GoF) design patterns, are the basis against

which many improvements to object-oriented programming are compared.

Design patterns can be seen as being a high-level expression of object-oriented program-

ming: uses of major concepts in the paradigm to solve, in generic ways, recurring problems.

The way we choose to look at them in this thesis is to examine the problems that they

try to solve: these are problems that OOP cannot solve simply; they require these design

patterns to solve. Design patterns can vary in complexity, depending on many factors, such

as the program itself, or the language features available. When trying to find ways to im-

prove object-oriented programming, problems solved by design patterns are an interesting

starting point.

We now go through each of the 23 design patterns presented in the book, giving a short

summary of the problem, how they solve it, and some ideas about language features that

could influence their implementation.
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2.2.1 Creational Patterns

Abstract Factory. An Abstract Factory allows the client to request new objects without

having to know their implementation class. The client then receives an object con-

forming to a specific type. This pattern allows decoupling of responsibilities between

the client and the factory. The client no longer must be coupled to a specific class and

defers instantiation to the factory. In recent languages, this pattern has been imple-

mented by “dependency injection” frameworks, where it allows specifying in advance

which concrete implementations of interface a program will use, while the framework

acts as an Abstract Factory, generating the concrete instances. As shown in the GoF

book, Abstract Factory can be greatly simplified when using a language that supports

classes as first-class objects (such as CLOS or Smalltalk).

Builder. A Builder allows the user to delegate object initialization to another object, which

allows initialization to be done in steps and makes it simpler to understand and require

less boilerplate code. In the Kotlin programming language, the Builder pattern can

be made very simple by taking advantage of the special lambda syntax1. A functional

version of the Builder pattern also exists, sometimes named “fluent API” and often

seen in JavaScript programs.

Factory Method. The Factory Method provides an abstract type with a main method to

create objects that will use (or defer to) one or more sub-methods. These sub-methods

are able to be overridden by any type inheriting this creator type, thus allowing

customization of the construction process. This pattern is mostly an application of

the behavioral Template Method pattern (see below) in a creational context. It is a

simple pattern which makes use of polymorphism. In FP, the underlying goal behind

this pattern is usually achieved using higher order functions to create constructor

functions that receive the appropriate “sub-functions” as closures.

Prototype. Prototype stores a partially initialized object, which is copied/completed to

create new objects. As the prototype uses a run-time object instead of a class to

1This is the approach used by the UI framework TornadoFX: https://tornadofx.io/
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generate its objects, it can be modified dynamically to change what kind of object

it generates, allowing dynamic object construction in languages that do not support

classes as first-class elements. The pattern can be difficult to implement in languages

that do not support object cloning (requiring it to be implemented manually for

each prototype). JavaScript, being a prototype-based language, uses this pattern to

instantiate all objects.

Singleton. The Singleton pattern is rather unique in that it does not create new objects

but ensures that only one instance of a certain class will exist in a given system

for a given run. It is somewhat controversial as it can increase coupling between

objects in a program. Every object that references the Singleton object effectively

becomes coupled to it. Combining it with other patterns, such as Abstract Factory,

can mitigate the issue. As with the Abstract Factory, the Singleton pattern is often

implemented using dependency injection, where the framework can guarantee that a

single instance will exist, while the Abstract Factory feature of the framework can be

used to retrieve that instance.

2.2.2 Structural Patterns

Adapter. Adapter is used to make two otherwise incompatible types able to interact with

each other. One type will be “wrapped” by the adapter to conform to a specific

interface required by the other type. The pattern achieves this by having the adapter

subtype the target interface and delegate to the appropriate methods of the wrapped

object. However, its overuse may clutter the program with many “small” adapter

classes with no business logic of their own. When using a language that supports

closures, only one adapter class is needed by target interface (the adapter class can be

built using closures to specify the behaviour of the adapter methods). In a functional

language, this problem may be solved by using records of functions.

Bridge. Bridge is a counterpart to Adapter. It is used when multiple subtypes of tightly

coupled objects must communicate with one another. This pattern allows separating
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the communication between objects and changing them dynamically at run-time. It

can also be used to split a large class into multiple parts to enhance software cohesion.

As with Adapter, a Bridge can be implemented using functional records and closures.

Composite. The Composite pattern is used to create a tree hierarchy. The pattern

achieves this by having each element be one of two types: a ”leaf” type, representing

a single element; or a ”node” type, a container for other elements. These two types

will be subtypes of the parent ”element” type, which describes every element of the

hierarchy. This is a useful pattern when designing hierarchic taxonomies, manipulated

by a program, such as UI frameworks, in which every element can be either a con-

tainer for more elements or a single element. One disadvantage of the pattern is the

difficulty to control the hierarchy. For example, disallowing a certain type of element

to be set as children of a specific node may be difficult to enforce. An alternative to

this pattern (more often used in FP) is creating a strongly typed hierarchy of records.

This allows more control over the hierarchy while sacrificing abstraction (to use the

hierarchy, you must know each element that goes into it). This alternative approach is

more useful in languages which support pattern matching because it makes traversing

the hierarchy simple.

Decorator. The Decorator is, in essence, a wrapper object that can add behaviour before

delegating to its wrapped object. This is done by having the wrapper be a subtype of

the wrapped object, thus sharing the same interface. This pattern is a simple way to

dynamically add behaviour to objects while sacrificing object identity (the decorator

object and the wrapped object are not the same). The GoF book mentions it is

possible to remove decorators, but if you have multiple Decorators on a single object,

it becomes difficult to find or remove a specific one without combining the Decorator

with another pattern, such as Chain of Responsibility. In a language like CLOS, the

Decorator pattern may be replaced by a combination of method qualifiers (“after”,

“before”, “around”) and dynamic method creation.

Facade. Facade creates a single interface for operating a system or sub-system, simplifying

19



its usage. In other words, Facade creates an API for a system. This pattern has

perhaps the fewest ties with OOP. Facade is effectively the equivalent of FP “modules”.

The notion that a Facade is often also a Singleton reinforces this observation. In a

functional language, you would simply create a module that would, in turn, use other

modules in its functions.

Flyweight. The Flyweight is perhaps a less commonly used and more complex design

pattern. It allows the creation of small objects with shared state. The main goal

is reducing memory consumption in programs in which a great number of objects

exist at once. The implementation of String in languages like Java and C# may be

considered a Flyweight. Flyweights can be used whenever data is immutable to avoid

having multiple copies of the same data. The Haskell programming language, being

an immutable language, makes use of memoization, a similar concept where function

results are calculated only once, and every subsequent use of that function with the

same arguments will return that calculated result.

Proxy. Proxy is used to separate an object from its implementation. This can be useful

when an object’s implementation must be executed on a server, but the user of the

object is on the client. It can also be used when object creation would require too

much memory. In that case, the Proxy partially loads only what is necessary whenever

operations are called on it. In languages with flexibility on how methods are called,

such as Smalltalk with its doesNotUnderstand method, creating proxies is as trivial

as overriding that method.

2.2.3 Behavioural Patterns

Chain of Responsibility. A Chain of Responsibility is used to create a system where

requests can be sent without having to know exactly which object will handle them.

Each handler object has a way of signalling whether it can handle a specific request

and the first object to be able to handle it stops the chain. This is reminiscent of

CLOS method combination system and Chain of Responsibility can be implemented
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by combining that system and dynamic methods.

Command. A Command essentially represents a FP closure to which functionality can be

added (e.g. “undo”, “redo”, monitoring, etc.). This pattern is most useful in OOP

languages without FP support, such as older versions of Java, which do not support

closures. The GoF book mentions that this pattern is not about making closures or

functors (objects acting as functions), but about the binding between the receiver and

the function. However, most of the complexity of this pattern stems from wrapping

executable code inside an object (i.e. a closure). Indeed, in FP languages, this pattern

becomes a lot less useful or complex. Furthermore, if state is immutable, undo/redo

mechanisms can be done by simply preserving states at a specific moment in time and

replacing them when the operation is needed, further trivializing this pattern.

Interpreter. Interpreter is perhaps the most situational pattern. This pattern is an ap-

proach to designing a programming language interpreter in an OOP fashion. Inter-

preter is somewhat similar to the Composite pattern in its implementation. However,

there are arguably easier and shorter ways to implement interpreters than with ob-

jects, notably using FP [72]. As with the Composite, records can be used to create

a strongly typed hierarchy of the language’s expressions. Building the interpreter

becomes a matter of traversing this hierarchy using match statements. An interest-

ing FP design pattern called “parser combinators” can also be used to implement

BNF grammars, which is the approach used in the Haskell Parsec2 library and its F#

equivalent, FParsec 3.

Iterator. Iterator is used to traverse sequences of objects. The iterator object holds a

reference to a position in the sequence and can give its user the next object in the

sequence until every object has been traversed. In more recent languages and pro-

grams, the Iterator pattern is replaced by foreach statements, which provide similar

functionality. In Smalltalk, this pattern is replaced by the do method, which allows

2https://hackage.haskell.org/package/parsec/
3https://www.quanttec.com/fparsec/
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iterating over any collection. This is similar to the FP map in its usage, applying a

function to each element of a sequence. Map is a different design pattern which uses

recursivity. While there are differences between the Iterator and the functional map

(e.g., having access to the current iteration state in Iterator), some map implemen-

tations bridge this gap considerably (notably Common Lisp, which implementation

allows iterating multiple lists in parallel). We also compare map to Visitor below.

Mediator. Mediator is a generalization of the controller element in the “Model-View-

Controller” design pattern (non-GoF). It separates controlling behaviours among mul-

tiple elements. This pattern does not use subtyping, instead using composition to keep

references to all the components it manages. Whenever an action is required by a com-

ponent, that component signals it to the Mediator, which will execute operations on

other components. There exist architectural patterns other than MVC that do not

use a controller (or Mediator), notably the MVVM pattern (Model-View-ViewModel).

Modern FP UI frameworks often use a completely different approach, called reactive

FP.

Memento. Memento allows saving or transferring an object’s state without breaking its

encapsulation. An originator object will store part or all of an object’s state in the

Memento, which in turn can be used by other parts of the system to save that state.

There is however a trade-off, because a crosscutting concern is added to the originator

object: it must know that it is going to be saved and must provide a method to create

the Memento object. In some programming languages, such as CLOS, it is possible

to use reflection to traverse objects and save them as-is. This breaks encapsulation

but does not add cross-cutting concerns to objects.

Observer. Observer allows dynamically setting an object to notify another whenever a

specific event happens. It is very useful in UI frameworks in which elements must

notify the controller (or equivalent) whenever the user interacts with them. There are

many modern implementations of this pattern. Most of them make use of closures to

avoid creating many different Observer types. This pattern shares some of the same
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issues as Memento: it imposes a cross-cutting concern on the observed object. The

observed object must know that it can be observed and must manage this behaviour.

In CLOS, it is possible, by making use of dynamically created methods and method

qualifiers, to remove this cross-cutting concern.

State. State allows changing the behaviour of an object at run-time. The behaviour is

described by a State type that can then have any number of subtypes (states). At run-

time, an object can change behaviour by modifying its State instance to the different

State subtypes. The naive way to achieve this without this design pattern would be

with switch statements. Both approaches offer different benefits and drawbacks. The

State pattern makes it easy to add or remove states (you only need to create a new

state class), while switch statements make this harder (you must change every switch

in your code to add the new branch). However, the switch statements approach makes

it easier to add new state-based operations (you only need to write a single switch

statement), while the State pattern requires adding a new method to every existing

state. The State design pattern centralizes state, while switch statements centralize

behaviour4.

Strategy. Strategy offers a different approach to change the behaviour of objects at run-

time. The idea is to build an object while providing it with a concrete Strategy

object, which will define its behaviour. This pattern is useful when you cannot know

in advance what exact implementation is needed at run-time. In functional languages,

this pattern is implemented easily using higher-order functions or records of functions,

avoiding the need to create many concrete strategy classes.

Template Method. Template Method is an application of object polymorphism to create

4Also see the Expression Problem: http://homepages.inf.ed.ac.uk/wadler/papers/expression/

expression.txt
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“hooks” within a method for overriding. The Template Method calls other meth-

ods within the same object. These other methods will then be overridden in sub-

types. This pattern allows subtypes to redefine some of the behaviour of the Tem-

plate Method, without exposing internal details, which could break the method if they

were changed (for instance, the call order). A Template Method can also be created

without resorting to subtyping at all if the language supports FP. The method then

simply becomes a higher-order function.

Visitor. Visitor allows traversing a hierarchy of objects while executing actions on each

element. This is somewhat reminiscent of the Iterator pattern (and the map function in

FP), with the difference that a Visitor can traverse hierarchies of heterogeneous classes

(while Iterator traverses sequences of homogeneous classes). Visitor requires creating

a new class for each operation that could be executed on the hierarchy, although this

requirement can be mitigated using closures and higher-order functions, if available.

It is possible to achieve the same goal as the Visitor in a functional language using

a hierarchy of records and higher-order functions to traverse and apply changes to it.

This is what is typically done in compilers written in functional languages.

2.3 On Design Pattern Improvements

There are a few recurring themes of note in these patterns’ descriptions and analyses.

The creational patterns are often implemented in dependency injection (DI) frameworks

nowadays, such as in Java Spring and ASP.NET. The functionality that they bring is useful

enough to consider making it part of a language or framework, instead of relying on the

designers to use them or not. Having a framework (or a language feature) handle the

boilerplate of writing the Abstract Factory, Singleton, or Prototype patterns would help

programmers focus on the business logic. In DI frameworks, this usually takes the form of

a configuration file run at the start of a program. This file names various classes that will

become factories, singletons, and such. In programs that use these frameworks, they will

often replace usage of the language explicit constructor (e.g., the new keyword) entirely,
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instead calling upon the framework to generate objects. This hints that explicit language

constructors might not be necessary for a programming language and should instead be

flexible (as in Smalltalk). However, usage of a DI framework comes with costs: learning

curve and extra processing. Programmers may have a harder time understanding and

maintaining the program efficiently, which could be mitigated by having the language itself

implement these patterns, instead of a third-party tool.

Many of the structural patterns have alternative implementations when using a language

supporting FP features. In a language that supports higher-order functions, Adapter and

Bridge can be implemented without using inheritance. While the use of switch statements

is often frowned upon in object-oriented programming, the match statement, its FP (and

slightly more sophisticated) equivalent, can be used as an alternative to a combination

of the Composite and Visitor patterns, with varying drawbacks and benefits. The other

patterns in this category all have some language features that can be used to alter (and

possibly improve) them, such as CLOS’ method qualifiers (a concept similar to aspect-

oriented programming) for Decorator, Smalltalk’s doesNotUnderstand method for Proxy

or simply functional modules for Facade.

Behavioural patterns are varied and draw many similarities to features present in some

languages. For instance, Chain of Responsibility is reminiscent of CLOS’ method combina-

tion system and Mediator has the same basis as the MVC architecture adopted by modern

web languages. Some of these patterns are integrated into languages in one form or another,

such as foreach statements in replacement of the Iterator pattern, or events (e.g. C#) re-

placing Observer by using an approach similar to closures. In some cases, immutability

can trivialize a pattern, such as with Command and Memento, by removing all notions of

mutation. In fact, as with structural patterns, many behavioural patterns can be shortened

using functional features such as closures (e.g. Observer, Strategy, Visitor). Finally, Inter-

preter can be implemented using a whole different approach when dealing with immutable

functional languages by instead making use of the “parser combinators” functional pattern.
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2.4 On Mutability and Immutability

Many (perhaps most?) popular programming languages nowadays can trace their roots

to C, and even earlier in time, Algol. Before the OOP paradigm became mainstream,

much programming languages were procedural and imperative. In procedural languages, a

procedure is a function that is executed for its side effects. It may or may not have a return

value. A procedure changes, or mutates, the state of the program. The OOP paradigm,

being an offspring of procedural languages, is no different.

The OOP paradigm is about the encapsulation of data and behaviour. Objects are

expected to have methods that mutate the state of the object, by changing the values of

its internal attributes. Most OOP programs work by mutating objects and changing their

behaviour.

However, programs do not have to work by mutation. FP languages, such as Haskell,

are typically not based on mutation. These languages do not trace their roots to procedural

imperative languages, but to lambda calculus instead. The lambda calculus, like the Turing

machine, is a mathematical model used to represent computation. Unlike the Turing ma-

chine, the lambda calculus has no concept of state. It uses function application and variable

binding (often implemented by closures and lambda expressions in programming languages)

to achieve the desired results. Because of the absence of any kind of mutation mechanism,

functional programs are immutable. Immutability is the absence of mutation in a

program, function, or object [1, 11].

2.4.1 Impact of Immutability

Immutability is used and enforced only in some programming languages. Yet, devel-

opers’ lore [1, 11] state that immutability has advantages in software development. The

natural question to ask is: should we enforce immutability in general?

Abelson et al. mention in their book, Structure and Interpretation of Computer Pro-

grams [1], that avoiding mutable data structures can help to reason about the behaviour of

programs. Mutations often lead to changes in behaviour in a program (which is often the
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goal of the mutation). By limiting state changes, and especially global state changes (e.g.,

global variables), the behaviour of the programs is more consistent and easier to understand.

Helland [45] discusses advantages in distributed database systems. An immutable data-

base, also called an “append-only” database, automatically performs changes logging, by

virtue of the fact that no piece of data can be modified in the database. Thus, records are

kept indefinitely (or until someone decides to delete them).

Bloch states in Effective Java [11] that mutations should be avoided whenever possible.

Like Abelson et al., they mention the advantage of having simpler state management, but

also safety when working with concurrent programming. Mutations are a source of errors in

multi-threaded programs because the state of a shared object could change at unexpected

moments and, in turn, could cause an expected change in the behaviour of the program.

Most advantages stated are, however, authoritative arguments. Empirical studies on

the effects of mutability or immutability are few and far between.

Coblenz et al. [21] conducted interviews with professional developers and found that

participants stated that incorrect state mutations are a major source of bugs in programs.

For example, an object thought to be immutable would be changed by some other objects,

perhaps because of optimization by reusing references instead of using immutable copies.

Dolado et al. [24] investigated the impact of side effects on program comprehension.

While side effects (or the lack thereof) are indeed related to immutability, the results of their

study were oriented toward syntax recommendations, such as specific side-effect operators

like increment operations.

Stylos and Clarke [85] studied the impact of constructor parameters on program com-

prehension. They found that programmers preferred and were more effective at using

parameter-less constructors, mutating the objects after instantiation to set their desired

states. This finding indicates that there may be a usability trade-off in enforcing immutabil-

ity.

Gordon and al. [38] presented an extension to the C# type system to better control im-

mutability. The system was used by a Microsoft team and their impressions were collected.

Anecdotal evidence showed that many bugs related to mutation were found and corrected
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using reference immutability.

2.4.2 Immutability in Programming Languages

While functional languages, such as Haskell or Scheme, were designed with immutability

at their inception, for others immutability support was added later in their life cycle. We

divide immutability support into two categories: language features enforcing immutability

and language features improving the use of immutability.

An example of the former would be “read-only” keywords (such as final or const),

which prevents a value from changing after initialization. An example of the latter would

be “record updating” (also called non-destructing mutation), which allows changing some

values of some attributes while cloning an object, effectively “mutating” the object while

preserving immutability.

Immutability Enforcement

Functional languages typically support both enforcing and using immutability, but that

is not necessarily the case for OOP languages. While “read-only” keywords have been

available in older imperative languages such as Pascal [89], they do not constitute “full”

immutability enforcement.

Boyland et al. [13] discuss the semantics of different access annotations on references

and pointers, in particular different types of access rights capabilities of references, such as

limiting reading, writing, and ownership. They show how these semantics can be applied

to extend type systems using annotations.

Coblenz et al. [21] describe properties of immutability enforcement systems in program-

ming languages. They make a difference between systems with read-only references, which

disallows mutation through that reference, and assignability restrictions (e.g., Java final),

which disallows assigning to a given reference. Neither is true immutability because in the

first case, there is the possibility of mutating the referenced object through another refer-

ence and in the second case the referenced object itself can be mutated. Both these features

enforce non-transitive immutability.
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For transitive immutability, a language must disallow mutations of a given object from

all references. For example, given a list containing references to some objects, for the list

to be transitively immutable, the list should disallow mutation on itself and the objects

contained within should also disallow mutation. Very few OOP languages enforce transitive

immutability, and those that do usually are hybrid functional/OOP languages (e.g., OCaml,

F#, Scala).

Research exists to enforce transitive immutability in existing OOP languages, such as

Java and C#. Zibin et al. [95] present Immutability Generic Java (IGJ), a language ex-

tension to Java that enforces reference immutability and object immutability. They define

object immutability as disallowing mutation on an object, even if other instances of the same

class could be mutable. Reference immutability is the equivalent of the “read-only” restric-

tion discussed above. Similarly, Tschantz and Ernst [91] present Javari, a type extension

to Java to enforce reference immutability constraints.

Kniesel and Theisen [51] present Java with Access Control (JAC), which extends Java

with read-only types, which are described as having “transitive propagation read-only access

protection”. The types enforce immutability at the class, object or parameter level.

Coblenz et al. [20] also present Glacier, a type annotation system for Java to specify

different types of immutability for classes. In particular, this system can enforce transitive

immutability, among other properties discussed in their previous work [21]. They evaluate

the performance of their system in an experiment with 20 professional Java programmers.

They report that participants who used their system were more successful at implementing

a correct immutable system than those who did not.

Unkel and Lam [92] introduce the concept of stationary fields, which are similar to Java

final fields, but allow unlimited mutation if they all happen before the first read. This

concept effectively enforces immutability and solves some issues discussed by Stylos and

Clarke [85] with argument-less constructors.

Microsoft added immutable collections to their .NET Framework around 20175, inspired

5https://learn.microsoft.com/en-us/archive/msdn-magazine/2017/march/net-framework-immutable-
collections
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by their functional F# language and, by extension, OCaml. These immutable collections

guarantee that their structure is preserved at all times and disallow element-level assigna-

tion. They also implement an API inspired by the Builder design pattern [31] to allow copy

and mutation of the structures.

The Rust programming language6 uses ownership mechanisms to manage state and

mutation. Rust uses the “read-only” type of restriction but ensures that only one “mutable”

reference exists for a given structure at any time. Every other reference must be read-only.

This mechanism brings some of the same advantages as immutability, such as safer state

management and safer concurrent programming.

Immutability Usage

While most of the research focuses on enforcing immutability, other language features

facilitate immutability or use it to bring certain advantages. An example of an advantage

would be how the Haskell language optimizes calculations. By using memoization [68]

and immutable functions (i.e., functions that have no side-effect on their arguments or the

program), Haskell can store the results of a function so that result is returned instead of

being recalculated when the same function is called with the same arguments. Memoization

uses the property that an immutable (or pure) function always returns the same result when

given the same arguments.

OOP languages have been embracing immutability support lately, with new features

being added to support immutability and new languages using immutability more often in

their library.

Microsoft C#, in 2017, received functional features, such as pattern matching7, record

types, and record updating8. The default type for collections in the .NET Framework is

IEnumerable, which is immutable and allows usage of Language-Integreted Query (LINQ),

a functional-inspired library for collection manipulation, implementing many functional

concepts, such as map, reduce, fold, etc.

6https://www.rust-lang.org/
7https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/patterns
8https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/records
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Java 9, in 2017, introduced the List.of method for the creation of immutable lists,

but support is limited, e.g., there is no API to mutate lists non-destructively. Java also

received some functional features in 2020 with Java 14, such as record types9 and pattern

matching10 but not some of the usability features that C# did, such as record updating

and immutable collections.

Kotlin, a more recent JVM-based language with full interoperability with Java, while

not embracing full immutability, makes a distinction between mutable and immutable ref-

erences (i.e., read-only restrictions) with its var and val keywords for declaring variables.

Immutable references are usually used by default in its libraries. It also includes many FP

features, such as pattern matching and record types.

Microsoft F# is a functional language that also supports OOP. Based on OCaml, it

supports immutability but has the mutable keyword11. While the combination of FP and

OOP is interesting, the integration between the two can be lacking at times. For example,

methods cannot be easily converted into closures, as functions can, which limits the usage

of some FP concepts with objects.

2.5 Summary

We presented in this chapter an overview of OOP, its basic principles and design pat-

terns. We showed how OOP languages evolved and came to include many FP features, in

particular, related to immutability. However, despite many improvements, programmers

still require design patterns to solve specific problems.

While design patterns offer generic solutions to their underlying problems, these solu-

tions are often complex and may decrease the understandability of programs. Furthermore,

we discussed how design pattern implementations can be affected by the features available

in a language. We believe that finding language features to improve these design

pattern implementations is a systematic approach to recommending language

9https://docs.oracle.com/en/java/javase/14/language/records.html
10https://docs.oracle.com/en/java/javase/14/language/switch-expressions.html
11https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/values/
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features to improve OOP.

In the next chapter, we present a systematic mapping study of suggested language

features to improve design pattern implementations.
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Chapter 3

Mapping Language Features for

Improving OOP Design Patterns

Programming languages evolve and incorporate more features to ease programmers’

tasks and solve problems in “better” ways. These features often come from design patterns.

However, there has been no systematic study of design pattern implementations and the

features that would improve them. To gain a better understanding of this relationship

between design pattern implementations and language features, we propose to study the

literature on design pattern improvements. We perform a systematic mapping study to

identify language features claimed to improve design pattern implementations.

In OOP, design patterns are presented as “templates” that can be adapted to specific

design problems for which using “naive” OOP solutions would not be optimal (e.g., in

terms of maintainability or understandability). However, they can introduce new problems,

such as increasing complexity and requiring that programmers be familiar with these design

patterns to get the most out of their advantages. We know that overuse of design patterns,

as well as “over-engineering” [47], should be avoided.

One secondary study by Zhang and Budgen [93] considered empirical studies on the

effects of applying design patterns on software design. They showed that there was a lack

of empirical studies on most design patterns and that empirically-founded advantages and
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disadvantages are difficult to find in the literature. They also discussed design pattern

implementations sometimes being harmful to program understanding, while they do help

with maintenance and evolution.

Some primary studies tried to find other object-oriented patterns for situations not

covered by the initial 23 design patterns [31]. Others tried to use OOP approaches to

improve existing patterns [23]. Yet others tried to leverage language features from other

programming paradigms to improve specific measures of design patterns [2, 25, 42, 48, 84].

Yet, there has not been much focus on the relationship between programming language

features and design pattern implementations.

In this chapter, we identify the language features that have been suggested to improve

OOP design pattern implementations, which design pattern implementations are being im-

proved, which measures are used to evaluate these improvements, and what empirical data

was collected to assess these improvements.

We ask the following main research question: What language features have been suggested

to improve design pattern implementations?.

We perform a search query in three databases (Ei Compendex, Inspec, GEOBASE)

using the Elsevier search engine Engineering Village. Our initial query yields 874 papers,

which we assess for quality and use for snowballing, resulting in a total of 34 primary

studies. We then obtain and study relevant data from these 34 studies and then discuss

and catalogue our observations and their meaning.

We catalogue 18 language features claimed in the primary studies to improve design

pattern implementations and categorize them into paradigms. This catalogue is useful to

identify trends and create a road map for research on language features to improve object-

oriented design patterns. Considering the popularity of design patterns, improving their

implementation and adding language features to better solve their underlying concerns is

an efficient way to improve Object-Oriented Programming.

The rest of this chapter is organized as follows. In Section 3.1, we further explain how

design patterns can be improved by language features and give a running example. In

Section 3.2, we present an overview of other related secondary studies on the topic. In
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Section 3.3, we shortly present the concept of the systematic mapping study, we pose our

research questions and present the methodology to perform our mapping study. In Section

3.5, we discuss these results and their implications. In Section 3.6, we list findings that we

found to be notable or interesting and recommend future work. Section 3.7 lists threats to

the validity of this study. In Section 3.8, we conclude with the main findings of this chapter

and further possible research.

3.1 Background

We illustrate how a design pattern can be improved by specific language features using

the Factory Method design pattern, as discussed in the GoF book [31]. The goal of this

pattern is to decouple an application from concrete implementations of abstract classes

or interfaces. To achieve this goal, we must encapsulate object instantiation. Factory

Method suggests creating an abstraction of this creation process and using this abstraction

throughout the software instead of the normal object creation feature of the language (e.g.,

the new keyword).

Figure 2 shows the first example of an implementation of the Factory Method in the

book. It shows how directly the Factory Method design pattern maps to object instantiation

language features. The design pattern was instantiated from the C++ language, but this

instantiation would apply to most other modern OOP languages, such as C# and Java.

In Figure 2, the class Application represents the abstraction of the creation process of

documents. If we wanted the application to instantiate documents of type MyDocument, we

would use an application of type MyApplication.

This pattern encapsulates the normal object instantiation mechanism provided by the

language. The solution of the design pattern is to encapsulate this mechanism because the

instantiation mechanism in C++ (and similar languages) does not allow for decoupling an

abstraction from its concrete implementations (i.e., the new keyword only allows for the

instantiation of concrete classes).

A variant to this solution is given a few pages later [31] with Smalltalk. In Smalltalk,
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there is no keyword for object creation. Object creation is accomplished using a method

declared in the meta-class of the class (also called new). Because classes are also objects in

Smalltalk, it is possible to call this method on a variable, effectively the Factory Method

pattern. Thus, the document example could be implemented in Smalltalk with a method in

Application that returns the class to use to create document objects. The MyApplication

class could implement this method as returning MyDocument, as such:

"In class MyApplication"

documentClass

^ MyDocument

createDocument

^ documentClass new

In this implementation, there is no need to supersede the normal object creation mecha-

nism of the language. We instead use it normally on the class returned by documentClass1.

By using Smalltalk’s meta-class and object instantiation language features, the pattern be-

comes part of the language and is more easily combined with other language features.

There are other examples in the GoF book [31] where design patterns have implementa-

tions that are simpler in Smalltalk than C++. This discrepancy between implementations

suggests that design pattern implementations depend on what features are supported by

the programming language.

In some languages, design patterns can even become obsolete and disappear entirely

when the concept is fully supported by the language [67].

It is also important to note that the GoF book is not the only source discussing design

patterns in the context of software engineering. However, when searching the literature,

the great majority of results on research on object-oriented design patterns turned out to

be on the GoF design patterns, which is why we chose to focus this study on them.

In this chapter, we are interested in cataloguing language features that impact the 23

1Using this, we could restructure the model in different ways. For example, we could remove the
MyApplication class and replace it with a collection holding the different concrete classes used to create
objects for the application.
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Figure 2: Implementation example of Factory Method

GoF design patterns, and see what this impact is and how it was measured.

3.2 Related Studies

Multiple secondary studies exist about object-oriented design patterns.

In 2012, Zhang et al. [93] published a systematic literature review about the effectiveness

of software design patterns. They targeted empirical studies made on the GoF design

patterns. They concluded that there is a lack of empirical studies about design patterns

and concrete advantages and disadvantages are difficult to find in the literature. They also

concluded that design patterns may not help with understandability, sometimes decreasing

it dramatically.

In 2013, Ampatzoglou et al. [5] performed a mapping study on the impact of design

patterns on software quality. They focused on the GoF design patterns and categorized

research into different categories (formalization, detection, and application). They found

that research on the detection of design patterns and their impact was the most active.

In another paper, the same authors proposed a catalogue [4] of alternative designs for the

GoF patterns. These alternative designs usually add new functionality to existing patterns,

either to make them more flexible [29] or to adapt them to specific situations [29].

In 2016, Mayvan et al. [64] published a state of the art on research on design patterns
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with the goal of presenting an entry-level summary to those who would seek to enter the re-

search field. They perform a systematic mapping study to identify popular research trends,

such as commonly used keywords, most active researchers and venues, and the distribution

of publications by topics. They identify Pattern Development as the most popular topic,

which groups the introduction of new patterns or pattern variants and categorization of

design patterns by field (e.g., mobile applications, security, etc.).

These studies, and the studies they review, focus mainly on evaluating the impact of

design patterns on object-oriented software. Many of them compare code that was devel-

oped without the usage of design patterns against code that was developed with. Others

explore alternative design patterns to respond to specific problems. Our study catalogues

language features used in the literature claiming to improve object-oriented design pattern

implementations, without modifying their functionality, as well as how these improvements

are measured and the empirical data available.

3.3 Methodology

To reach our goal and answer our research questions, we perform a systematic mapping

study following similar practices as introduced by Peterson et al. [71] in their systematic

mapping studies guidelines for software engineering and executed by Ampatzoglou et al. [5].

Our methodology also draws from general guidelines on systematic literature reviews [49,

50].

Our objective is to find language features in research done to improve OOP design

patterns. In particular, we want to survey the techniques and tools developed to make

these improvements, as well as the measures used to assess them. We are also interested

in understanding the kind of experiments done to evaluate these tools and techniques. We

want to answer the following research questions:

(1) RQ3.1: What language features have been suggested to improve design pattern im-

plementations?
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Figure 3: Flowchart of the steps in our approach

(2) RQ3.2: Which design patterns have the most associated language features sugges-

tions?

(3) RQ3.3: What measures have been used to evaluate the impact of these language

features on design pattern implementations?

(4) RQ3.4: What experiments have been done on these language features?

To answer these questions, we perform a search to find and select the papers that will

be studied in this study. Then, we ensure that the identified papers are related and offer

answers to the research questions by performing a quality assessment. Finally, we extract

data from the papers and synthesize it to reach our goal.

To reduce bias as much as possible, we perform the literature search in multiple databases

and gather a large number of papers, which we then systematically study. We also perform

a snowballing step to include all papers citing or cited by any paper which is not rejected

in the manual sorting, followed by other snowballing iterations on the resulting set until

reaching a fixed point.

Consequently, we follow these nine steps (as shown in Figure 3):

(1) Identify keywords for searching for papers.

(2) Identify databases for searching for papers.

(3) Build a search query and execute it based on the keywords on each database.
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(4) Filter the results manually based on the abstract and keywords.

(5) Perform a forward and backward snowballing step where each paper’s references and

papers that reference it are also considered (manually).

(6) Create a form for compiling the data provided by the papers.

(7) Read and compile each paper, removing any paper that does not provide data for at

least one of our research questions.

(8) Interpret the compiled data and answer the research questions.

3.3.1 Keywords for the Search Query

Based on our goal, we identify keywords to find papers potentially providing data to

answer our research questions. These keywords do not encompass all possible synonyms and

are general. For example, we include “object-oriented programming” as a keyword, but do

not add “OOP”, “object-oriented”, or other synonyms. We add synonyms in Step 4 when

we build the database query. We are investigating improvements in design patterns, thus

we added some keywords related to weaknesses and anti-patterns. While these could be

seen as unrelated, there is no disadvantage in having a broader query and unrelated papers

will be removed in later steps of the study.

We identify the following keywords to use for building the search query: object-orien-

ted programming, design patterns, anti-patterns, weakness, disadvantage, improvement, en-

hancement, refinement, better, expand.

3.3.2 Databases for the Search Query

To perform a search as large as possible, we use multiple online databases for scientific

papers. These databases are part of an online tool called Engineering Village, hosted by

Elsevier. They contain data from a large number of scientific journal databases, such as

ACM and IEEE.
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We also attempted to use Google Scholar as an additional search engine, as well as for

the snowballing step discussed later but found that it did not add any relevant results to our

search. Every result from Google Scholar was already included in the Engineering Village

results. However, some relevant results from Engineering Village were not included in the

Google Scholar results. For these reasons, we chose to eschew Google Scholar and focus

only on the Engineering Village results.

Given the focus of this study on the GoF design patterns, we consider papers published

between 1995 and 2022.

3.3.3 Query Building and Execution

We are using only one search engine, thus only one query is needed. All three of the

databases are accessed from Elsevier Engineering Village Web site2. We restrict the scope

of the query to the title, abstract, and keywords of the papers. We opt to use the more

general term “object” (and then filter manually) instead of the various ways of writing

”object-oriented programming” to avoid accidentally excluding relevant studies that used

a slightly different expression (e.g., object oriented software).

Through several iterations, we add a large number of keyword exclusions (“NOT” key-

words) to increase the relevance of the studies and reduce the number of unrelated studies.

We exclude these keywords specifically from the “keywords” field in the database (meaning

the paper should be about these topics), and not from the abstract (e.g., we are not ex-

cluding a paper because “test” is found in its abstract). The final query is shown in Table

1. This query yields 874 studies.

The final query results are shown in Table 2. Removing duplicates is done via a script,

as we found the Engineering Village search engine functionality to remove duplicates was

not accurate. After removing duplicates, we retain 625 studies for manual filtering.

2https://www.engineeringvillage.com/
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Query Comments

((oop OR object)
AND (design pattern OR design patterns Must be linked to design patterns
OR anti-pattern OR anti-patterns OR
paradigm)

Initially, we intended the scope to be
broader, but this shouldn’t impact
the final results

AND (weakness* OR disadvantage* OR im-
prove* OR enhance* OR refine* OR help OR
better OR expand*)

Must be about improving or finding
weaknesses

WN AB) These keywords are located in ab-
stract text

NOT ((teach* OR learn* OR test* OR modeling
OR automated OR automation OR tool* OR
mobile OR optimiz* OR simulation OR mining
OR medical OR bio* OR hardware OR hdl OR
parallel* OR api OR find* OR sql)

These keywords are excluded to
avoid papers about learning, au-
tomating, optimizing tools, or other
non-related subjects encountered
during the first passes of the query.

WN KY) Excluded keywords must not appear
in the keyword field.

NOT ((pattern recognition OR pattern identifi-
cation OR pattern detection OR object recogni-
tion OR object detection OR feature extraction
OR computer vision OR pattern clustering OR
learning (artificial intelligence) OR image seg-
mentation OR pattern classification OR data
mining OR computer aided design OR formal
specification OR image classification OR user
interfaces OR computer simulation OR inter-
net OR image processing OR codes (symbols)
OR image enhancement OR embedded systems
OR image reconstruction OR cameras OR dis-
tributed computer systems OR product design
OR artificial intelligence OR iterative methods
OR neural nets OR neural networks OR object
tracking OR genetic algorithms OR classifica-
tion (of information) OR learning systems OR
mathematical models OR middleware OR inter-
net of things OR cloud computing OR decision
making OR electroencephalography OR virtual
reality OR risk management OR health care OR
distributed object management OR query pro-
cessing OR knowledge based systems) WN KY)

Finally, a large list of expressions
was excluded from the keywords be-
cause they tended to be attached to
papers about concepts unrelated to
this research.

Table 1: Database Query
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Database Results

Compendex 316

Inspec 371

Geobase 13

All databases 700

After de-duplication 625

Table 2: Query Results by Database

3.3.4 Filtering

We manually read the title and abstract of each of these studies and determine whether

the study has the potential to provide data to answer one of our four research questions.

We choose to be conservative in this step and include any study that could provide data for

a research question, even if remotely. Following quality assessment guidelines [71], inclusion

criteria were applied to the titles and abstracts:

(1) Study is in the field of software engineering.

(2) Study is related to the improvement of design patterns and must propose a language

feature to do so. (Studies relating exclusively to measuring the impact of existing

design patterns against non-pattern code are not kept.)

(3) Study was published between 1995 and 2022.

Similarly, criteria were used to exclude papers:

(1) Study is not related to one or more specific design patterns.

(2) Study is not peer-reviewed.

(3) Study is not written in English.

(4) Study has no accessible full-text online.

(5) Documents that are books or gray literature.

(6) Study is a duplicate. (We kept the longer version.)

After this filtering step, 144 papers remain.
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3.3.5 Snowballing

We consider both the references of each study and any study referencing the said study

for each of the 144 studies yielded by the previous step.

To search for forward references, we use the Scopus search engine. We apply the same

year restriction (1995–2022) and the same criteria for filtering. After the third iteration of

snowballing, we notice that all of the results are duplicates of already included studies, so

we stop the snowballing process. Both the first and second authors of this study indepen-

dently perform this step. The second author was not privy to the research questions being

assessed until the process was done. We consolidate the results afterwards and address any

discrepancies. After eliminating all duplicates, we obtain a total of 157 studies that could

provide data to answer our research questions.

3.3.6 Compilation Form

To compile the information from the obtained studies systematically and consistently,

we build a form that we fill out for each study. Our form has the following information:

(1) The title of the study.

(2) The type of the study (experiment, case study, conceptual analysis, literature review,

or survey).

(3) The study publication venue.

(4) The study publisher (or digital source).

(5) A list of all design patterns mentioned by the study.

(6) A list of all language features proposed by the study to improve the specified design

patterns.

(7) A list of all measures used by the study to evaluate the suggested improvements.

(8) In the case of experiments, information about the participants (number and expertise).
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(9) In the case of case studies, information about the studied cases (number and whether

or not they are in-vivo or in-vitro).

After using the form to extract data from the 157 compiled studies, we remove 123 as

they did not provide an answer to any of our research questions. Many of the studies were

evaluating the impact of existing design patterns, rather than any improvements, and this

does not fit the goal of this study. (Thus, we remove 123 of the obtained studies, confirming

that we were conservative in our process and likely did not miss any relevant paper.) We

finally obtain 34 studies.

3.4 Results

We classify the 34 remaining studies in various ways to answer our research questions.

We first perform a general analysis of the sources (publication venues and publishers) the

papers came from. Finally, we categorize each study into a type and take a more detailed

look at the experiments and case studies.

Table 3 shows the number of papers for each publication venue. As we can see, there

are a large variety of venues in our dataset. Some venues show up multiple times, such

as PLoP, ECOOP, OOPSLA and SAC, but the rest of the papers all come from different

venues. The large variety of publication venues could indicate that the subject of using

language features to improve object-oriented design patterns is rather niche and that there

is no specific venue for this.

Out of the 34 papers, there are 18 conference papers, 11 journal papers, and 5 workshop

papers. The full data collected on each paper, including publishers, is available in our

replication package3.

We extract from each paper any language feature used to improve object-oriented design

patterns. We use a broad definition of language features. The extracted data is, as expected,

very diverse. Some features are closely related to specific programming paradigms (e.g.,

aspect-oriented pointcuts). Other features are more general and could be applied in many

3https://www.ptidej.net/downloads/replications/ist22/
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ways (e.g., mixins). To make sense of this data and obtain a global view, we create a mind

map of these improvements that can be seen in Figure 4.

In this figure, nodes represent paradigms, paradigm applications and language features.

Colours represent the type of node. This mind map helps navigate and make sense of

the data. We classified language features into the paradigms to which they relate the

most. However, some features could fit into multiple categories. When this happened, we

classified the feature according to how it was presented in the study where it appeared. For

example, we found different studies pertaining to Mixins in the context of both Aspect-

Oriented Programming and Object-Oriented Programming, thus we added the feature to

both paradigms. We explain our categorization in the following.

Purple nodes represent programming paradigms. We define a programming paradigm

as a set of cohesive features for linking domain concepts with programming concepts and for

organizing these programming concepts. We identified in our dataset four main paradigms:

Object-oriented Programming, FP, Meta-programming and Reactive Programming.

Green nodes in the mind map represent language features. We define a language feature

as an element of the syntax or grammar of a programming language that can be used to ex-

press a solution to a problem. For example, classes are a language feature of object-oriented

languages used to represent real-life categorization of objects and create and manipulate

instances of those objects. In our mind map, we assigned each language feature found in

the studies to its underlying paradigm.

Table 4 offers a detailed view of the information discussed in this section. The table

contains references to every paper in the study and can be used to find papers on a particular

language feature or paradigm. We also specify the implementation languages presented in

the papers for each of the features where available.

3.4.1 Meta-Programming

Meta-programming is a paradigm allowing programs to generate or modify their struc-

ture (either at compile, load-time, or run-time). It is possible to effectively implement

new paradigms using Meta-programming, its classification is slightly different from that of
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Figure 4: Mind map of paradigms, languages, and features for improving design patterns
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the other paradigms. Directly under Meta-programming, we classify applications of Meta-

Programming (as yellow nodes). These applications are specific usage of Meta-programming

to create new languages. For example, we classify Aspect-Oriented Programming as an ap-

plication of Meta-programming because it modifies the structure of the target program at

compile-time. Meta-programming applications are paradigm extensions to a target lan-

guage, rather than stand-alone paradigms. For example, Krishnamurthi et al. [52] use the

MzScheme language’s meta-programming capabilities to implement Zodiac, an extension to

the language combining features from Object-Oriented Programming and FP to implement

the Visitor pattern.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a paradigm extension to procedural program-

ming that was introduced in 1997 by Kiczales et al. [48]. The goal of AOP is to increase

modularity by encapsulating cross-cutting concerns into code units called Aspects. As-

pects are a language construct similar to classes in OOP. OOP/AOP implementations, like

AspectJ4, are the most popular in the literature, even though the original study did not

associate AOP directly to OOP.

AOP works by making changes to the structure of the program at specific points. For

example, it is possible to create an aspect which adds logging functionality to every method

of a given class. Thus, with AOP, it is possible to extract recurring functionality to en-

capsulate them in aspects and avoid cluttering classes with unrelated, or cross-cutting,

concerns.

Among the primary studies, we found three main implementations of AOP within OOP.

The most common implementation [3, 7, 8, 10, 12, 16, 25, 26, 28, 32, 35, 37, 39, 43, 80, 87,

88] uses pointcuts and advices (also called the join-point model) to modify existing classes.

Consider the following pointcut5:

pointcut setter(): target(Point) &&

4https://www.eclipse.org/aspectj/
5https://www.eclipse.org/aspectj/doc/released/progguide/language-joinPoints.html
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(call(void setX(int)) ||

call(void setY(int)));

This pointcut designates every location where a method named setX or setY, with a

single argument of type int and a return value of void, is called on an instance of the class

Point.

The second part of this model is the advice, which designates the code inserted at every

location referenced by the pointcut. Advices typically take the form of a regular method of

the extended language, with the exception that it is usually decorated with a keyword such

as after, before, or around, which dictates where the advice should be inserted relative

to the pointcut.

The example shown is unrelated to design pattern implementations, since using AOP

to implement design patterns typically involve multiple files and many lines of code, which

would make it more difficult to see the important features of the paradigm.

Hannemann and Kiczales [43] present a full implementation of each design pattern using

AspectJ and compare them to Java implementations. They reported that they could remove

many code duplications. For example, in the case of Observer, they extract the record-

keeping of the observer list, as well as the add and detach methods, into an abstract aspect

named ObserverProtocol.

AOP can be implemented in a different way using code annotations [36, 58]. This

approach is similar to the join-point model, replacing the pointcuts with annotations. This

approach is used by the C# framework PostSharp6. Using this framework, one could

implement Microsoft WPF INotifyPropertyChanged interface, which is an implementation

of the Observer pattern, with the following annotation7:

[NotifyPropertyChanged]

public class Person

{

public string FirstName { get; set; }

6https://www.postsharp.net/
7https://www.postsharp.net/postsharp

51

https://www.postsharp.net/


public string LastName { get; set; }

public Address Address { get; set; }

}

Using this approach, Giunta et al. [36] and Jicheng et al. [58] create annotations to

represent the Factory Method, Observer, and Singleton design patterns.

Yet another implementation of AOP uses mixins or an equivalent feature. Kuhlemann

et al. [54] use Jak, a Java language extension that combines classes and mixins, to achieve

similar functionality to AspectJ. They implement every design pattern in Jak and com-

pare their implementations to AspectJ implementations [43]. They conclude that Jak has

better support for modularizing cross-cutting concerns, but that the extension should be

complementary to AspectJ. Axelsen et al. [6] propose the concept of Package Templates to

implement the Observer pattern and compare it to an AspectJ implementation. Package

Templates function like module mixins (at the package level) in that they can introduce

(generate) new classes, methods and attributes when used. They showed that their approach

provides a sufficiently powerful framework to implement design patterns with minimal AOP

mechanism compared to the join-point approach.

Layer Objects

Springer et al. [84] present the concept of Layer Objects to implement the Decorator,

Observer, and Visitor design patterns using Context-Oriented Programming, which allows

changing the behaviour of objects based on scope (or context). A Layer Object can be acti-

vated (e.g., with the with keyword) within a specific scope, and will override the behaviour

of specified classes within that scope. They present examples implemented in a Java-like

pseudo-code.

With this feature, it is possible to add behaviour to an existing object (as per the

Decorator pattern). For example, if we had a Field class, representing a tile in a game and

wanted to add a “burning” by which a player takes damage when entering the field, the

BurningFieldDecorator could be implemented as such:
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class Field {

def enter(player) {

// Do something when a player enters the field.

}

}

class BurningFieldDecorator {

def damage = 15;

def Field.enter(player) {

player.health -= thisLayer.damage;

proceed(player);

}

}

// Usage example

def decorator = new BurningFieldDecorator();

field.activate(decorator);

Pattern Keywords

Some studies opted for introducing design patterns directly. Ghaleb et al. [33] propose

integrating Decorator, Observer, and Singleton as keywords. For example, a Singleton could

be declared like this:

public singleton class A

{

instantiate A as s1;

public static void main(String[] args)
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{

instantiate A as s2, s3;

}

}

The singleton keyword marks the class A as a Singleton, of which its unique instance

can be created using the instantiate as keywords.

Zhang and Oliveira [94] do something similar with the Visitor pattern by introducing

EVF. EVF is a framework to implement Visitors in Java. It introduces new keywords in the

form of annotations (such as @Visitor) to create data structures with internal or external

visitors.

Adding keywords to a language to directly support design patterns requires either the use

of Meta-programming or the creation of language extensions or domain-specific language.

Unlike the approach presented by Krishnamurthi et al. [52], where they used the macro

feature of MzScheme to implement Zodiac, an extension to the language for implementing

Visitor, the studies presented under this feature used third-party tools to add keywords to

Java. The effect, however, is the same as if they had used macros to create these keywords

(which Java does not support). Whether design patterns should be language features is

however debatable, with experts often having diverging opinions, such as mentioned by

Chambers, Harrison, and Vlissides [18] in their debate on language and tool support for

design patterns.

Reflection

Reflection is an application of meta-programming. It allows developers to manipulate

the data structures at run-time. For example, one could add a new method to an existing

class, change the type of an attribute, etc. Unlike macros or Aspect-Oriented Programming,

Reflection typically does not allow modifying code directly (e.g., inserting lines of code in

the middle of a method). Reflection is available in mainstream programming languages like

Java and C#.
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Fortuin [30] uses Reflection to implement the Abstract Factory pattern in Java. They

use a static method that, based on the given arguments, constructs an object by accessing

the proper class constructors and passing the arguments using a hashtable.

Mai and Champlain [60] and Hussein et al. [46] use Reflection to implement the Visitor

pattern to overcome the limitation of Java of only supporting single dispatch (as discussed

in Section 3.4.3 about Case Classes). Mai and Champlain [60] defined a findMethodmethod

that gets the correct Visit method on the visitor object. Reflection could also be used to

automatically implement accept methods on the target, removing the cross-cutting concern

from the visitable object.

3.4.2 Reactive Programming

Reactive Programming [77] is a design paradigm which addresses asynchronous pro-

gramming logic, especially concerning value updating and change propagation. It can be

combined with Functional and Object-Oriented Programming to facilitate dealing with

problems related to data updating (the same kind of problems targeted by the Observer

design pattern). Scala offers libraries such as REScala [78] and Scala.react [61] to enable

reactive programming in the language.

Signals

Signals are a feature of Reactive Programming that allows expressing dependencies

among values [77]. When a dependency of a signal changes, the expression defined by

the signal is automatically recomputed from the new values of the dependencies. This

functionality is similar to the Observer pattern. For example, take the following Scala

code:

val a = Var(1)

val b = Var(2)

val s = Signal{ a() + b() }
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println(s.getVal()) // 3

a() = 4

println(s.getVal()) // 6

When the value of variable a changes, so does the value of signal s. Thus, support of

Signals and Reactive Programming in a language renders the Observer pattern obsolete.

3.4.3 Functional Programming

Functional Programming (FP) is a paradigm that uses pure functions to assemble higher-

order functions (i.e., functions that receive other functions as arguments, such as map,

reduce, etc.) to create programs. We classified studies that used features related to this

paradigm: case classes [69] (also called pattern matching), closures [9, 34], and immutabil-

ity [52]. We admit that immutability is less of a feature and more of a property, but it is a

property of pure function and functional languages usually support and sometimes enforce

immutability. Immutability can also affect how design patterns are implemented [52], which

is why we chose to include it here.

Case Classes

Case Classes, also known as pattern matching, are a feature of FP languages. In Scala,

Case Classes are used to create sets of classes that can be distinguished using the match

keyword. Oliveira et al. [69] use Scala to present many variations of the Visitor design

pattern, as well as a library to use them. They use Case Classes to implement the accepting

mechanism of this design pattern. They then use pattern matching to distinguish the

different types to visit. Using their library, it is possible to implement the Visitor design

pattern:

// Visitor structure for a Binary Tree.

trait Tree {

def accept[R] (v :TreeVisitor[R]):R

}
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case class Empty extends Tree {

def accept[R] (v :TreeVisitor[R]):R = v.empty

}

case class Fork (x :int,l : Tree,r: Tree) extends Tree {

def accept[R] (v :TreeVisitor[R]):R =

v.fork (x,l,r)

}

trait TreeVisitor[R] {

def empty :R

def fork (x : int,l :Tree,r: Tree):R

}

// Concrete implementation of visitor to calculate

// the depth of the Tree.

def depth = new CaseTree [External,int] {

def Empty = 0

def Fork (x : int,l :R[TreeVisitor],r:R[TreeVisitor]) =

1+max (l.accept (this),r.accept (this))

}

This implementation does not require both accept and visit methods usually present

in the Visitor implementation. The polymorphic aspect of the pattern is instead handled

by Case Classes and pattern matching. In the above example, only the accept method is

implemented.
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Closures

Closures are the main feature of the FP paradigm. A Closure is an encapsulation of

behaviour and data, much like Classes are in OOP. Unlike Classes, a Closure only encapsu-

lates one function and its data cannot be directly accessed from outside the closure (with

some exceptions). Closures are supported by most modern languages, such as Java, C#,

C++, Python (with some caveats), JavaScript, Kotlin, etc. In most languages, Closures

are created using some kind of lambda syntax such as :

var i = 42

var closure = (argument) => {

// Some code which can use the i variable.

}

Gibbons [34] present advanced uses of the map, fold, and other standard FP methods

in Haskell. They discuss functional implementations of the Composite (using recursive data

structures), Iterator (using map), Visitor (using fold), and Builder (using unfold) design

patterns.

Compared to Closures, the Command design pattern has the advantage of being able

to expose its data to the outside world if needed, allowing some degree of control over

the behaviour of the object. Batdalov and Nikiforova [9] propose to replace conventional

functions with a generalization of the Command design pattern. Every function or method

would become a Functor (an object with a single public method) and would make usage of

the Command pattern obsolete.

Immutability

Immutability is a property of many FP languages. The Haskell language enforces im-

mutability, which in turn makes the use of certain functional design patterns, such as

monads, ubiquitous in the language.

Immutability has an effect on design pattern implementations. For example, we stated

above that the Command design pattern is similar to Closures, with the exception that it
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can expose its internal data and mutators. In an immutable context, this advantage becomes

inconsequential, as the exposed data could not be interacted with in any significant way. In

an immutable context, Closures make the Command pattern obsolete.

Sakamoto et al. [76] present two variations on the State design pattern implemented

using Scala. One of these is the Deeply Immutable State pattern, which makes use of

the immutability features of Scala (such as the ability to easily clone Type Classes while

modifying certain attributes, similar to Record Updating in OCaml8) for its implementation.

3.4.4 Object-Oriented Programming

Object-Oriented Programming is a paradigm that uses four general features to organize

code: encapsulation, abstraction, inheritance, and polymorphism. Features classified under

this paradigm directly affect OOP or require it to function. For example, the Chameleon

Objects [9] feature allows objects to dynamically change class. This requires and affects

classes and objects, features which are directly related to OOP.

Chameleon Objects

Chameleon Objects is a feature proposed by Batdalov and Nikiforova [9] to help with

the implementation of the State and Factory Method design patterns. The feature allows

an object to change class at runtime. While no language was presented in Batdalov and

Nikiforova’s paper, some languages allow such change already (e.g., Common Lisp, Perl).

With this feature, it is possible to implement the State pattern by changing the class of an

object when it changes state. The same feature could be used to allow a class constructor to

change the instantiated object class depending on its arguments, effectively implementing

a Factory Method.

In Common Lisp, a class can be changed using the following simple line:

(change-class target-object target-class)

The same can be achieved in Perl with the bless keyword:

8https://dev.realworldocaml.org/records.html
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bless $targetObject, ’Package::TargetClass’;

Class Extension

Hanneman and Kiczales [43] use AOP to implement design patterns using different

features of AspectJ for different patterns. For Adapter, Bridge, Builder, Factory Method,

Template Method, and Visitor, they specifically use the open class feature of AspectJ, which

allows classes to be extended with new methods and attributes outside of their declaration

(at compile-time).

With class extensions, it becomes possible to encapsulate duplicated code from a de-

sign pattern implementation into an extension. For example, we could extract the accept

method of the Visitor pattern into a class extension, effectively allowing a Visitor -free

implementation to exist independently of its pattern implementation.

Default Implementation

Default Implementation is a feature proposed by Batdalov and Nikiforova [9]. It allows

abstract classes to specify a default concrete implementation. This feature is similar to how

the Abstract Factory pattern is implemented in Dependency Injection frameworks, such as

Spring9. Beyond Abstract Factory, the authors argue this feature would help implementa-

tions of the Builder, Bridge, Command, and Strategy patterns.

Extended Initialization

Extended Initialization is a feature proposed by Batdalov and Nikiforova [9] to help with

the implementation of the Builder and Fatory Method patterns. This feature would allow

object creation to be divided into multiple steps (effectively achieving the same functionality

as the Builder pattern and rendering it obsolete).

9https://spring.io/
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Mixins

While we already introduced Mixins in the context of Aspect-Oriented Programming in

Section 3.4.1, this feature can be used separately from AOP. Mixins are an extension of the

OOP paradigm to combine classes together. Unlike inheritance, Mixins do not enforce an

“is-a” relationship between the individual classes.

Burton and Sekirinski [15] present implementations of the Decorator, Proxy, Chain of

Responsibility, and Strategy design patterns using Mixins in Java. For example, a Decorator

may be implemented by combining the Decorator with the target class, as such:

class Component { Operation(); }

class ConcreteComponent implements Component { ... };

class DecoratorMixA implements Component

needs Component

Operation() { ... Component.Operation() };

class DecoratorMixB implements Component

needs Component

Operation() { ... Component.Operation() };

// Usage

class Client {

main() {

ConcreteComponent cc =

new ConcreteComponent with DecoratorMixA;

extend cc with DecoratorMixB;

cc.Operation();
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}

}

The authors declared that both decorators are of type Component but also require a

concrete instance of Component as a Mixin. In the usage section, they mix the con-

crete instance ConcreteComponent with the DecoratorMixA class, and then extend it with

DecoratorMixB, effectively creating an object which is a combination of all three classes.

Sakamoto et al. also use Mixins in their implementation of the State pattern in Scala.

Batdalov and Nikiforova [9] propose a concept of Responsibility Delegation, which would

allow a class to delegate a part or all of its responsibility to another class (perhaps similar

to the DoesNotUnderstand method in Smalltalk), achieving a behaviour similar to Mixins.

Multiple Inheritance

Many OOP languages only support single inheritance. This led to the introduction

of interfaces to circumvent the limitation of an object only being able to be part of one

hierarchy. Interfaces, however, do not typically allow reuse.

Some design patterns have duplicated code that we could factor into another class, to

reduce code duplication and cross-cutting concerns. For example, one could extract the

bookkeeping logic of the Observer pattern into another class and have observable objects

inherit that class. However, in a single-inheritance context, this would “hijack” the only

inheritance possibility for the observable object.

Sakamoto et al. [76] present an implementation of the State design pattern in Java (using

single inheritance) and C++ (using multiple inheritance). They evaluated that the Java

implementation has code duplication, while the C++ implementation does not.

Object Interaction Styles

Object Interaction Styles is a feature proposed by Batdalov and Nikiforova [9] to help

with the implementation of the Proxy, Observer, and Facade patterns. They would allow

different ways of interacting with objects through method calls. The default interaction
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style is synchronous calls, where a caller awaits the result of the method before continuing

to the next instruction. Other interaction styles include asynchronous request/response,

broadcast, and publish/subscribe. An example of this would be the async syntax in C#

and JavaScript.

Subclassing Members in a Subclass

Batdalov and Nikiforova [9] propose that OOP languages allow subclassing a member in

a subclass to help with the implementation of the Template Method and Visitor patterns.

A subclass may redefine one of its members by restricting its class.

To understand this feature, let us take the example from [9] about Android development.

Take the following pseudocode:

class Activity { ... }

class Fragment {

...

Activity getActivity() { ... }

}

If we wanted to subclass Activity into a new class MyActivity and Fragment into

MyFragment, we would end with the following subclasses:

class MyActivity extends Activity { ... }

class MyFragment extends Fragment {

...

Activity getActivity() { ... }

}

However, if we knew the getActivity method of MyFragment could ever only return

instances of MyActivity, we could not make the change, as the interface of the parent class

Fragment requires this method to return the type Activity.

The proposed feature would allow us to make that change. The feature does not violate

covariance or contravariance but could be considered unsafe in some cases [59].
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Figure 5: Number of papers by design pattern

3.4.5 Design Patterns

For each primary study, we extracted the design patterns for which improvements were

suggested. Figure 5 shows the distribution of the number of studies by design pattern. As

discussed in Section 3.3, we only considered patterns from the GoF book [31].

Figure 5 shows researchers’ interest in design patterns. We notice that some patterns are

more prevalent than others in our dataset. In particular, Observer, Visitor, and Decorator

receive the most attention from researchers.

If we look at the number of features associated with each pattern, Observer and Visitor

also come on top, but there is an interesting relationship at play here. While Observer has

received overwhelmingly more attention from papers (20 papers against Visitor 13), they

have the same number of associated features. Also, they have a similar amount of papers

focusing solely on them ([6, 12, 25, 28, 77, 88] for Observer and [39, 46, 52, 60, 69, 94] for

Visitor). Other patterns have very few papers that address only them. The only other two

are Abstract Factory [30] and State [76].
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Design Pattern # Features Papers # Papers

Abstract Factory 4 [7, 9, 30, 37, 43, 54, 80] 7

Adapter 4 [9, 37, 43, 54, 87] 5

Bridge 5 [9, 37, 43, 54] 4

Builder 6 [9, 34, 37, 43] 4

Chain of Responsibility 4 [9, 10, 15, 26, 37, 43, 54] 7

Command 4 [9, 10, 37, 43, 54] 5

Composite 4 [8, 9, 34, 35, 37, 43, 54] 7

Decorator 6 [3, 8, 9, 15, 33, 37, 43, 54, 84] 9

Facade 4 [9, 37, 43] 3

Factory Method 6 [9, 35, 36, 37, 43, 54] 6

Flyweight 3 [7, 9, 35, 37, 43, 54] 6

Interpreter 2 [37, 43, 54] 3

Iterator 3 [34, 37, 43, 54] 4

Mediator 3 [9, 37, 43, 54, 80] 5

Memento 2 [37, 43, 54] 3

Observer 9 [3, 6, 8, 9, 10, 12, 25, 28, 33, 35, 36, 37,
43, 54, 58, 77, 80, 84, 87, 88]

20

Prototype 2 [37, 43, 54, 80] 4

Proxy 7 [7, 9, 15, 35, 36, 37, 43, 54] 8

Singleton 4 [3, 7, 10, 33, 36, 37, 43, 54] 8

State 6 [9, 10, 37, 43, 54, 76, 80] 7

Strategy 4 [9, 15, 26, 37, 43, 54, 80, 87] 8

Template Method 4 [9, 37, 43, 54] 4

Visitor 9 [8, 9, 34, 37, 39, 43, 46, 52, 54, 60, 69, 84,
94]

13

Table 5: Language features per design patterns
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3.4.6 Measures

We extracted the different measures used in the studies to compare the suggested im-

provements to design patterns to the classical implementations. Some studies did not mea-

sure or compare their implementation but instead were demonstrations of new language

features or extension. We observed 39 different measure names. Table 6 shows the usage of

these measures by number of papers.

Some measures are more prevalent than others to measure improvements. The top

ten measures are related to the usage of inheritance (DIT), coupling and cohesion (CBC,

LCOO), concern diffusion (CDC, CDLOC, CDO), code size (LOC, NOA, WOC), and

reusability. This matches the stated goal of design patterns [31].

Most of these measures (DIT, CBC, LCOO, LOC, WOC) come from the Chidamber

and Kemerer suite of measures [19]. Concern diffusion measures relate to measuring im-

provements from Aspect-Oriented Programming regarding cross-cutting concerns [80].

Many of the other measures are unique to only one paper. For example, Teebiga and

Velan [87] use a measure they call lines of class code (LOCC), which they attribute to

Ceccato and Tonella [17]. LOCC measures the number of lines of code within classes (as

opposed to within aspects). The measure is similar to the number of lines of code (LOC),

but the context in which it is used (i.e., to differentiate between aspect and class code) is

different enough that we opted to classify it as its own entry.

Most of the measures presented in Table 6 are used in AOP studies. In fact, only three

non-AOP papers make use of any measure at all [76, 77, 94]. Zhang and Oliveira [94] use

lines of code to compare various Visitor implementations. Salvaneschi et al. [77] asked par-

ticipants to answer specific questions to test their comprehension of Reactive Programming.

They then measure their correctness in answering the questions (score of the participants

on the task), their comprehension of the code (time required to complete the task) and the

skill floor (a correlation between measured programming skill and performance during the

task). Sakamoto et al. [76] compared the amount of duplicated code and the number of

classes and coupling between implementations of the State patterns.
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Measures Type # Papers

Depth of Inheritance Tree (DIT) Quantitative 6

Coupling Between Components (CBC) Quantitative 5

Lack of Cohesion in Operations (LCOO) Quantitative 5

Lines of Code (LOC) Quantitative 5

Concern Diffusion over Components (CDC) Quantitative 4

Concern Diffusion over LOC (CDLOC) Quantitative 4

Concern Diffusion over Operations (CDO) Quantitative 4

Number of Attributes (NOA) Quantitative 4

Weighted Operations per Component (WOC) Quantitative 4

Reusability Qualitative 3

Composition Transparency Qualitative 2

Coupling on Intercepted Modules (CIM) Quantitative 2

Duplicated Code (DC) Quantitative 2

Locality Qualitative 2

Modularity Qualitative 2

Unpluggability Qualitative 2

Weighted Operations in Module (WOM) Quantitative 2

Abstract-Pattern-Reusability Qualitative 1

Binding-Reusability Qualitative 1

Cohesion Qualitative 1

Comprehension Quantitative 1

Correctness Quantitative 1

Coupling Between Modules (CBM) Quantitative 1

Coupling on Advice Execution (CAE) Quantitative 1

Coupling on Field Access (CFA) Quantitative 1

Coupling on Method Call (CMC) Quantitative 1

Cross-cutting concerns Qualitative 1

Crosscutting Degree of an Aspect (CDA) Quantitative 1

Encapsulation Qualitative 1

Execution time Quantitative 1

Generalization (Inheritance) Qualitative 1

Indirection Qualitative 1

Lines of Class Code (LOCC) Quantitative 1

Number of Children (NoC) Quantitative 1

Number of classes and relations (NOCR) Quantitative 1

Response For a Module (RFM) Quantitative 1

Separation of concerns Qualitative 1

Skill floor Quantitative 1

Table 6: Measures by usage in papers
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The other non-AOP papers were descriptive studies presenting a new feature without

any comparison. They argued improvements in an informal way.

3.4.7 Types of Papers

We categorize each paper based on the type of study. We are particularly interested in

case studies and experiments, to answer our fourth research question: What experiments

have been done on these language features?.

We use the same categories as those of Ampatzoglou et al. [5]: case studies, experiments,

descriptive studies, conceptual analysis, and literature review. Table ?? summarises our

data.

Most of the studies are descriptive studies: 23 out of the 34 studies. They presented a

new tool or feature by describing its functionalities and advantages but did not necessarily

compare it to other approaches (as discussed in Section 3.4.6).

There are also 10 case studies out of the 34 studies. These case studies compare a

new feature against established OOP implementations. Case studies can be further divided

based on the source of their subjects: either in-vivo or in-vitro. In-vivo case studies are

done on already-existing software, often available online as open-source projects. In-vitro

case studies are done on software made specifically for the case study. Every case study in

our analysed studies was in-vitro because there are not many (if any) opportunities to find

projects developed by third parties using new tools or methods proposed by a paper.

We found only one study that performed a controlled experiment. Salvaneschi et al. [77]

performed an empirical experiment on program comprehension of design patterns using

reactive programming with 38 undergraduate students (which we discuss in Section 3.4.6).

We interpret the fact that every case study is in-vitro and that there is only one exper-

iment to mean that most of the new features proposed have not been extensively tested.

3.4.8 Timeline

We also studied the distributions of our data over time, to assess any trends or irregu-

larities. Figure 6 shows the distribution of the publication years of the 34 studies. Interest
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in the subject seems to have peaked around 2010 and it waned in recent years.

We take a look at the distribution of the other two major categories of studies in our

study: Meta-programming papers and Aspect-Oriented papers. The other categories had

too few studies to obtain a meaningful distribution.

Figure 7 is the distribution of papers related to Meta-programming over their publi-

cation year, and Figure 8 is the same considering only papers related to Aspect-Oriented

Programming. The Meta-programming papers follow a similar distribution to that of the

general distributions of the papers.

The AOP distribution shows a peak around 2010 and no AOP paper has been published

on improving object-oriented design pattern implementations since 2016.

When we filter out AOP papers from the timeline, we obtain Figure 9, which shows a

more evened-out distribution over the years.

However, our dataset is small so we compare our findings to the popularity of each

paradigm in general over the years. We used the Google Trends website10 to obtain data

about the proportion of searches for keywords relating to each paradigm. We used ”metapro-

gramming”, ”aspect oriented programming” and ”FP” as keywords and performed the

search in the United States. We summarize the results of those queries in Figure 10. These

represent how many searches were made for each term over the years.

In this figure, we observe the same trends as in our distributions of studies. There is

a peak around 2010 for Meta-Programming and Aspect-Oriented Programming and they

both seem to wane in recent years, although AOP more so than Meta-Programming. FP

appears to be gaining popularity in recent years, which also matches the resurgence of new

FP features in modern languages (e.g., the addition of Closures and lambda syntax in Java,

immutability features in C#, etc.).

3.5 Discussion

We answer and discuss our research questions.

10https://trends.google.com/
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Figure 6: Papers distribution by year

Figure 7: Meta-programming papers distribution by year
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Figure 8: AOP papers distribution by year

Figure 9: Non-AOP papers distribution by year

71



Figure 10: Google Trends results on Meta-programming, Aspect-Oriented Programming
and FP

3.5.1 Language Features

Our first research question is: RQ3.1: What language features have been suggested to

improve design pattern implementations?

We extracted 18 features from 34 selected papers. These features range across a variety

of programming paradigms and improve design pattern implementations in various ways.

Many of these features (7 out of 18) were implemented as extensions to Java. In general,

Java seems to be the most popular language to discuss improvements in design patterns. The

next most popular language seems to be Scala, which is another JVM language, most often

used to discuss FP features. Even when using dynamically-typed pseudo-code, Springer et

al. [84] describe it as ”Java-like”, even though to us it looks more like Python with brackets.

There seems to be a prevalence of Java in design patterns and OOP research, which may

be a concern because Java does not represent every OOP language, and many features

available in other OOP languages, such as C#, Common Lisp, Kotlin, and Smalltalk, are

not available in Java.

Most features stem from Meta-programming applications, which modify or insert code

into OOP software. Features like Reflection and Pattern Keywords are used to reduce the

amount of code duplication and code size of design patterns. It is not surprising that Meta-

programming is a popular tool to address code duplication and size, as one of its main

strengths is the ability to factor out code and remove duplication.
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Aspect-Oriented Programming is a major part of the Meta-programming features. AOP

and Layer Objects, while also reducing code duplication, focus on reducing cross-cutting

concerns in design patterns [43]. Despite AOP being a language and paradigm-agnostic

feature (the original paper was presented using Common Lisp [48]), every paper in our

dataset discusses it using various Java extensions. While there are solutions which borrows

from AOP in other languages, such as the PostSharp library in C#, the paradigm itself

does not seem to have gained much traction in other languages.

Some studies also presented domain-specific languages added on top of an existing lan-

guage, such as Zodiac, an extension of MzScheme used to implement the Visitor pattern [52].

Many features were also suggested to extend OOP. Chameleon Objects allow changing

the class of an object at runtime. Mixins allow combining multiple classes together to

facilitate reuse through composition. Multiple Inheritance solves some issues with code

duplication by allowing multiple sources of reuse. Code reuse in pure OOP is usually limited

to inheritance and subtyping mechanisms, so naturally, the features suggested interact with

these mechanisms.

Some features come from FP. Case Classes in Scala are an implementation of pattern

matching, which can be used to circumvent the issues of single dispatch languages and fa-

cilitate the implementation of the Visitor pattern. The feature has been gaining popularity

of late, being added to existing languages such as C# and Java in the form of Records.

Closures are another functional feature that has been implemented in many OOP lan-

guages, such as Java, C++, and C#, but also part of older languages, such as Smalltalk

(code blocks) and Common Lisp. They can make the implementation of many design pat-

terns easier by storing behaviour as values. It is interesting, and telling, that the feature

was already included in Smalltalk, one of the originators of OOP, but was then excluded

from later implementations of the paradigm in Java and C++, only to be added back to

these languages later.

Immutability, when combined with other features such as Closures, can render certain

patterns obsolete (e.g., Command) and simplify the implementation of others (e.g., State).

Patterns that are built around the idea of encapsulating changing state are made much
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simpler when state changes are eliminated entirely.

Finally, Signals and Reactive Programming have been created to solve the same un-

derlying problem as the Observer pattern. Managing events and changes in a program

is a common concern. Especially in GUI development, many platforms propose different

approaches to this concern. Some, like Java Swing, make use of the Observer pattern.

Others, like Microsoft WPF, propose a system based on the Command pattern. Reactive

Programming incorporates change management at the language level.

What language features have been suggested to improve design pattern imple-

mentations?

We catalogued 18 language features used to improve design pattern implementations.

Meta-programming features are the most suggested, with many studies written about

Aspect-Oriented Programming. However, our timeline analysis suggests that AOP is not

as prevalent nowadays and that FP features are becoming more and more popular.

3.5.2 Design Patterns

The second research question is RQ3.2: Which design patterns have the most associated

language features suggestions?

Our data indicate that some design patterns are more prevalent than others as targets

for improvement. Some papers include every 23 GoF design patterns in their study (3

papers), but most analyse specific patterns.

We observe that the most prevalent patterns to improve are the Observer, Visitor, and

Decorator design patterns. We could interpret pattern prevalence in different ways. Perhaps

these patterns are those that have the most obvious flaws, and that is why many papers

propose features to improve them. We thought perhaps the most prevalent patterns in

research would also be the most used in practice, but that does not seem to be the case.

Observer may well be the most used pattern of all, but it would be difficult to argue that

Visitor is.

The fact that Observer and Visitor are the most prevalent patterns, that they have the
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most associated language features, and that they have the most papers focusing solely on

them would indicate that the underlying problems these patterns are solving are of great

interest to OOP.

In the case of Observer, there is a need in software systems for controlling data flow and

change propagation. The Observer pattern as described in the GoF book [31], however,

comes with some limitations. As discussed in Section 3.4.4 about Multiple Inheritance, the

Observer implies duplication that cannot be easily abstracted using inheritance. It also has

cross-cutting concerns [43, 48] because it requires the observed object to know and manage

its observers. The proposed language features improve on these aspects.

In the case of Visitor, modern programming languages (such as Java, C++, and C#) lack

support for dynamic dispatch on function parameters. In OOP, dynamic dispatch is only

supported on the object on which a method is invoked (allowing the use of polymorphism).

Some languages, such as the Common Lisp Object System (CLOS), support both OOP

and dynamic dispatch on function arguments, effectively allowing multiple dispatch. In

such languages, the visitor pattern becomes trivial as there is no longer any need for the

accept/visit mechanism.

Most of the solutions proposed a way to circumvent the lack of dynamic dispatch on func-

tion arguments through the use of Reflection, Case Classes (pattern matching), or Aspects.

Many studies propose ways to make the implementation of the Visitor easier by integrating

it into the language using aspects [43], factoring its complexity using reflection [46, 60], or

simplifying it using pattern matching [69].

Which design patterns have the most associated language features suggestions?

Research done to improve design patterns seems to favour specific patterns. Observer,

Visitor, and Decorator (in order of appearances) are most often studied. In particular,

Observer and Visitor appear to stem from a lack of language support of certain features

(such as propagation of change and dynamic argument dispatch).
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3.5.3 Measures

For the third research question, RQ3.3: What measures have been used to evaluate the

impact of these language features on design pattern implementations?, we extracted the

measures used by each paper and looked at their distribution.

The measures most often used were those related to reusability. In particular, two sets

of measures were prevalent: the CK measures [19] and AOP-related measures [80].

Most of the papers with measurements and comparisons were related to AOP. Most

non-AOP papers were descriptive studies and offered no measurement or comparison of the

performance of their proposed features.

For AOP papers, measure results were mixed. While many AOP implementations

showed improvements with regard to concern diffusion, cohesion, and code size, some stud-

ies reported increased code size and higher complexity. Non-AOP papers showed more

straightforward results, with reduced code size for Pattern Keywords, reduced code dupli-

cation for Multiple Inheritance and Mixins, and improved understandability for Reactive

Programming.

The measures most used indicate that design patterns may be a source of complexity

and that maintainability and understandability could be improved by making their imple-

mentation simpler using certain language features. There is also a concern about concern

diffusion in design patterns. For example, the objects involved in the Visitor pattern have

the added concern of being part of the pattern (i.e., having Visit or Accept methods). Some

studies propose to extract this concern from the involved objects and abstract it into its

own unit (e.g., an aspect).

What measures have been used to evaluate the impact of these language features

on design pattern implementations?

The measures most often used in the literature to evaluate improvements to object-

oriented design patterns are measures related to maintainability and understandability,

especially those proposed by Chidamber and Kemerer [19]. AOP-related papers also add
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measures related to concern diffusion, or cross-cutting concerns.

3.5.4 Empirical Studies

Our final research question concerns empirical studies: RQ3.4: What experiments have

been done on these language features?

We compiled the types of studies in our dataset. Most of the studies (23 papers) are

descriptive studies proposing or explaining a new feature or language extension. These

typically do not offer concrete data to compare the new features with existing approaches.

The second category is case studies (10 papers). Every case study on the subject is

done in-vitro, with the studied subjects created specifically for the case study. It would

be difficult to find software “in the wild” using new features just proposed by a scientific

paper. Because in-vivo case studies are impractical, controlled experiments are important

to evaluate the effectiveness of new technology.

We only found one experiment done on evaluating improvement to design pattern im-

plementations with 38 undergraduate students. As discussed above and in Section 3.4.7,

there is a clear need for more empirical experiments to evaluate the effects of proposed new

features on design pattern implementations and on object-oriented development in general.

While experiments on students have their advantages, experiments should also be done on

professional developers to gain better insight into the impact that the proposed features

have on development.

What experiments have been done on these language features?

Most of the studies are descriptive studies without comparison data. There are also

many in-vitro case studies, with a lack of studies done on professional projects developed

independently. We found only one experiment, which used student participants.
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3.6 Recommendations

We list below notable or interesting findings and add our recommendations for future

work.

Meta-programming features seem the most prevalent to implement new features to po-

tentially improve OOP design pattern implementations. The past prevalence of the AOP

paradigm indicates that it had good potential for improving OOP design patterns. Perhaps

the introduction of another layer of complexity (i.e., aspects and the popular join-point

mechanism used by AspectJ) on top of the OOP rebuked developers from adopting the

paradigm. While AOP popularity has faded in recent years, it may still be of some use as

a comparison point for new methods or improvements.

Meta-programming in general offers the possibility to extend languages by adding new

features without the need for external tools. While some features have been prevalent

in mainstream languages, such as Reflection in Java and C#, many Meta-programming

features are absent in mainstream languages. For example, Lisp-style macros, allowing the

effective addition of new keywords within a language, are seldom seen in modern languages.

While we found few works that used FP to improve OOP design patterns, the popularity

of FP appears to be on the rise. As more FP features are added to OOP languages, it would

be interesting to study how we can use those features to improve OOP design patterns.

There certainly seems to be a trend in recent years to try to fuse OOP and FP together.

We believe the impact of this is worth studying.

Most existing research seems to favour specific design patterns. Observer, Visitor, and

Decorator were studied much more often than others. Thus, we have more data on ap-

proaches to improve the implementation of these specific patterns. Some design patterns

only appear in studies concerned with all 23 GoF patterns (most likely for the sake of com-

pleteness). It would be interesting to study the less prevalent patterns to understand what

kind of approaches would specifically improve those. Each design pattern solves a recur-

ring design problem, so the community should strive to study these problems and, perhaps

ideally, find features to solve them.
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For reproducibility and comparability with existing research, when evaluating or com-

paring improvement to OOP design patterns, it would be beneficial to include measures

pertaining to maintainability and understandability. In particular, the CK measures [19]

are particularly prevalent in this kind of research. These include depth of inheritance tree,

lack of cohesion in operations, coupling between components, number of lines of code, and

weighted operations per component. AOP-related measures might be interesting to use

also, for comparison with the many papers published proposing improvement using AOP.

AOP measures are mainly focused on cross-cutting concerns.

However, these measures do not cover every possible improvement. Some improvements

are difficult to measure using quantitative data. It would be important to explore less

prevalent measures, or survey developers’ opinions on code complexity and reusability and

perform qualitative reviews.

Most papers we found were descriptive studies. More empirical studies on real-world case

studies and experiments using professional developers would yield a deeper understanding

of the techniques, tools and features that can be used to improve OOP design patterns, and

OOP in general.

3.7 Threats to Validity

In this section, we discuss potential threats to the validity of this study. While we tried

to keep the study and its results as objective as possible, there are some threats that need

to be addressed. We divided the threats into Internal, External, Construct, and Conclusion

Validity.

3.7.1 Interval Validity

The manual sorting, filtering, and compilation steps of the review were done by the first

author, which increases the consistency of the results. Yet, it also introduces a threat to

reliability and trustworthiness, so we added a second reviewer to help with the snowballing

step and add some redundancy and a second viewpoint.
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3.7.2 External Validity

Our results come from papers from a very diverse set of publication venues. The pa-

pers are not concentrated in popular venues concerning programming languages and design

patterns, such as TOPLAS and POPL. We attribute this to the fact that this particular

subject, proposing language features to improve OOP design pattern implementation, is

more of a niche subject and less popular in prominent publications, and pertains more to

software engineering than programming languages. Most of the results in our query that

were from major publication venues tended to be about measuring the impact of design pat-

terns, which was not within the scope of this study (and already has a mapping study [5]

discussed in our related studies section).

3.7.3 Construct Validity

We defined our methodology as precisely as possible to make our results reproducible.

The dataset used for this study is available online11. We took some decisions that could

affect the results of our study. The query used has many exclusion keywords to obtain more

precise results. We tried queries with fewer exclusion keywords, but they did not add more

relevant results which made the manual filtering more difficult. We believe any missing

relevant results that were lost because of this decision would have been caught during the

snowballing step.

The manual sorting, filtering, and compilation steps of the review were done by the first

author, which increases the consistency of the results. Yet, it also introduces a threat to

reliability and trustworthiness, so we added a second reviewer to help with the snowballing

step and add some redundancy and a second viewpoint.

3.7.4 Conclusion Validity

We believe that the previous threats are acceptable and that different choices would

not significantly alter the results of this mapping study, whose goal is to identify trends in

11https://www.ptidej.net/downloads/replications/ist22/
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research on the subject of language features to improve OOP design pattern implementa-

tions. As such, we limit our conclusions to that goal and propose recommendations based

on our findings.

3.8 Conclusion

In this chapter, we presented a mapping of primary studies about language features

to improve OOP design pattern implementations. We catalogued the language features

claimed in the literature to improve OOP design patterns by asking the four following

research questions:

(1) RQ3.1: What language features have been suggested to improve design pattern im-

plementations?

(2) RQ3.2: Which design patterns have the most associated language features sugges-

tions?

(3) RQ3.3: What measures have been used to evaluate the impact of these language

features on design pattern implementations?

(4) RQ3.4: What experiments have been done on these language features?

We devised a methodology to obtain the data needed to answer these questions and

reach the main objective of the mapping study. We created a catalogue of language fea-

tures claimed to improve design pattern implementations. We performed a search query

in three databases which yielded 874 papers, which we then assessed for quality and used

for snowballing, resulting in a total of 34 primary studies, from which we then extracted

relevant data. We then catalogued and discussed this data and its meaning.

We categorized the language features found in the primary studies based on program-

ming paradigms. We found that most of the primary studies suggested approaches related

to Meta-programming, with a focus on AOP, although interest in AOP seems to have faded

in recent years. The design patterns most often cited in primary studies were the Observer,
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Visitor, and Decorator. We also extracted every measure used in each primary study to find

the most frequently used. We found that measures related to maintainability and under-

standability were most often used, with the Chidamber and Kemerer [19] measures being

particularly prevalent.

Finally, we categorized primary studies based on the type of study performed. Most

studies were descriptive, and intended to introduce new ideas or approaches. There were a

few case studies, which were done in-vitro. We found only one experiment, which was done

with student participants.

With these findings, we contribute a catalogue of 18 language features pro-

posed in the literature to improve Object-Oriented design pattern implemen-

tations. These features aim to improve maintainability and understandability,

with a focus on reusability and concern diffusion. By improving design pattern im-

plementations, these feature help solve the underlying issues behind these design patterns

and improve upon OOP.

While studying each language feature discussed in this chapter would be interesting,

this is beyond the scope of this thesis. As discussed in Chapter 2, many OOP languages are

adding features related to FP, and in particular to immutability. We also discussed in this

chapter how immutability can influence design pattern implementations. Consequently, we

chose to focus on studying immutability for the rest of this thesis. In the next chapter, we

study the impact of immutability on OOP software.
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Chapter 4

Exploring the Impact of

Immutability on OOP Software

Development

In the previous chapter, we catalogued 18 language features claimed to improve design

pattern implementations and OOP. It would be impossible to study in detail every cata-

logued feature, thus we focus on one particular feature in the rest of this thesis. From this

chapter, we opt to take a deeper look into Immutability, a feature of FP.

As discussed in Chapter 2, research on immutability focuses on immutability enforce-

ment and correctness. Advantages of immutability include easier management of race con-

ditions, better reasoning about code, and simplified testing and maintenance. Immutability

eliminates many mutation-related bugs (e.g., when two objects have references to the same

data and one modifies that data, unexpectedly altering the behaviour of the other).

However, immutability also imposes restrictions on the developers by removing their

ability to modify objects after their creation. Thus, developers must use specific concepts,

such as functional lenses or monads, to achieve behaviours that would otherwise be simple

to implement with mutable objects.

While developers’ lore claims many advantages to writing immutable code, few studies
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were done to confirm these claims. There exists no empirical study on the impact of

immutability on OOP software development. Programming language designers introduce

immutability based on (their) personal anecdotes and developers’ lore.

In this chapter, we propose the first empirical study on the impact of immutability

on OOP software development to assess the advantages and disadvantages, in terms of

maintainability and understandability, of using immutability in OOP.

We perform a multi-method exploratory empirical study on the impact of applying

immutability to object-oriented development. We ask the following main research question:

What is the impact of immutability on object-oriented development?.

To answer this question, we divide a set of 67 third-year undergraduate software engi-

neering students into two groups. We refer to these groups as the treatment group and the

control group. The groups are further divided into teams of 4 or 5 students. Each team is

tasked with developing the same program using OOP. The teams in the treatment group

(8 teams) must use immutable objects only while the teams in the control group (6 teams)

use mutable objects.

We perform a multi-method analysis of quantitative and qualitative aspects of the re-

sulting programs. For the quantitative analysis, we collect measures from the resulting

programs. We use these measures to compare factually the programs developed with mu-

table or immutable objects.

For the qualitative analysis, we collect subjective assessments with a survey of the

participants on their experience with the experiment. We ask each participant to answer

the survey and we compare the answers of the treatment and control groups. We collect

12 measures related to the workload, difficulty of implementing the specifications, and the

perceived complexity of the resulting program.

The rest of this chapter is as follows. In Section 4.1, we situate the study with regards

to existing literature and present a motivating example of implementing immutability with

the Command design pattern [31]. In Section 4.2, we present our research questions and

method to assess the impact of immutability. In Sections 4.3, 4.4, and 4.5, we discuss the

results and findings of the study. In Section 4.6, we discuss potential threats to the validity
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of the study. Finally, we summarize and conclude the chapter in Section 4.7.

4.1 Background

4.1.1 This Study

The majority of research works on immutability focus on enforcement. While usability

features for immutability have been introduced in programming languages, little research

exists on the impact of these features. We could not find any paper discussing these features

in the context of OOP.

The impact of immutability on code has also not been researched in depth. While

we listed the advantages of using immutability in Chapter 2, most of the arguments are

authoritative and without supporting empirical data.

In this study, we investigate the impact of adopting immutability in object-oriented

development and retroactively justify the research on language support for immutability. We

do not limit our study to any particular OOP language. We consider transitive immutability

enforced in any OOP language when using the set of rules suggested by Bloch [11]:

(1) “Don’t provide methods that modify the object’s state.” No method can

change the attribute of an object once it has been constructed to ensure object im-

mutability.

(2) “Ensure that the class can’t be extended.” Future users of the code cannot

break immutability by subclassing and adding mutating methods.

(3) “Make all fields final.” Attributes cannot be mutated after object creation.

(4) “Make all fields private.” Attributes cannot be mutated by clients of the object,

which is usually a good practice even without considering immutability.

(5) “Ensure exclusive access to any mutable components.” Mutable variables are

allowed when they are narrowly scoped and protected from exterior influence. For
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example, a method could have a mutable variable (e.g., a loop index) as long as it

does not expose it to clients.

These rules, when followed by developers, ensure transitive immutability in any object-

oriented language. We evaluate the impact of following these rules in an actual software

development project and find trends to perform further research on the subject.

4.1.2 Motivating Example

To illustrate the impact of immutability on code, we use an example based on the

Command design pattern and a “Undo” functionality. This example was taught in the

software engineering class in which this study took place.

Figure 11 shows the class diagram of a subset of a mutable implementation: a muta-

ble database (e.g., a list or array) on which to execute commands. One such command

involves updating some records in the database, implemented by the UpdateCommand class,

which implements the ICommand interface with the Execute() and Undo() methods. The

commands can execute and undo their changes, as the database has no such functionality.

CommandInvoker is the controller class executing commands and tracking their exeuction

to undo them in the correct order.

In contrast, Figure 12 shows the class diagram of a subset of an immutable database.

The database creates a copy of itself for every change, never modifying existing copies.

To support undo, we no longer require the commands to implement Undo(). Instead, the

CommandInvoker stores previous versions of the database upon calling Execute and can

simply go back to previous versions when Undo() is called.

The immutable implementation requires fewer methods implemented throughout the

classes, which could have a positive impact on maintainability and evolution. 1

However, with immutable objects, programs requiring mutations must implement spe-

cial workarounds or patterns. For example, complex nested data structures (i.e., objects

1The database would be implemented differently in both implementations and there could be some
performance concerns with having an immutable database. In this example, the database is a placeholder
for any data structure that can change over time. Using append-only data structures, it is possible to have
memory and performance-efficient immutable data structures, as in Haskell and Clojure. Datomic is an
example of a Clojure implementation of a fully immutable database, cf. https://www.datomic.com/.
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Database

CommandInvoker

executedCommands: Stack<ICommand>

Execute(ICommand)
Undo(ICommand)

ICommand

Execute()
Undo()

UpdateCommand

UpdateCommand(Database)
Execute()
Undo()

Figure 11: Mutable representation of a Command invoker

containing other objects) require the creation of new objects for the child and the parent

up to the top of the hierarchy when changing the child. In functional languages, the design

pattern Lens2 exists to implement this requirement.

4.1.3 Related Studies

Immutability in OOP development has been researched since the very inception of OOP

[40, 56, 73, 86].

In 2010, McCaffrey and Bonar [66] investigated the use of FP for writing software tests.

Professional test engineers were given training in developing F# tests and given a survey

following the training. While the study was informal and limited in scope, the results

indicated that the engineers saw value in using FP features to design tests.

In 2019, Eyolfson and Lam [27] published an empirical study investigating how C++

developers use immutability. They evaluated seven open-source projects and estimated the

prevalence of immutability using their own static-analysis tool and const annotations on

methods. They found few fully immutable classes, but many immutable methods (between

46% and 53%, depending on inclusion criteria).

2https://hackage.haskell.org/package/lens
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Database

CommandInvoker

databaseHistory: Stack<Database>

Execute(ICommand, Database)
Undo()

ICommand

Execute(Database)

UpdateCommand

Execute(Database)

Figure 12: Immutable representation of a Command invoker

In 2020, Bugayenko and al. [14] performed an empirical study to measure the impact

of immutability on Java classes. They examined classes in 240 GitHub repositories and

classified each of them as immutable or mutable. They calculated the number of non-

comment lines of code and found that immutable classes tended to be smaller, with fewer

methods and attributes.

Although previous work tends to support developers’ lore regarding the benefits of

immutability, no previous work performed a multi-method exploratory study on the impact

of immutability on OOP development.

4.2 Method

We perform an experiment with a class of B.Sc. software-engineering students taking a

course on advanced OOP3, focusing on the 23 design patterns by Gamma and al. [31] (GoF

patterns). The students all had a similar academic background, with experience mainly in

object-oriented programming using Java and C#. The course in which this experiment took

place exposed them to advanced concepts in C# OOP, such as the application of design

patterns and unit testing techniques.

3INF1035 at Université du Québec à Trois-Rivières
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The main focus of the class was the classical implementation of the various design pat-

terns and other OOP concepts, with about a fifth (9 hours out of 45) of the course dedicated

to immutability, including immutable variants of the various patterns. No particular em-

phasis was put on immutability. All students were taught the same material. We asked

the students at the beginning of the semester and none of them reported having any prior

experience with immutability.

Participation in the experiment was voluntary. We gave an incentive in the form of extra

credits (10% of the total grade of the assignment), also to compensate for the additional

constraints the study put on the students’ assignments. Out of 84 students in the class,

67 chose to participate, in teams of 4 to 5 students. We randomly divided the participants

into two groups. The control group used classical OOP (including mutation), while the

treatment group used only immutable objects. The treatment group was required to follow

the set of rules suggested by Bloch [11] (see Section 4.1.1). Table 9 summarises information

on the participants and their teams4.

The object of the experiment, i.e., the project, was the development of a Sudoku solver,

with a simple user interface to visualize and solve Sudoku puzzles. The interface had

to support various notation styles (corner notation, center notation, colouring) and basic

functionalities (e.g., undo–redo). The project was partially based on existing software for

solving Sudoku, such as Cracking the Cryptic’s SodukuPad5.

This project was in the context of a software engineering class and some additional

requirements had to be added with regard to the class curriculum. We divided the project

into two phases. In the first phase, the students developed the core of the solver using

five SOLID principles [63] and three GRASP design patterns [55]. In the second phase,

we required additional features (e.g., the colouring and undo-redo features) and the use of

three GoF patterns of their choice. These requirements were identical for both treatment

and control groups and thus had little influence on the results of the study.

Most teams write their programs in C#, an object-oriented language without support

4There are more participants in the treatment group because one team decided to opt in after the project
had begun. We randomly assigned them to a group, which was by chance the treatment group.

5https://app.crackingthecryptic.com/
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for immutability. Table 7 summarizes the programs created by the participants. We col-

lect various measures on the programs and participants, which we divide into quantitative

(objective) and qualitative (subjective) measures.

We based the grading of the project on two factors: the correctness of the developed pro-

gram and the proper use and implementation of the principles and patterns. The students

had to demonstrate that their program was fully functional, with every feature working cor-

rectly. They also had to write a report describing how they interpreted and implemented

the SOLID/GRASP principles (in Phase 1) and the GoF design patterns (in Phase 2).

To answer our main research question, we use these measures to answer these three

secondary questions:

(1) RQ4.1: What insight can we draw from the quantitative data collected from the

developed software?

(2) RQ4.2: What insight can we draw from the qualitative data collected from the par-

ticipants?

(3) RQ4.3: What recurring concerns or comments were left by the participants?

4.3 Quantitative Measures

In this section, we present the method used for data collection of the quantitative mea-

sures and the results of our statistical analysis. We then discuss these results and answer

our first research question.

4.3.1 Data Collection

To obtain quantitative, objective data for each program, we need to select a suite of

measures to calculate. Since this is an exploratory study, we want to be as broad as possible

so as to not miss potential trends for future research. However, this also means that we

need to use many measures, which will make it unlikely that any single measure will be

statistically significant [74]. We also need an automated tool, because manual measurement
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Team # Group Language Grade

1 Immutable TypeScript 100

2 Immutable C# 100

3 Immutable C# 93

4 Immutable C# 100

6 Immutable C# 100

7 Immutable C# 96

9 Immutable C# 67

11 Immutable C# 100

5 Mutable Unity C# 90

8 Mutable C# 100

10 Mutable C# 88

12 Mutable C# 100

13 Mutable Java 85

14 Mutable C# 56

Average (All) 91.07

Average (Mutable) 86.5

Average (Immutable) 94.5

Table 7: Programs Summary

is prone to error and subjectivity. The tool must support the programming languages used

by the teams (C#, Java and TypeScript).

Consequently, we chose SciTools Understand6 to collect the quantitative measures on

the programs. Understand allows the calculation of a variety of object-oriented measures

in a large number of programming languages. We chose the product measures described

recently by Majumder et al. [62] in their analysis of process and product measures. A

description of each individual measure is available on SciTools Website7. These correspond

in most parts to the measures suggested by Chidamber and Kemerer in [19].

While every program included unit tests as part of their code, we excluded all tests from

our analysis because unit tests seem to have different quality characteristics to application

code [22]. For example, while size-related measures (e.g., number of lines of code, number

of instance attributes, etc.) should be minimized for application code; it may be different

for unit tests (larger unit testing suites may have more tests, cover more cases, have better

readability, etc.).

6https://www.scitools.com/features
7https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-
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Table 8 summarizes the measures collected on each program8. For each measure, we

calculated the average for all programs and the average for the programs of each group

(immutable and mutable). Whenever a measure name is followed by the tags Avg or Max in

parenthesis, the value of this measure was aggregated for every class in the program using

either the average across classes or the maximum value of any class. We summarise the

comparison of the results between the two groups in the following.

We first compare measures related to the average class complexity. The measures in this

category are: Average Cyclomatic Complexity (AvgCycl); Average Modified Cyclomatic

Complexity (AvgCycl*); Average Strict Cyclomatic Complexity (AvgCyclStrict); and, Av-

erage Essential Complexity (AvgEss). We also calculated the sum and maximum values of

these measures (e.g., SumCycl, MaxCycl, etc.) for every class.

The Cyclomatic Complexity is calculated using McCabe’s formula [65], which counts the

number of branching paths in a method (e.g., if statements). Modified Cyclomatic Com-

plexity is a variant (sometimes referred to as CCN3) in which multi-decision statements

(i.e., switch statements) are considered a single path. Strict Cyclomatic Complexity counts

ANDs and ORs in a conditional statement as additional paths. Essential Complexity re-

duces the control flow graph by considering any statement with a single point of entry and

a single point of exit as a single path.

There is not much difference between the immutable and mutable groups regarding com-

plexity. The immutable group has higher normal (Cycl) and strict Cyclomatic Complexities

(CyclStrict), but similar or lower Modified (Cycl*) and Essential Complexities (Ess).

We then consider measures related to the size of methods (and functions). These mea-

sures are: Average Number of Lines in Functions (FnLines); Average Number of Lines of

Code in Functions (FnLinesCode); and, Average Number of Lines of Comments in Functions

(FnLinesComm).

We observe that immutable programs tend to have on average slightly shorter meth-

ods/functions9 (FnLines) than mutable programs, but the longest ones were also found in

8This table is a summary of the measures we collected. The complete dataset is available in our replication
package.

9We use “methods” in the following to denote both methods and functions for the sake of simplicity.
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immutable programs. Immutable programs tend to have a lower count of comment lines

(FnLinesComm).

We also consider measures related to class interactions, such as coupling and inheritance.

These measures are: Number of Base Classes (NbClassBase); Coupling Between Objects

(CBO); Modified Coupling Between Objects (CBO*); and, Depth of Inheritance Tree (DIT).

Modified Coupling Between Objects is a variant of CBO that does not count calls to library

classes (e.g., the .NET Framework classes in C#).

Mutable programs have a slightly lower overall coupling (CBO), while immutable pro-

grams have a comparatively lower modified coupling (CBO*): immutable programs have a

lower coupling with user-created classes, but a higher coupling to library classes. Immutable

programs have somewhat shallower inheritance trees (DIT).

We also consider measures related to methods and attributes of classes. These measures

are: Number of Class Methods (NbClassMethods); Number of Class Attributes (NbClas-

sAttr); Number of Instance Methods (NbInstMethods); Number of Instance Attributes

(NbInstAttr); Number of Methods (NbMethods); Number of Methods including inherited

(NbMethodsAll); Number of Protected Methods (NbMethodsProt); and, Number of Public

Methods (NbMethodsPub).

While most of these measures are generally similar between the groups, there is a higher

number of static methods (NbClassMethods) in mutable programs, while immutable ones

have a higher number of static attributes (NbClassAttr). On the contrary, there are more

instance methods (NbInstMethods) in immutable programs and more instance attributes

(NbInstAttr) in mutable ones. However, when combining all types of methods (NbMethod,

NbMethodsAll), immutable programs have a higher number of methods than mutable ones.

We also consider measures related to class cohesion and scope nesting. These measures

are: Maximum Nesting Level (MaxNesting); Percentage of Lack of Cohesion in Methods

(LCOM%); and, Percentage of Modified Lack of Cohesion in Methods (LCOM*%).

The Percentage of Lack of Cohesion in Methods is calculated as the ratio between

the total number of attributes of a class and their usage in each method of that class.

The modified variant excludes getters and setters (i.e., methods interacting with a single
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attribute). The measure values are very similar between the two groups, with mutable

programs having a slightly higher normal cohesion (LCOM%) than immutable ones, but

immutable ones having a slightly higher modified cohesion (LCOM*%). Mutable programs

have slightly higher nesting (MaxNesting) than immutable ones.

We finally consider measures related to the programs as wholes. These measures are:

Number of Lines (LoC); Number of Blank Lines of Code (LoCBlank); Number of Lines of

Code (LocCode); Number of Lines containing Declarations (LoCDecl); Number of Lines con-

taining Executable Statements (LoCExec); Number of Lines containing Comments (LoC-

Comm); Number of Semicolons (NbSemicolons); Number of Statements (NbStmt); Number

of Declarations (NbDecl); Number of Executable Statements (NbExe); and, Ratio of Com-

ment to Code (RatioComm).

Sizes are slightly lower for immutable programs in general. Immutable programs also

have fewer lines of code (LoC) and significantly fewer comments (LoCComm). Yet, the

ratio of lines of comments to lines of code (RatioComm) is similar between the two groups.

4.3.2 Statistical Tests

To get more insight into the impact of the groups on the quantitative measures, we

perform some further statistical analyses. We do not perform any hypothesis testing, as

the goal of this work is to explore the general impact of immutability on object-oriented

programming and make suggestions for future research. This approach is incompatible with

precise hypothesis testing and statistical analysis [74].

We establish the independent variable as being part of the treatment or control group.

Projects in the treatment group are assigned the value 1, while the control group receives

the value 0. We then calculate whether the independent variable has an impact on the

various measures.

To use the proper statistical test, we first establish whether each measure follows a

normal distribution using the Shapiro-Wilk test [82]. For most measures, we cannot verify

the normality hypothesis, implying that the data is not normally distributed.

We choose the Mann-Whitney U test, which is a non-parametric test on two sets of
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Measure Avg Avg (I) Avg (M)

AvgCycl (Avg) 1.4038 1.4624 1.3257

AvgCycl (Max) 5.2143 5.5000 4.8333

AvgCycl* (Avg) 1.3454 1.3864 1.2908

AvgCycl* (Max) 4.4286 4.3750 4.5000

AvgCyclStrict (Avg) 1.6905 1.9074 1.4014

AvgCyclStrict (Max) 7.5000 9.0000 5.5000

AvgEss (Avg) 0.9466 0.9699 0.9156

AvgEss (Max) 1.7143 1.5000 2.0000

NbClassBase (Avg) 1.2545 1.2736 1.2290

NbClassBase (Max) 2.0000 2.0000 2.0000

CBO (Avg) 6.9152 7.2760 6.4943

CBO (Max) 27.3846 26.5714 28.3333

CBO* (Avg) 3.0608 2.5215 3.6899

CBO* (Max) 12.1538 9.5714 15.1667

NOC (Avg) 0.1297 0.1292 0.1303

NOC (Max) 2.0714 2.1250 2.0000

NbClassMethods (Avg) 0.4382 0.4003 0.4886

NbClassMethods (Max) 4.7143 4.8750 4.5000

NbClassAttr (Avg) 0.3465 0.4195 0.2492

NbClassAttr (Max) 2.2143 2.5000 1.8333

NbInstMethods (Avg) 6.1109 6.2317 5.9499

NbInstMethods (Max) 25.5714 27.1250 23.5000

NbInstAttr (Avg) 1.6174 1.3972 1.9111

NbInstAttr (Max) 7.1429 7.3750 6.8333

NbMethods (Avg) 6.5654 6.6605 6.4385

NbMethods (Max) 27.0714 28.7500 24.8333

NbMethodsAll (Avg) 94.5030 112.6830 70.2629

NbMethodsAll (Max) 414.9286 513.2500 283.8333

NbMethodsProt (Avg) 0.1027 0.0936 0.1148

NbMethodsProt (Max) 1.7143 1.5000 2.0000

NbMethodsPub (Avg) 5.2550 5.1922 5.3388

NbMethodsPub (Max) 22.0714 24.0000 19.5000

SumEss (Avg) 6.4359 6.4865 6.3685

SumEss (Max) 31.2143 31.0000 31.5000

MaxCycl (Avg) 2.8764 2.8819 2.8689

MaxCycl (Max) 10.8571 11.1250 10.5000

MaxCycl* (Avg) 2.6594 2.6064 2.7301

measure Avg Avg (I) Avg (M)

MaxCycl* (Max) 9.5714 9.6250 9.5000

MaxCyclStrict (Avg) 3.4061 3.5976 3.1826

MaxCyclStrict (Max) 14.9231 16.4286 13.1667

MaxEss (Avg) 1.3097 1.3222 1.2931

MaxEss (Max) 6.0714 5.7500 6.5000

DIT (Avg) 0.3526 0.2785 0.4513

DIT (Max) 1.3571 1.2500 1.5000

MaxNesting (Avg) 1.0591 0.9046 1.2652

MaxNesting (Max) 3.7857 3.6250 4.0000

LCOM% (Avg) 31.3982 31.4723 31.3118

LCOM% (Max) 84.0769 84.8571 83.1667

LCOM*% (Avg) 27.5726 26.4119 28.9269

LCOM*% (Max) 79.6923 78.1429 81.5000

SumCycl (Avg) 10.4729 10.2071 10.8273

SumCycl (Max) 54.4286 51.1250 58.8333

SumCycl* (Avg) 10.0892 9.7026 10.6047

SumCycl* (Max) 53.3571 50.6250 57.0000

SumCyclStrict (Avg) 11.4045 11.1294 11.7714

SumCyclStrict (Max) 59.4286 55.0000 65.3333

FnLines (Avg) 6.4768 6.0209 7.0846

FnLines (Max) 76.5714 79.5000 72.6667

FnLinesCode (Avg) 5.8576 5.6029 6.1973

FnLinesCode (Max) 62.2857 65.3750 58.1667

FnLinesComm (Avg) 0.2342 0.1670 0.3237

FnLinesComm (Max) 10.1429 11.3750 8.5000

LoC 2029.2858 1945.7500 2140.6667

LoCBlank 265.8571 226.0000 319.0000

LoCCode 1555.6428 1536.7500 1580.8334

LoCDecl 469.3077 448.1429 494.0000

LoCExec 583.6923 606.1429 557.5000

LoCComm 167.0000 118.7500 231.3333

NbSemicolons 672.0769 675.0000 668.6667

NbStmt 958.4286 943.7500 978.0000

NbDecl 483.3571 465.3750 507.3333

NbExe 521.5000 527.8750 513.0000

RatioComm 0.1044 0.1078 0.0998

Table 8: Program measures

ordinal variables to determine if they were sampled from the same populations. If they

are not, we can assume that the treatment and control populations are different and have

influenced the measures.

We can then use Cliff’s delta to obtain the effect size of the independent variable on the

measures. Because our data is not normally distributed, we cannot get a clear grasp of the

effect size by using average or median deltas.

Because of the number of measures included in this study, we cannot compare the p-

value to the typical threshold of 0.05 [74]. While this is not the goal of our approach, after

Bonferroni correction, the p-value threshold for our data would be 0.0006.
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This methodology is similar to the one used by Salvaneschi [79] in their paper measuring

the impact of Reactive Programming on program comprehension. Their study has a similar

structure to ours and their data is also non-normally distributed, which is why we opted to

adopt a similar statistical analysis methodology.

Table 10 summarizes the results of each test. Our objective here is not to find a signifi-

cant impact on any individual measure, which none of the results in Table 10 are reaching.

Instead, we take the p-value for its literal meaning: the probability that the measured effect

is a coincidence. We can identify interesting results in the data and set up future research

focusing on these particular measures.

The Cliff’s delta column in Table 10 measures the effect size and direction. An effect size

close to zero (i.e., with an absolute value lower than 0.15) is usually considered insignificant.

We notice that the sizes of methods seem lower in immutable programs. The average

number of lines (FnLines) is less than in mutable programs, especially when considering

lines of comment (FnLinesComm). It may be the case that immutable programs have fewer

lines of comment per method/function on average than mutable ones. Although likely not

significant, we observe a similar relationship with overall program size, where immutable

programs have a lower number of lines of code (LoC) and comments (LoCComm).

There seems to be a relationship between immutability and the number of class (or

static) attributes (NbClassAttr). Immutable programs in our study have more class at-

tributes than mutable programs. They also have more methods (NbMethods, NbMethod-

sAll). Put together with the observations about the sizes of methods, it appears immutable

programs are structured as many smaller methods instead of fewer larger ones in mutable

programs.

Interestingly, we do not observe any relationship related to complexity, despite the

observations on the averages in the previous sub-section. Immutable programs in our study

have slightly lower modified cyclomatic complexity (AvgCycl*, MaxCycl*) than mutable

ones.
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4.3.3 Research Question 4.1

Our first research question is RQ4.1: What insight can we draw from the quantitative

data collected from the developed software?

We collected measures data from the 14 programs developed by the participants of the

project. The results presented in Section 4.3 show some differences between the treatment

and control groups. We discuss these differences in this subsection.

We observed that the Cyclomatic Complexity (Cycl) was slightly higher for immutable

programs but that the Essential Complexity (Ess) and the Modified Cyclomatic Complex-

ity (Cycl*) were similar in both groups. We attribute these results to the prevalence of

switch statements in functional-style code pattern matching. Pattern matching is a feature

supported by C# 8.0, which we taught during the course of this study and illustrated on

some design patterns. For example, we showed how it can be used to traverse composite

objects (Composite pattern) without requiring the use of the Visitor pattern. Modified and

Essential Complexities do not count switch statements, which explains why these measures

are not significantly higher in the immutable programs. We conclude that immutable

and mutable programs are of similar complexity.

We also observed differences in the sizes and numbers of methods in the programs. Im-

mutable programs had more methods, but these were shorter. Without any state to modify,

immutable methods are simpler, mathematical expressions. With shorter methods, our re-

sults showed that immutable programs had to implement more methods, especially when

counting inherited methods (NbMethodAll). Thus, immutable programs followed recom-

mended practices in software development to have more numerous smaller methods over

fewer large methods. Large methods are considered a code smell [81, 90]. These results are

consistent with the findings of Bugayenko and al. [14] in their empirical study on the impact

of immutability on Java classes. We conclude that immutable programs may have

shorter, more granular methods, following software development recommended

practices.
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Immutable programs had a higher number of class attributes (or static fields) possi-

bly because attributes were immutable (by definition) and, thus, with less negative impact

than in mutable programs10. Additionally, all immutable programs used a single, mutable

class attribute to store the state of the programs. This mutable class attribute was neces-

sary because languages like C# and Java do not allow the creation of a fully immutable

program with a graphical user interface. Thus, each immutable program had at least one

class attribute, while the mutable programs could have none. We conclude that there

is no difference between the number of attributes of immutable and mutable

programs.

There are also some differences in Coupling Between Objects values. The mutable

programs had overall lower coupling (CBO) while immutable programs had lower coupling

between user-created objects (CBO*). Coupling to library classes has a lower negative effect

on maintainability than coupling to user-created classes because library classes usually

offer well-tested, comprehensible classes and methods, which are not maintained by the

developers themselves. Furthermore, some mainstream object-oriented libraries are written

in the immutable style (e.g., LINQ in C#) and were used by the treatment group, which

explains the higher number of calls to library classes. We conclude that immutable

programs tend to rely more on well-tested generic libraries rather than user-

created libraries.

Immutable programs were smaller in number of lines of code (LoC) in general, although

the difference with mutable programs was small. Two immutable programs were outliers

with large sizes: Program 4 had over 4,000 lines of code while program 6 was below 700.

Yet, both programs received a grade of 100%. Their difference in size is due to teams’

particular development styles. Team 4 favoured a granular style with many classes, few

methods per class, and their own exception types. Team 6 used a “monolithic” approach,

with few classes requiring fewer object interactions. We conclude that program sizes

do not reflect their styles or quality.

10Using class attributes, or global attributes, creates a common coupling, with possibly unforeseen side
effects.
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We observed a large difference between the number of lines of comments between groups,

with immutable programs having significantly fewer comments than mutable ones. With

the fact that immutable programs had more and smaller methods, we argue that immutable

programs may have needed fewer comments to be understood and read than their mutable

counterparts and, thus, that they had more readable code. We conclude that func-

tions in immutable programs may be easier to understand than their mutable

counterparts. We suggest further research on the impact of immutability on

program comprehension.

We could not observe any significant negative impact of immutability. Our

results indicate that the impact of immutability may be positive, specifically

due to shorter, more readable methods. We suggest investigating the impact

of immutability on code granularity and understandability in future research.

4.4 Qualitative Measures

In this section, we present the method used for data collection of the qualitative measures

and the results of our statistical analysis. We then discuss these results and answer our

second and third research questions.

4.4.1 Data Collection

The students who participated in the study were invited, at the end of the semester, to

complete a survey to assess their experience with the project. With the survey, we asked

each participant:

(1) To auto-evaluate their expertise in OOP (1 to 5).

(2) To auto-evaluate their participation in the project within their team (1 to 5).

(3) For their impression on the workload, difficulty and complexity of the resulting pro-

gram for each of the following: Phase 1 implementation, Phase 2 implementation,

SOLID/GRASP principles implementations, GoF patterns implementations (1 to 5).
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(4) Whether they would consider using immutability for future projects (yes or no).

(5) To leave some open-ended comments.

The goal of this survey was to establish the relationships between participants in each

group and their personal assessment of the project. If immutability has more disadvantages

than advantages, we expected the treatment group to rate the workload, difficulty, and–or

complexity higher than the control group.

Table 11 summarizes the answers to the survey given by the participants by providing

the averages of the 50 participants who answered the survey. The full dataset, including

the translated survey questions, is available in the replication package11.

We observe that the averages for every single category are slightly lower for the treatment

group than the control group: the treatment group felt that the workload, difficulty, and

complexity of their programs were lower than what the control group felt.

The participants in general had a high self-evaluation of their expertise in OOP, with the

treatment group having a somewhat higher self-evaluation. Lastly, 58% of the participants

(both groups combined) answered that they would consider using immutability in the future.

Interestingly, more participants from the control group (65%) answered positively than from

the immutable group (53%). Perhaps the treatment group was slightly put off by the initial

learning curve of introducing immutability.

Participants 67

Teams 14

Participants (mutable group) 29

Teams (mutable group) 6

Participants (immutable group) 37

Teams (immutable group) 8

Survey respondents 50

Survey respondents (mutable group) 20

Survey respondents (immutable group) 30

Table 9: Measures on participants

11https://www.ptidej.net/downloads/replications/emse22b/
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Measure P-Value Cliff’s Delta

AvgCycl (Avg) 0.8465 -0.0833

AvgCycl (Max) 1.0000 -0.0208

AvgCycl* (Avg) 0.5613 0.2083

AvgCycl* (Max) 0.7399 0.1250

AvgCyclStrict (Avg) 0.8972 -0.0625

AvgCyclStrict (Max) 0.8902 -0.0625

AvgEss (Avg) 0.8401 -0.0833

AvgEss (Max) 0.6637 0.1458

CBO (Avg) 0.5203 -0.2381

CBO (Max) 0.7172 0.1429

CBO* (Avg) 0.8303 0.0952

CBO* (Max) 0.3848 0.3095

DIT (Avg) 0.7466 0.1250

DIT (Max) 0.5813 0.1875

FnLines (Avg) 0.3329 0.3333

FnLines (Max) 0.9485 0.0417

FnLinesCode (Avg) 0.7469 0.1250

FnLinesCode (Max) 0.8463 0.0833

FnLinesComm (Avg) 0.0612 0.6250

FnLinesComm (Max) 0.4772 0.2500

LCOM*% (Avg) 0.9431 0.0476

LCOM*% (Max) 0.7730 0.1190

LCOM% (Avg) 0.9431 -0.0476

LCOM% (Max) 0.8296 -0.0952

LoC 0.5613 0.2083

LoCBlank 0.1962 0.4375

LoCCode 0.7469 0.1250

LoCComm 0.4777 0.2500

LoCDecl 0.7210 0.1429

LoCExec 1.0000 0.0000

MaxCycl (Avg) 0.7960 0.1042

MaxCycl (Max) 0.2369 0.3958

MaxCycl* (Avg) 0.4381 0.2708

MaxCycl* (Max) 0.3254 0.3333

MaxCyclStrict (Avg) 1.0000 -0.0000

MaxCyclStrict (Max) 0.7188 0.1429

MaxEss (Avg) 0.8465 -0.0833

Measure P-Value Cliff’s Delta

MaxEss (Avg) 0.8465 -0.0833

MaxEss (Max) 0.3972 0.2917

MaxNesting (Avg) 0.1752 0.4583

MaxNesting (Max) 1.0000 0.0208

NOC (Avg) 0.9482 0.0417

NOC (Max) 0.8950 0.0625

NbClassAttr (Avg) 0.0926 -0.5625

NbClassAttr (Max) 0.0789 -0.5625

NbClassBase (Avg) 0.6510 -0.1667

NbClassBase (Max) 1.0000 0.0000

NbClassMethods (Avg) 1.0000 0.0000

NbClassMethods (Max) 1.0000 0.0208

NbDecl 0.4772 0.2500

NbExe 0.7469 0.1250

NbInstAttr (Avg) 0.8465 -0.0833

NbInstAttr (Max) 1.0000 -0.0208

NbInstMethods (Avg) 0.6514 -0.1667

NbInstMethods (Max) 0.5181 0.2292

NbMethods (Avg) 0.8465 -0.0833

NbMethods (Max) 0.8465 0.0833

NbMethodsAll (Avg) 0.8465 -0.0833

NbMethodsAll (Max) 0.4777 -0.2500

NbMethodsProtect (Avg) 0.9450 0.0417

NbMethodsProtect (Max) 0.9448 0.0417

NbMethodsPublic (Avg) 0.9485 0.0417

NbMethodsPublic (Max) 0.9483 0.0417

NbSemicolons 0.7210 0.1429

NbStmt 0.4777 0.2500

RatioComm 0.8465 0.0833

SumCycl (Avg) 1.0000 0.0000

SumCycl (Max) 0.3656 0.3125

SumCycl* (Avg) 0.9485 0.0417

SumCycl* (Max) 0.4772 0.2500

SumCyclStrict (Avg) 1.0000 0.0000

SumCyclStrict (Max) 0.2195 0.4167

SumEss (Avg) 0.6514 -0.1667

SumEss (Max) 0.6982 0.1458

Table 10: Mann-Whitney U test results between groups and product measures, no correc-
tions done for multiple hypothesis tests

4.4.2 Statistical Tests

We used the same approach for testing the impact of the treatment on the survey answers

as for the quantitative measures in Section 4.3.2. We are interested in the answers in Section

3 of the survey (the workload, difficulty, and complexity). We tested for normality using

the Shapiro-Wilk test and found that every test resulted in a p-value lower than 0.0002,

which shows non-normal distributions.

We assigned participants in the control group an independent variable value of 0, while

the treatment group was assigned 1. Table 12 shows the results of the Mann Whitney U

tests between the independent variable and each survey measure.
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measure Average (All) Average (Mutable) Average (Immutable)

Expertise (self-evaluation) 3.78 3.55 3.93

Contribution (self-evaluation) 3.92 3.8 4

Workload (Phase 1) 3.14 3.25 3.07

Workload (SOLID/GRASP) 3.2 3.3 3.13

Workload (Phase 2) 2.68 2.7 2.67

Workload (GoF) 2.82 2.95 2.73

Difficulty (Phase 1) 3.06 3.3 2.9

Difficulty (SOLID) 3.18 3.3 3.1

Difficulty (Phase 2) 2.64 2.85 2.5

Difficulty (GoF) 2.84 2.95 2.77

Complexity (Phase 1) 3.16 3.3 3.07

Complexity (SOLID/GRASP) 3.04 3.15 2.97

Complexity (Phase 2) 2.96 3.15 2.83

Complexity (GoF) 2.88 3.15 2.7

Would use immutability? 58% 65% 53.33%

Table 11: Survey answers averages

These results show that every relationship for every single answer is negative: partici-

pants within the treatment group consistently found every part of the assignment shorter,

easier, and their resulting program less complex. As the p-values are not below the usual

threshold (α = 0.004, with Bonferroni adjustment), the individual measures are not signif-

icant. However, every effect size is positive, which hints at the immutable group having an

easier time (which is supported by the averages computed in Section 4.3).

measure P-Value Cliff’s Delta

Workload (Phase 1) 0.3065 0.16

Workload (SOLID/GRASP) 0.2708 0.17

Workload (Phase 2) 0.8242 0.04

Workload (GoF) 0.4589 0.12

Difficulty (Phase 1) 0.1386 0.24

Difficulty (SOLID) 0.4891 0.11

Difficulty (Phase 2) 0.3112 0.17

Difficulty (GoF) 0.5834 0.09

Complexity (Phase 1) 0.5137 0.11

Complexity (SOLID/GRASP) 0.5509 0.1

Complexity (Phase 2) 0.3145 0.16

Complexity (GoF) 0.1571 0.23

Table 12: Mann-Whitney U test results between groups and survey answers
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4.4.3 Research Question 4.2

Our second research question is RQ4.2: What insight can we draw from the qualitative

data collected from the participants?

The survey asked participants for their subjective assessment of the workload, difficulty,

and complexity of the project. It is similar to the Nasa Task Load Index (NASA-TLX) [44],

adapted to our specific needs. The translated version of the survey is available in our

replication package11.

Table 12 shows that every single survey answer follows the same trend: the values for

the treatment group are lower. While high p-values indicate that any difference between

the treatment and control groups may be coincidental, it showed that, for each phase and

criteria, the participants in the treatment group found the project easier: the workload

lower, the difficulty lower, and their resulting programs less complex.

We argue that this common trend hints at a relationship between being part of the

treatment group and workload, difficulty, and complexity. This relationship is further evi-

denced by the students in the treatment group having overall higher grades than the other

students as shown in Table 7.

We believe further research is needed on the subject of development effort when com-

paring immutable and classical object-oriented development. In particular, further studies

could attempt to measure the workload in terms of time spent on each task.

Participants in the treatment group consistently found the workload lower,

the difficulty easier and their resulting programs less complex than participants

in the control group. This observation indicates that the subjective impact

of immutability may be positive, rather than negative. We suggest further

experiments measuring the workload of software development for immutable

software.
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4.4.4 Research Question 4.3

Our third research question is RQ4.3: What recurring concerns or comments were left

by the participants?

At the end of the survey, we asked participants to comment on their experience and

further discuss whether or not they would consider using immutability in the future. There

were many comments on a wide variety of topics. Using a grounded theory method, we

classified each comment into recurring themes. What follows is a summary of our findings.

The participants were divided among those who thought immutability simplified their

code and those who thought it made it more complex.

On the simplification side, participants mentioned how some functionalities, such as

undo/redo, were much easier to implement because they had the guarantee that an object

would never be modified after its creation. In general, there were many comments on how

Phase 2 (during which refactoring and evolution took place) was easier with immutability.

Some participants commented on how immutability eased communication among team-

mates. They had to adopt a similar style to ensure that their program used only immutable

objects and, thus, reading others’ code was easier. Readability may have also been improved

by immutable programs having shorter, more granular classes and methods. Interestingly,

some participants in the control group commented that if they had used immutable objects,

coordinating and communicating with their teammates would have been easier.

On the complexity side, participants in the treatment group mentioned a steep learning

curve when first learning to use immutability in their programs. Others commented that

the GoF design patterns were harder to implement using immutability.

Participants also mentioned that creating new objects for every change can become

cumbersome, especially with nested objects. Some also mentioned that building user inter-

faces with immutable objects was difficult because available frameworks expected mutable

objects. Most projects used the WPF framework12 developed for classical OOP.

12https://docs.microsoft.com/en-us/visualstudio/designers/getting-started-with-wpf?view=

vs-2022
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Other participants mentioned that they thought complexity could be reduced by us-

ing a language supporting proper immutability. Some participants in the mutable group

commented that using immutability would have made their code more complex.

Participants were divided about immutability. Negative comments mainly

concerned the learning curve and lack of language support. Positive comments

pertained to communication among teammates and more understandable pro-

grams. We suggest future experiments measuring the impact of immutability

on communication between developers. We also suggest improving support for

immutability in OOP languages.

4.5 Discussion

We now discuss questions concerning the experiment.

4.5.1 Main Research Question

The main research question of this study is: What is the impact of immutability on

object-oriented development?. With the results discussed in Sections 4.3 and 4.4, we can

now answer this question.

While some data reflects an increase in complexity (a few quantitative measures and

some participants’ comments), generally, the quantitative data showed that the immutable

programs were more granular and had better readability while the qualitative data showed

that participants found the workload, difficulty, and complexity of the project lower.

The relationship between the group, grades, and survey answers is interesting. We

observed that the participants in the treatment group generally had higher grades and

also found the workload, difficulty, and complexity lower than the other participants. The

results also showed that students with full marks on average found the project harder than

the other students, which we explain by students working harder to get a better grade,

independently of being in the control or treatment group.

We did not observe any significant disadvantage of using immutability in the
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data collected for this study, both quantitative and qualitative and both internal

(measures, survey) and external (grades). We conclude that the disadvantages

of using immutability in the context of OOP are outweighed by the advantages.

Were there significant differences in the survey answers among members of the

same team?

We studied the answers of individual teams to see if members of the same team had

different opinions on the workload, difficulty, and complexity of the project. Table 13

summarizes the average of the survey answers for workload, difficulty, and complexity (with

standard deviations in parentheses). We notice that complexity had some of the highest

standard deviations (e.g., 1.4087 for team 5). We picked the two teams with the highest

complexity standard deviation (teams 5 and 9) and looked at their results in further detail.

For Team 5, part of the control group, only two members answered the survey. One

member rated complexity at 1 for both phases of the project while the other rated complexity

at 4 for both phases. The first participant self-evaluated their expertise at 5, while the

second at 4. The first member was possibly more expert in OOP than the other member,

which could explain their different assessment of the complexity.

For Team 9, part of the treatment group, there were three respondents. One rated the

complexity of Phase 1 with a 1 and Phase 2 with a 3. The other two gave 4 and 5. The

team members all self-evaluated their expertise at 3 or 4. Again, expertise seems to impact

the perception of complexity.

The members of Teams 5 and 9 were most likely at different levels in terms of program-

ming expertise despite their self-assessment. They possibly overestimated their capacity

due to the Dunning-Kruger effect [53], yielding a high self-assessment average of 3.93 in

Table 11).

We conclude that any difference between survey answers among members of

the same team was due to differences between programming expertise among

team members, not membership to a group. Also, our analysis did not yield any

discrepancy that would indicate that the respondents were not honest or answered randomly.
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Team # Workload Average (SD) Difficulty Average (SD) Complexity Average (SD)

1 3.0625 (0.6585) 3.5000 (0.6124) 3.6250 (0.6960)

2 3.0000 (0.4082) 2.8333 (0.6872) 2.8333 (0.6872)

3 2.9167 (0.4930) 2.5000 (0.7638) 2.4167 (0.9538)

4 2.6500 (1.0137) 2.5000 (0.8660) 3.1000 (0.9950)

5 2.5000 (0.8660) 2.5000 (1.3229) 2.6250 (1.4087)

6 2.4375 (0.6092) 2.5000 (0.7906) 3.0000 (0.9354)

7 2.2000 (0.7483) 2.1000 (0.7000) 2.1000 (0.8307)

8 2.6250 (0.8570) 2.8125 (0.9499) 2.8750 (0.9922)

9 4.2500 (0.7217) 3.7500 (0.5951) 3.5000 (1.0408)

10 3.3750 (0.7806) 3.2500 (0.6614) 3.3125 (0.5830)

11 3.0000 (0.5477) 3.2500 (0.9421) 3.0500 (0.6690)

12 3.7500 (0.5590) 3.8125 (0.5266) 3.8125 (0.6343)

13 3.7500 (0.4330) 4.5000 (0.5000) 4.0000 (0.0000)

14 2.8333 (0.5528) 2.3333 (0.7454) 2.4167 (0.9538)

Table 13: Summary data on survey answers by each team

Were the answers to the survey influenced by the grade each student obtained?

The participants completed the survey before receiving their final grades for the project.

However, they had access to their grades for Phase 1 and other course assignments. They

could infer how well they were doing in the course. We divided the participants into three

categories: those that had full marks, those who had marks higher than or equal to 85%, and

those who had marks lower than 85%. Table 14 summarises the average per category for the

answers on workload, difficulty, and complexity (with standard deviations in parentheses).

Students who obtained full marks reported on average a higher workload, higher diffi-

culty, and higher complexity than the other students. The students in the middle grade

category rated the lowest, with the low category rating a bit higher. We explain this obser-

vation by the fact that the students who got full marks may have worked harder and imple-

mented more complex code to obtain better grades. We explain the difference between the

middle and lower categories by the lower category struggling to apply the concepts taught

in the course.

In Section 4.4.3, we concluded that the participants in the treatment group found the

project generally easier. We also concluded that teams in the treatment group had higher

grades on average. In this section, we now concluded that teams with higher grades usually
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found the workload heavier. We argue that, while the treatment group had higher grades

than the control group, they still found the work easier even though they had to work harder

to obtain their higher grades. Thus, we conclude that immutability influences the

participants’ experience rather than their grades.

Grades Workload Average (SD) Difficulty Average (SD) Complexity Average (SD)

100 3.2250 (0.8212) 3.4250 (0.9189) 3.5000 (0.9747)

]85-100[ 2.8864 (0.8974) 2.6932 (0.9577) 2.7273 (1.0305)

[0-85] 2.9028 (0.8686) 2.9444 (0.9263) 3.0833 (0.8457)

Table 14: Summary data on survey answers by grades

Were there qualitative differences in grading between the two groups?

Since immutability was not a major part of the course’s curriculum, and not every

student had to use it in their project, grading did not consider immutability for the most

part. After phase 1, we had to intervene with three treatment group teams because they did

not implement immutability correctly. After that intervention, no further concerns arouse

regarding immutability correctness.

However, we still took a look at if there were any differences in recurring mistakes and

comments left for the students in each group. There were more full marks in the treatment

group (four) than in the control group (two). In general, both groups implemented the

GRASP and SOLID principles in phase one successfully, with one exception in the treatment

group that did struggle with both the course content and immutability at first. Phase 2

design patterns were also generally well understood and implemented. Some teams in

both groups struggled with patterns, but no significant difference between groups could be

identified on that point.

We notice a difference between groups when we look at unit test implementations. In

both phases, groups had to implement unit tests for the various functions required in their

software. There were more teams that struggled with unit testing in the control group than

in the treatment group. A common mistake was unit tests that were dependent on external

systems (e.g., loaded saved files or required external GUI manipulation). In general, teams
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in the control group had worse unit test coverage than teams in the treatment group.

While the relationship between using immutability and unit testing cannot be gener-

alized from these results, we argue that the immutable systems were most likely easier to

test. Because of the lack of state change, it is easier to create independent test scenarios.

Furthermore, if the immutable projects also had more numerous shorter methods, as re-

ported in Section 4.3.3, that would also explain why they had an easier time creating unit

tests for their software.

We conclude that there was a qualitative difference between the treatment

and control group regarding unit testing. The control group wrote unit tests

with worse coverage and some teams struggled with external dependencies. For

aspects other than unit tests, both groups experienced similar difficulties and

no significant difference could be found.

Why was performance not measured?

One issue raised by participants during the course concerned performance: creating new

objects with every change may become a performance bottleneck.

We believe that performance is impacted by technology more so than by the development

methodology. Measuring the performance of immutable programs written with an impera-

tive, mutable OOP language would be like measuring the performance of an object-oriented

program written in Haskell.

Most of the programs were developed in C#, as shown in Table 7, which is not par-

ticularly well suited for immutability. Microsoft added features to support immutability in

recent updates13 but we did not teach these features during the course and none of the par-

ticipants used them on their own. C# includes a library providing immutable collections14,

which was used by some participants, but the language itself lacks many of the optimization

available in languages favouring immutability, such as F# and Haskell.

13https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9
14https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/march/

net-framework-immutable-collections
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Haskell in particular is a relatively high-performance language15 that embraces full im-

mutability. It achieves good performance in part by optimizations possible because of full

referential transparency. Thus, we argue that performance issues related to immutability

could be managed at the language and compiler levels.

We conclude that there are other significant advantages than performance

to using immutability and there should be an effort made in OOP languages to

improve the performance of immutability features.

Was the treatment group hampered by the lack of language support for im-

mutability?

One restriction imposed on the participants was that they use a programming language

supporting object-oriented programming. While there exist languages supporting both OOP

and immutability features (such as OCaml and F#), the participants chose mainstream

OOP languages such as C#, Java, and Typescript. Some used older versions of C# such

as Unity C#, which have even less support for immutability. However, the Java and Unity

C# teams were part of the control group, which did not have to introduce immutability in

their code. Perhaps they would have selected a different language had they been part of

the treatment group.

Out of the chosen languages, C# has most likely the best support for immutability.

In fact, some of these features were presented to the students as part of the class content

regarding immutability. In particular, pattern matching was presented as an alternative to

the visitor pattern [69]. Some of the teams in the treatment group made use of this feature.

There were, however, some comments about the lack of language support for immutabil-

ity making the learning curve more difficult for the treatment group. Some teams mentioned

they had to spend more time at the start of the project establishing how components were

going to interact with each other without the possibility of using mutators. While this

contributes to a steeper learning curve, we believe this may explain in part why these same

teams reported having an easier time with team communication in the later phase of the

15https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/haskell.html
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project. Having been forced to plan ahead early on made them develop a stronger structure

for their code, which made communication easier in the long run.

While having more support for immutability features would reduce this initial learning

curve by giving developers clear tools and techniques to use for achieving immutability,

we believe this initial structural discussion would still need to take place. As such, the

communication improvements would remain even with stronger immutability features.

We conclude that the lack of immutability support in languages contributed

to a steeper learning curve. However, the initial more lengthy discussion about

the project structure improves team communication in the long run. We believe

the addition of better support for immutability in OOP languages would reduce

this initial learning curve, without removing the positive impact on communi-

cation.

4.6 Threats to Validity

While we tried to keep the study and its results as objective and reproducible as possible,

there are some threats to their validity.

4.6.1 Internal Validity

The study was done on a convenience sampling of 3rd-year undergraduate students in a

B.Sc. of computer science. The participants were not selected at random but volunteered.

There was also an incentive in the form of bonus grades (equivalent to a maximum of 10%

bonus for the project assignment). This bonus was to compensate the participants for the

added constraints to their semester assignment (the project).

While using student participants in studies tends to limit the generalization of any

results, we believe there are advantages in this particular case. Students have limited expe-

rience in software development and thus, have fewer biases towards particular technologies

or coding styles. They also can dedicate more time and focus to the given tasks, as pro-

fessional developers would have to complete them during their personal spare time. Also,
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these students are the professionals of tomorrow. Yet, replicating this study with experi-

enced professionals would grant significant additional insight.

We tried to avoid biasing the participants towards immutability. We mostly taught in

the class classical mutable object-oriented programming. Over the 15 classes given in the

course, less than three classes were spent on immutability. These classes introduced the

basic concepts required to use immutability in the assignment, but not enough to create a

significant bias towards immutability. We accept this threat.

The project was part of a software engineering class and some of the requirements were

part of the curriculum and not necessary for the experiment. For example, the requirements

of implementing GRASP and SOLID principles, as well as the GoF design patterns, were

not strictly necessary for the experiment and would not necessarily represent how software

would be made in the industry. However, we believe that in particular for the GoF design

patterns, the added complexity prevents the project from being too trivial. The project was

limited in terms of scope and total lines of code, and it would not be reasonable to expect a

large-scale industrial-level project out of either a software engineering class or a controlled

experiment.

There is also the question as to whether the usage of the GoF design patterns would skew

the results in favour of mutability. After all, classical object-oriented programming makes

heavy use of mutability. However, as we discussed in Section 4.1.2, some design patterns can

be simplified when used in the context of immutability. While there was probably overall

some bias towards mutable style, our results mostly favour immutable style. We believe

this lends more credibility to our results and not less.

We left as much decision-making as possible to the students during the project. Most

participants chose to develop their program in the programming language presented during

the course, C#. Table 7 shows that only three projects were not done in pure C#.

The tools available to extract measuress from the programs were limited because not
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every program was developed in the same language. For instance, were every project devel-

oped in C#, we could’ve used Microsoft’s own Maintainability Index16 measure to compare

maintainability between programs. The programming languages chosen were all available in

SciTools Understand, which offers the usual Chidamber and Kemerer measures [19]. Even

then, some measures were not available for TypeScript (e.g., CBO and LCOM). While this

difference likely did not influence our results, future experiments should limit the partici-

pants to using the same programming language and make use of more specialized tools.

The fact that we measured over 80 measures over the programs makes it so that none of

the individual measures are statistically significant. The usual p-value threshold of 0.05 does

not apply (Bonferroni correction would make this value closer to 0.0006 instead). However,

since this is an exploratory study aiming to find potential trends for future research, we

instead took a look at the data as a whole and attempted to find patterns indicating

potential advantages or disadvantages. We do not claim to have found significant differences

between mutable and immutable approaches, but rather potential future research trends.

Furthermore, it is unlikely that every quantitative result would coincidentally follow the

same trend, which showed that participants in the treatment group found the project easier.

4.6.2 External Validity

The Hawthorne effect may have influenced participants to perform better by knowing

they were participating in this study. Participants knew about the subject of the study,

which could have yielded a positive attitude towards the project in general and immutability

in particular. This threat would be very difficult to avoid, however, so we chose to accept

it.

There is also a concern regarding the students training in immutability. The results of

the experiment would be influenced by the participants’ skill and knowledge with immutabil-

ity. As discussed at the beginning of Section 3, the participants had no prior experience

16https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-
range-and-meaning?view=vs-2022
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with immutability and received around 10 hours (1/5 of the course) of training on the sub-

ject. Thus, their training on immutability was minimal. The course and experiment did not

attempt to create a bias toward immutability, yet the results led to positive results towards

immutability. Thus, the results suggest that replicating the study with participants with

further experience with immutability should yield an effect even more favourable.

4.6.3 Construct Validity

We used a survey to obtain subjective data from the participants about the project.

We then used their answers to compare the two groups. As discussed in Section 4.5.1, the

participants seem to have in general overestimated their expertise. We mitigated the use

of subjective data using multiple methods, including objective quantitative data collected

from the developed programs.

For the quantitative data, we chose to measure as many measures as available in the tool

to avoid any selection bias. Using an automated tool also allowed us to avoid any threats

related to manual data collection.

4.6.4 Conclusion Validity

We avoided drawing strong conclusions as to the effect of immutability on specific mea-

sures because our results do not show significant correlations. Instead, we looked at and

discussed overall trends. We concluded that the disadvantages of immutability in OOP

programming are outweighed by its advantages.

4.7 Conclusion

In this chapter, we reported on an empirical study on the impact of immutability on OOP

software development. We divided a set of 67 participants into a treatment and a control

group, composed of 8 and 6 teams of 4 or 5 students. Both groups developed the same

project. We followed a multi-method approach to assess the impact of using immutability

on the participants and the resulting programs. We collected quantitative measures on the
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programs as well as the participants’ qualitative assessments using a survey. We analysed

the varied data to assess the impact of using immutable objects on software development.

We observed no significant negative impact related to using immutability on programs

or participants. For the treatment group, we observed an increase in number of methods

and a decrease in method size as well as number of comments. Programs developed by

teams using immutability were more granular and required fewer comments compared to

the mutable programs. The qualitative data showed lower perceived workload, difficulty,

and complexity by the treatment group. Participants using immutability perceived the

difficulty of the project to be lower than the other teams. The differences between the

two groups were not statistically significant for individual measures and, thus, we cannot

draw strong conclusions. Yet, every trend indicated that immutability may have a positive

impact on OOP and we found no evidence of disadvantages.

We answer our main research question: What is the impact of immutability on object-

oriented development?.

We did not observe any significant disadvantage of using immutability in

the data collected for this study, both quantitative and qualitative. We con-

clude that the disadvantages of using immutability in the context of OOP are

outweighed by the advantages.

The decrease in method size and number of comments when using immutability also

demonstrates a potential for increased understandability and code granularity. This con-

clusion also indirectly and a-posteriori supports language designers who added immutability

in OOP languages, based on their anecdotes and developers’ lore (e.g., in C#).

However, C# received many different features purported to support immutability. These

features include Record Types, Record Updating, Pattern Matching, and Multiple Values

Return. In the next chapter, we study these language features to determine whether they

help programmers produce more maintainable and understandable programs.
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Chapter 5

Studying New Features for

Immutability Support in C#

In the previous chapter, we presented a study that showed that immutability can have

a positive impact on OOP software development. We now study language features that use

or support immutability in OOP. We perform this study in the context of C#, which has

recently added specific new features to enhance its support for immutability. We target a

set of features that were recently added to C# and perform an experiment to measure the

impact of these features on the development of immutable programs.

We ask the following main research question: Do the recently added immutability-related

features have a positive impact on writing immutable code in C#?

The features we study in this chapter are Record Types, Record Updating, Pattern

Matching, and Multiple Values Return. These features all come from FP and facilitate the

development and usage of immutable programs.

We perform a multi-method empirical study using 12 participants: 10 graduate students

and two professional developers. During the experiment, the participants assess a base

program and extend it by adding new functionalities while enforcing transitive immutability.

The base programs are implementations of the same file system simulator that allow

the creation and deletion of folders and files in a hierarchy. There are two base programs:
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one for the treatment group, and one for the control group. They implement the same

functionalities, but the treatment program uses the new features, while the control program

does not. We ask the participants to add new functionalities to their base programs. These

new functionalities include adding a Collect method, which aggregates components from a

root folder according to specified criteria (e.g., files and folder, files only, recursively, etc.),

adding a Duplicate method, which copies part of the file system hierarchy, and adding an

Undo method, which rolls back any operation made on the file system.

We collect qualitative data on the submitted programs by performing manual code anal-

ysis and quantitative data using a static analysis tool. We also collect subjective insight by

asking the participants to fill out a survey and conducting an interview with the professional

developer in the control group.

The rest of the chapter is divided as follows. In Section 5.1, we situate this study in

relationship with other studies. In Section 5.2, we present our research questions and the

structure of the experiment and methods used to collect and analyse data. In Section 5.3, we

present the data and results of the experiment and, in Section 5.4, discuss these results and

answer each research question. In Section 5.5, we discuss potential threats to the validity

of the results. Finally, we summarize and conclude in Section 5.6.

5.1 Background

While usability features for immutability have become more prevalent in programming

languages, not much research has been done on their use by developers, as discussed in

Chapters 2 and 4. We could not find any primary study discussing these features and their

empirical evaluations. Research focuses on language features for immutability enforcement.

In this chapter, we evaluate the impact of usability features for immutability on the

development of immutable OOP programs. While languages do not explicitly label their

features as supporting immutability, we chose features that were recently added to the

C# language and were related to immutability. Specifically, we consider the Records,

Record Updating, Pattern Matching, and Multiple Values Return features. By adding these
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features, Microsoft implicitly assumes that they improve software quality or development

efficiency. This chapter will confirm or infirm this assumption.

We perform a multi-method empirical study using graduate students and professional

developers. The study requires the participants to read and understand a program developed

using transitive immutability, then add new functionalities to that program. We ask half

the participants to use the new C# features, while we prohibit the other half from using

them. We then ask the participants to fill out a survey to evaluate the relative difficulty

of the task. We use quantitative measures of the source code and qualitative measures for

the survey, as well as an interview with one of the professional developers, to answer our

research questions.

The main research question of this study is: Do the recently added immutability-related

features have a positive impact on writing immutable code in C#?

We divide this research question into three secondary questions:

(1) R5.1: What is the quantitative impact of using the immutability-related features on

immutable code maintainability?

(2) R5.2: What is the qualitative impact of using the immutability-related features on

workload, difficulty and complexity of writing immutable code?

(3) R5.3: What are the differences between immutable code written with and without the

immutability-related features?

5.2 Method

In this section, we describe our empirical study and the methods used to answer our

research questions. We first discuss a pilot study. We then introduce the base software

used for the experiment and the added functionalities that we ask our participants to add.

Finally, we present the methods used to obtain quantitative and qualitative data from the

source code and participants.
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5.2.1 Language Features

This study aims at evaluating the impact of specific features added to C# for immutabil-

ity support. We chose FP features added to the language in versions 7.0 to 9.0 (2017 to

2020). We present each feature and how they interact with immutability in what follows.

Record Types

Records are a type of data structure, similar to a class or a struct. Their main charac-

teristic is structural equality. Two records are equivalent if their properties (declared next

to the name of the Record Type) are equal. This structural equality allows using equality

operators (i.e, == and !=) between records and using Record Updating. Reference equality

can still be used using the ReferenceEquals method.

Records use a syntax similar to classes, with a more concise constructor and property

definitions declared at the top of the record:

record MyRecord(string Field1, int Field2)

{

int SomeMethod(string arg)

{

Field1 = arg;

return Field2;

}

}

While Records in C# are not required to be immutable, they mirror a similar feature

of the same name in FP languages such as OCaml, F#, and Haskell. In an immutable

context, using Records allows you to make use of Record Updating, a useful tool for updating

immutable objects.
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Record Updating

Record Updating (also called “non-destructive mutation” in C#) allows the duplication

of a record while changing the values of the properties of the duplicate. This update does

not affect the original record. Record Updating is used with the with keyword:

var entry1 = new MyRecord("Content", 0);

var entry2 = entry1 with { Field2 = 42 };

While Record Updating can be used outside of an immutable context, its main attrac-

tion is the ability to “simulate” mutation without breaking immutability. Using Record

Updating, one can create methods that modify an object by returning a new version of

itself with specific properties changed. This allows the usage of “setter” methods in an

immutable context.

Pattern Matching

Pattern Matching is a syntax feature used to choose a branch based on the type of an

object. Its syntax is similar to a switch statement, but it branches based on the type of

the object.

There are two ways to use Pattern Matching: in an if expression or in a switch

expression:

// If-expression example

if (someVariable is int i)

{

return i + 2;

}

else

{

return 0;

}
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// Switch-expression example

return (someVariable switch

{

int i => i + 2;

string s => 1;

_ => throw new

InvalidOperationException();

});

Pattern Matching is a recurring feature of FP languages. It appears in Haskell, OCaml,

F#, and many other functional languages, sometimes also under the form of function poly-

morphism. In these languages, it is used to destructure a record or list and branch depending

on the success of this destructuring. It is the FP equivalent to object polymorphism (which

is why it can be used to replace the Visitor pattern). The C# version of Pattern Matching

is more limited in its abilities to destructure objects. It can branch on the type of an object,

but can only destructure the contents of a Record:

// Definition of a Record family

// of addresses.

record Address(string Country);

record CanadaAddress(string Province)

: Address("Canada");

record USAddress(string State)

: Address("US");

...

// Switch expression destructuring

// an address.

return (address switch
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{

CanadaAddress(var country, var province)

=> ShipToCanada(country, province),

USAddress(var country, var state)

=> ShipToUS(country, state),

(var country)

=> UnsupportedCountry(country),

});

Out of the four features discussed in this study, Pattern Matching is the one that applies

most to both mutable and immutable code. While it originates from immutable languages,

the C# implementation can easily be used on mutable code to branch on object types, as

well as to destructure mutable Records.

Multiple Values Return

In FP, it is frequent to create functions that return multiple values. A typical use case is

creating a new element in a hierarchy: to return both the created element and the updated

hierarchy as a result of a function.

You can return multiple values from a method using a special syntax for Tuples:

(int, string) MakeTuple()

{

return (42, "Content");

}

// ...

(int, string) tuple = MakeTuple();

// Use tuple.Item1 and tuple.Item2

// to access the values.
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// or alternatively

(int i, string s) = MakeTuple();

// Use i and s as normal variables.

Multiple Values Return is an important feature when working with immutability. Im-

mutable (or “pure”) functions cannot have side effects, which means they must always

return any updated object. As soon as a function updates more than one object type at a

time, the ability to return multiple values at once because very useful.

5.2.2 Pilot Study

To assess the feasibility of the experiment, we opted to perform a pilot study. This pilot

study was done with two recently graduated Ph.D. students. We gave them the instructions

for the experiment and asked them to perform it and give their feedback.

The initial structure of the experiment involved the participants developing a program

using given specifications and following a set of rules defined by Bloch [11] to ensure tran-

sitive immutability. The participants would then fill out a survey asking them to evaluate

the resulting program’s workload, difficulty, and complexity.

The feedback from the pilot study, however, indicated that this may be too big a task to

ask of volunteer participants. The program must be complex enough to obtain significant

results. However, asking the participants to develop a non-trivial program using a set of

rules they were not used to, as well as using language features they may not have known

existed, introduces significant risk. The participants may opt out of the experiment, or the

quality of their work may be impacted.

To mitigate this risk, we redesigned the experiment so that the participants would

instead be asked to understand and evaluate an existing program and add new features

to it. We would still ask the participants to develop part of the program, but that part

would be significantly smaller. They would need to give their subjective assessment of their
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base program, as they need to study and understand it to extend it. This turned out to

be necessary, as the results of the survey show that the student participants found the

experiment very difficult and frustrating. We discuss this further in Section 5.4.2.

5.2.3 Participants

We perform the experiment with 10 graduate students, as well as two professional devel-

opers. The students and developers are split into treatment and control groups evenly and

given specific instructions for their group. They are given half a day to read and understand

a base program and extend it with the same new functionalities.

Before the experiment, the treatment group is given a short training on the four C#

features presented in Section 5.2.1. We did not give any information concerning the new

features to the students in the control group, as none of them knew about the features and

there was no risk of them accidentally using them.

In the case of the professional developer in the control group, we showed them the

features and specifically instructed them not to use them because the professional developer

knew about the features and could have used them otherwise.

Each of the student participants received, in the weeks prior to the experiment, training

on a subset of the 23 “Gang of Four” design patterns [31], including the Observer and

Visitor patterns. We also assume that they had a basic knowledge of the design patterns

as part of their prior academic curricula.

At the end of the experiment, we ask the participants to answer a survey to obtain

their subjective assessment of the experience. We also conduct an interview with one of the

professional developers to obtain further insight into the results.

5.2.4 The Base Programs

In this subsection, we describe the specifications of the base programs and the improve-

ments asked of the participants. For the experiment, we need a program simple enough

to be understood and extended in a short amount of time, but also non-trivial to obtain

significant data. The program took the form of a file system simulator.
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The file system simulator supports creating a hierarchy of folders and files. A folder

may include files and other folders (which we refer to as components). The base program

supports a few simple operations: obtaining a component from a given path string, renaming

a component, deleting a component, and observing a component, which involves getting

notifications whenever the component is renamed or deleted using the Observer design

pattern [31].

The file system simulator is developed while ensuring transitive immutability, done by

following the same set of five rules suggested by Bloch [11] that we used in Chapter 4.

We made two versions of the program: one for the treatment group, and one for the

control group. The only difference between versions is the usage of the four language features

described in Section 5.2.1 in the treatment program:

(1) We changed classes containing data to Records. The more succinct syntax of Records

contributed to reducing the number of lines of code in the treatment program.

(2) We used Record Updating to update the file system and its components. This allowed

us to remove copy constructors and some code duplication when creating new objects

from old ones.

(3) We used Pattern Matching instead of object polymorphism. For example, instead of

having a Rename method in both File and Folder classes, which the file system called

whenever a component needed to be renamed, we could consolidate all renaming code

inside the file system method using Pattern Matching and Record Updating:

IComponent newComp = component switch

{

File file

=> file with

{ Name = newName },

Folder folder

=> folder with
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{ Name = newName },

_ => throw new ArgumentException()

};

We ask the participants to extend their base program with the same new functionalities.

They must add a Collect operation, which walks through the hierarchy of files and folders

from a given point and collects files and folders under this point. They must add an Undo

operation, which is used to walk back any rename or delete operation. Finally, they must

add a Duplicate operation, which, given a root component, creates a duplicated hierarchy

in the file system.

Both programs, with detailed specifications, are accessible online via GitHub12. We

made these repositories accessible to their respective group as part of the experiment.

5.2.5 Survey

After the experiment, we asked the participants to fill out a survey to obtain qualitative

data on their experience. The survey was structured into five sections. For each question

in Sections 2 to 5, the survey offered the respondents to elaborate on their answers in free

text fields.

The first section related to general questions about participants:

• How many years of professional experience do you have in software development?

• What is the highest education degree you have obtained?

• How many years of experience (professional or otherwise) do you have with object-

oriented programming?

• How many years of experience (professional or otherwise) do you have with the C#

language?

1Treatment program: https://github.com/wflageol-uqtr/CSharpCaseStudy
2Control program: https://github.com/wflageol-uqtr/CSharpCaseStudyControl
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• Have you used Record Types or Pattern Matching before?

The second section measured their subjective appraisal of their base program. Each

question was answered using the Likert scale (1-5):

• What was your impression of the workload for inspecting and understanding the

existing code?

• What was your impression of the difficulty felt in inspecting and understanding the

existing code?

• What is your impression of the complexity of the existing code?

The third section measured their subjective appraisal of the code they developed to

extend the program. Each question was answered using the Likert scale (1-5), and asked

the respondent to elaborate in a free text field:

• What was your impression of the workload for implementing the new functionalities?

• What was your impression of the difficulty felt in implementing the new functionali-

ties?

• What is your impression of the complexity of your own code?

The fourth section used the NASA Task Load Index questionnaire [44]. Questions were

answered on a scale of 1 to 7:

• Mental Demand: How mentally demanding was implementing the specifications?

• Physical Demand: How physically demanding was implementing the specifications?

• Temporal Demand: How hurried or rushed was the pace of implementing the specifi-

cations?

• Performance: How successful were you in accomplishing what you were asked to do?

• Effort: How hard did you have to work to accomplish your level of performance?
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• Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

Finally, the treatment group had a fifth section asking their opinion on the new features

they used:

• Do you feel like the features presented in this study helped with the implementation

of the specifications?

• Would you consider using the features presented in this study in a future project?

5.3 Results

In this section, we present the results of the experiment in the form of quantitative and

qualitative data obtained from the programs and survey answers.

5.3.1 Program Analysis

To obtain qualitative data from the experiment, we manually analyse each completed

program submitted by the participants. We look for trends and patterns in the code and

differences between the treatment and control groups using a grounded theory approach

which involved categorizing the approaches used to implement the Collect, Duplicate, and

Undo features. Then, we obtain quantitative data by extracting a set of measures using

automated code analysis tools and perform statistical analysis tests to see if the measures

are significantly different from one group to the other.

Qualitative Analysis

We manually examine the code of the programs submitted by the participants to de-

termine which approach was used for implementing each functionality. We intended to

categorise the approaches, but the results are much more homogenous than expected across

groups.

Each participant in the treatment group made use of Pattern Matching to implement the

Collect and Duplicate functionalities, which we expected considering that the participants
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were shown the feature just prior to the experiment and it was appropriate for implementing

these functionalities. Pattern Matching was specifically used to discriminate components

between the IFile and IFolder interfaces.

+Interestingly, all participants in the control group also made use of ad-hoc Pattern

Matching by using manual casting and type-checking, despite not having received any train-

ing or prompt to use such a technique. None of them used the Pattern Matching syntax

presented in Section 5.2.1, because either they did not know it, or we specifically forbade

them from using that feature.

For the Undo functionality, the implementation was trivial considering the program was

already implemented using transitive immutability. Each participant, irrespective of their

group, used a stack or list to keep previous versions of the file system and implemented

Undo by simply “popping” the last version.

Quantitative Analysis

We obtain quantitative data by analysing the programs submitted by the participants

with a static analysis tool. We are interested in the impact of using the new features on code

maintainability. We collected data for five measures: Maintainability Index, Cyclomatic

Complexity, Coupling Between Object, Number of Lines of Code, and Number of Executable

Lines of Code. We chose these measures because they represent the usual dimensions against

which we measure software quality and maintainability.

Maintainability Index, proposed by Oman and Hagemeister [70], assesses program main-

tainability by using a combination of the Halstead Volume [41], McCabe’s Cyclomatic Com-

plexity [65], and Number of Lines of Code. According to the Software Assurance Technology

Center (SATC) at NASA [75], a combination of Cyclomatic Complexity and code size is

an effective evaluation of software reliability. We use the version available in Microsoft

Visual Studio, which normalizes its values between 0 and 1003. Microsoft suggests that a

Maintainability Index between 20 and 100 is considered “good”.

3https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-
range-and-meaning?view=vs-2022
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Cyclomatic Complexity was introduced by McCabe [65] to measure the structural com-

plexity of programs. The measure represents the number of branching paths in a method

(e.g., if statements, switch, etc.). A program with more branching paths leads to more

test effort to achieve good coverage and negatively affects maintainability.

Coupling Between Objects is a measure introduced by Chidamber and Kemerer [19] that

counts a program’s dependencies between objects (or classes). An object has a dependency

when one of its attributes, base classes, or method arguments references another object.

Class Coupling can be used as a predictor of software failure and high coupling is known to

have a negative effect on maintainability [83].

Number of Lines of Code is the exact number of source code lines present in the files

of the program, including comments and blank lines. Number of Executable Lines of Code

is an approximation of the number of operations or lines of code that are executed at

run-time. We use these measures as indicators of code size, which can have an effect on

maintainability [70].

Table 15 shows the measures collected for each submitted program. The table shows only

10 entries, despite there being a total of 12 participants (10 students and 2 professionals),

because two of the participants (one in the control group and one in the treatment group) did

not implement all the required functionalities. To avoid biasing the quantitative measures,

we removed their programs from the analysis.

We observe differences between the two groups for most measures. Maintainability Index

averages 91.8 in the control group and 93.2 in the treatment group, indicating that the final

programs submitted by the treatment group were slightly more maintainable. We observe

the same differences in most other measures: Cyclomatic Complexity (80.8 control vs 61.2

treatment), Number of Lines of Code (401 vs 347.8), and Number of Executable Lines of

Code (117 vs 89.4).

The programs developed by the treatment group seem more maintainable than those

developed by the control group, which would be clear if each participant had fully developed

their program independently. However, they started from base programs that they extended

by adding new functionalities. These base programs would have an influence on the measures
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collected.

Table 16 shows the measures collected for the base programs for both groups. We

see that the treatment version of the program already has better maintainability than the

control version of the program. While the only difference between the base programs is the

usage of the new features, it is important to disclose that the measures obtained in Table 15

are clearly influenced by the base programs.

We cannot, however, apply simple arithmetic to obtain the difference between base

measures and final measures. For example, if we subtracted the number of lines of code of

the base program from that of the submitted programs, we would be ignoring any line that

was modified by the participant. We wrote a script to calculate the number of changed lines

of code between each submitted program and the base program. Our script only considered

added or modified lines and did not count deleted lines. The reason for this choice is that

it is impossible to determine if a line has been modified or deleted and replaced by a new

one. We obtained an average of 120.8 changed lines of code for the control group and 95

for the treatment group. This difference is consistent with the total number of lines of code

of the final programs.

As shown by the relative complexity of calculating the seemingly simple number of lines

of code measure, it is not clear that we can perform the same on other measures. For exam-

ple, measures such as Maintainability Index and Cyclomatic Complexity require the context

of the full program and cannot be calculated easily on partial programs. Furthermore, as

they may not be linear in their distribution, we cannot perform arithmetic operations on

them (e.g., subtracting the base measures from the final measures).

The alternative would have been to have the participants develop the full program by

themselves. However, as discussed in Sections 5.2.2 and 5.4.2, this would not have been

feasible with student participants as the workload would have been too high. We believe

the best compromise in this situation is to use the final program measures while disclosing

their limitations.

We perform further statistical analysis to gain additional insight into the effect of the
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treatment group on the data. Our data is non-normal, as evidenced by performing a Shapiro-

Wilk test [82], thus we perform the non-parametric Mann-Whitney U test to determine if

the sets of data from each group come from the same population. We use Cliff’s Delta to

obtain the effect size of the independent variable on the measures.

Table 17 shows the results of the statistical analysis. It shows that the data from the

treatment group is from a different population than the data from the control group, which

means that the group influences the measures. We adjust the standard p-value threshold of

0.05 using the Bonferroni adjustment by dividing by four (we consider NLoC and NLoCExec

to be highly correlated and be essentially the same measure) to obtain the threshold value

of 0.0125, which three measures meet: Maintainability Index, Cyclomatic Complexity, and

NLoCExec. For each of the three measures, the Cliff’s Delta value is 1.00 (or −1.00)

indicating that the populations are completely disjoint.

These results mean that the Maintainability Index is systematically higher in the treat-

ment group and that the Cyclomatic Complexity and Number of Executable Lines of code

are systematically lower.

ID Group MI CC CBO NLoC NLoCE

1 Control 92 74 25 375 106

2 Control 91 99 27 513 170

3 Control 92 81 26 381 103

4 Control 92 76 26 359 102

5 Control 92 74 25 375 104

6 Treatment 93 60 25 339 89

7 Treatment 93 59 25 346 90

8 Treatment 93 63 26 368 86

9 Treatment 93 66 26 355 98

10 Treatment 94 58 25 331 84

Table 15: Program Measures

Group MI CC CBO NLoC NLoCE

Control 93 61 25 318 78

Treatment 95 48 25 276 59

Table 16: Base Program Measures
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Measure P-Value Effect Size

Maintainability Index 0.0074 -1.00

Cyclomatic Complexity 0.0119 1.00

Coupling Between Objects 0.4884 0.28

NLoC 0.0211 0.92

NLoCExec 0.0122 1.00

Table 17: Mann Whitney U test results

5.3.2 Survey Analysis

To obtain qualitative data from the participants, we asked them to fill out a survey

following the completion of the experiment. The content of the survey was described in

Section 5.2.5. We detail the results of that survey in what follows. There was a large

discrepancy between the answers of the students and of the professional developers, we

separated them into different tables.

General Questions

When asked about their professional experience, most of the student participants (7 out

of 10) answered having less than three years of experience in software development. The

professional developers answered having 6 to 10 years and 10 to 15 years.

When asked about their education level, most of the students answered having a mas-

ter’s degree (i.e., being Ph.D. students). The professional developers answered having a

bachelor’s degree and a professional degree.

Most of the student participants had little experience with the C# language and had

never used the new features presented. The professional developers had more extensive

experience with the language and were familiar with the features.

Appraisal of the Base Program

The second section of the survey asked the participants to appraise their base program

as to the workload for analysing it, the difficulty they had understanding it, and their

perceived complexity of the program.

Table 18 shows the averages and standard deviations for the answers of students in both
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treatment and control groups. Table 19 shows the individual results for each professional

developer.

Results are similar for both groups, with the treatment group having slightly lower values

indicating they may have had less difficulty understanding the base program. Additional

analysis (using the Mann-Whitney U test as in Section 5.3.1) indicates this difference to be

non-significant (p-values > 0.4). The professional developer in the control group seems to

have found the exercise very easy, whereas their counterpart in the treatment group found

it somewhat harder.

Measure Control Avg (SD) Treatment Avg (SD)

Workload 3.8 (0.74) 3.6 (0.8)

Difficulty 4.0 (0.63) 3.4 (0.49)

Complexity 3.6 (0.8) 3.4 (1.02)

Table 18: Student Answers for Appraisal of the Base Program

Measure Control Treatment

Workload 1 2

Difficulty 1 2

Complexity 1 3

Table 19: Professional Developers Answers for Appraisal of the Base Program

Appraisal of the Extended Program

The third section of the survey asked the participants to appraise the workload, difficulty,

and complexity of their own program extension to add new functionalities to their base

program.

Table 20 shows the averages and standard deviations for the answers of students in both

treatment and control groups. Table 21 shows the individual results for each professional

developer.

The same trend as in the previous section can be seen, with the treatment group having

slightly lower values than the control group. Complexity in particular has a large gap

between groups (3.2 vs. 2.2, each outside of the other’s standard deviation range) indicating

that the treatment group found their resulting code less complex than those in the control
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group. Further analysis using the Mann-Whitney U test produces a p-value of 0.069 which,

while not significant to draw conclusive results, shows that the populations of the two groups

may be different.

The answers of professional developers match each other at much lower values than

those of the students.

Measure Control Avg (SD) Treatment Avg (SD)

Workload 3.8 (0.75) 3.4 (0.49)

Difficulty 3.2 (0.98) 3.2 (0.75)

Complexity 3.2 (0.75) 2.2 (0.4)

Table 20: Student Answers for the Appraisal of the Implementation of the New Function-
alities

Measure Control Treatment

Workload 1 1

Difficulty 2 1

Complexity 2 2

Table 21: Professional Developers Answers for Appraisal of the Implementation of the New
Functionalities

NASA Task Load Index

The fourth section asked the participants to answer questions from the NASA Task

Load Index questionnaire [44] regarding their experience.

Table 22 shows the averages and standard deviations for the answers of students in both

treatment and control groups. Table 23 shows the individual answers for each professional

developer.

While the answers are similar for both groups, the treatment group has slightly higher

values, suggesting that they found the experience generally more demanding and frustrating

than their control group counterparts. Further analysis using Mann-Whitney U testing does

not reveal any statistically significant differences.

The professional developers generally found the experience less demanding and frus-

trating than the students, and both marked that they felt they were very successful in

implementing the requirements by rating 7 on the Performance question.
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Measure Control Treatment

Mental Demand 5.4 (1.2) 6.0 (1.10)

Physical Demand 3.6 (2.33) 4.4 (1.85)

Temporal Demand 5.4 (1.36) 4.6 (2.33)

Performance 5.2 (2.4) 5.6 (1.36)

Effort 4.8 (1.72) 5.8 (1.17)

Frustration 5.0 (1.79) 5.6 (2.33)

Table 22: Student Answers for NASA Task Load Index

Measure Control Treatment

Mental Demand 3 2

Physical Demand 1 1

Temporal Demand 2 2

Performance 7 7

Effort 4 3

Frustration 1 3

Table 23: Developer Answers for NASA Task Load Index

Questions on New Features

Only the survey given to the treatment group participants included this final section.

The section was related to their opinion on the new features that they used in the experi-

ment.

Every participant answered that the new features helped with the implementation of

the specifications and that they would consider using the new features in the future. In

particular, comments mentioned Pattern Matching as an especially useful feature. The pro-

fessional developer mentioned they frequently used Pattern Matching and Multiple Values

Return. They were not as familiar with records but said they already saw situations where

they would be helpful.

5.3.3 Interview

We interviewed the professional developer of the control group after the experiment to

gain further qualitative insight into the new features. For reasons of availability, we could

not conduct the same interview with the professional developer of the treatment group. The

interview took place after the developer had filled out the survey and lasted 30 minutes.
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What follows is a summary of each question and answer given during the interview.

Would you have used the new features if allowed?

The developer was part of the control group and did not have access to use the new

features. However, they were aware of the existence of the features and knew how to use

them. The developer answered that they would have used the new features to help imple-

ment the functionalities. They had to simulate Pattern Matching by using a combination

of the is and as keywords for discriminating between IFile and IFolder objects. They

would have rather used Pattern Matching.

Do you think being unable to use the new features impacted your implementa-

tion?

The developer answered they felt it was a minor annoyance, but overall the structure

of their code was not majorly impacted. They still used ad-hoc Pattern Matching using

available features, so their overall approach did not change.

Did you consider using the Visitor design pattern to implement the Collect and

Duplicate functions?

As the developer was not familiar with that specific design pattern, we showed them

a full implementation of the features using the Visitor pattern. After examination, they

saw the advantages of such an approach on reusability and maintainability but thought

the added layers of indirection complexified the code compared to the Pattern Matching

approach. Knowing the Visitor pattern, they would still instead use the Pattern Matching

approach.

5.4 Discussion

In this section, we review and discuss the results and answer each research question.
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5.4.1 Research Question 5.1

Our first research question is What is the quantitative impact of using the immutability-

related features on immutable code maintainability?

We collected data from the programs developed by each participant during the ex-

periment. To assess immutability, we collected measures for the Maintainability Index,

Cyclomatic Complexity, Coupling Between Objects, Number of Lines of Code, and Num-

ber of Executable Lines of Code. In this discussion, we will consider the full programs,

including the base program and the participants’ extensions, as these are the only viable

measurements we can obtain.

There was a clear difference between the treatment and control groups for every measure,

except Coupling Between Objects.

The Cyclomatic Complexity varies widely in the control group programs, while it is

much more consistent in the treatment group (smaller standard deviations). Each program

submitted by the treatment group has a lower Cyclomatic Complexity than those submitted

by the treatment group. This difference may be due to the control group participants using

ad-hoc Pattern Matching with manual casting and type-checking operators. This approach

would contribute to increasing Cyclomatic Complexity by adding multiple unnecessary con-

ditions and branches to ensure proper type safety. Further statistical analysis reveals that

the difference in Cyclomatic Complexity between groups is significant (p-value of 0.0119

against the threshold of 0.0125).

Between the two measures of the number of lines of code, the most significant is the

Number of Executable Lines of Code, both because the difference between groups is greater

and because the measure itself is more significant when discussing maintainability, as it

ignores lines without statements such as blank lines. Again, the treatment group has fewer

lines of executable code than the control group. The same reasoning as for Cyclomatic

Complexity may apply here: the extra verification steps needed for manual casting for the

Pattern Matching approach contributed to increasing the number of lines of code. Further

statistical analysis reveals the difference between groups is significant (p-value of 0.0122
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against the threshold of 0.0125).

Finally, the Maintainability Index for each program was above 90, which means although

there was a difference between groups, the overall maintainability of the programs is very

good. As Maintainability Index is calculated in part using Cyclomatic Complexity and

Number of Lines of Code, it is not surprising to see the same relationship between groups.

The difference between group averages is about 1.4 and further statistical analysis reveals

this difference to be significant (p-value of 0.0074, against a threshold of 0.0125).

These results reveal that the treatment group, who were using the new

features for immutability support, produced programs with greater maintain-

ability than the control group who did not use these features. We conclude that

the new features added to the C# language, in particular Pattern Matching,

contribute to improving the quality and maintainability of programs.

5.4.2 Research Question 5.2

Our second research question is What is the qualitative impact of using the immutability-

related features on workload, difficulty and complexity of writing immutable code?

To answer this question, we asked the participants to fill out a survey after the exper-

iment and give their subjective opinion on the workload, difficulty and complexity of the

code during the experiment.

Survey results were similar between the treatment and control groups. For most answers,

both group averages are within each other’s standard deviation and further statistical anal-

ysis shows no significant difference between the datasets.

The only exception is regarding the complexity of the code written by the participants.

The control group rated the complexity of their code one point higher on average than

the treatment group. However, the statistical analysis does not show the difference to

be significant by itself (p-value of 0.069), so further study is needed before drawing any

conclusion.

The answers to the NASA Task Load Index section of the survey reveal that the exper-

iment seems to have been difficult, particularly for the students. Both groups rated mental
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demand and frustration above 5 (out of 7), with temporal demand and effort also rated

high. Some participants even rated physical demand very high, although this may have

been a misunderstanding of the meaning of that specific question.

These results confirm that our decision to lighten the load by simplifying the experiment

following the pilot study was the right one. In fact, even the resulting experiment was still

difficult for the students.

We notice a distinction between the survey answers of the professional developers and

the students. In general, the professional developers found the experiment easier in terms

of workload and had less difficulty understanding the base programs. Their NASA Task

Load Index answers were much lower in general and they both rated their own performance

at 7. Their ratings on the complexity of the code were close to the students. This difference

can be due to the gap in experience between the students and the professional developers.

Most students stated they had no experience with C#.

Overall, we did not notice any significant difference between the qualita-

tive data of the treatment and control groups. While we could not observe

any advantage of the new features on the workload, difficulty, and complexity

of the tasks, we could not observe any disadvantage either. Perhaps the over-

all difficulty of the experiment hid any possible difference. We conclude that

the immutability-related features do not impact the workload, difficulty, and

complexity of writing immutable code.

5.4.3 Research Question 5.3

Our third question is What are the differences between immutable code written with

and without the immutability-related features?

Before we performed the experiment, we assumed that Visitor vs. Pattern Matching

would define the main difference between the treatment and control implementations. The

Collect and Duplicate features were good fits for a Visitor implementation. A IComponent-

Visitor interface could be declared, containing methods to visit files and folders. Then,

for the Collect functionality, a CollectVisitor could be implemented defining how to walk
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through the file system hierarchy and whether or not individual files and folders should be

collected. A similar implementation could have been done for the Duplicate functionality.

Pattern Matching offers an alternative to the Visitor design pattern because it effectively

allows the equivalent of dynamic dispatching: to associate behaviour discriminated on the

type of an object. Reusing the examples above, a Pattern Matching implementation of the

Collect functionality would be a function that branches on the type of an object (whether

it’s a file or folder), which removes the need for a Visitor because the “visiting” functionality

is covered by the Pattern Matching branching.

We expected that some of the participants from the control group would use the Visitor

design pattern, and the treatment group would instead opt for the Pattern Matching im-

plementation. However, the experiment results show that both groups went for the Pattern

Matching approach. The control group did not have access to the proper language feature

for Pattern Matching, and so implemented it ad-hoc, using manual type casting operators

such as as, is, and typeOf.

During the interview with the control group’s professional developer, we presented them

with a Visitor implementation of the experiment. While they understood the advantages of

such an approach, they felt the added layers of indirection made the program more complex

and were not worth the advantages. When asked what they would have done differently if

they had access to the immutability-related features, they answered that they would have

used the features, but that the general structure of their code would not have changed,

because they used the same approach and simply compensated for the lack of features.

There were not large differences in the code implemented by both groups,

because both groups adopted the approach that the new features, specifically

Pattern Matching, allow. The control group simply compensated for the lack

of features by using manual casting and type-checking conditions. Their code

would have been improved by using the new features. We conclude that the

immutability-related features enhance the approach which developers naturally

use to solve problems and that the lack of these features results in them being

implemented ad-hoc.
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5.4.4 Main Research Question

With the secondary research questions answered, we can now answer our main research

question: Do the recently added immutability-related features have a positive impact on

writing immutable code in C#?

We found that the immutability-related features contribute to improving the maintain-

ability of programs. We could not identify any advantage or disadvantage of using the

immutability-related feature when considering the subjective workload, difficulty, and com-

plexity of program understanding and implementing specifications. We also observed that

the control group, lacking the immutability-related features, still used the same approach

as the treatment group to implement their program, leading to ad-hoc implementations of

the new features.

We conclude that the immutability-related features have a positive impact

on writing immutable programs in C#. Other OOP languages should con-

sider implementing these features, in particular Pattern Matching, into their

language to better support immutability and improve the maintainability of

immutable programs and the developers’ quality of life.

5.5 Threats to Validity

In this section, we discuss potential threats to the validity of this study. While we tried

to keep the study and its results as objective as possible, some threats inevitably exist. We

divided the threats into Internal, External, Construct, and Conclusion Validity threats.

5.5.1 Interval Validity

The study was done using a convenience sampling of graduate students and profes-

sional developers. The students’ supervisor asked them to participate and the professional

developers volunteered after a general announcement via social media.

The majority of the participants were students, which limits the generalization of results

in any study. We included professional developers to lessen any bias brought by students.
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Students also have advantages, as they have limited experience in software development

and thus, have fewer biases towards particular technologies or coding styles. They also

can dedicate more time and focus to the given tasks, as professional developers would have

to complete the tasks during their personal spare time (which is why it is difficult to find

professional developers for these experiments in the first place). Nonetheless, we must

accept threats to internal validity and suggest a future replication of the study with mainly

professional developers.

We avoided biasing the participants toward the immutability-related features. We

trained only the treatment group to use the new features and did not mention them to

the control group. An exception was made for the professional developer in the control

group. They were already aware of the features and used some of them regularly in their

work, we instructed them specifically to not use them. Fortunately, this instruction did not

seem to affect the results, because the code submitted by the professional developer used a

similar approach as the other participants in the control group.

5.5.2 External Validity

The Hawthorne effect may have occurred: participants perform better knowing they

are participating in this study. Participants, particularly in the treatment group, knew

about the subject of the study, which could have yielded a positive attitude toward the

immutability-related features. However, we did not observe such an effect in the results,

as evidenced by the results of the NASA Task Load Index section of the survey. For the

students, survey revealed that frustration level was high and mental demand was slightly

higher for the treatment group.

5.5.3 Construct Validity

The design of the study is a significant threat that must be addressed. Following the pilot

study, which revealed that having the participants develop the whole program themselves

was much too big of a task, we redesigned the study. Instead of developing the full program,

participants would analyse a base program and extend it by adding new functionalities. The
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base programs were different for both groups, as the treatment base program made use of

the immutability-related features, while the control base program did not.

This design implies that part of the code submitted by the participants was not devel-

oped by them, but was still counted when collecting quantitative data on the programs.

It was not feasible to accurately subtract the base programs measures from the submitted

programs because of the non-linear nature of most of the measures collected (e.g., Maintain-

ability Index). We did calculate the difference in lines of code between the base programs

and submitted programs and the results showed the same tendency as before, with the

treatment group having a lower average difference of lines of code than the control group.

This trade-off was necessary, as evidenced by the results of the survey. The student

participants found even the current simplified experiment very difficult and frustrating to

complete. Two students could not finish implementing the required functionalities. Even

though we had lowered the workload of the experiment significantly following a pilot study,

it seems it was still difficult for the students to perform. To mitigate the effect of this threat,

this study uses multiple methods, in the form of quantitative analysis, qualitative analysis,

a survey, and an interview, to gain more contrasting insight.

5.5.4 Conclusion Validity

The statistical analysis done on the survey data in Section 5.3.2 did not reveal any

significant difference between groups. We thus cannot draw any strong conclusion, even

though there was a gap between the answers of the groups concerning the complexity of

their resulting programs. The treatment group rated their complexity generally lower than

the control group by one point out of five. However, we lacked enough data for the statistical

analysis to show a significant difference. Further studies may show a significant relationship

between the usage of the immutability-related features and the complexity of the resulting

code. The Maintainability Index results shown in Section 5.3.1, also support this conclusion.
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5.6 Conclusion

We presented a multi-method empirical study on the impact of immutability-related

features added to C# from 2017 to 2022. We divided a set of 12 participants, composed of

10 graduate students, mostly Ph.D. level, and 2 professional developers, into a treatment

and a control group. Both groups added the same functionalities to two different base

programs: one using the new features and one without them. We followed a multi-method

approach to assess the results.

We collected quantitative measures on the programs using a static analysis tool and

qualitative data by performing a manual analysis of the programs. We also asked the

participants to fill out a survey to obtain their subjective opinion on the workload of the

project, the difficulty of completing the tasks, and the perceived complexity of their pro-

gram. Finally, we performed an interview with one of the professional developers about

their decisions and their thoughts on the immutability-related features.

We observed a significant difference in the quantitative data collected on the programs

of the two groups. The treatment group programs showed a higher Maintainability Index,

lower Cyclomatic Complexity, and lower Number of Executable Lines of Code than the

control group programs. These results seem to show that, in general, using the new features

improves the maintainability of the code.

With the manual analysis, we noticed that both groups used the same approach to

implement the new functionalities. We expected that some participants in the control

group would use the Visitor, as that was an appropriate design pattern for implementing

this functionality, but every participant instead used a Pattern Matching approach. The

control group worked around the lack of features for Pattern Matching using manual casting

and type-checking. Having access to the new features would have improved their code.

When asked whether or not they would consider using the immutability-related feature in

the future, every participant in the treatment group answered positively.

We did not observe any significant difference between groups in the survey results.

We did notice a difference between the professional developers and the students. The
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students reported a very high mental demand and frustration, whereas the professional

developers reported a very low one. Both professional developers considered that they had

accomplished their tasks perfectly, whereas the students had varying degrees of confidence

in their success.

During the interview with the professional developer, who was in the control group, we

asked if they would have used the new features if allowed, how they thought this would have

impacted their code, and whether or not they considered using the Visitor pattern. They

answered that they would have used the new features in a normal setting, and that the

structure of their code would not have changed significantly because they used the same

approach but with workarounds to compensate for the lack of Pattern Matching. When

shown the Visitor approach to implementing the program, they said they understood the

advantages, but were not sure they were worth the added indirection layers.

We answer our main research question: Do the recently added immutability-related fea-

tures have a positive impact on writing immutable code in C#?.

We conclude that the immutability-related language features added to C#

have a positive impact when used to implement immutable programs.

We showed that the addition of Records, Functional Updating, Pattern Matching, and

Multiple Value Returns to C# had a positive impact on maintainability. We suggest that

other OOP languages add these features to better support immutability-style code in the

future.

We thus bought evidence in Chapters 3, 4, 5 that some immutability features do help

programmers when implementing programs. However, these new features also bring some

new constraints, in particular when combined with existing OOP features, such as inher-

itance and subtyping. In the next chapter, we study a problem with method overriding

when combining OOP subtyping and immutability and show that Functional Updating can

be used to solve this problem.
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Chapter 6

Solving Immutable OOP

Reusability Problems with a New

Design Pattern

In Chapter 4, we discussed how introducing immutability in OOP can present some

challenges. In this chapter, we explore two of these challenges: method overriding and

covariance of the return type. Inheritance and subtyping are the main mechanisms for

code reuse in OOP. As objects inherit methods and attributes from their parent, mutators

(methods that modify the receiver) continue to function because their context (attributes

and related methods) is preserved during inheritance. Immutable objects cannot have

mutators by definition and instead must use functional updating (methods which return

a new object instead of modifying the receiver). Such methods can be problematic when

using inheritance as they can be a source of code duplication and have low scalability.

In this chapter, we analyse an example in which the naive subtyping approach for

immutable objects creates code duplication and reduces scalability. We ask the following

main research question: Is it possible to reuse non-destructive mutators via polymorphism

when combining immutability and OOP subtyping?

We present a solution to mitigate these problems in the form of a new design pattern.
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We also discuss the advantages and limitations of this design pattern as well as its im-

plementation in multiple languages (i.e., Clojure, Java, and Kotlin) and which language

features, in particular among those we previously explored, can improve these implementa-

tions. We identify functional updating and dynamic typing as features that directly benefit

the implementation of the design pattern. We then extend a language where the underlying

problem of the design pattern exists, Common Lisp, with a new functional updating feature

and solve the problems.

We opted to present the new pattern using a narrative approach instead of the more

traditional Coplien Form as used by Gamma et al. [31], because the pattern applies to a

specific situation that we must introduce first to understand the problems and why there is

a need for a design pattern.

The rest of the chapter is divided as follows. In Section 6.1, we present a running example

of a problem which we will discuss throughout the study. In Section 6.2, we present our

solution to that problem in a new design pattern based on the Factory Method [31] and a

Java implementation of this design pattern. In Section 6.3, we show the implementation of

that design pattern in the Clojure and Kotlin languages and discuss their differences. In

Section 6.4, we generalise the solution and discuss limitations and the language features that

mostly affect the implementation. Finally, Section we summarise the chapter in Section 6.6.

6.1 Problem

We use a simple running example to illustrate the problems encountered while developing

immutable objects in OOP. While this example will be shown using the Java language, the

problems shown here are present in many statically typed OOP languages, including C#

and C++. For the sake of brevity, we keep the specifications simple with few methods,

without loss of generality.
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Point

getX(): int
getY(): int
move(x: int, y: int): Point

Size

getW(): int
getH(): int
scale(value: int): Size

Rectangle

getX(): int
getY(): int
getW(): int
getH(): int
move(dx: int, dy: int): Rectangle
scale(value: int): Rectangle

Figure 13: Simple class diagram of the geometry library specifications

6.1.1 Specifications

We want a library for managing geometry objects, such as points, sizes, and rectangles.

A rectangle has both the attributes of a point (its position) and a size (its extent). As such,

we expect it to use all the methods available on both points and sizes. Furthermore, we

want every object to be immutable. Every method on an immutable object should always

return a newly created object and not modify the receiver. Figure 13 shows a class diagram

of these specifications.

The Point class defines X and Y attributes. It also defines a move method, which creates

a new Point with the same position, offset by a dx value and a dy value.

The Size class defines W and H attributes. It also defines a scale method, which

creates a new Size with its width and height scaled by the specified value.

We want to avoid code duplication, in particular of the definitions of the attributes and

of the move and scale methods. Adding a new method to any of its parents should make

it automatically available and usable to Rectangle without having to define delegating

methods for every single method. Although reasonable from the point of view of OOP

development, these specifications bring two problems.
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6.1.2 Problem 1: Inheritance and Immutability

Bloch [11] established a set of rules which, when followed, ensures transitive immutability

in any OOP language. The second rule is that classes in an immutable program should

not be extendable. This rule exists to avoid future users breaking immutability by using

inheritance to add mutating methods. Furthermore, Java (and many other OOP languages)

only supports single-class inheritance and our design would require Rectangle inheriting

both Point and Size for it to work.

There is also the issue of the ”is-a” relationship. Is a rectangle a point and a size?

One could argue the relationship here is ”has-a”: a rectangle has a position and an extent.

This would indicate that composition should be used here instead of inheritance. Instead

of having X, Y, W, and H attributes, Rectangle could instead have Position (Point) and

Extent (Size) attributes.

However, this composition approach causes another problem, illustrated in the following

lines of code:

Rectangle r = new Rectangle(1, 3, 2, 2);

Point p = r.getPosition().move(1, 2);

getPosition() returns a Point object, on which calling move always returns a new

Point. To obtain a new Rectangle, we must create a new Rectangle object using the

new Point. This instantiation of a Rectangle would create a burden every time we use a

method on Rectangle.

Alternatively, we could reimplement move and scale inside Rectangle, delegating to

the respective objects and creating the required new Rectangle. This composition does

not scale well, however, as any new method added to Rectangle parents requires its own

forwarding method, creating significant code duplication (e.g., if there were 100 methods

associated with these data types, there would be 100 forwarding methods in Rectangle).
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6.1.3 Problem 2: Return-value Polymorphism

Even if we were to use multiple inheritance, we still face a problem where the methods

in Point and Size, which return new Point and Size objects respectively, must return

Rectangle objects when called on Rectangle objects.

In Java, it is possible to parameterize arguments and return-values by using generic

programming. For example, if move was a static method, we could parameterize it:

static T move<T>(T movable, int x, int y) { ... }

which would make the return-value the same type as the first argument. However, there is

no syntax available to do the same with instance methods, i.e., there is no syntax to signify

that a method returns the type of this.

Furthermore, even if this was possible, the method would not know how to create the new

object. If we call move on a Point, we create a new Point with a constructor requiring two

arguments. If we call move on a Rectangle, we create a new Rectangle with a constructor

requiring four arguments.

We could copy the objects and return the copy after modifying their attributes accord-

ingly, but such copying is not practical in Java because there is no generic way to copy

objects, and, even if we added a clone method, we could not update the attributes of

the clones because they are immutable as per the five rules presented in Section 4.1.1 of

Chapter 4.

6.2 Solution: The Immutable Factory Method

We now propose a solution to implement the specifications while addressing the problems

described above.

6.2.1 Addressing Problem 1: Inheritance

The preferred mechanism in Java to address multiple inheritance problems is subtyping

using interfaces. We could have Movable and Scalable interfaces and have Rectangle
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≪interface≫
Movable

getX(): int
getY(): int
move(x: int, y: int): Point

Point

≪interface≫
Scalable

getW(): int
getH(): int
scale(value: int): Size

SizeRectangle

Figure 14: Specifications

implement both, as illustrated in Figure 14.

The new problem with using interfaces is that every class that implements an interface

must define every method declared in the interface. Point would define move and Rectangle

would also have to define it, possibly through delegation. This need creates code duplication,

as discussed earlier. Java 8 added the concept of default methods for interfaces, which solves

this problem: we can implement move as a default method for Movable:

interface Movable {

int getX();

int getY();

default Point move(int dx, int dy) {

return new Point(this.getX() + x, this.getY() + y);

}

}

Using the names Movable and Scalable also alleviates some of the problems with the

is-a relationship between Rectangle and its parents. Now, instead of Rectangle being a

Point and a Size, it behaves like a Point and a Size.
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6.2.2 Addressing Problem 2: Return-type Polymorphism

The Movable defined above has a significant problem: the method move necessarily

returns a new Point. Thus, the move method in Rectangle would also return a new Point

instead of a new Rectangle.

We could attempt to solve this problem with generic programming, but would face the

constructor problem: how do we abstract the constructors for Point, Size and Rectangle?

We leverage the Factory Method design pattern [31] with a common method that could be

supplied by both Point, Size, and Rectangle classes to create new objects of the expected

type:

interface Movable<T> {

// ...

T updateMovable(int x, int y);

}

which is a Factory Method that creates generic types from x and y values. The resulting

type could be a Point or a Rectangle. Using this concept, we modify our Movable interface

as such:

interface Movable<T> {

int getX();

int getY();

T updateMovable(int x, int y);

default T move(int dx, int dy) {

return updateMovable(this.getX() + dx, getY() + dy);

}

}
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Now Movable is a generic interface that can create new instances of any type T when call-

ing its move method. The implementor must define a updateMovable method that creates

the expected instance using the given with x and y values. For Point, the implementation

is trivial:

final class Point implements Movable<Point> {

// ...

@Override

public Point updateMovable(int x, int y) {

return new Point(x, y);

}

}

Rectangle must implement both Movable and Scalable. Both of them require new

Rectangle objects instantiated using only two arguments (either x and y or w and h). The

following shows how we implement these Factory Methods in Rectangle:

final class Rectangle

implements Movable<Rectangle>, Scalable<Rectangle> {

// ...

@Override

public Rectangle updateMovable(int x, int y) {

return new Rectangle(x, y, this.getW(), this.getH());

}

@Override

public Rectangle updateScalable(int w, int h) {

return new Rectangle(this.getX(), this.getY(), w, h);

}
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}

We use the original values of the Rectangle object on which the method is called,

only replacing the appropriate old values with the supplied values. Thus, creating a

new Rectangle using updateMovable keeps the original extent and creating a new Rect-

angle using updateScalable keeps the original position. Thus, we fulfill our specifica-

tions with few code repetition. The full listing of this implementation is available at

https://github.com/wflageol-uqtr/ImmutableGeometry

6.3 Variants in Other Languages

The example described in the previous section is not arbitrary. We argue it is reasonable

to require a geometry library to supply immutable objects. It is in fact the idiomatic style in

some programming languages, such as Clojure or Haskell. Implementing our specifications

is simpler in these languages. In this section, we look at specific language features that help

with the above-stated problems in a more elegant way.

6.3.1 Clojure

Typing is a significant problem for our specifications, especially returning the expected

type on inherited methods, such as move. Using a language without static typing solves

this part of the problem. It does not, however, solve the constructor problem.

Some dynamic languages, such as JavaScript or Python, provide a generic way of copying

objects. Yet, copying is not enough, because we must modify the immutable object to

update some of its attributes.

In Clojure, this problem is solved with the assoc function. Clojure objects are actually

immutable associative lists of keywords and values. The assoc function allows copying such

a list while adding or replacing some of its values.

We define our Point and Rectangle structures as associative lists:

(defn make-point [x y]
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{:x x :y y})

(defn make-rectangle [x y w h]

{:x x :y y :w w :h h})

Both make-point and make-rectangle define the x and y values (make-rectangle also

defining w and h). We can now implement the move function:

(defn move [point dx dy]

(assoc point

:x (+ (point :x) dx)

:y (+ (point :y) dy)))

This function creates a new list identical to the one provided as the first argument while

offsetting the x and y values, which means, for a point, changing every value, effectively

creating a new associative list and for rectangle, the values of w and h are untouched.

The Clojure implementation of our specifications is trivial and idiomatic.

6.3.2 Kotlin

We now implement our specifications with a statically typed language, Kotlin, which

has many similarities to Java (for example, it is also implemented on top of the JVM), but

includes some notable features that will simplify our solution. As with the other solutions,

we address the constructor problem. As in Java, in Kotlin we cannot specify constructors

in an interface and use the Factory Method design pattern again:

interface Movable<T> {

val x: Int

val y: Int

fun updateMovable(newX: Int, newY: Int) : T
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fun move(moveX: Int, moveY: Int) : T {

return updateMovable(moveX + x, moveY + y)

}

}

data class Point(override val x: Int, override val y: Int)

: Movable<Point> {

override fun updateMovable(newX: Int, newY: Int): Point {

return Point(x, y)

}

}

data class Rectangle(override val x: Int, override val y: Int,

override val w: Int, override val h: Int)

: Movable<Rectangle> {

override fun updateMovable(newX: Int, newY: Int): Rectangle {

return copy(x = newX, y = newY)

}

}

This implementation is similar to the Java one, with one difference: in the Rectangle

class, instead of creating a new Rectangle in updateMovable and provide every attribute

of the object, we use the copy function of data classes in Kotlin. We still need the

updateMovable Factory Method in this implementation because the copy function can-

not be used on interfaces.

Data classes are classes designed to hold data and to be easily compared and copied1.

We declare Rectangle as a data class, which assigns it a copy function. The copy function

creates a duplicate of the object on which it is called and can modify the attributes of the

1https://kotlinlang.org/docs/data-classes.html
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copy as needed, similar to how assoc works with associative lists in Clojure. By copying a

rectangle and modifying its x and y values only, the rest of the attributes (w and h) remain

unchanged. This feature reduces code redundancy and makes the design easier to modify.

Kotlin interfaces are actually traits and can contain method implementations, thus we

added the move method to the Movable interface. The move method is available to both

Point and Rectangle, because they inherit it from Movable, and, using generic program-

ming, returns the expected type specified as the generic type of Movable. This implemen-

tation fulfills our specifications with minimal code duplication.

6.4 Discussion

We now discuss the general form of the proposed design pattern, its advantages and

limitations, and how it is affected by some specific language features.

6.4.1 General Form

The pattern that we proposed is an adaptation of the Factory Method pattern [31] but

allows changing the return type of methods when subtyping.

Figure 15 shows the general form of the design pattern. In this figure, TypeABehaviour

and TypeBBehaviour are generic interfaces with a generic type T defined when implementing

them. For example, TypeA implements TypeABehaviour<TypeA>, defining the generic type

to be itself. Similarly, AggregateType implements the same interface but defines the generic

type also to be itself (TypeABehaviour<AggregateType>) so that the typeACreatormethod

returns TypeA objects when called on a TypeA object, and returns AggregateType objects

when called on an AggregateType object.

When programming with transitive immutability, methods that return new objects of

the type of the receiver are common. These methods allow incremental changes to objects

without mutating them. Our proposed pattern allows inheriting and reusing such methods

in a type hierarchy.
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≪interface≫
TypeABehaviour

typeAProperty1(): int
typeAProperty2(): double
typeACreator(p1: int, p2: double): T

≪interface≫
TypeBBehaviour

typeBProperty1(): double
typeBProperty2(): char
typeBCreator(p1: double, p2: char): T

TypeA TypeBAggregateType

Figure 15: General Form

6.4.2 Disadvantages and Limitations

Using this design pattern in practice comes with some disadvantages and limitations. We

discuss one main disadvantage and one main limitation of this pattern. The disadvantage

concerns the method declarations. Behaviour must be encapsulated in interfaces or traits

and defined by default methods, which in some languages involves a different syntax than

regular method definition. In Java, default methods require the default keyword. Generic

programming must also be used to ensure that the methods can be inherited by any type.

The style can differ significantly from the usual way of defining methods.

If we take the move method from our running example, it could be defined using the

usual style in Java like this:

Rectangle move(int dx, int dy) {

return new Rectangle(this.getX() + dx, this.getY() + dy,

this.getW(), this.getH());

}

This method would be found in the Rectangle object. When applying our design

pattern, however, the method must be declared in a Movable interface and look like this:

default T move(int dx, int dy) {
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return updateMovable(this.getX() + x, this.getY() + y);

}

Furthermore, when using our design pattern, object creation no longer uses the default

language mechanism (i.e., new in Java and Kotlin), but instead must use the factory methods

included in the behaviour objects (e.g., updateMovable in our example).

The difference between the two approaches could impact readability and understand-

ability and make it more difficult for a new developer to understand the program and create

a steeper learning curve.

The limitation of the design pattern concerns scalability. While the design pattern exists

to improve the scalability of a naive approach by reusing methods, a problem remains with

object creation. Consider the following code:

@Override

public Rectangle updateMovable(int x, int y) {

return new Rectangle(x, y, this.getW(), this.getH());

}

We must supply the constructor with the W and H values of the current Rectangle,

which implies that every attribute that must be conserved as-is must be assigned in this

method (and every other factory method). If we add new attributes to Rectangle, we must

modify every factory method that creates Rectangle objects to conserve these attributes.

This recurring modification can be tedious and possibly error-prone, as a developer could

forget to update one or all of them at some point, resulting in some perplexing bugs where

some, but not all, the attributes of an object would be conserved between changes. The

result could also become unwieldy at some point if dozens of attributes were involved.

6.4.3 Language Feature: Functional Updating

The disadvantages and limitations are affected by the implementation language of our

design pattern. In the above examples, we considered Java. Other languages have features
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that mitigate or remove parts of these limitations. Functional updating is one such feature

adopted by multiple OOP languages, such as C# and Kotlin.

The Kotlin example in Section 6.3.2 makes use of functional updating to mitigate the

scalability limitation. Here is how the same factory method example discussed above could

be done in Kotlin:

override fun updateMovable(newX: Int, newY: Int): Rectangle {

return copy(x = newX, y = newY)

}

We do not specify any other attributes than the ones that change, similar to how nor-

mal mutation would be done. There is no scalability issue, as adding new attributes to

Rectangle would not affect the implementation of this method. In the Clojure example

(Section 6.3.1), the functional updating operation is the assoc function. Other functional

languages such as Haskell, OCaml, and F# all have this feature. Functional updating is

the main replacement for mutation in immutable programming.

6.4.4 Dynamic vs Static Typing

The disadvantage concerning the syntax required to define reusable immutable methods

relates to static typing. As discussed in Section 6.1.3, we must express that Movable applies

to any implementing type and should return its own type, which requires the use of generic

programming in statically-typed languages.

In dynamically-typed languages, we can consider the Clojure implementation of the

move function:

(defn move [point dx dy]

(assoc point

:x (+ (point :x) dx)

:y (+ (point :y) dy)))

Because no type declaration is required on functions, there is no need for a special syntax

when declaring reusable immutable methods. This style is idiomatic in Clojure.
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Statically-typed languages have the additional burden of expressing a sound type struc-

ture for the compiler, which requires specifying a sound return type for the method, which

in turn leads to the use of generic programming when that return type can vary depending

on the receiver.

6.5 Common Lisp Implementations

In this section, we will discuss a Common Lisp implementation of this design pattern.

We will then extend the language by adding the functional updating feature and observe

how it impacts our implementation.

Common Lisp is a dynamically-typed general programming languages with meta-pro-

gramming capabilities. Those meta-programming capabilities will allow us to add functional

updating to the language without writing a third-party tool.

Unlike Clojure, Common Lisp supports full OOP through its Common Lisp Object

System (CLOS) library. The combination of dynamic typing, OOP support, and meta-

programming makes Common Lisp a prime language for this experiment.

6.5.1 Implementation in base Common Lisp

Our first implementation will only use Common Lisp features included in the base

language, without any added macros.

Implementing the data structures is straightforward, thanks to multiple inheritance

support:

(defclass point ()

((x :reader x :initarg :x)

(y :reader y :initarg :y)))

(defclass size ()

((w :reader w :initarg :w)

(h :reader h :initarg :h)))
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(defclass rectangle (point size) ())

Rectangle inherits both the attributes of Point and Size. Note that this is not neces-

sary and only saves a few lines of code. We could have declared the x, y, w, and h attributes

manually in Rectangle without having to use inheritance at all.

Common Lisp does not support functional updating for objects, so we need to implement

the Factory Methods to update objects:

(defgeneric update-movable (movable x y))

(defmethod update-movable ((movable point) x y)

(make-instance ’point :x x :y y))

(defmethod update-movable ((movable rectangle) x y)

(make-instance ’rectangle

:x x :y y

:w (w movable) :h (h movable)))

(defgeneric update-scalable (scalable w h))

(defmethod update-scalable ((scalable size) w h)

(make-instance ’size :w w :h h))

(defmethod update-scalable ((scalable rectangle) w h)

(make-instance ’rectangle

:w w :h h

:x (x scalable) :y (y scalable)))

This implementation is similar to the Java or Kotlin implementations presented in Sec-

tions 6.2 and 6.3.2. One notable difference is the lack of movable and scalable interfaces.
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CLOS does not associate methods to classes or interfaces, but instead to generic functions.

Methods can then target any type of objects, without the need of inheritance or subtyping.

We can then implement move and scale as functions:

(defun move (movable dx dy)

(update-movable movable

(+ dx (x movable))

(+ dy (y movable))))

(defun scale (scalable scale)

(update-scalable scalable

(* scale (w scalable))

(* scale (h scalable))))

The lack of static typing makes this implementation shorter and simpler than the Java

or Kotlin ones. It also does not share the method declaration disadvantage: the move

and scale functions look like idiomatic Common Lisp functions. However, it still retains

the scalability limitation. Adding attributes to any of the data structures would require

modifying the various update Factory Methods to include these new attributes.

6.5.2 Extending Common Lisp

To solve the scalability issue, we must remove the need for these update Factory Meth-

ods. In Section 6.3.1, we presented a Clojure implementation which made use of functional

updating instead of Factory Methods. However, Clojure uses property lists instead of

objects and could use the assoc function to operate on those lists. Our Common Lisp

implementation uses objects and no language feature currently exist to update an object in

a functional way. Thanks to Common Lisp’s meta-programming capabilities, we can add

such a feature to the language.

To add functional updating, we first need a way to clone an object, similar to the copy

method of data classes in Kotlin. We can create a clone-object function by using the
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closer-mop2 compatibility layer in Common Lisp. This layer is required to standardize the

Meta-Object Protocol (MOP) across the many Common Lisp implementations. Specifically,

we need it to obtain the list of attributes in an object. Our clone-object function looks

like this:

(defun clone-object (instance)

(let* ((class (class-of instance))

(clone (allocate-instance class)))

(dolist (slot-name

(mapcar #’closer-mop:slot-definition-name

(closer-mop:class-slots class)))

(when (slot-boundp instance slot-name)

(setf (slot-value clone slot-name)

(slot-value instance slot-name))))

clone))

This function creates a shallow copy of a given object. A shallow copy is sufficient

when working with immutable code, as embedded data structures are also immutable. We

could use our clone-object function to implement the move and scale functions directly.

Instead, we will go one step further and create a macro with a structure idiomatic to

Common Lisp. We create the with-new macro:

(defmacro with-new (slots instance &body body)

(let ((instance-sym (gensym)))

‘(let ((,instance-sym (clone-object ,instance)))

(with-slots ,slots ,instance-sym

,@body

,instance-sym))))

This macro is structurally similar to the with-slots macro, which is used to update

2https://github.com/pcostanza/closer-mop
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the attributes of an object. Our macro does the same, but instead of modifying the object

in place, creates a copy and modifies the copy instead.

We were able to easily add the new feature to Common Lisp because of its meta-

programming support. Macros can be packaged into libraries to create language extensions

without needing to develop a third-party tool. If we tried implementing this new feature

in Java, we would need to develop a pre-compiler to parse and restructure the code into

proper Java before sending it to the compiler. This is the approach used by tools such as

AspectJ, which adds AOP to Java.

We can use the new with-new feature to implement the move and scale functions:

(defun move (movable dx dy)

(with-new (x y) movable

(incf x dx)

(incf y dy)))

(defun scale (scalable scale)

(with-new (w h) scalable

(setf w (* scale w))

(setf h (* scale h))))

We no longer need the update Factory Methods and our code looks like idiomatic Com-

mon Lisp code3. This implementation solves the scalability issue, as adding new attributes

to the data structures will not impact the rest of the code. Adding new functions is also

very simple, as there is almost no difference between the implementation of an immutable

function and a mutable one. Because the code looks like idiomatic Common Lisp, the added

complexity and the learning curve are kept to a minimum.

3If we were to implement this example using mutable objects instead, the code would be exactly the
same, but replacing with-new with with-slots, which is part of the base language. Nothing else would need
to change in the code.
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6.6 Conclusion

In this chapter, we discussed problems arising from the combination of OOP and im-

mutability regarding method overriding and covariance of the return type.

We analysed a naive implementation of a running example and observed that it had

code duplication and scalability problems, caused by a need for multiple inheritance and

return-value polymorphism. We proposed a design pattern as a solution to mitigate those

problems, based on the Factory Method design pattern.

We first presented our design pattern in Java to show its general implementation and

discussed the limitations of this implementation. While it does mitigate the problems with a

naive approach, it introduces some complexity, decreases understandability and readability,

as well as increases the learning curve.

We then presented its implementations in other languages, namely Clojure and Kotlin.

We reported that the Clojure implementation was idiomatic to the language thanks to the

presence of functional updating. The Kotlin implementation was closer to the Java one, as

they both are statically-typed languages. Kotlin could also make use of functional updating

to solve the scalability problem present in the Java implementation.

We finally presented an implementation of the design pattern in Common Lisp, showing

that it had the same scalability problem present in other implementations, except Clo-

jure. We then extended the language by adding a functional updating feature. Using this

new feature, we created a new implementation with idiomatic Common Lisp code and no

scalability issue.

We answer our main research question: Is it possible to reuse non-destructive mutators

via polymorphism when combining immutability and OOP subtyping?

We presented a design pattern that allows the reuse of non-destructive mu-

tators via traits or interfaces. Our pattern requires support for traits or default method

implementations in interfaces. Furthermore, we showed that to eliminate code duplication

and resolve the scalability issue completely, functional updating and dynamic typing are

necessary. Functional updating in particular is an essential feature when working with
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immutability.
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Chapter 7

Conclusion and Future Work

In this thesis, we asked four Main Research Questions to answer our thesis statement.

We presented various language features that could be added to OOP to solve the underly-

ing issues behind design patterns. We demonstrated that immutability could improve the

understandability and granularity of OOP programs. We studied immutability-related fea-

tures and found that adding them to OOP languages can improve maintainability, reduce

code duplication and improve scalability.

We first performed amapping study of the literature to catalogue the language features

suggested by researchers to improve OOP design patterns. We then explored the impact

of immutability on OOP software development. We also studied a set of language features

added to C# that improved immutability support. We finally solved a problem in software

that combines OOP and immutability by introducing a design pattern, and improving that

solution with functional updating. What follows is a summary of our findings.

7.1 Findings

In Chapter 3, we presented a mapping study of the primary studies on language features

to improve Object-Oriented Programming design pattern implementations. We asked the

Main Research Question 1: What language features have been suggested to improve

design pattern implementations? Our objective in finding these language features was to
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improve the OOP paradigm itself. Design patterns are solutions to recurring problems, and

thus, including features in an OOP language that makes it easier to solve these problems

makes the paradigm and languages themselves easier to use for practical purposes. The main

contribution of this chapter was a catalogue of 18 language features claiming to improve

design pattern implementations. This catalogue can be used as a road map of existing

literature that we intend to use to research improvements to the OOP paradigm. In the

rest of our thesis, we chose to focus on one of the least explored language features in our

catalogue: immutability.

Chapter 4 reported a multi-method exploratory empirical study on the impact of im-

mutability on object-oriented software development. We asked the Main Research Ques-

tion 2: What is the impact of immutability on object-oriented development? We performed

an experiment on 67 undergraduate students to assess the impact of using immutability in

OOP. The treatment group had to develop a program using OOP and immutability, while

the control group would develop the same program, but using classical mutable OOP. We

found no significant negative impact related to using immutability on programs or par-

ticipants. By extracting measures from the code, we observed an increase in number of

methods and a decrease in method size as well as number of comments. The survey of the

participants showed lower perceived workload, difficulty, and complexity by the participants

in the treatment group. Teams using immutability perceived the difficulty of the project

to be lower than the other teams. We concluded that the disadvantages of using

immutability in the context of OOP are outweighed by the advantages.

Chapter 5 was a multi-method empirical study on the impact of immutability-related

features added to C# from 2017 to 2022. We asked the Main Research Question 3: Do

the recently added immutability-related features have a positive impact on writing immutable

code in C#? We performed an experiment on 12 participants, 10 of whom were graduate

students, and 2 professional developers. The treatment group would analyse and extend

a program made using the new features, while the control group would do the same on

a similar program made without using the new features. The treatment group programs

showed a higher Maintainability Index, lower Cyclomatic Complexity, and lower Number
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of Executable Lines of Code than the control group programs. We expected that some

participants in the control group would choose a Visitor-based approach to extend the

program, but every participant instead used a pattern matching approach. We concluded

that the immutability-related language features added to C# have a positive

impact when used to implement immutable programs.

Finally, Chapter 6 presented a problem that emerges with the combination of OOP and

immutability. We asked the Main Research Question 4: Is it possible to reuse non-

destructive mutators via polymorphism when combining immutability and OOP subtyping?

We analysed a naive implementation of a running example and found that it had code

duplication and scalability problems. We presented a design pattern to solve this problem

in existing OOP languages. Our first implementation was in Java, which mitigated the

problem, but introduced increased complexity, decreased understandability and readability,

as well as an increased learning curve. We reported that the Clojure implementation was

idiomatic to the language thanks to the presence of functional updating. The Kotlin imple-

mentation was closer to the Java one, as they both are statically-typed languages. Kotlin

could also make use of functional updating to solve the scalability problem present in the

Java implementation. We showed that it was possible to reuse non-destructive

mutators using our design pattern.

To test our findings, we implemented the new design pattern in Common Lisp, a

dynamically-typed language with OOP support. We extended Common Lisp using its

meta-programming capabilities (i.e., macros) and added a functional updating feature to

the language. We showed that by using functional updating and a dynamically-

typed OOP language, we could solve the problem without the need for a design

pattern and without any increased complexity or scalability issues.

Thus, we fulfil our thesis statement: Object-Oriented Programming can be im-

proved by adding language features that solve the underlying issues behind

design patterns. Among many features, we focused on immutability, which

we demonstrated can increase understandability and granularity of the code.

Immutability-related features, such as records, functional updating, pattern
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matching, and multiple values return, can be added to OOP languages to im-

prove maintainability, reduce code duplication and improve scalability.

7.2 Future Work

There are many open research opportunities that arise from the results of this thesis.

We divide some of them into short, mid, and long-term future work, and discuss them in

what follows.

7.2.1 Short Term

Out of the 18 language features catalogued in Chapter 3, we only explored immutability

in this thesis. The other 17 features could each make for interesting research topics in the

future, in particular studying further their interaction with design patterns and with the

OOP paradigm. We find Reactive Programming particularly promising in that respect and

have already started studying how its concepts can be integrated into OOP to solve the

Observer pattern.

At various points in this thesis, we discussed Rust, a relatively new programming lan-

guage with a unique take on mutability. Rust uses an ownership system to determine which

part of a program can mutate an object, and only allows one “owner” of any object. Other

parts of the program can only “read” the object, unless they are given ownership. We are

interested in studying the impact of this ownership system on OOP and how it interacts

with structural design patterns.

Pattern matching interacts with OOP in an interesting way. As discussed in Chapter

5, the Visitor design pattern can be replaced by pattern matching in certain situations. In

Chapter 2, we also discussed multimethods, or multiple dispatch, which can also be used

to replace the Visitor pattern. Interestingly, multimethods were not featured in our feature

catalogue in Chapter 3. Future work could study the interaction between pattern matching,

multimethods, and the Visitor pattern to find the best way of solving its underlying problem.
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7.2.2 Mid Term

An alternative to studying the language features directly would be to study individual

design patterns. The features mapped in Chapter 3 each impact specific design pattern,

thus future research could focus on specific patterns and discuss features that impact them

and perhaps how to combine these features to improve the pattern implementations or solve

their underlying problems.

We want to perform a quasi-replication of Chapter 4 using other programming languages,

including object-oriented programming languages with immutable properties. In particular,

we want to focus on the impact of immutability on code granularity and understandability,

as well as compare the workload between mutable and immutable software development.

Considering the relative difficulty faced by the students in participating in the experi-

ment of Chapter 5, it would be interesting to replicate that study using only professional

developers instead. While there is a risk that professionals would be biased by the features

that they use regularly, they would bring additional insight into the impact of the new

features. In particular, a replication study could confirm whether or not the complexity of

the code is affected by the presence of the new features. Future studies could also consider

other language features, such as the functional-style LINQ in C# or Streams in Java.

7.2.3 Long Term

An interesting question to ask is whether it is possible to create a language with no need

for design patterns. By adding language features to solve their underlying problems, could

all design patterns “disappear”? Perhaps we could categorize design patterns between those

that are likely to be “solved” and those that are unlikely.

More generally, with the advent of generative machine learning approaches, could lan-

guage features and design patterns become uninteresting in the future? Perhaps new ways

of programming will make it so that we will not care anymore how code is implemented

and design patterns and language features would effectively become obsolete.

We intend to continue researching interactions between OOP and FP. When combining
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the two approaches, problems and solutions in the form of other design patterns may emerge,

giving us more insight into how to improve OOP languages and which features are needed.

Perhaps a new paradigm could also emerge from the combination of OOP and FP.

7.3 Final Word

Thus, we contributed to a better understanding of programming languages, and the

interactions between language features and design patterns as well as the benefits and

limitations of each. Programmers can confidently use immutability features and language

designers can, and should, add more of these features in their languages, confident of their

benefits for the programmer.
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Staa. “Design patterns as aspects: a quantitative assessment”. In: Journal of the

Brazilian Computer Society 10.2 (Nov. 2004), pp. 42–55.

[81] Mahnoosh Shahidi, Mehrdad Ashtiani, and Morteza Zakeri-Nasrabadi. “An auto-

mated extract method refactoring approach to correct the long method code smell”.

In: Journal of Systems and Software 187 (2022), p. 111221.

[82] Samuel S. Shapiro and Martin B. Wilk. “An analysis of variance test for normality

(complete samples)†”. In: Biometrika 52.3-4 (Dec. 1965), pp. 591–611.

184



[83] Raed Shatnawi. “A Quantitative Investigation of the Acceptable Risk Levels of Object-

Oriented Metrics in Open-Source Systems”. In: IEEE Transactions on Software En-

gineering 36.2 (2010), pp. 216–225.

[84] Matthias Springer, Hidehiko Masuhara, and Robert Hirschfeld. “Classes as Layers:

Rewriting Design Patterns with COP: Alternative Implementations of Decorator, Ob-

server, and Visitor”. In: Proceedings of the 8th International Workshop on Context-

Oriented Programming. ECOOP ’16: European Conference on Object-Oriented Pro-

gramming. Rome Italy: ACM, July 17, 2016, pp. 21–26.

[85] Jeffrey Stylos and Steven Clarke. “Usability Implications of Requiring Parameters in

Objects’ Constructors”. In: International Conference on Software Engineering. 2007.

[86] Antero Taivalsaari. “On the notion of object”. In: Journal of Systems and Software

21 (1993), pp. 3–16.

[87] R. Teebiga and Senthil S. Velan. “Comparison of applying design patterns for func-

tional and non-functional design elements in Java and AspectJ programs”. In: 2016

International Conference on Advanced Communication Control and Computing Tech-

nologies (ICACCCT). 2016 International Conference on Advanced Communication

Control and Computing Technologies (ICACCCT). Ramanathapuram, India: IEEE,

May 2016, pp. 751–757.

[88] Matthew F. Tennyson. “A study of the data synchronization concern in the Observer

design pattern”. In: 2010 2nd International Conference on Software Technology and

Engineering. 2010 2nd International Conference on Software Technology and Engi-

neering (ICSTE 2010). San Juan, PR, USA: IEEE, Oct. 2010, p. 5608911.

[89] “The Pascal Programming Languages”. In: ANSI/IEEE 770X3.97-1983. 1983.

[90] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. “Ten years

of JDeodorant: Lessons learned from the hunt for smells”. In: 2018 IEEE 25th Inter-

national Conference on Software Analysis, Evolution and Reengineering (SANER).

2018, pp. 4–14.

185



[91] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding Reference Immutability

to Java”. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications. OOPSLA ’05. San

Diego, CA, USA: Association for Computing Machinery, 2005, pp. 211–230.

[92] Christopher Unkel and Monica S. Lam. “Automatic Inference of Stationary Fields:

A Generalization of Java’s Final Fields”. In: Proceedings of the 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’08.

San Francisco, California, USA: Association for Computing Machinery, 2008, pp. 183–

195.

[93] Cheng Zhang and David Budgen. “What Do We Know About the Effectiveness of

Software Design Patterns”. In: IEEE Transactions on Software Engineering 38 (2012),

pp. 1213–1231.

[94] Weixin Zhang and Bruno C. D. S. Oliveira. “EVF: An Extensible and Expressive

Visitor Framework for Programming Language Reuse”. In: (2017). In collab. with

Marc Herbstritt. Artwork Size: 32 pages Medium: application/pdf Publisher: Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany,

32 pages.

[95] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Aadam Kielun, and Michael D.

Ernst. “Object and reference immutability using Java generics”. In: 6th joint meeting

of the European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering. ACM, 2007, pp. 75–84.

186


	List of Figures
	List of Tables
	Introduction
	Research Hypothesis
	Thesis Overview and Contributions
	Chapter 2: Background
	Chapter 3: Mapping Suggested Language Features for Improving Object-Oriented Design Patterns
	Chapter 4: Exploring the Impact of Immutability on Object-oriented Software Development
	Chapter 5: Studying Features for Immutability Support in C#
	Chapter 6: Solving Immutable Method Reusability Problems with a New Design Pattern
	Chapter 7: Conclusion and Future Work


	Background
	On Object-Oriented Programming
	SOLID and GRASP Principles

	On Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioural Patterns

	On Design Pattern Improvements
	On Mutability and Immutability
	Impact of Immutability
	Immutability in Programming Languages

	Summary

	Mapping Language Features for Improving OOP Design Patterns
	Background
	Related Studies
	Methodology
	Keywords for the Search Query
	Databases for the Search Query
	Query Building and Execution
	Filtering
	Snowballing
	Compilation Form

	Results
	Meta-Programming
	Reactive Programming
	Functional Programming
	Object-Oriented Programming
	Design Patterns
	Measures
	Types of Papers
	Timeline

	Discussion
	Language Features
	Design Patterns
	Measures
	Empirical Studies

	Recommendations
	Threats to Validity
	Interval Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion

	Exploring the Impact of Immutability on OOP Software Development
	Background
	This Study
	Motivating Example
	Related Studies

	Method
	Quantitative Measures
	Data Collection
	Statistical Tests
	Research Question 4.1

	Qualitative Measures
	Data Collection
	Statistical Tests
	Research Question 4.2
	Research Question 4.3

	Discussion
	Main Research Question

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion

	Studying New Features for Immutability Support in C#
	Background
	Method
	Language Features
	Pilot Study
	Participants
	The Base Programs
	Survey

	Results
	Program Analysis
	Survey Analysis
	Interview

	Discussion
	Research Question 5.1
	Research Question 5.2
	Research Question 5.3
	Main Research Question

	Threats to Validity
	Interval Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion

	Solving Immutable OOP Reusability Problems with a New Design Pattern
	Problem
	Specifications
	Problem 1: Inheritance and Immutability
	Problem 2: Return-value Polymorphism

	Solution: The Immutable Factory Method
	Addressing Problem 1: Inheritance
	Addressing Problem 2: Return-type Polymorphism

	Variants in Other Languages
	Clojure
	Kotlin

	Discussion
	General Form
	Disadvantages and Limitations
	Language Feature: Functional Updating
	Dynamic vs Static Typing

	Common Lisp Implementations
	Implementation in base Common Lisp
	Extending Common Lisp

	Conclusion

	Conclusion and Future Work
	Findings
	Future Work
	Short Term
	Mid Term
	Long Term

	Final Word

	Bibliography

