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Abstract

Effects of Processing Time Distributions and Rescheduling Policies on Efficiency and
Instability for Single Machine Settings

Chelsey Hvingelby

Operating room (OR) scheduling is becoming increasingly important and poses a challeng-

ing problem due to the presence of uncertainty. Motivated by OR scheduling, we study the single

machine scheduling problem with uncertainty in both dynamic arrivals and stochastic processing

times. We use rescheduling to handle uncertainty and study both efficiency and instability (a mea-

sure of schedule deviation). The chosen efficiency metric, final total weighted tardiness (FTWT), is

the total weighted tardiness of the final schedule.

We develop a discrete-event simulation framework with embedded optimization to conduct two

computational experiments. The first experiment analyzes the joint effect of different processing

time distributions and rescheduling policies for the single machine scheduling problem with deter-

ministic processing times and dynamic arrivals. Secondly, we analyze the joint effect of different

processing time distributions and rescheduling policies for the single machine problem with stochas-

tic processing times and dynamic arrivals.

For both experiments, we find that the variance of the processing time distributions has a greater

impact than the shape of the distribution. Furthermore, the eventJobCompletion policy, which

reschedules every time a job finishes processing, performs well across all distributions in both ex-

periments. For the stochastic experiment, the eventJobCompletion policy also stood out as being

the most consistent across all processing time distributions. Finally, in both experiments, we find

that the average length of the rescheduling interval does not have an effect on total instability and

FTWT.
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Chapter 1

Introduction

Uncertainty is unavoidable and can be a significant challenge in scheduling problems. This

thesis is motivated by operating room (OR) scheduling, which has multiple sources of uncertainty

(e.g., patient demand, uncertain surgery duration time, worsening patient conditions, machine or

equipment breakdowns, and availability of upstream or downstream bed or personnel resources).

Given the high level of uncertainty and the expense of ORs, OR scheduling has received a significant

amount of attention in the literature. Recent advances in data collection using sensors and real-time

monitoring of events (e.g., digital twins) have contributed to an increase in data-driven decision-

making in scheduling, which emphasizes reacting to real-time events to guide scheduling decisions.

This thesis assumes a predictive-reactive approach of rescheduling is used to handle the un-

certainty in dynamic arrivals and stochastic processing times. The central goal of this thesis is to

determine the effect of various rescheduling policies and processing time distributional assumptions

on efficiency (the performance of the system in the given objective function) and instability (the cost

of schedule changes). To the best of our knowledge, within the rescheduling and OR scheduling

literature, this thesis is the first to explore the joint effect of rescheduling policies and processing

time distribution assumptions. Our findings, consistent with previous research, demonstrate that

the rescheduling policies which utilize the most complete and accurate information perform best,

regardless of the rescheduling frequency. Furthermore, the variance of the processing time distribu-

tions has more impact than the shape of the distribution itself.

1



1.1 Motivations

Our research is motivated by OR scheduling where both the efficiency and instability are im-

portant. In 2010, Cardoen et al. wrote that, “It is somehow contradictory to see that in a domain

as practical as operating room planning and scheduling, so little research seems to be effectively

applied” [1]. Barriers to simulation and machine learning model implementation in the health care

industry include resistance to change from the users and organization [4], lack of interpretability [5],

complexity [6], and difficulty to use [7]. While not unique to the health care industry, the barriers to

implementation are heightened in relation to OR scheduling due to the sensitive and consequential

nature of decisions and a high ethical standards. In this thesis we use rescheduling, which refers to

the process of updating an existing schedule in response to realizations of uncertainty [8]. The main

components of a rescheduling approach consist of the rescheduling strategy (whether schedules

are developed in a predictive-reactive approach or a reactive approach such as a dispatching rule),

rescheduling policy (when to perform the rescheduling), and rescheduling method (how the new

schedule is generated) [8]. Employing a rescheduling approach to scheduling under uncertainty of-

fers flexibility by allowing an organization to implement a rescheduling method which is best suited

to the specific application. For example, a rescheduling method which is close to current practice

such as a rule-based heuristic may reduce resistance to change and a rescheduling method which is

highly interpretable is likely to increase the chance of implementation. Furthermore, this reschedul-

ing method can be updated with organizational changes or adapted to a more complex model as

organizational resistance reduces. Motivated by the resistance to change, lack of interpretability,

and complexity barriers to model implementation, we choose to study the effect of different dis-

tributional assumptions in the context of rescheduling. Larsen and Pranzo list three advantages of

dynamic rescheduling compared to other approaches such as stochastic programming: tractability

(reasonable computational times depending on the application), ease of implementation (can use

a pre-existing deterministic solver within a rescheduling framework), and the fact that uncertainty

does not need to be embedded into the solver [9]. Although (depending on the chosen rescheduling

strategy, policy, and method) rescheduling may perform worse than a different solution approach

in terms of the performance metrics, we follow the guiding principle that “a small implemented

2



improvement is preferable than a big one on paper” [4]. When considering a rescheduling approach

to OR scheduling problems, it is important to consider a measure of instability which may include

inconveniences caused to doctors, the hospital, and or patients [10].

Specifically in the OR scheduling and planning literature, there exists a disparity among the

statistical distributions used to model surgery durations or processing times. This field faces a par-

ticular difficulty in generating reproducible research due to high privacy requirements surrounding

health care data. This thesis is motivated by the question of the impact of the choice of statisti-

cal distribution to model processing times, assuming equal variance, on efficiency and instability.

In particular, the objective of this thesis is to determine the combined effect of rescheduling poli-

cies and processing time distributional assumptions on final total weighted tardiness (FTWT) and

instability.

1.2 Thesis Overview

Chapter 2 provides a review of the relevant literature pertaining to this thesis. The chapter begins

with a discussion of rescheduling and the metrics associated with it: efficiency and instability. The

OR scheduling problem and its solution approaches are then described. This chapter includes five

main sections: scheduling under uncertainty, rescheduling and relevant metrics, OR scheduling,

positioning our work within the existing literature, and finally, a concluding section.

Chapter 3 details the problem setting of a single machine rescheduling problem with stochastic

processing times and dynamic arrivals in a non-preemptive environment with the objective of mini-

mizing total weighted tardiness. This chapter also presents the definitions of efficiency, specifically

FTWT, and instability used throughout the thesis.

In Chapter 4, we outline the methodology used, including the discrete-event simulation (DES)

framework, the various rescheduling policies we consider, and the complete rescheduling method

used to solve the subproblems during each rescheduling action.

The experimental study is outlined in Chapter 5, including data acquisition using Synthea data

and parameter setting. The simulation setup includes generating the initial states, and determining

3



the number of replications. Finally, the experimental outline and results are included for each ex-

periment. Experiment 1 focuses on the deterministic case where the only source of uncertainty is

in the dynamic arrival of jobs while experiment 2 focuses on the case where there is uncertainty in

both the dynamic arrival of jobs and the processing times of jobs. Within the results section of each

experiment, we perform the following analyses:

• We compare total instability and FTWT by scenario (combination of rescheduling policy and

processing time distribution). In particular, we answer the following three questions:

(1) Does the assumption of a specific statistical distribution for processing times have an

effect on FTWT and total instability?

(2) Can we determine a rescheduling policy which performs well under all distributions?

(3) Can we identify a rescheduling policy whose performance is least affected by the differ-

ent processing time distributions?

• We determine the effect of the average length of the rescheduling interval on total instability

and FTWT.

• Given the time limit we impose on the complete rescheduling method, we analyze the percent

of suboptimal solutions per scenario.

Finally, Chapter 6 concludes this thesis by summarizing the main contributions and proposing

potential areas for future work.

1.3 Summary of Contributions

First, we develop a DES framework for dynamic single machine rescheduling which can be used

to study the effects of input distributions and rescheduling policies on the instability and efficiency

metrics. The proposed framework contributes to bridging the gap between scheduling and simula-

tion literature by evaluating the effect of input distributional assumptions for scheduling problems.

Second, we analyze the joint effect of different processing time distributions and rescheduling

policies for the single machine problem with deterministic processing times and dynamic arrivals.

4



Specifically, we use complete rescheduling and consider various periodic, event-driven and hybrid

rescheduling policies.

Lastly, we analyze the joint effect of different processing time distributions and reschedul-

ing policies for the single machine problem with stochastic processing times and dynamic ar-

rivals. Again, we use complete rescheduling and consider various periodic, event-driven and hybrid

rescheduling policies.

To compare total instability and FTWT by scenario, we answer the three questions posed in the

previous section as follows:

(1) The variance of the distribution has a greater impact on FTWT and total instability than the

shape of the distribution for both experiments.

(2) For both experiments, the eventJobCompletion policy performs well across all distributions.

(3) For the experiment with the deterministic processing times, no policy stood out as being

least affected by the different processing time distributions. However, for the stochastic ex-

periment, we identify the eventJobCompletion policy as being least affected by the different

processing time distributions.

Furthermore, in both experiments, we find that the average length of the rescheduling interval does

not have an effect on total instability and FTWT and that the eventHighPriority policy reaches the

computational time limit for solving subproblems more frequently than the remaining policies.

5



Chapter 2

Literature Review

This thesis tackles the single machine scheduling problem with uncertainty in stochastic pro-

cessing times and dynamic arrivals. The goal is to assess the effects of different processing time

probability distributions and rescheduling policies on efficiency and instability. Relevant literature

therefore includes scheduling under uncertainty, rescheduling as a particular approach to scheduling

under uncertainty, and an analysis of efficiency and instability metrics when performing reschedul-

ing. In all of the previously mentioned areas of literature, we focus on single machine scheduling.

Since our work is motivated by operating room (OR) scheduling, we review existing OR scheduling

literature with an emphasis on literature which employs rescheduling.

This chapter is divided into the following sections:

• Section 2.1 - Scheduling Under Uncertainty

• Section 2.2 - Rescheduling

◦ Section 2.2.1 - Efficiency and Instability Definitions

• Section 2.3 - Operating Room Scheduling

• Section 2.4 - Positioning Our Work in Existing Literature

• Section 2.5 - Conclusions

6



2.1 Scheduling Under Uncertainty

Uncertainty can be related to resources or jobs [8, 11, 12]. Potential sources of uncertainty

related to resources include machine breakdowns, resource availability (e.g. staffing uncertainty),

and material availability (e.g. supply chain issues). Job-related uncertainty may include stochastic

processing times, arrivals of urgent jobs, cancellations or late arrivals, and job priorities changing

over time. Scheduling under uncertainty is a general term for scheduling where the problem includes

one or more forms of uncertainty. We focus on dynamic scheduling, defined as scheduling where

the set of jobs are not known apriori and jobs arrive over time [8, 13, 14, 15, 16]. Furthermore,

we consider both the deterministic case (where the processing time of a job is known) and the

case where the processing times are stochastic. Aytug et al. identify three key components of

uncertainty: the cause of the uncertainty, the context of the uncertainty such as the state of the

surrounding environment, and the result of the uncertainty [17].

Scheduling under uncertainty is often categorized as completely reactive scheduling, robust

(proactive) scheduling, or predictive-reactive scheduling [11, 17]. Completely reactive scheduling

does not involve scheduling ahead of time and usually employs heuristic approaches or dynamic

dispatching rules [11, 17]. Robust scheduling attempts to create a predictive schedule to minimize

the effects of uncertainty by using information about the uncertainties [11, 17]. Lastly, predictive-

reactive scheduling consists of an initial schedule which is adapted in response to real time events in

a process referred to as rescheduling [11, 17]. Bidot et al. introduce a classification of approaches

for scheduling under uncertainty including proactive (robust), revision (predictive-reactive), pro-

gressive, and mixed [18]. Progressive consists of generating short-term schedules in a rolling time

horizon and the mixed category can be defined as mostly revision with progressive techniques [18].

Online and offline solution methods are described in [19] where offline methods create schedules

before realizations of uncertainty occur and online methods react to realizations of the uncertainty

in real-time. Generating schedules offline, such as creating robust schedules, often incurs a signif-

icant computational cost while online methods may sacrifice performance in order to respond to

realizations of uncertainty in a timely manner [19].
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Montana lists four solution methodologies for solving dynamic scheduling problems and de-

scribes conditions under which each methodology performs well: predictive-reactive approaches

are useful when disruptions to the original schedule are minor, continuous combinatorial optimiza-

tion (a predictive-reactive approach in which the same scheduling algorithm is used for the original

and subsequent schedules) is beneficial when the future is relatively predictable and the compu-

tational cost of combinatorial optimization is not prohibitive, completely reactive (dispatch rules)

perform well when the level of uncertainty is high, and stochastic optimization is useful when there

exists uncertainty which can be described statistically [13]. Our goal is to evaluate rescheduling

policies and the effect of processing time probability distributions while keeping the method of con-

structing a schedule for a set of jobs fixed. Specifically, we use mixed-integer programming (MIP)

to construct the schedule in each subproblem. Since the focus is on rescheduling, we do not review

papers on stochastic optimization, robust optimization, or heuristic solution methodologies.

2.2 Rescheduling

Vieira et al. define rescheduling as “the processes of updating an existing production sched-

ule in response to disruptions or other changes” [8]. Rescheduling environments can be static,

meaning there is a finite set of jobs, or dynamic, in which case there is an infinite set of jobs [8].

Rescheduling strategies determine whether a schedule is generated or not, such as a dispatching

rule or predictive-reactive strategy [8]. Rescheduling policies determine when to reschedule and

include periodic, event-driven, and hybrid policies [8, 11]. Finally, rescheduling methods describe

how schedules are created and consist of schedule generation methods, such as complete and partial

rescheduling, and schedule repair methods, such as a right-shift heuristic [8, 12]. This thesis con-

siders a dynamic rescheduling environment, a predictive-reactive rescheduling strategy, a complete

rescheduling method, and explores various rescheduling policies.

Three main performance measures that are considered when performing rescheduling are sched-

ule efficiency, schedule instability, and rescheduling costs [8]. Schedule efficiency measures how

well a schedule performs in terms of the objective function being considered (e.g. total weighted

tardiness, or makespan) [8] while instability measures the disruption caused by schedule changes
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[15]. These two performance metrics often conflict as “rescheduling involve[s] trade-offs between

quickly responding to information about the unexpected events versus system instability resulting

from the response” [20]. An exploration of the various efficiency and instability metrics defined in

literature is presented in Section 2.2.1.

Rescheduling may be utilized to react to realizations of uncertainty with the goal of maintain-

ing feasibility or improving performance. Bahroun et al. propose a flexible decision support tool

which constructs a schedule using a rolling horizon strategy, and implements automatic or manual

corrections if the schedule becomes infeasible [21]. Hence, the framework proposed by [21] uses an

event-driven rescheduling policy with the infeasibility of the schedule being the event that triggers

rescheduling. However, they do not include functionality to reschedule to increase performance

under new information, unless the schedule becomes infeasible.

Bidot et al. propose a general rescheduling framework which combines proactive, revision, and

progressive techniques using a directed acyclic graph independent of the solver [18]. The nodes

represent schedules while the edges represent transitions, either through a progression or revision

technique, between schedules [18]. Larson and Pranzo bridge the gap between literature and prac-

tice by expanding on the work of [18] with the addition of a supervisor and solution read/write

modules that would be required to integrate the framework in practice [9]. Pfeiffer et al. present

a discrete-event simulation (DES) framework to compare rescheduling policies while considering

both instability and efficiency metrics for two different problem settings: a single machine envi-

ronment with uncertainty in arrivals and a job shop environment with uncertainty in job processing

times [15]. However, the authors do not consider the joint effect of uncertainty in arrivals and pro-

cessing times. Cowling and Johansson propose a framework to deal with incoming data regarding

uncertainties, specifically in the duration of jobs, and decide on an appropriate action such as a

schedule repair or complete rescheduling [12].

A dynamic job shop scheduling problem with the objective of minimizing total tardiness is

solved in [22] using a periodic rescheduling approach. Recognizing that early idle times limit the

flexibility in the schedule, the authors introduce a monotonically decreasing flexibility term in the

objective function to penalize early idle times [22]. In their computational study, the authors show

that the inclusion of the flexibility term decreased instability, even though minimization of instability
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was not the objective. [22].

Based on the literature reviewed in this thesis, there is a consensus regarding the existence of

a trade-off between schedule efficiency and instability [9, 12, 15, 18, 20, 23, 24]. For a single

machine environment with uncertainty in dynamic arrivals and deterministic processing times, it

has been shown that increasing the rescheduling interval (rescheduling less frequently) decreases

instability but leads to a worse efficiency [15]. However, it has also been shown that minimal

improvements to efficiency are made past a certain number of rescheduling actions [14, 17, 18, 23].

Early knowledge of uncertain events and ensuring the most recent information regarding the state of

the system appear to be more important than the rescheduling frequency and lead to more effective

rescheduling actions [9, 20].

2.2.1 Efficiency and Instability Definitions

Efficiency and instability are two performance metrics which can be used to weigh the benefit

gained from performing rescheduling with the disruption caused by changing the schedule. Gener-

ally, performing a rescheduling action results in better efficiency and increased instability compared

to a scenario where no rescheduling action is performed. The exact definition of efficiency and

instability varies based on the problem formulation. Formal definitions of instability and efficiency

used throughout this thesis can be found in Sections 3.3.3 and 3.3.4 respectively. The focus of this

section is to examine and compare the various efficiency and instability definitions present in the

literature. Although instability can sometimes be referred to as nervousness or stability (with the

goal of maximizing) in the literature, we use the term instability throughout this literature review

for consistency.

Since efficiency relates to the objective function, the goal can either be to minimize or maxi-

mize the objective function. However, in the rescheduling literature we explored, the majority of

efficiency metrics focus on minimizing an objective function. Some of the efficiency metrics present

in literature include maximum tardiness [25], mean tardiness [22], makespan [9, 24, 26], mean flow

time [15], average completion time [12], and maximum lateness [23]. An example of an efficiency

metric that should be maximized is the fraction of jobs completed on time [13]. In [14], a linear

cost function of average flow time and set up frequency is used as the efficiency metric.
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Cowling and Johansson define a general utility function which measures the benefit gained by

performing rescheduling compared to a do nothing strategy which does not react to realizations

of uncertainty [12]. For a single rescheduling event, the general utility function is computed as

U = vopt − v0 where vopt and v0 represent the objective function value given by the schedule when

rescheduling is employed and the schedule if the do nothing strategy is employed respectively [12].

In the case where the objective is minimization, the utility should be less than or equal to zero

with the magnitude representing the benefit obtained from rescheduling. Since the utility metric

is generic, any of the previously mentioned objective functions can be applied. However, the do

nothing strategy is highly dependent on the problem formulation.

To compare the various instability metrics present in the literature, we define the following vari-

ables (which we attempt to keep consistent with the instability definition in Section 3.3.3). Bj and

Cj represent the start and completion times of job j in the schedule prior to rescheduling while B′
j

and C ′
j represent the start and completion times of job j in the schedule created from rescheduling.

Additional notation that is specific to an instability definition will be described throughout.

Some simple measures of instability that are applicable for both single and parallel machine

environments are number of rescheduling actions [18, 23] and rescheduling frequency, or the aver-

age number of rescheduling actions performed per time unit [14]. However, these measures do not

account for the magnitude of changes occurring per rescheduling action.

Cowling and Johansson define an instability metric which is a function of the start and com-

pletion times of jobs of the schedule prior to rescheduling and the schedule produced as a result of

rescheduling [12]. The general formula is given by

I =

n∑
j=1

min{α(|Bj −B′
j |+ |Cj − C ′

j |), Dj}

where n represents the total number of jobs, α is the cost per unit of time a job is displaced, and Dj

represents the cost of outsourcing, or cancelling, job j [12]. The effects on instability come from

both the changes to the processing times of jobs as well as re-sequencing as a result of rescheduling.

While the formula provided by [12] is generic, it is used for a single machine processing problem

setting with uncertain processing times and n fixed jobs (no dynamic arrivals).
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Akkan considers a single operation insertion on a non-preemptive single machine and defines

instability as the average deviation of start times of jobs given by D̂ = 1
n−1

∑n−1
j=1 |Bj −B′

j | where

there are n − 1 jobs in the schedule prior to rescheduling [25]. Based on their literature review,

the author claims this is the most common measure of instability for single machine environments

[25]. Similarly, Branke and Mattfeld define instability as the sum of the deviation of start times of

jobs (D =
∑n−1

j=1 |Bj −B′
j |) [22]. Completion times do not need to be considered in the previous

instability definitions since processing times are assumed to be deterministic in both cases.

For a single machine problem with a single general disruption (which the authors claim can

be used to model a machine breakdown, rush order, or change in a jobs’ processing time), two

different measures of instability are discussed: a measure of starting time deviations, denoted D0,

and a measure of deviations in the sequence of jobs, denoted Ds [24]. The two metrics are defined

as D0 =
∑

j∈N ′ |B′
j −Bj | and Ds =

∑
i∈N ′ |B′

j −Br
j | respectively where N ′ represents the set of

previously scheduled jobs who have not yet completed processing at the time of rescheduling, and

Br
j is the start time of job j in the right shift schedule [24]. The right shift schedule uses the same job

sequence as the previous schedule, but shifts any jobs to the right to prevent overlap and maintain

feasibility of the single machine [24]. Although the summation in the instability definition given by

D [22] is over all jobs, jobs whose processing has completed prior to rescheduling will contribute

zero to the sum. Therefore, this metric is similar to D0 defined in [24]. The authors present a

use case for D0 as a scheduling problem where limited resources are assigned to each job and

rescheduling the resources incurs a cost while Ds could be useful for a scheduling problem where

the re-arranging of jobs is physically or spatially difficult such as pallets scheduled for shipment

[24].

Pfeiffer et al. address a limitation of the previously mentioned instability metrics by considering

the impact of the time of rescheduling relative to the starting time of jobs through the use of a term

called the actuality penalty [15]. By incorporating this additional term in the instability definition,

the authors acknowledge that a disruption caused when rescheduling a job close to its starting time

is likely more consequential than a disruption caused when rescheduling a job far in advance. The
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new penalty function is given by

¯PN =
1

|N ′|
∑
j∈N ′

[|B′
j −Bj |+

k√
Bj − T

]

where N ′ is the set of unprocessed jobs, k is the scaling factor for the actuality penalty, and T is

the time the rescheduling action occurred [15]. Wu et al. measure instability as a sum of carrying

costs (costs due to delaying jobs) and rushing costs (costs due to starting jobs earlier than previously

scheduled) [26]. Similar to the actuality penalty in [15], the authors consider the impact of the time

of rescheduling relative to the starting time of jobs for the rushing costs only through the inclusion

of the following term in the instability definition
∑n

j=1 λe
−λ(B′

j−T )yj where yj is a binary variable

which is equal to one if job j is rushed (B′
j < Bj) and λ is a tunable parameter [26].

Instability and efficiency can be considered simultaneously in the objective function [12, 14, 15,

24, 26], or as primary and secondary objectives [25]. Additionally, similar to our work, instability

may be evaluated without being included as an objective [22, 23]. As will be seen in Section 3.3.3,

our instability metric is closest to the measure of sequence deviation (Ds) given in [24].

2.3 Operating Room Scheduling

Within a hospital, OR(s), surgeons, and anesthesiologists are among the most expensive re-

sources [27] prompting a need to optimize OR scheduling. Many surgeries were cancelled in recent

years due to the limited surgery availability resulting from the COVID-19 pandemic and the de-

mand it created for hospital rooms and ventilators as well as the increased risks associated with

undergoing a surgery in the height of the pandemic [28]. Consequently, there is a substantial back-

log of elective surgeries and the increased waiting time for surgery will effect patients’ lives either

through adverse effects on prognosis, diminished of quality of life, and/or deterioration of mental

health [28]. Although the importance of optimizing OR scheduling has been highlighted in recent

years, OR scheduling is an extremely challenging problem due to its inherent uncertainty in surgery

durations and possible emergency arrivals. Furthermore, the OR schedule is highly intertwined with

schedules of other departments such as staff and upstream and downstream resources such as the
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post-anesthesia care unit [27].

Within the topic of OR scheduling, there are many possible variations of the problem. Decisions

related to OR scheduling are categorized into three levels: strategic (long term), tactical (medium

term), and operational (short term or day of) [29]. Operational may be further divided into offline

operational which usually involves elective patients only and online operational which monitors and

schedules in real time [30]. Furthermore, there are three common methods of assigning OR time to

specialty surgical groups: block scheduling, open scheduling and modified block scheduling [29].

In block scheduling, a set of predefined blocks are assigned to each surgery specialty whereas open

scheduling assigns surgeries to ORs without first dividing the ORs into specialty blocks [29]. Mod-

ified block scheduling combines the open and block scheduling methods by assigning some blocks

to specialties and leaving the remaining blocks open [29, 30]. OR scheduling can focus on inpatient

or outpatient scheduling. Inpatients are defined as patients who remain in the hospital overnight

following surgery while outpatients have a shorter hospital stay (approximately 4-6 hours) [30].

Our work focuses on the (online) operational decisions related to the sequencing and scheduling of

inpatient surgeries. Similar to [31], our approach is relevant in open scheduling environments or for

sequencing and scheduling surgeries within a pre-determined block.

We rely on survey papers [1, 2, 29, 30] to summarize some of the trends in OR scheduling

literature over the past couple of decades. While our choice of OR scheduling literature reviews

is not exhaustive, the set of chosen papers covers a broad timeline and allows for identification of

trends over time. Cardoen et al. classify 115 manuscripts published between 2000 and 2010 by pa-

tient characteristics, performance measures evaluated, the level of the decision made, the research

methodology, and the consideration of uncertainty [1]. Building on the work of [1], Samudra et

al. utilize many of the same categorizations of the literature to review 216 technical OR schedul-

ing papers published between 2004 and 2014 [2]. Based on the literature published between 2000

and 2014, non-elective patient types have received less attention than the elective patients [1, 2].

In both Venn diagrams in Figure 2.1, we observe that most of the papers which consider uncer-

tainty in the arrivals also consider uncertainty in the durations [1, 2]. Uncertainty is considered in

capacity-related problems more frequently than time assignment problems [2]. Our work lies in the

intersection of the arrival and duration uncertainty and relates to the time assignment problem.
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(a) Venn diagram of the type of uncertainty considered
based on the data from [1] (consisting of a total of 115
papers from 2000-2010).

(b) Venn diagram of the type of uncertainty considered
based on the data from [2] (consisting of a total of 216
papers from 2004-2014).

Figure 2.1: Venn diagrams of the type of uncertainty considered in papers which consider uncer-
tainty using data from [1, 2]. Note that totals may be inconsistent as some papers fall into multiple
categories.

In a more recent literature review. Rahimi and Gandomi present a thorough scientometric study

of OR scheduling papers published between 2010 and 2019 and group their results into the following

three date ranges: < 2005, 2005-2010, and 2010-2020 [29]. Contrary to [1, 2], Rahimi and Gandomi

show that non-elective patients received more attention than elective patients between 2005-2010

[29]. Rahimi and Gandomi also demonstrate that, until recently (2010-2020), deterministic problem

settings outnumbered problem settings with a consideration of uncertainty [29, Fig. 13]. Duration

uncertainty is shown to be considered more frequently than uncertainty in arrivals [29, Fig 14].

However, one must be careful in interpreting trends over time from these figures ([29, Fig. 13, Fig.

14]) as the bar graphs do not take into consideration the total number of papers published within

each date range.

Finally, Wang et al. provide a literature review of 178 papers spanning 2000-2022 with a fo-

cus on comparing inpatient and outpatient OR scheduling [30]. Only a third of papers consider

uncertainty in demand and the majority of these papers fall into the inpatient setting [30, Table 3].

The authors note that mathematical programming is the most common methodology with stochastic

programming being used to incorporate some of the uncertainty [30].

We categorize technical papers based on the sources of uncertainty considered similar to the

Venn diagrams in Figure 2.1, exclude papers which do not consider any form of uncertainty, and

focus on OR scheduling papers which employ rescheduling.
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2.3.1 OR Scheduling with Uncertain Durations

Marques and Captivo use robust optimization to perform advanced scheduling of elective pa-

tients while considering uncertainty in surgery durations but do not sequence surgeries or assign

start times [32]. Khaniyev et al. schedule a single OR for the next-day with stochastic durations but

the set of (elective) surgeries are known apriori and pre-sequenced [33]. With the goal of minimiz-

ing a weighted sum of waiting time, idle time, and overtime costs, the authors employ stochastic

optimization, explore various heuristics, and finally propose a combination of two heuristics which

shows improved performance [33]. While [33] assumes pre-sequenced surgeries, Denton et al. se-

quence and schedule surgeries with uncertain durations using a two stage-stochastic program with

recourse to minimize idle and overtime costs where the first stage focuses on the sequencing of surg-

eries [31]. The authors consider various heuristics to solve the sequencing problem and find that

sequencing surgeries by smallest variance first, although not commonly implemented in practice,

performs well [31]. Zhou et al. consider the next-day scheduling of a set of pre-determined (elec-

tive) surgeries including sequencing and assigning expected durations to minimize the expected

time span and respect patient waiting time guidelines [34]. Day of elective surgery rescheduling

with uncertain durations is handled in [35] using a right shift heuristic to reschedule when a surgery

is running late. As a result of uncertainty in durations, Xiao et al. adapt a single OR daily sched-

ule during execution using both exact methods as well as more computationally feasible heuristics

[36].

2.3.2 OR Scheduling with Uncertain Arrivals

In agreement with the Venn diagrams in Figure 2.1, we observe relatively few papers which

consider uncertainty in the form of dynamic arrivals but not surgery durations. OR rescheduling

with dynamic arrivals of emergency patients is solved in [37] using a mixed-integer linear program

(MILP) and, when there is a high elective surgery load, a genetic algorithm which is necessary due

to the computational expense of the MILP.
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2.3.3 OR Scheduling with Uncertainty in both Arrivals and Durations

OR scheduling with uncertainty in surgery durations and dynamic arrivals of elective patients is

considered in [38]. The authors propose a method to reschedule cancelled patients on a rolling time

horizon assuming a block scheduling strategy has previously been implemented and control insta-

bility by limiting the number of variations from the previous schedule [38]. Similar to our efficiency

metric of minimizing total weighted tardiness, the authors choose a patient-centric efficiency metric

of minimizing a combination of waiting time and tardiness [38]. While the work of [38] and this

thesis are both considered operational scheduling, [38] focuses on advance scheduling and consid-

ers dynamic arrivals of previously cancelled patients whereas we focus on allocation scheduling and

dynamic arrivals of emergency patients. Davarian and Behnamian extend the work of [38], most

notably by including uncertainty in the arrival of emergency patients, and utilize robust optimization

[39]. However, to the best of our knowledge, [39] does not limit the number of variations between

successive schedules and therefore does not consider a measure of instability.

In a single OR setting, Stuart and Kozan schedule elective and non-elective outpatient surgeries

on a daily basis and reschedule whenever a surgery is completed [40]. Van Essen et al. discuss

the operational OR scheduling problem with the objective of minimizing deviation from various

stakeholder preferences using an integer linear program (ILP) and periodic rescheduling to handle

uncertainty [41]. Since shifting surgeries and inserting breaks into the schedule are the most com-

mon patterns observed by analyzing the ILP solutions, van Essen et al. generate a heuristic which

can be solved faster than the exact method [41]. Their framework includes a human in the loop

element (see also [4, 9, 21]) to present a manager or scheduler with a couple of possible schedules

[41].

2.3.4 Rescheduling in OR Scheduling Problems

In this section, we focus on papers which use rescheduling to handle uncertainty present in OR

scheduling and, when applicable, discuss their instability metrics. From the papers we reviewed,

we observed two main categories of OR rescheduling: that which reschedules patients to a different

day [10, 38, 39] and that which takes a more online approach of rescheduling on the day of surgery
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[35, 40, 41, 42]. While both categories can be considered operational scheduling, the former is

more aligned with advanced scheduling while the latter, which is similar to our work, is more

closely aligned with allocation scheduling [2].

Three of the most common reasons for rescheduling are other (hospital related), change in a pa-

tients’ program, and insufficient OR capacity as determined using machine learning [43]. Eshghali

et al. embed machine learning into a three-phase schedule generation approach: phase one produces

a weekly schedule which reserves emergency surgery capacity using results of a forecasting model,

phase two sequences the elective surgeries to produce a daily schedule, and phase three resched-

ules on the arrival of an emergency patient where the patient’s surgery duration is predicted using

a random forest model [42]. When rescheduling, instability is limited through the constraint that

surgeries must take place on the originally scheduled day, potentially resulting in overtime [42].

In [10], a tentative schedule is created and a single rescheduling action is performed a few

days prior to the schedule being implemented. While not closely related to our specific use of

rescheduling, this paper provides an interesting discussion of instability in which the authors define

a general distance function to measure the difference between the tentative and final schedules and

suggest that this function should be defined for each hospital individually to reflect that hospital’s

unique requirements and goals [10]. To minimize instability, cost-based objective functions used

during the rescheduling process may include a term dedicated to the cost associated with postponing

and preponing surgeries which can be different [37, 41] and potentially nonlinear in nature. When

rescheduling using a MILP, a measure of instability can be minimized using a soft constraint or

capped by introducing a hard constraint (e.g. [38, 39]).

Similar to our research, other papers choose not to minimize or control instability, but discuss

the effect of various policies on measures of instability [35, 44]. Dellaert and Jeunet use data

from a thoracic surgery center that treats both emergency and non-emergency patients and consider

various combinations of the following approaches to perform tactical planning under uncertainty:

overplanning (essentially creating a robust schedule by adding slack), rescheduling on a periodic

basis, and allowing for flexibility in the types of surgeries being performed [44]. The authors define

instability as a weighted sum of various instability-related costs such as the number of cancelled

operations and the number of plan changes [44]. The trade-off between instability and average wait
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time (the chosen efficiency metric) [44, Figure 1] is clearly defined. Day of surgery rescheduling

with uncertainty in durations is explored in [35] where the rescheduling method is a right shift

heuristic and three different event-driven rescheduling policies are explored. The authors consider

instability in terms of both difference in start times, difference in completion times, number of

reschedules, and number of surgeries rescheduled [35]. Rescheduling is only performed if the

procedure has not yet finished and is running late by more than the allowable amount, known as the

criterian amount, which is a tunable parameter and also the amount the heuristic right shifts by [35].

An indirect instability measure in the terms of overwhelming the staff with unnecessary schedule

updates is also discussed [35].

2.3.5 Other Health Care Settings

Optimization in health care settings is becoming increasingly important given the aging popu-

lation and subsequent high health care costs [27]. This vast area of research covers topics such as

appointment scheduling, capacity planning, OR scheduling, and staff scheduling. While our moti-

vating problem is OR scheduling, the literature on other health care applications can still provide

insight into OR scheduling problems. For example, Corlu et al. use DES to model nurse dispatch-

ing for patient requests (such as medication distribution or bed turn over) while optimizing patient

outcomes and reducing costs by assigning priorities to the patients where the priority increases as a

function of time [45]. Increasing a patient’s priority over time can be applied to OR scheduling as

patient conditions may worsen over time. Modelling health care applications as machine schedul-

ing problems can lead to interesting insights and the adaption or adoption of pre-existing solution

methods. Hahn-Goldberg et al. model a chemotherapy clinic appointment scheduling problem as a

flexible flowshop problem with the objective of minimizing makespan [46]. The authors make use

of historical data to create a template schedule which is updating following realizations of demand

uncertainty (dynamic arrivals and cancellations) [46]. In a similar setting, Kortbeek et al. consider

appointment scheduling for outpatient treatment centers with both scheduled appointments and dy-

namic patient arrivals with the goal of identifying the best cyclic appointment schedule [47]. Based

on a case study with two CT scanners, the scanners were only scheduled concurrently in the begin-

ning of the day in the best clyclic schedule [47] likely due to the idea that early idle times lead to
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decreased flexibility in the schedules [22]. Additionally, Kortbeek et al. [47] include measures of

patient behaviour and satisfaction by allowing a parameter to specify how long patients are willing

to wait before being seen. Hooshangi-Tabrizi et al. utilize two integer programs to first sched-

ule chemotherapy appointments from a waiting list of patients and subsequently reschedule on a

daily basis to cope with uncertainty in demand, patient treatment plans (including duration of treat-

ment), patient cancellations, and staff resource availability [48]. Although duration of treatment is

considered to be uncertain during the early planning phases, the duration is still known before the

appointment begins [48]. The stochastic nature of surgery durations is a key differentiating factor

between appointment and OR scheduling problems [30, 46, 47].

2.4 Positioning Our Work in Existing Literature

In their survey paper, Samudra et al. highlight a need for more reproducible research in the

area of OR scheduling by making the data and models publicly available [2]. However, publicly

releasing health care data is challenging due high privacy requirements. The authors also suggest

that researchers who assume a particular probability distribution for a process should prove it to be

the best fit distribution or show that the assumption has minimal effects on the conclusions [2]. In

their literature review, Wang et al. prove that there is a lack of consensus regarding the appropriate

distribution to model surgery durations of inpatient surgeries [30]. They show that the Lognor-

mal distribution is most commonly employed while Empirical, Normal, Uniform, and Exponential

distributions are assumed less regularly [30, Table 4]. Of the technical papers discussed in this liter-

ature review which made an assumption regarding the probability distribution of surgery durations,

the most commonly assumed distribution is the Lognormal distribution [34, 38, 40, 49, 50], with

some papers assuming an Exponential distribution [14, 33, 51], Normal distribution [33], Uniform

distribution [49], Triangular distribution [15], Gamma distribution [45] and additive distributions

[41]. With the exception of [52, 53], all OR scheduling papers we reviewed assume a probability

distribution for surgery durations, which contradicts the need to evaluate the effect of this choice on

the results.
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Using a large dataset of surgery durations, May et al. compare Normal and Lognormal distri-

butions and demonstrate that the Lognormal distribution fits the given data better [54]. Varmazyar

et al. highlight the benefits of using a Continuous Phase-Type distribution compared to a Normal

or Lognormal distribution to model surgery and Post-Anesthesia Care Unit durations [53]. Choi

and Wilhlem compare three different probability distribution assumptions for the surgery durations:

Lognormal, Gamma, and Normal [52]. However, the work of [52] is limited as they focus on find-

ing the optimal rule to sequence up to three surgeries. Although our work is most closely related

to that of [52], we extend the existing OR scheduling literature literature by comparing the effects

of different probability distribution assumptions for surgery durations over a longer period of time

(approximately one week).

To the best of our knowledge, this thesis answers a question which has not been answered in the

existing literature: to what extent does the assumption of a single statistical distribution for process-

ing times affect the efficiency, specifically final total weighted tardiness (FTWT), and instability

when rescheduling is utilized to handle uncertainty in the processing times and dynamic arrivals.

While there are general scheduling papers which study the effect of various rescheduling policies

[9, 15, 18], none of the above study the joint effect of the assumptions of statistical distributions

to model processing times and rescheduling policies. Hozak and Hill show that modelling choices

affect the ideal frequency of rescheduling [20, Table 2], however they do not consider an analysis

of different statistical distributions for processing times.

2.5 Conclusions

In this chapter, we provided a concise overview of various definitions and categorizations of

scheduling under uncertainty, and reviewed the literature on rescheduling with a focus on single

machine environments. A unified terminology was defined to compare various instability metrics

found in the existing literature. We then described the OR scheduling problem, evaluated trends in

OR scheduling research, and reviewed select OR scheduling literature with a focus on literature that

included an aspect of rescheduling. Finally, we positioned our work in the existing scheduling and

OR scheduling literature.
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Chapter 3

Problem Setting

In this chapter, we describe the motivating problem, present the single machine scheduling

problem of interest, and establish definitions and notation.

3.1 Motivating Problem

The general topic of operating room (OR) scheduling is described in this section. We then

present a simplified OR scheduling problem which motivates this work, and finally map the simpli-

fied OR scheduling problem to the single machine scheduling problem of interest.

3.1.1 Operating Room Scheduling Problem

OR scheduling is concerned with the assignment of surgeries to ORs and times to the surg-

eries. In medium to large sized hospitals, there may be over a dozen ORs requiring scheduling [27].

One of the major challenges in OR scheduling arises due to the inherent uncertainty in the surgery

durations. Dynamic arrivals of emergency surgeries may provide a second source of uncertainty.

Furthermore, surgeries require resources such as the room itself, staff, and equipment. Pinedo pro-

vides an example of a set of resources as the OR, a specific surgeon, and a specific anesthesiologist

[27]. In practice, the OR scheduling problem is extremely complex due to the intertwined schedules

of various departments, the impact of the schedule on downstream units (such as the intensive care

unit), and the simultaneous consideration of many different objectives [27].
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The OR scheduling problem varies greatly depending on the specific hospital or application.

This is demonstrated in the review paper by Samudra et al. [2], which categorizes 216 technical

papers on OR scheduling published between 2000 and 2014. They classify the papers based on

patient characteristics, performance metrics used, level of decisions being made, consideration of

upstream or downstream resources, the types of uncertainty included, the research methodology

used, and the inclusion of data [2].

3.1.2 Simplified Operating Room Scheduling Problem

We consider the scheduling of a single OR with stochastic surgery durations and dynamic ar-

rivals of emergency surgeries as our motivating problem. Given the challenging nature of OR

scheduling and our inclusion of uncertainty in both arrivals and durations, we make several sim-

plifications, described below.

Dynamic Arrivals

We assume that dynamic arrivals correspond to the time at which a surgical procedure is re-

quested for the patient and follow a stationary Poisson process.

Priorities

Similar to the Canadian Triage and Acuity Score (CTAS) used in emergency departments [55],

we assume priorities are assigned to patients through an evaluation process called triage. Triaging

surgeries has become increasingly important with the limited resources and backlog caused by the

COVID-19 pandemic, leading many organizations, including the American College of Surgeons, to

release guidelines for the triage of non-emergent surgeries [28, 56]. Similarly, a recent publication

presents triage guidelines for endocrine surgery as a cancer treatment in light of the COVID-19

pandemic [57]. To simulate the results of triaging, we sample a patient’s priority from a discrete

Uniform distribution at the time of arrival and assume the priority is static, meaning it does not

change over time.
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Due Dates

Guidelines of acceptable wait times for specific types of surgeries may be provided by a gov-

erning organization [2]. We use the term due date to correspond to the time the surgery should be

completed by to avoid possible health risks from a delayed surgery [30].

Uncertain Durations

Surgeries have uncertain durations as there are many complications that can arise during a surgi-

cal procedure. For the purpose of this thesis, we make the simplifying assumption that there are two

points in time at which information about the surgery duration becomes available: when the surgery

request first arrives (estimated duration is supplied) and when the surgery is completed (true dura-

tion becomes known). The concept of modelling surgery durations as an estimation followed by

a true duration which becomes known at the time of completion of the surgery has also been used

in similar OR rescheduling papers which utilize simulation [35, 41]. However, the distributions of

the estimated and true surgery durations are assumed to be known and belong to a set of candidate

distributions. We assume the processing times of all surgeries follow a single distribution.

Resources

In this thesis, we do not include resources other than the single OR. Therefore, we do not take

into account how the OR schedule interacts with upstream or downstream units.

Setup Times and Patient Availability

We make the simplifying assumption that all surgeries can be scheduled immediately upon their

arrival and do not consider setup times. Additionally, we assume that surgeries cannot be moved

forward if an OR becomes available without a rescheduling action taking place. Although surgeries

may get cancelled or postponed long term, due to changing patient conditions for example, this

thesis does not allow for surgery cancellations.
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3.1.3 Mapping the Operating Room Scheduling Problem to Single Machine Schedul-

ing Problem

We describe how the simplified OR scheduling problem outlined in Section 3.1.2 can be mapped

to a single machine scheduling problem. Surgeries are modeled as jobs and the OR as a single

machine. Since only one patient can be operated on in a single OR at a time, the machine has single

capacity. Additionally, given that surgeries cannot be stopped once they are started, preemptions are

not allowed. The time at which a surgical procedure is requested for a particular patient is modelled

as the dynamic arrival time of the corresponding job. Jobs have all the remaining attributes of

surgeries, i.e., priorities, due dates, and stochastic processing times.

3.2 Problem Definition

Although this thesis is motivated by OR scheduling, we use terminology consistent with stan-

dard scheduling literature to keep our findings general. In this section we formalize the single

machine scheduling problem motivated by the simplified OR scheduling problem.

We consider a single machine scheduling problem with stochastic processing times and dynamic

arrivals in a non-preemptive environment. We assume a capacity of one on the single machine. Jobs

arrive dynamically following a stationary Poisson process. Each job j has a priority, denoted as wj ,

which is known at the time of arrival (rj), and a due date, denoted as dj . In this work, we assume that

the job is released when it arrives and therefore choose to use the notation consistent with release

times (rj). Although each job has an estimated processing time, p̂j , the true processing time, pj ,

does not become known until the job has finished processing. Using the notation of Graham et al.

[58], we represent this problem as the stochastic version of 1|rj |Z with dynamic arrivals where Z

represents the choice of objective function.

To deal with the uncertainty in the arrivals and processing times, we reschedule at varying

frequencies based on certain rescheduling policies. Since we generate an initial schedule and occa-

sionally update it, this falls into the category of predictive-reactive approaches [8, 11, 17]. Using

a computational framework, we evaluate the effects of different rescheduling policies and assump-

tions of a specific statistical distribution for the processing times on efficiency and total instability.
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The literature on efficiency and instability related metrics is explored in Section 2.2.1 while the for-

mal definitions of total instability and efficiency used in this thesis are found in Sections 3.3.3 and

3.3.4 respectively. To focus on the effects of the processing time distributions, we make assumptions

regarding the distributions of the remaining job attributes.

Processing Times

We assume a job’s estimated processing time, p̂j , is known at the time of arrival while the job’s

true processing time, pj , does not become known to the scheduler until the completion time of the

job. When determining the effect of the assumptions of a specific statistical distribution for the

processing time on efficiency and total instability, we are particularly interested in the shape of the

distributions.

We examine the following five distributions for the estimated processing times (p̂j):

• Uniform: processing times are evenly spread out within a possible range.

• Exponential: There is a long right tail in the processing time estimate.

• Left Truncated Normal: The distribution is bell-shaped. We left truncate the distribution at

zero to avoid negative processing times.

• Lognormal: There is a long right tail in the processing time estimates meaning some durations

are estimated to be longer than the majority of the durations.

• Bimodal: Some processing times are short (i.e. no complicating factors are expected) and

others are longer (i.e. complicating factors are expected) but there are minimal processing

times in the middle.

In their experiments, Cowling and Johansson considered p̂j to be drawn from a Uniform distri-

bution with pj drawn from the same distribution at a different point in time [12]. Similarly, Bidot et

al. assume p̂j is drawn from a Normal distribution and pj is drawn from a renormalized distribution

where both distributions use min and max bounds to truncate the Normal distribution such that p̂j

can change to pj in the middle of the processing (see Figure 9 in their paper) [18]. Lastly, Larson
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and Pranzo consider pj to be drawn from a Uniform distribution ranging from p̂j to p̂j + p̂jϵ where

ϵ is used to control the level of uncertainty in the original estimate [9].

To allow for stochastic processing times, we consider two candidate distributions for pj : the

Normal distribution and the Uniform distribution. Both distributions are centered at p̂j and have

user-defined standard deviation. We again left-truncate the Normal distribution at zero to avoid

infeasibilities caused by negative true processing times. With this formulation, p̂j and pj can be

drawn from any distribution and the distributions do not need to be the same. Expanding on the

ideas of Larson and Pranzo [9], we allow for two optional parameters ϵ− and ϵ+, which control

the level of uncertainty in the estimated processing times. When supplied by the user, these allow

for the computation of an upper and lower bound on the true processing time such that pj ∈ [p̂j −

p̂jϵ
−, p̂j + p̂jϵ

+]. These upper and lower bounds are used to renormalize the distribution of pj .

Choice of Objective Function

Every time a rescheduling action is performed, we minimize total weighted tardiness as the

performance metric of interest to the given problem setting. The priorities are used directly in the

computation of weighted tardiness such that the highest priority jobs contribute to total weighted

tardiness more than low priority jobs. The tardiness of job j, denoted Tj , is defined as the time that

passes between a job’s due date and the job’s completion time (Tj = max{0, dj −Cj} where Cj is

the completion time of job j).

Final Problem Formulation

Taking all the assumptions into consideration, we again use Graham et al.’s notation [58] to

specify the problem definition in this thesis as the stochastic version of 1|rj |
∑

wjTj with dy-

namic arrivals. Pinedo expands on the notation by Graham et al. [58] by introducing notation for

random variables [59]. Using this expanded notation, we further specify our problem as 1|Rj ∼

exp(λ), Xj ∼ P|
∑

wjTj where Rj represents the random variable for the inter-arrival time, Xj

represents the random variable for the processing time, and P represents a processing time distri-

bution set (estimated processing time distribution and true processing time distribution) from the

candidate distributions outlined in this section.
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3.3 Definitions

Here, we first define two terms that are key for describing our computational framework. We

then define the two primary metrics of interest: total instability and efficiency.

3.3.1 Scenario

Throughout this thesis, we define a scenario as a specific set of assumptions regarding the under-

lying statistical distributions of the processing times and a chosen rescheduling policy. For example,

in the stochastic case, we might have the scenario of drawing p̂j from a Bimodal distribution (with

parameters specified in Section 5.1.4), pj from a Uniform distribution (centered at p̂j and with stan-

dard deviation described in Section 5.1.4), and a periodic rescheduling policy with a period of 180

minutes.

3.3.2 Period of Interest

Due to the varying rescheduling policies, using a time-based simulation stopping criteria will

result in different sets of completed jobs under different scenarios, which would prevent us from

directly comparing results across scenarios.

We therefore utilize a state-based termination criteria which is dependent upon the completion

of a specific set of jobs. We define a period of interest, denoted as [0, τ ] where τ is a user-defined

variable, in which all jobs that arrive within this interval are flagged as being jobs of interest. We

denote this set of flagged jobs as J∗ and terminate the simulation when all jobs in J∗ are completed.

The simulation end time, denoted as T, is therefore dynamically determined and can vary between

scenarios. Figure 3.1 summarizes these concepts using a timeline. The relationship 0 < τ ≤ T

must hold regardless of the scenario.

3.3.3 Total Instability

When performing a rescheduling action, we allow rescheduling of jobs that have been previously

assigned a start time but have not yet started. These rescheduling actions can occur at different

frequencies and points in time depending on the rescheduling policy (see Section 4.2). As opposed
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t

0 τ T

Start of simulation

Dynamically determined stopping criteria
(all jobs which arrived during the period of

interest have now completed)

Known apriori

Period of interest

Figure 3.1: Timeline representation of period of interest and dynamically determined stopping cri-
teria.

to scheduling problems that are deterministic and static, which only require a measure of efficiency

to evaluate the quality of the schedule, scheduling problems with uncertainty require consideration

of both efficiency and instability to measure the quality of the solution. We define total instability

as a measure of schedule disruptions caused by the rescheduling actions. An example of computing

this metric can be found in Appendix A.1 while Section 2.2.1 explores related metrics found in the

literature.

We first define instability to measure the magnitude of a change in a schedule after a single

rescheduling action for jobs in J∗. As explained in Section 3.3.2, computing this metric over J∗ al-

lows us to make a more direct comparison between the results when employing different reschedul-

ing policies.

Let Jt be the set of all jobs which have arrived at time t. We additionally define J∗
t to be

the set of all jobs which have arrived by time t and which arrived during the period of interest

(J∗
t ⊆ Jt). Consider a rescheduling action r that takes place at time tr where Sr represents the

previous schedule and S′
r represents the new schedule following a rescheduling action. Suppose

that schedule Sr contains the set of jobs Jr with completion times Cj ∀ j ∈ Jr. Similarly, the

schedule S′
r contains the set of jobs J′

r with completion times C ′
j ∀ j ∈ J′

r. Since it is assumed

that all jobs which have arrived by the time of rescheduling will be scheduled, J′
r = Jtr . Also note

that our problem definition does not allow for the cancellation of jobs and therefore J′
r = Jr ∪ Jη

r

where Jη
r are jobs that have arrived between the creation of Sr and the creation of S′

r. To simplify
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this discussion further, let J∗
r represent the set jobs in schedule Sr which also arrived during the

period of interest and let J′∗
r represent the set of jobs scheduled in S′

r which also arrived during the

period of interest.

As the simulation progresses, we update the previously created schedule, Sr, with the most

recent information. Under certain circumstances, a right shift heuristic is employed in order to

maintain the feasibility of a schedule. Suppose we have a rescheduling action, r, taken at time tr.

In order for a right shift heuristic to be used between tr−1 and tr, one of the following two cases

must have occurred:

• Case 1: Suppose there exist two consecutive jobs i and j. Upon completion time of job i,

the true processing time becomes known and pi > p̂i. Furthermore, the scheduled idle time

between the two jobs in Sr must be less than pi− p̂i. Here the right shift heuristic is employed

to ensure the schedule remains feasible.

• Case 2: Assume a rescheduling action is triggered at time tr but there is a job i currently in

progress with scheduled completion time Ci < tr. Although the job has not finished and the

true processing time is not known at this point in time, the relationship pi > p̂i is clear to

the scheduler. The only information regarding the processing time that the scheduler gains

access to at time tr is that the processing time of job i has taken tr − Bi time units where

Bi is the start time of job i. The amount the current processing time exceeds the estimated

processing time is given by (tr−Bi)− p̂i. Here the right shift heuristic is employed to ensure

the most up to date information is used by updating p̂i = tr −Bi. Further assume there exists

a subsequent job j with Bj < tr. Then, even though the true processing time pi is not known,

the right shift heuristic is used to maintain feasibility similar to the previous case.

We then define instability for the rescheduling action r, taken at time tr, as the sum of the

absolute differences between the completion times of jobs in the previous schedule, Sr, and the

completion times of jobs in the new schedule, S′
r, for all jobs which arrived during the period of

interest and were scheduled in Sr. The equation for instability is shown in Equation 1.

I(Sr, S
′
r) =

∑
j∈J∗

r

|Cj − C ′
j | (1)
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In the literature, some metrics of instability use both start and completion times such as the

work by Cowling and Johansson [12]. In our case, since Sr is updated as the simulation progresses,

schedules Sr and S′
r use the same processing times for all common jobs. Therefore, considering

one of completion and starting times is sufficient for the definition of instability given in Equation

1. Furthermore, the summation in Equation 1 is over the set J∗
r so that we only include jobs which

arrived within the period of interest and which were scheduled in Sr. In other words, we do not

include jobs in Jη
r as these jobs have not yet been scheduled and therefore should not contribute to

the instability.

We assert that the right shift heuristic does not contribute to the instability metric defined in

Equation 1. Instability is computed only when a rescheduling action takes place. Assume a right

shift heuristic was used between rescheduling actions r−1 and r which takes place at time tr. Since

the right shift heuristic has been applied to the previous schedule, Sr, prior to tr, no changes are

necessary for the new schedule, S′
r to become feasible. Therefore, the only changes made to Sr to

form S′
r occur as a result of re-sequencing the jobs to improve the objective function in light of new

information or to insert newly arrived jobs Jη
r into the schedule.

Our instability metric, although proposed prior to reading the work of Wu et al., closely aligns

with metric presented in [24]. Both metrics compare the new schedule to the right shifted previous

schedule. The main difference between the two metrics is that the instability defined in Equation

1 uses completion times while the instability defined in [24] uses start times. Moreover, the in-

stability metric in [24] is defined to accommodate uncertainty in the form of delays (e.g. machine

breakdowns, additional processing times, and inserting jobs) whereas our definition, coupled with

the discrete-event simulation (DES) framework which updates the previous schedule with the most

current information, can also handle uncertainties such as a reduction in a job’s processing time.

If R is the set of all rescheduling actions taken, then we define total instability to be the sum of

the individual instability values across all rescheduling actions as shown in Equation 2.

Itot =
∑
r∈R

I(Sr, S
′
r) (2)

31



3.3.4 Efficiency

Efficiency measures the performance of the system under a given rescheduling policy. Let

Z(S,J) refer to the objective function of interest which depends on schedule S and is to be com-

puted over the set of jobs J. Given a simulation run which ends at time T, efficiency is computed as

shown in Equation 3 where SrT is the final schedule with the most updated job information available

and J∗
T is the set of jobs which arrived during the period of interest.

E = Z(SrT ,J
∗
T) (3)

Efficiency is a general term which can incorporate any objective function of interest. As previ-

ously mentioned, we are interested in total weighted tardiness (TWT) which is computed by sum-

ming weighted tardiness across a set of jobs. We therefore define final total weighted tardiness

(FTWT) as our specific efficiency metric which will be used throughout this thesis. In this case, a

better efficiency corresponds to a lower FTWT metric. Given a simulation run which ends at time

T, we sum the weighted tardiness for the jobs which arrived during the period of interest. The

term final is used here to emphasize that efficiency, unlike instability which can be recorded at each

rescheduling action, cannot be computed until the end of the simulation. Equation 4 demonstrates

the computation of FTWT where the set J∗
T refers to the set of jobs which arrived during the period

of interest and Tj = max{0, dj − Cj}.

FTWT = ETWT =
∑
j∈J∗

T

wjTj (4)
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3.4 Conclusion

This chapter establishes the motivating problem of OR scheduling and its characteristics and

maps a simplified OR scheduling problem to the single machine scheduling problem. We then define

the problem of interest: minimizing total weighted tardiness in a non-preemptive single machine

environment with dynamic arrivals and stochastic processing times. Finally, we define terms which

are used throughout this dissertation as well as the two primary metrics of interest: total instability

and efficiency.
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Chapter 4

Methodology

Due to the dynamic and stochastic nature of the problem defined in Section 3.2, we create a com-

putational framework using concepts from both scheduling and simulation literature to analyze the

effects of the various rescheduling policies and processing time distributions on efficiency, specifi-

cally final total weighted tardiness (FTWT), and total instability. This chapter begins by describing

the discrete-event simulation (DES) framework and the different rescheduling policies which are

implemented. We then examine the optimization component used for scheduling.

4.1 Discrete-Event Simulation Framework

The logic behind a portion of the DES framework is presented in Figure 4.1. As part of the

terminating DES framework, we use appropriate statistical techniques from simulation literature by

generating initial states and performing the method of replication [60] as outlined in Sections 5.2.1

and 5.2.2 respectively. Furthermore, we employ common random numbers, generated for each job

attribute separately, as a variance reduction technique [60, 61]. It should be noted that Figure 4.1

assumes that all the experimental setup stages (determining the pseudo warm-up period, generating

common random numbers and initial states, and determining the number of replications) have been

completed. Furthermore, the diagram shown in Figure 4.1 represents a single replication.
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Figure 4.1: Flowchart demonstrating the logic behind the conditional statements of the DES frame-
work.

The first step is to read in the inputs provided by the user which are listed and explained in detail

in Appendix A.2. Based on these inputs, the correct initial states and common random numbers are

located and read into the simulation framework.

If the period of interest, τ , has not yet been met, then any new arrivals are flagged as arriving

during the period of interest. Conversely, if τ has been reached, then any newly arrived jobs are not

flagged.

Based on the rescheduling policy, certain events or periodic time intervals will set off the

rescheduling trigger, in which case a rescheduling action is performed. At each rescheduling action,

we solve the subproblem described in Section 4.4. Updating the job records with the most recent

information is necessary for solving the subproblems. Although this process is not shown in Figure

4.1, updates to the job information are completed after any event, such as an arrival or completion
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of a job. Once the rescheduling action is finalized and a new schedule is obtained, the instability of

that particular rescheduling action is computed.

If the period of interest has been reached and the set of all flagged jobs (J∗) have been completed,

the dynamically determined stopping criteria, denoted as T and shown in yellow in Figure 4.1, is

met. Once the simulation is complete, we compute FTWT and total instability using the common

job subset J∗.

4.2 Rescheduling Policies

We evaluate three categories of rescheduling policies: periodic, event-driven, and hybrid [8].

The periodic category of rescheduling policies refer to those which are time-based while the event-

driven rescheduling policies are based on the occurrence of certain events. Finally, the hybrid

rescheduling policy is a combination of the periodic and event-driven policies. Below we outline

the different rescheduling policies implemented from each of the three categories.

• Periodic:

◦ A rescheduling action is triggered every ∆ time units where ∆ is the period.

• Event-Driven:

◦ Job arrival: any new job that arrives to the system triggers a rescheduling action.

◦ Completion: a rescheduling action is triggered at the time of completion of any job.

◦ Started processing: a rescheduling action is triggered at the time of the start of any job’s

processing.

◦ Priority arrival: the arrival of a job whose priority is within a particular priority set

triggers the rescheduling action.

◦ Number of arrivals: rescheduling is performed after every n arrivals.

◦ Number of unscheduled jobs: a rescheduling action is triggered after the list of arrived

but unscheduled jobs reaches a specified number, l 1.
1If strictly event-driven, the number of arrivals and number of unscheduled jobs policies with n = l are identical.

However, if used within a hybrid policy these two conditions for rescheduling will lead to different behaviour.
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◦ Schedule completion: the completion of the current schedule triggers a rescheduling

action.

• Hybrid:

◦ Any of the event-driven policies used in conjunction with a periodic policy constitutes

a hybrid policy. For example, we could employ a hybrid policy which reschedules on

high priority arrivals and every 300 minutes (∆ = 300).

Refer to Appendix A.2 for an explanation of the inputs required for each rescheduling policy.

4.3 Defining Subproblems

Whenever a rescheduling action is triggered, we use a rescheduling method to update the exist-

ing schedule in response to realizations of uncertainty [8]. We refer to this updating of the existing

schedule as solving a subproblem (see module ‘Perform rescheduling’ in Figure 4.1). Vieira et al.

outline two main categories of rescheduling methods: schedule generation, consisting of nominal

schedules and robust schedules, and schedule repair consisting of right-shift rescheduling, partial

rescheduling, and complete regeneration [8]. In the DES framework, the ‘Perform rescheduling’

module is independent and could use any rescheduling method desired. Based on the rescheduling

method used, the goal of a rescheduling action may differ such as rescheduling for feasibility versus

optimality.

As the simulation progresses, the job data is updated to ensure the subproblems include accurate

data. Therefore, the subproblems consist of the set of jobs which have arrived and all their attributes

as well as the state of the simulation (e.g. which jobs have started or completed and the current

simulation time).

In this dissertation, we assume each subproblem is a deterministic scheduling problem where

the most up to date information regarding the processing times is used to schedule the jobs. The

rescheduling method used to solve the subproblems is described in the following section.
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4.4 Method for Solving Subproblems

In this section, we describe the method of complete rescheduling used to solve the subproblems

at every rescheduling action. For the purpose of this thesis, we implement complete reschedul-

ing using a mixed integer programming (MIP) model as it allows us to find an optimal solution

for the majority of the subproblems, thus reducing the variability between scenarios due to subop-

timal subproblem solutions. The complete rescheduling method, under the category of schedule

repair methods, reschedules all jobs not already started on the machine, even if they are not di-

rectly affected by a realization of uncertainty [8]. For example, suppose we employ the job arrival

rescheduling policy. Even though the pre-existing jobs are not directly affected by the arrival of the

new job, all pre-existing jobs that have not yet started will be considered for rescheduling.

The subproblems are modelled using a basic MIP sequence-based formulation model which has

been adapted to our specific problem. Most notably, constraint 6 ensures started jobs cannot change

their scheduled start times while constraint 7 guarantees jobs that have not yet started cannot start

earlier than the current time. A major disadvantage of using MIP is the computational effort re-

quired [8]. Thus, we enforce a user-specified time limit to the subproblems to ensure computational

feasibility. In the case where a suboptimal solution is returned due to the time limit, we flag this

subproblem for further analysis and record the optimality gap.

When solving the subproblems, we assume deterministic processing times. The value of the de-

terministic processing time assumed for a job j depends on the state of the job j at time t. Therefore,

we define the appropriate processing time of job j, denoted as πj(t), to represent the processing

time of job j which is used when solving the subproblems at time t. Let Jst be the set of jobs whose

processing has started at time t and Jct be the set of jobs whose processing has completed at time

t. Furthermore, let Bj be the previously scheduled start time of job j and Cj be the previously

scheduled completion time of job j.

There are three possibilities for the appropriate processing time of job πj(t). If j has completed

by time t, the true processing time is used. However, if j is currently in progress at time t and was

meant to be completed based on the previous schedule (Cj < t), then the estimated processing time

plus the overtime already occurred is utilized. Lastly, if the job has not yet started or has started but
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does not satisfy the aforementioned condition of Cj < t, then the estimated processing time is used.

Equation 5 shows the formula for determining πj(t).

πj(t) =


pj , if j ∈ Jc

t

t−Bj , if j ∈ Js
t \ Jc

t ∧ (Cj < t)

p̂j , otherwise

(5)

Using the notation from Pinedo [62], the subproblems described in this section are given by

1|rj |
∑

wjTj .

4.4.1 Variable Definitions

For this section, assume that we are performing a rescheduling action at time t. The former

schedule is denoted as S while the new schedule created from the rescheduling action will be de-

noted as S′. The following input sets are maintained by updating the job information throughout

the simulation.

Input Sets

Jt: The set of jobs available to be scheduled at time t (all jobs arrived by time t).

J∗
t : The set of jobs which have arrived by time t and which have been flagged as arriving during

the period of interest (arrived in the interval [0, τ ]).

Js
t : The set of jobs whose processing has already started at time t (Js

t ⊆ Jt).

Jc
t : The set of jobs which have already been completed at time t (Jc

t ⊆ Js
t ⊆ Jt).

Input Parameters

t: The time at which the rescheduling action is taking place.

πj(t): The appropriate processing time of job j at time t (see Equation 5).

rj: The arrival time of job j.
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dj: The due date of job j.

wj: The importance weight of job j.

M : The dynamically determined “Big M” (see Section 4.4.3).

Cj: The completion time of job j in S (updated as the simulation progresses).

Bj: The starting time of job j in S (updated as the simulation progresses).

Tj: The tardiness of job j in S (also updated as the simulation progresses).

Sequencing Decision Variable

xij =


1, if job j is performed (not necessarily immediately) after job i

0, otherwise

Other Decision Variables

C ′
j = The completion time of job j in S′.

T ′
j = The tardiness of job j in S′.

B′
j = The start time of job j in S′.

4.4.2 Model

This section establishes the objective function and constraints in the MIP model used to solve

the subproblems.

Objective Function:

Minimize total weighted tardiness of all jobs which have arrived by time t.

min
∑
j∈Jt

wjT
′
j
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Subject To (Constraints):

(1) Constraint to ensure either job i is scheduled after job j, or job j is scheduled after job i.

xij + xji = 1 ∀ i, j ∈ Jt : i < j

(2) Constraint to ensure no overlap occurs on the single machine.

C ′
j ≥ C ′

i + πj(t)−M(1− xij) ∀ i, j ∈ Jt : i ̸= j

(3) Define x as a binary variable.

xij ∈ {0, 1} ∀ i, j ∈ Jt : i ̸= j

(4) Constraint to ensure non-negative completion times and enforce arrival times 2.

C ′
j ≥ πj(t) + rj ∀ j ∈ Jt

(5) Constraints to define tardiness.

T ′
j ≥ C ′

j − dj ∀ j ∈ Jt

T ′
j ≥ 0 ∀ j ∈ Jt

2Although only jobs which have already arrived will be available (and known) to the scheduler, we still include the
release times of jobs in the model for generality.

41



(6) Constraint to define start times for jobs which have already started (including, by extension,

completed jobs) to ensure that the job’s start time is not altered in the new schedule.

C ′
j = Bj + πj(t) ∀ j ∈ Js

t

(7) This constraint ensures that jobs which have not yet started cannot start earlier than the current

simulation time. Note that πj(t) = p̂j ∀ j /∈ Js
t (Equation 5).

C ′
j ≥ t+ πj(t) ∀ j /∈ Js

t

4.4.3 Big M Details

Since the simulation framework iteratively calls the MIP model with subproblems of varying

size, the choice of the penalty constant, M , is of particular importance. M must be large enough

to guarantee correctness [63] of the no overlap constraint (constraint 2) without eliminating any

feasible solutions. However, if M is chosen too large, the search space may be unnecessarily large

resulting in longer run times.

In their work studying MIP formulations for job shop scheduling, Ku and Beck [63] set the

value of M equal to the sum of all processing times. However, setting M equal to the sum of all

processing times does not apply to this problem as the dynamic arrival of jobs may result in forced

idle times.

The maximum possible idle time for the single machine at some arbitrary point in time, t, would

occur if no jobs were processed over the time interval [0, t]. Equation 6 extends the idea presented

by Ku and Beck [63] by representing M as a function of time to account for the maximum possible

idle time.

M(t) =
∑
j∈Jt

πj(t) + t (6)

M can be further reduced by considering the set of jobs which have completed at time t, given

by Jc
t . Taken together, the last two terms in Equation 7 represent a tighter upper bound on the total

idle time. We calculate the value of M within the rescheduling framework according to Equation 7
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and pass the result as a parameter to the MIP model.

M(t) =
∑
j∈Jt

πj(t) + t−
∑
j∈Jc

t

πj(t) (7)

4.4.4 Subproblem Size

For the MIP model presented in Section 4.4.2, if a job has started or completed, its start time

is fixed (see Section 4.4.2 constraint 6). Therefore, the computational challenge arises from the

number of jobs whose start time is allowed to change. The number of jobs whose sequencing is

allowed to change for a rescheduling action at time t is given by |Jt \ Js
t |. The total number of

sequencing decision variables to be determined is then given by |Jt \ Js
t |2 − |Jt \ Js

t |. The decision

variables of C ′
j , B

′
j , and T ′

j are fixed for all j ∈ Js
t . As such, the number of these decision variables

that are not fixed is given by 3|Jt \ Js
t | and the total number of decision variables which are not

fixed is given by Equation 8.

|Jt \ Js
t |2 + 2|Jt \ Js

t | (8)

The number of decision variables is directly related to the number of jobs which have not yet

started processing, which can also be referred to as a queue. In general, queues occur when non-

homogeneous jobs must be processed using limited resources [64]. In this dissertation, we consider

a queue to be made up of both jobs waiting to be scheduled and jobs which have been scheduled but

not yet started processing. Therefore, the queue length has a substantial impact on the computational

complexity of the MIP model. Potential methods to overcome this computational hurdle include

using heuristics instead of exact methods, or relaxing the MIP model to find suboptimal solutions.

4.5 Conclusion

In this chapter, we propose a DES framework used to study the problem of interest in the dy-

namic setting. We outline various rescheduling policies in the periodic, event-driven, and hybrid
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categories. We then define subproblems which are solved using the rescheduling method of com-

plete rescheduling. We describe the MIP model used to perform the complete rescheduling and its

details. Finally, we discuss the effect the subproblem size has on the computational complexity of

the MIP model.
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Chapter 5

Experimental Study

The two main goals of this dissertation are to computationally evaluate the effect that reschedul-

ing policies and assumptions made regarding the distributions of job processing times have on ef-

ficiency, specifically final total weighted tardiness (FTWT), and total instability. To compare the

use of different statistical distributions for processing times, we choose distributions whose first

two moments are similar. Given that there are many such distributions, we narrow the scope of

our experimental study. Although the first two moments could be assumed without relying on data,

we obtain these summary statistics from the Synthea data (see Section 5.1.2) to ensure our findings

are more realistic with respect to our motivating problem of OR scheduling. Furthermore, using

the Synthea data allows us to compare various distributions with the distribution whose shape best

reflects the true data.

This chapter describes the setup and design of the experiments as well as the experimental re-

sults. In Section 5.1 we discuss implementation details, outline the collection of surgery duration

data from the Synthea data set, fit a distribution to the surgical durations obtained from the Synthea

data set, and finally outline the parameters of job attributes used in the experiments. The experimen-

tal setup stages are described in Section 5.2 including generating the initial states and determining

the number of replications. Finally, the outline and results of experiment 1 are presented in Section

5.3 while the outline and results of experiment 2 are presented in Section 5.4.
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5.1 Experimental Preliminaries

5.1.1 Implementation Details

The same implementation is used for both experiments outlined in this chapter. The discrete-

event simulation (DES) framework is written in Python version 3.7.9 using SimPy version 4.0.1

[65] for the simulation components. Furthermore, we use IBM’s Decision Optimization CPLEX

Modeling for Python, DOcplex version 2.23.222 [66], to solve the mixed-integer programming

(MIP) model. SciPy version 1.7.3 [67] is used for random number generation.

5.1.2 Data Acquisition

To relate our findings back to the motivational problem, we use Synthea, an open sourced soft-

ware package provided by the MITRE Corporation, to simulate a synthetic patient population [3]1.

Synthea generates extensive patient-oriented data with tables related to all aspects of a patient’s

health such as patients, encounters, conditions, devices, allergies, medications, observations, pro-

cedures, providers, payers, etc. Using Synthea, we generate the records of one million patients and

store the tables related to surgeries (providers, procedures, patients, organization, and encounters)

in a relational database which is then queried using SQL.

Based on the 144 unique procedure descriptions in the database, we identify 28 of those to be

surgically related. Due to the dynamically arriving jobs in our problem setting, we further limit

our search to surgeries in the emergency class (contributing to approximately 11% of the procedure

descriptions identified as surgically related). Each unique procedure description contains fields for

both an encounter and a procedure duration. To distinguish the duration type most appropriate

for surgery as opposed to the entire hospital stay, we create boxplots of these two duration types

for each of the unique procedure descriptions in the emergency class. The distinction between the

duration types is typically easy to determine, but not consistent throughout the different procedure

descriptions.

We choose a single procedure description from the seven different procedure descriptions relat-

ing to emergency surgery for further analysis, while considering the following requirements:
1Synthea is available at https://github.com/synthetichealth/synthea
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Summary Statistic Value
mean 140.27

median 139.00
min 45.00
max 239.00
range 194.00

standard deviation 55.80
variance 3113.98

skew 0.05
kurtosis -1.19

Table 5.1: Summary statistics for the laparoscopic removal of gall bladder durations (in minutes)
using data generated from Synthea [3].

• The chosen procedure description should be identifiable as a surgical procedure.

• The procedure description should have a sufficient number of occurrences to be able to fit a

distribution (preferably n > 100).

• There should be a range of different duration values.

• The durations should be validated (either through literature or using expert opinion).

• The distinction between the procedure and encounter durations should be explainable.

The procedure description Laparoscopic Removal of Gall Bladder satisfies all of the above

criteria with n = 413. The encounter duration (median duration of 17 hours) represents a stay in

the hospital while the procedure duration (median 139 minutes) most likely resembles the surgery

duration [68]. Using the summary statistics of this procedure (shown in Table 5.1), we are able to

estimate the parameters of various distributions in Section 5.1.4.

5.1.3 Fitting Initial Distribution to Synthea Duration Data

To generate a set of initial states that is common across all experiments (see Section 5.2.1),

we require the assumption of a single distribution for the surgery durations. Therefore, we use

statistical analysis to arrive at the best fit distribution given the emergency laparoscopic gall bladder

removal surgery duration data. Our best fit analysis was implemented using the Python package

fitter version 1.5.1 [69] with default settings and a timeout of 60 seconds. This package returns the
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Distribution RSS
uniform 1.31E-04
gennorm 1.31E-04

johnsonsb 1.50E-04
halfgennorm 1.80E-04

bradford 1.87E-04

Table 5.2: Python fitter results for best fit distribution.

best fit distribution from the available 80 SciPy distributions [69]. The best fit distribution is the

Uniform distribution with a minimum of 45 and a maximum of 239 based on the residual sum of

squares (RSS) results shown in Table 5.2 (note that the distribution parameters have been excluded

from this table).

5.1.4 Choosing Parameters of Job Attributes

Given the unavailability of real data, and the limitations of the synthetic data used, this section

outlines the parameters chosen for various job attributes. As demonstrated in Appendix A.2, any

inputs to the DES framework can be easily adapted to reflect a given problem. Unless otherwise

specified, all measures of time are given in minutes.

Job Arrivals

To model the dynamic arrival of jobs, a stationary Poisson process is used. We therefore assume

that the number of arrivals follows a Poisson distribution and that the inter-arrival times follow an

Exponential distribution with rate parameter λ. The arrival time of a particular job j is denoted as

rj .

For the purpose of this discussion, we assume deterministic processing times. Then, from a

queueing theory perspective, the problem presented in this work is represented by an M/D/1 queue

since jobs are arriving from a Poisson process, processing times are deterministic, and there is a

single server. The definition of utilization (ρ), as it pertains to a single server queueing problem,

represents the proportion of time the server is busy and can be computed as shown in Equation 9

where x̄ represents the mean processing time [64]. When ρ ≥ 1, the number of jobs in the queue

tends toward infinity [64]. Therefore, to have a stable system (here we use the term “stable” in
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the queueing theory sense) where the number of jobs in the queue does not tend toward infinity, a

utilization of ρ < 1 is required. This is particularly important for the purpose of this thesis when

considering the computational difficulty of solving the subproblems (see Section 4.4.4). As shown

in Equation 10, the chosen rate parameter in our experiments, λ = 1
180 , ensures ρ < 1.

ρ = λx̄ (9)

ρ =
1

180
(140.27) = 0.78 < 1 (10)

Job Priorities

We define three priority classes by setting num priority levels = 3. Jobs are considered to

have a high, medium, or low priority, corresponding to wj = 3, wj = 2, and wj = 1 respectively.

Job priorities are drawn from a discrete Uniform distribution.

Job Due Dates

The due date of a job represents the time (in minutes) at which the job should be completed and

is computed using a function which depends on both rj and wj as shown in Equation 11 where δwj

is specified for each possible value of wj .

Given that the Synthea data does not contain information regarding the due dates of surgical

procedures, our chosen values of δwj are motivated by the meta-analysis finding that performing

laparoscopic cholecystectomy within the 72 hour window is optimal [70]. We choose values for

δwj using the concept of early versus delayed surgery wait times [70, Table 1] but scale by a factor

of 1
8 to facilitate the need for rescheduling. Consequently, we assume δ3 = 180, δ2 = 540, and

δ1 = 900, and compute the due dates according to Equation 12.

dj(rj , wj) = rj + δwj (11)
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dj(rj , wj) =


rj + 180, if wj = 3

rj + 540, if wj = 2

rj + 900, if wj = 1

(12)

Estimated Job Processing Durations

This section outlines the parameters used for the estimated processing time distributions given

in Section 3.2 (Uniform, Exponential, Left Truncated Normal, and Bimodal). In the book Probabil-

ity distributions: with truncated, log and bivariate extensions, Thomopoulos discusses two popu-

lar methods in estimating distribution parameters from sample data: maximum-likelihood-estimate

(MLE) which uses the sample data to mathematically estimate the parameters, and the method-

of-moments (MoM) which estimates the parameters using algebraic manipulation and summary

statistics [71]. For the chosen Synthea data, we estimate the distribution parameters using MoM

with sample mean x̄ = 140.27 and sample standard deviation s = 55.80 (see Section A.3). The

resulting parameters are shown in Table 5.3 and are entered into the DES framework as explained

in Appendix A.2.

Distribution Parameter Value

Uniform
a 43.62
b 236.92

Exponential σ 71291.58E-07

Left Truncated Normal
γ 0.00
µ 140.27
σ2 55.80

Lognormal
µ 4.87
σ 0.15

Bimodal

ρ 0.60
µ1 100.45
µ2 200.00
σ1 18.28
σ2 36.57

Table 5.3: Parameters used for the estimated processing time distributions.

To validate the fitted distributions, we generate one million estimated processing times from

each distribution and report the sample means and standard deviations, rounded to two decimal
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distribution mean variance
true data 140.27 55.80
Uniform 140.24 55.78

Exponential 140.20 140.10
Left Truncated Normal 141.18 54.68

Lognormal 140.19 55.74
Bimodal 140.34 55.81

Table 5.4: Sample mean and variance of the chosen distributions for p̂j (n = 1000000).

places, in Table 5.4 (see Figure A.1 for the probability density functions of the distributions). Table

5.4 shows that the Uniform distribution with the chosen parameters most closely resembles the true

data while the Exponential distribution with the chosen parameters does not fit the data well due to

the characteristic that the mean and standard deviation of the Exponential distribution are equal.

True Job Processing Durations

We explore two candidate distributions for the true processing time of a job (pj) used in the

stochastic experiment: the Normal distribution and the Uniform distribution. We assume the can-

didate distributions are centered at p̂j and have a standard deviation equal to the standard deviation

found using the Synthea data (s = 55.80 Table 5.1). As explained in Section 3.2, we further allow

for the optional parameters of ϵ− and ϵ+ to control the level of uncertainty in the processing times

by defining a lower bound lj = p̂j − p̂jϵ
− and an upper bound uj = p̂j + p̂jϵ

+ for pj . The dis-

tributions for pj are then renormalized to fit within the provided lower and upper bounds. For the

bounded distributions in experiment 2, we assume ϵ− = 0.1 and ϵ+ = 0.2. Using these parameters

reduces the standard deviation of the candidate distributions and, since ϵ− ̸= ϵ+, also has an effect

on the mean.

Since the distribution of pj depends on p̂j , Appendix A.3 demonstrates an example of determin-

ing the distribution parameters for pj assuming that p̂j = x̄ = 140.27 (Table 5.1). Given that the

parameters of the true processing time distributions are computed internally within the DES frame-

work based on the value of p̂j , the only parameters required as input to the simulation framework

are ϵ−, ϵ+, and s (see Appendix A.2).

To visualize the true processing time distributions, we generate 1 million values of pj from each
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Distribution mean variance
Normal 141.20 54.61
Uniform 140.28 55.80

Normal [.1, .2] 146.94 12.03
Uniform [.1, .2] 147.29 12.15

Table 5.5: Example sample mean and variance of the chosen distributions for pj assuming p̂j =
140.27 (n = 1000000).

Figure 5.1: Example PDF of true processing time distributions for p̂j = 140.27.

distribution based on the assumption p̂j = 140.27 and report on the sample means and standard

deviations, rounded to two decimal places, in Table 5.5. We define Normal [.1, .2] and Uniform

[.1, .2] to be the bounded Normal and Uniform distributions with ϵ− = 0.1 and ϵ+ = 0.2. The

probability density function (PDF) for the specific value of p̂j = 140.27, shown in Figure 5.1,

demonstrates the reduction in variability when using the bounded distributions.

5.2 Simulation Setup

This section outlines the steps required to set up the DES framework including generating initial

states, and determining the number of replications.
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5.2.1 Initial States

We define an initial state as the list of jobs waiting in the queue and all their attributes. Tradition-

ally, an initial state should also include the job currently in progress and its remaining processing

time (if any). However, since our problem setting is a single machine with no preemptions, any job

which is currently in progress on the machine must complete without interruption. Therefore, we

arrive at our definition by assuming the initial state starts at the time when the job currently on the

machine finishes its processing, similar to the initial state simplification presented by Law’s bank

example [60, Sec: 9.4.3]. Given the simulation length, the effect of the initial state approximation

should be minimal [60, Sec: 9.4.3].

To generate initial states, we employ a heuristic in which a pseudo warm-up period is determined

[60]. Classically, the concept of warm-up period is used for statistical analysis of steady state

parameters [60]; in this dissertation, we instead use this concept for generating initial states. We

inspect the behaviour of the queue length over time to determine the pseudo warm-up period such

that the initialization bias has been removed. To do so, we run the simulation with deterministic

processing times drawn from a Uniform distribution with a minimum of 45 and a maximum of

239 according to the best fit distribution on the data using MLE (refer to Section 5.1.3). During

simulation runs used for determining the pseudo warm-up period, we use the Earliest Due Date

(EDD) first dynamic dispatching rule. The inputs required for determining the pseudo warm-up

period are shown in Table A.2. To find a simulation run length sufficient to determine the pseudo

warm-up period, we test four different choices of simulation length (ranging from 31 days to 24

months). Due to time constraints, we limit our analysis of determining the pseudo warm-up period

to two replications.

Plots of the queue length over time may be difficult to inspect due to the high-frequency oscil-

lations [60] resulting from the possibly large number of state changes over the long simulation run

length. We therefore perform smoothing using Welch’s method (following the steps summarized

in [60, 72]). Queue length observations are recorded whenever there is a change to the length of

the queue, violating the assumption of equally spaced observations required for Welch’s method

[73]. Motivated by [73], we bin the data into equal time intervals of ten minutes after which we
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(a) w = m
10

(b) w = m
6

(c) w = m
4

Figure 5.2: Welch moving average plots for the number of jobs in the queue using n = 2 and a
simulation run length of 1036800 minutes (m = 103680) with various window sizes.

compute the time persistent average number in the queue within each bin. This new data satisfies

the assumption of equally spaced observations and can be used for Welch’s method. Additionally,

Welch’s method requires a number of replications and a window size parameter for the moving aver-

ages to be specified. The window size, denoted w, is a positive integer with w ≤ m
4 where m is equal

to the number of observations [60, 72]. We evaluate various window sizes with w ∈ {m
4 ,

m
6 ,

m
10}.

Although we perform Welch’s graphical procedure on all four of the simulation run lengths, we

include Welch plots for a simulation run length of 24 months only, shown in Figure 5.2, since this

is the simulation run length determined to be sufficiently long to infer the pseudo warm-up period.

As can be seen in Figure 5.2, increasing w results in a smoother plot. Note that the x-axis is in
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tens of minutes as a result of binning the data. Based on the plots in Figure 5.2, we assume 100000

minutes (69.44 days) is sufficient for removing the initialization bias. To be conservative, we choose

a pseudo warm-up period of 129600 minutes (90 days).

We run the simulation with all the same assumptions as those used to determine the pseudo

warm-up period with the stopping criteria set as the end of the pseudo warm-up period (see Table

A.3 for the DES framework inputs). The jobs remaining in the queue at the end of the pseudo warm-

up period form the initial state. There is an initial state for every replication but the same initial states

are used across various scenarios. Therefore, we repeat the above process for the required number

of replications.

5.2.2 Number of Replications

Due to the large number of scenarios being considered in the experiments (see Sections 5.3.1,

5.4.1), it is not feasible to evaluate all scenarios when determining the number of replications.

Therefore, we choose a single scenario with high variability, namely the deterministic case with

processing times drawn from an Exponential distribution and the eventJobCompletion policy, and

use it to determine the number of replications. We compute FTWT and total instability for this

scenario using different number of replications. By inspecting the plots in Figure 5.3, we conclude

that n = 100 is a sufficient number of replications while still ensuring computational feasibility for

the purpose of this thesis.

5.3 Experiment 1: Deterministic Case

In this section, we investigate the effects of the assumption of a particular statistical distribution

for the processing times and rescheduling policies on total instability and FTWT for the determin-

istic problem. The overarching goal is to be able to identify a specific policy, or a set of appropriate

policies, which could be recommended depending on the processing time distributions.
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(a) (b)

Figure 5.3: Boxplots of (a) FTWT and (b) total instability by number of replications for the scenario
with deterministic processing times drawn from an Exponential distribution and the eventJobCom-
pletion rescheduling policy.

5.3.1 Experiment Outline

Experiment 1 focuses on the deterministic case (pj = p̂j ∀j ∈ J). We investigate the effects

of the estimated processing time distribution on the instability and efficiency results under different

rescheduling policies. In this experiment, we use the estimated processing time distribution to

generate the processing times which are deterministic and known at the time of arrival.

The distributions of job arrivals and priorities are defined in Section 5.1.4 and the construction

of due dates is defined via Equation 12. The initial states are generated according to Section 5.2.1

and we use 100 replications for each scenario as described in Section 5.2.2. The period of interest

is τ = 10080 minutes, corresponding to one week.

Independent Variables

The following distributions, with parameters summarized in Table 5.3, are explored in this ex-

periment: Uniform, Exponential, Left Truncated Normal, Lognormal, and Bimodal.

Nine different rescheduling policies are evaluated in this experiment. For the periodic reschedul-

ing policies, we relate ∆ to the average inter-arrival time given by 1
λ . The different rescheduling

policies are given below:

• periodic140: periodic policy with ∆ = 140 (∆ < 1
λ )
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• periodic180: periodic policy with ∆ = 180 (∆ = 1
λ )

• periodic220: periodic policy with ∆ = 220 (∆ > 1
λ )

• eventArrival: event job arrival policy

• eventHighPriority: event priority arrival policy with priority set {3}

• eventJobCompletion: event job completion policy

• eventScheduleCompletion: event schedule completion policy

• hybrid220HighPriority: combination of event driven rescheduling on high priority arrivals

(event priority arrival policy with priority set {3}) and periodic rescheduling with ∆ = 220

• hybrid220ScheduleCompletion: combination of event driven on schedule completion and pe-

riodic rescheduling with ∆ = 220

Let D refer to the set of distributions and R refer to the set of rescheduling policies to be

considered. Then this experiment consists of |R| · |D| scenarios (combinations of distributions and

policies) to be run. Using the above sets of distributions and rescheduling policies, this experiment

requires 45 scenarios.

Dependent Variables

The dependent variables are the simulation results for each of the different scenarios. In this

thesis, we are primarily interested in FTWT and total instability.

5.3.2 Experiment Results

In this section, we explore the results of experiment 1, the deterministic case. We compare

FTWT and total instability by scenario and analyze the effect of the average length of the reschedul-

ing interval on the two performance metrics. Finally, we report on the percent of subproblems which

reached the time limit resulting in suboptimal solutions. A discussion of the variability in the two

performance metrics for scenario subsets can be found in Section A.5.1.
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Figure 5.4: Average total instability (minutes) vs. average FTWT (weighted minutes) for the de-
terministic case by scenario, where a scenario is defined by a rescheduling policy (colours) and a
processing time distribution assumption (shapes).

Comparing Total Instability and FTWT by Scenario

Total instability and FTWT are computed as described in Sections 3.3.3 and 3.3.4 respectively.

The average of these metrics, taken over the 100 replications, are plotted in Figure 5.4 for each

scenario, where scenarios are represented using shapes to refer to the processing time distribution

assumptions and colours to refer to the rescheduling policies.

To analyze the effect of the processing time distributions and rescheduling policies on FTWT

and total instability, we construct confidence intervals and perform hypothesis testing. Since we

want to compare the various scenarios, our goal falls into the “All Pairwise Comparisons” category

where we construct multiple confidence intervals (or perform the related hypothesis test) simulta-

neously [60]. In this case, it is important to consider the multiple-comparisons problem [60] where

performing multiple t-tests (or constructing multiple confidence intervals) without accounting for

the multiple comparisons (specifically the joint Type I error rate [74]) increases the probability of a

false positive, or a Type I error [75]. One method to account for this issue relies on the Bonferroni

inequality [60, Sec. 9.7] to establish an individual confidence level of 1 − α
c such that the overall

confidence level is at least 1 − α where c is the number of intervals being constructed and α is the

significance level. Specifically in the case of all pairwise comparisons, c = k(k−1)
2 [60, Sec. 10.3.2].
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For experiment 1, we have a total of 45 scenarios being considered with two different perfor-

mance metrics (k = 90). Then c = 90(90−1)
2 = 4005 and, assuming α = 0.05, an individual

confidence level of 1− α
c = 1− 0.05

4005 = 0.99999 would be required, resulting in exceedingly large

confidence intervals. Adjusting the confidence levels based on the Bonferroni inequality can be

conservative, causing an increase in false negatives, or Type II errors [75]. Law recommends using

the Bonferroni adjustment when the number of confidence intervals being constructed is around ten

or less [60, Sec. 9.7]. In cases where c is very large, the recommendation is to construct the regular

confidence intervals, but to be cautious in reporting findings as there will likely be confidence inter-

vals which do not contain their true means [60, Sec. 9.7]. Since the goal of this thesis is identifying

general patterns and behaviours, we follow the approximate approach suggested by Law [60] by

constructing regular 95% paired-t confidence intervals and performing the related paired t-tests for

difference in means. However, there is a high likelihood that there will exist confidence intervals

which do not contain their true means. If a decision maker wanted to further analyze a small subset

of the scenarios or decide the best scenario among a small subset, then they should proceed with the

Bonferroni adjustment.

Throughout our analysis, we assume both metrics are equally important. In practice, more im-

portance may be placed on one of the performance metrics over the other. The units of measurement

for total instability are in minutes. However, FTWT is a weighted metric and therefore is affected

by both the weight and tardiness of a job.

We present the following results capturing the performance of the various rescheduling policies:

(1) As observed in Figure 5.4, the eventHighPriority policy performs poorly as it results in both

a high average FTWT and a high average total instability for all distributions. Recall that

eventHighPriority refers to the case where rescheduling occurs every time a high priority job

(a job with priority wj = 3) arrives.

FTWT: for each distribution, we observe a statistically significant difference (p < 0.001)

between eventHighPriority and each of the remaining policies with respect to FTWT.

Total instability: the Lognormal, Bimodal, Left Truncated Normal, and Uniform distributions

show statistically significant differences (p < 0.001) between the eventHighPriority policy
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and every other policy with respect to total instability. The Exponential distribution shows sta-

tistically significant differences (p < 0.05) between the eventHighPriority policy and every

other policy with respect to total instability.

For example, assuming the Exponential distribution, the periodic220 policy outperforms

eventHighPriority at the 95% confidence level, with 95% paired-t confidence intervals ( even-

tHighPriority - periodic220) for FTWT and total instability being [16990.67, 24897.81] and

[1733.45, 4745.28] respectively.

(2) As expected, eventScheduleCompletion has zero total instability for all distributions. There-

fore, we can use this policy as a benchmark to determine if a different rescheduling policy

is worth considering: a policy with a higher average FTWT than eventScheduleCompletion

would not be advantageous. By inspecting Figure 5.4, we identify two policies with poten-

tially higher average FTWT than eventScheduleCompletion across a majority of distributions:

periodic220 and eventHighPriority. The results of the paired t-tests and paired-t confidence

intervals for the difference of means in FTWT of eventScheduleCompletion minus eventHigh-

Priority and periodic220 are shown in Table 5.6. We see that eventHighPriority performs

worse in FTWT than eventScheduleCompletion across all distributions at the 95% confidence

level and the difference between the two policies is statistically significant (p < 0.001). With

the exception of the Exponential distribution, periodic220 does not produce statistically sig-

nificant differences in FTWT when compared to eventScheduleCompletion. Therefore, even

if periodic220 performs marginally better than eventScheduleCompletion for a given distri-

bution, it is likely not worth considering due to the total instability cost incurred.

(3) From Figure 5.4, we observe that eventArrival outperforms eventHighPriority in both average

FTWT and average total instability across all distributions. The results of the paired t-test and

confidence interval (eventArrival minus eventHighPriority) for each distribution are shown

in Table 5.7. Given that eventArrival reschedules on every new arrival while eventHighPri-

ority reschedules on high priority job arrivals, eventHighPriority performs a subset of the

rescheduling actions that eventArrival performs. Since eventArrival takes advantage of infor-

mation regarding the uncertainty (dynamic arrivals) more frequently by rescheduling on every
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Scenario
Rescheduling Policy Distribution CI p-value

eventHighPriority

Exponential [12030.46, 21216.25] 1.54E-10***
Lognormal [23295.00, 32958.62] 6.30E-20***
Bimodal [23605.29, 32990.78] 8.18E-21***

Left Truncated Normal [23625.13, 33005.38] 7.64E-21***
Uniform [22873.92, 32624.26] 2.24E-19***

periodic220

Exponential [-6976.01, -1665.76] 1.77E-3**
Lognormal [-3925.20, 704.77] 0.73
Bimodal [-2340.44, 1863.62] 0.82

Left Truncated Normal [-2195.64, 1738.33] 0.82
Uniform [-3286.99, 1559.92] 0.48

Table 5.6: Deterministic experiment 95% paired-t confidence intervals and p-value (* : p < 0.05,
** : p < 0.01, *** : p < 0.001) for paired two-tailed t-test for FTWT of eventScheduleCompletion
minus eventHighPriority and periodic220.

new arrival, we expect it to perform better than eventHighPriority in terms of average FTWT.

However, Table 5.7 demonstrates that eventArrival also outperforms the eventHighPriority in

average total instability for each distribution.

FTWT: the results show a statistically significant difference between the FTWT of the two

rescheduling policies (p < 0.001) for each distribution, while the confidence interval shows

that eventArrival outperforms eventHighPriority at the 95% confidence level.

Total instability: the 95% confidence intervals for total instability also demonstrate that even-

tArrival results in a lower total instability than eventHighPriority. The t-test shows a sta-

tistically significant difference between the total instability results of the two rescheduling

policies with p < 0.05 for the Exponential distribution and p < 0.001 for the remaining

distributions.

Question 1: Does the assumption of a specific statistical distribution for processing times have

an effect on FTWT and total instability?

(1) As seen in Figure 5.4, the Exponential distribution differs from the remaining distributions

with a higher average FTWT and slightly higher average total instability across nearly all

rescheduling policies (Table 5.8). This could be a result of the higher variability in the Expo-

nential distribution (see Table 5.4).
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FTWT Total Instability
Distribution CI p-value CI p-value
Exponential [-30418.62, -22620.83] 4.98E-24*** [-3060.80, -106.63] 0.04*
Lognormal [-39158.41, -30160.71] 1.19E-27*** [-8413.83, -4530.91] 2.24E-09***
Bimodal [-39395.68, -30803.12] 1.86E-29*** [-7620.14, -4215.68] 5.92E-10***

Left Truncated Normal [-39261.65, -30481.75] 1.38E-28*** [-8397.33, -4228.70] 3.56E-08***
Uniform [-39179.68, -30130.17] 1.78E-27*** [-8601.37, -4886.24] 1.39E-10***

Table 5.7: Deterministic experiment 95% paired-t confidence intervals and p-values (* : p < 0.05,
** : p < 0.01, *** : p < 0.001) for paired t-test of eventArrival minus eventHighPriority for each
distribution and metric.

FTWT: we observe statistically significant differences between the Exponential distribution

and each of the remaining distributions for all rescheduling policies (p < 0.001) except

eventHighPriority.

Total instability: we find that there are no statistically significant differences between the

Exponential distribution and the remaining distributions except for the scenarios including

the eventHighPriority rescheduling policy (p < 0.001).

The Exponential distribution is commonly used to represent processing times in stochastic

scheduling problems [52], in particular due to the tractable solutions available [62, Table

F.1]. In our literature review, we observe the use of the exponential distribution for surgery

durations [33, 51, 76], emergency department service times [77], and job processing times in

other non-healthcare settings [78, 79, 80, 81, 82]. The frequent appearance of exponentially

distributed processing times in literature highlights the importance of our result as incor-

rectly assuming an Exponential distribution can lead to erroneous conclusions (ones that are

statistically significantly different from what they should be if the best fit distribution were

different).

(2) As shown in Figure 5.4, the Uniform and Left Truncated distributions have similar results

across all rescheduling policies. This observation is formalized in Table 5.9 which shows,

for each rescheduling policy, there are no statistically significant differences between the two

distributions with respect to FTWT or total instability. We remark that these two distributions

have similar variances (Table 5.4).
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p-value
Rescheduling Policy FTWT Total Instability

eventArrival 0.88 0.75
eventHighPriority 0.93 0.79

eventJobCompletion 0.93 0.60
eventScheduleCompletion 0.63 –

hybrid220HighPriority 0.90 0.61
hybrid220ScheduleCompletion 0.74 0.56

periodic140 0.90 0.82
periodic180 0.85 0.87
periodic220 0.86 0.78

Table 5.9: Deterministic experiment p-values (* : p < 0.05, ** : p < 0.01, *** : p < 0.001) for the
paired t-test for difference in means between the Uniform and Left Truncated distribution results
across all rescheduling policies. We use ‘–’ to denote the scenario where we are unable to compute
a p-value due to the zero variance in total instability when the eventJobCompletion policy is used.

(3) In most rescheduling policies, with the exception of eventHighPriority and eventSchedule-

Completion, we observe a consistent pattern with respect to the distributions. This can be

seen in Figure 5.4 by examining each colour (rescheduling policy) separately and identify-

ing the relationship of all the shapes (distributions) to each other. This pattern suggests that

the assumptions regarding the underlying statistical distributions have an effect on the results.

Given the large number of scenarios, we focus on the periodic180 policy to conduct statistical

analysis of this observation. Table 5.10 displays the p-values between every possible pair of

distributions when the periodic180 policy is used.

Excluding comparisons involving the Exponential distribution, the only statistically signifi-

cant result is between the Lognormal and Uniform distributions with respect to total instability

(p < 0.05) when the periodic180 policy is used (Table 5.10). Furthermore, the Lognormal

distribution would underestimate the true total instability at the 95% confidence level (confi-

dence interval [-1899.38, -45.51] for the difference in means using the Lognormal minus the

Uniform). Recall that the best fit distribution found using MLE on the data was the Uniform

distribution. Possible reasons for incorrectly assuming the Lognormal distribution include

unavailability of data, basing the decision on commonly used distributions in literature, or

as a result of the underlying distribution changing over time. The underestimation of the

total instability resulting from assuming the Lognormal distribution rather than the Uniform
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distribution is likely undesirable and could have negative consequences if a downstream or

upstream decision was made based on the simulation results. This proves that there exists a

situation where the shape of the distribution has statistically significant effects.

Based on the above results, we conclude that the level of variability in the processing time

distribution has a larger effect on the FTWT results than the shape of the distribution. Future work

should perform analysis on the remaining rescheduling policies similar to the analysis conducted

for the periodic180 policy in result (3) above.

Question 2: Can we determine a rescheduling policy which performs well under all distribu-

tions?

• Assuming the decision maker cares about each metric equally, Figure 5.4 suggests that even-

tJobCompletion is the best performing policy for all distributions evaluated. This observation

is particularly interesting since eventJobCompletion is a fairly simple policy.

Focusing on the Lognormal distribution, in Table 5.11 we show the p-values and confidence

intervals for the difference in means between eventJobCompletion and every other policy for

both performance metrics. A confidence interval where both bounds are negative would mean

that eventJobCompletion outperforms the other policy at the 95% confidence level.

FTWT: with the exception of eventArrival, there is a statistically significant difference be-

tween the FTWT of eventJobCompletion and of every other policy (p < 0.001) assuming

a Lognormal distribution. Furthermore, eventJobCompletion outperforms every other policy

with respect to FTWT at the 95% confidence level.

Total instability: In terms of total instability, the only policy which performs better than even-

tJobCompletion at the 95% confidence level under the assumption of a Lognormal distribu-

tion is eventScheduleCompletion (which has zero total instability). With the exception of the

hybrid220ScheduleCompletion and periodic220 policies, the remainder of the policies show

statistically significant differences in total instability compared with eventJobCompletion (see

Table 5.11 for p-values).
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FTWT Total Instability
Rescheduling Policy p-Value CI p-Value CI

eventArrival 0.08 [-185.91, 9.10] 6.42E-20*** [-1358.47, -960.04]
eventHighPriority 9.15E-28*** [-39234.14, -30261.79] 9.14E-12*** [-9581.28, -5681.97]

eventScheduleCompletion 1.94E-07*** [-8956.37, -4285.94)] 1.46E-11*** [3473.42, 5897.69]
hybrid220HighPriority 2.48E-12*** [-1607.90, -970.94] 8.34E-15*** [-1595.15, -1028.29]

hybrid220ScheduleCompletion 1.16E-33*** [-5549.51, -4472.37] 0.32 [-126.00, 386.01]
periodic140 1.31E-35*** [-3570.99, -2913.18] 1.35E-07*** [-838.91, -406.2]
periodic180 4.33E-38*** [-4954.51, -4099.43] 0.04* [-457.25, -12.63]
periodic220 5.62E-40*** [-6765.28, -5653.21] 0.36 [-359.06, 130.46]

Table 5.11: Deterministic experiment 95% paired-t confidence intervals and p-values (* : p < 0.05,
** : p < 0.01, *** : p < 0.001) for paired t-test of eventJobCompletion minus the secondary
rescheduling policy assuming the processing times follow a Lognormal distribution.

Question 3: Can we identify a rescheduling policy whose performance is least affected by the

different processing time distributions?

Identifying a rescheduling policy which is least affected by the assumption of a specific statisti-

cal distribution could be useful for the case where the true underlying distribution is not known or

the distribution evolves over time. Specifically discussing health care applications, Pinedo advises

caution in using probability distributions fit to data as the distributions may change over time due to

improvements in operating techniques or evolving trends in patient characteristics [27].

• In terms of average total instability, the policy which is least affected by the assumption of

a specific statistical distribution is eventScheduleCompletion since it has zero average total

instability across all distributions. However, it is difficult to visually identify a policy which

is least affected by the assumption of a specific statistical distribution when the performance

measures are considered equally important and further numerical analysis would be required.

Effect of the Average Length of the Rescheduling Interval on Total Instability and FTWT

In this section, we wish to determine if there is a relationship between the average length of

the rescheduling interval and either of the performance metrics. Intuitively, one may be tempted

to analyze the number of rescheduling actions directly, however this does not take into account the

difference in simulation run lengths resulting from the dynamically determined stopping criteria,

T. Instead, we focus on the average length of the rescheduling interval computed as T
NRA where

NRA is the number of rescheduling actions taken. Throughout this section, we also refer to the
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rescheduling frequency which is the inverse of the average length of the rescheduling interval [8, 14].

Figure 5.5 shows average FTWT and average total instability plotted against the average length of

the rescheduling interval.

For the three periodic policies, Figure 5.5 shows that more frequent rescheduling leads to a lower

average FTWT and a higher total instability. We do not observe any relationship for the remaining

policies evaluated in Figure 5.5. One may expect that more frequent rescheduling leads to better

efficiency, in our case lower FTWT. The periodic140 policy has the most frequent rescheduling

with an average length of the rescheduling interval of approximately 140 minutes as seen in Figure

5.5(a). We can compare this to the best performing policy, eventJobCompletion, whose average

length of the rescheduling interval is slightly larger. Comparing these two policies, we observe

that periodic140 has a statistically significant (p < 0.001) difference in the FTWT results and the

95% paired-t confidence interval shows that eventJobCompletion outperforms periodic140 across all

distributions (Table 5.12). Since preemptions are not allowed, rescheduling at the completion time

of each job takes into account the maximum information possible. We conclude that more frequent

rescheduling does not necessarily result in lower FTWT and FTWT is affected by the quality of

the information obtained at the time of rescheduling rather than the frequency of the rescheduling

actions themselves.

As demonstrated in Figure 5.5(a), the FTWT of the eventArrival and eventJobCompletion poli-

cies are notably similar in the deterministic experiment. In a particular scenario where a job is

completed and there are no pending jobs in the queue, eventJobCompletion behaves similar to even-

tArrival by rescheduling at the time of the next arrival. Under the assumption that preemptions are

not allowed, these two policies both reschedule at times that allow them to make complete use of the

realizations of uncertainty (job arrivals). Since the rescheduling method is independent of the poli-

cies, the MIP model may introduce slack into a schedule if none of the jobs have tardiness. Based

on our observations, it appears that as we get closer to the point in the schedule where the slack

has been introduced, a subsequent rescheduling algorithm may remove or reduce the slack. This is

beneficial in the case where the job which immediately follows the scheduled slack is currently in

progress when a new job arrives that will result in tardiness if not started immediately. If the slack

had been reduced or removed prior to the arrival of the new job, the tardiness of the new job will
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(a) Average FTWT vs. average length of the rescheduling interval by scenario.

(b) Average total instability vs. average length of the rescheduling interval by scenario.

Figure 5.5: Scatter plots of (a) average FTWT (weighted minutes) and (b) average total instability
(minutes) vs. average length of the rescheduling interval for the deterministic experiment by sce-
nario, where a scenario comprises a rescheduling policy (colours) and a processing time distribution
assumption (shapes).
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Distribution CI p-value
Exponential [-3879.73, -2975.48] 3.61E-27***
Lognormal [-3570.99, -2913.18] 1.31E-35***
Bimodal [-3869.19, -3191.15] 1.67E-37***

Left Truncated Normal [-3872.02, -3111.05] 3.35E-33***
Uniform [-9432.28, -4495.13] 8.92E-33***

Table 5.12: Deterministic experiment 95% paired-t confidence intervals and p-values (* : p < 0.05,
** : p < 0.01, *** : p < 0.001) for paired t-test of eventJobCompletion minus periodic140 for each
distribution.

be less than if the slack was not reduced. In our specific problem setting, eventArrival reschedules

less frequently than eventJobCompletion since the average inter-arrival time is 180 minutes and the

average processing time of a job is 140.27 minutes. Since eventArrival reschedules less frequently,

there is less opportunity to remove potential slack from a previous schedule. For a given simulation

replication, it is possible that both eventArrival and eventJobCompletion result in the same FTWT,

that eventArrival performs better with respect to FTWT, or that eventJobCompletion performs better

with respect to FTWT. However, we observe that more often than not, eventJobCompletion outper-

forms eventArrival.

Percent of Suboptimal Solutions

All of the rescheduling policies evaluated in this thesis utilize the complete rescheduling method

which requires solving multiple MIP models sequentially. The size of each MIP model depends on

the number of jobs which have not yet started processing, and can vary substantially from policy

to policy or subproblem to subproblem (see Section 4.4.4). Due to the computational challenges of

solving large MIP models, we enforce a time limit of 300 seconds per subproblem for all policies

considered. Table 5.13 summarizes these results by taking the average percent of rescheduling

actions which exceeded the time limit aggregated by rescheduling policy.

As can be observed in Table 5.13, the average percent of rescheduling actions which exceed the

time limit for the eventHighPriority policy is approximately ten times the value of any of the other

policies. The eventHighPriority policy likely reaches the time limit more often because the average

length of the rescheduling interval is much larger than any of the other policies (see Figure 5.5) thus

allowing the queue of unscheduled jobs to grow between rescheduling actions. Since the number
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Rescheduling Policy Average % Exceeding Time Limit
eventArrival 7.71E-01

eventHighPriority 5.82
eventJobCompletion 6.80E-01

eventScheduleCompletion 1.57E-01
hybrid220HighPriority 5.75E-01

hybrid220ScheduleCompletion 4.00E-01
periodic140 5.65E-01
periodic180 5.41E-01
periodic220 5.58E-01

Table 5.13: The percent of rescheduling actions exceeding the time limit averaged across all distri-
butions for each rescheduling policy for the deterministic experiment.

of decision variables in the MIP model is directly related to the number of jobs waiting to start

processing (both scheduled and unscheduled), there are likely more sequencing decision variables

in the MIP models for this policy than remaining policies.

5.4 Experiment 2: Stochastic Case

In this section, we investigate the effects of the processing time statistical distribution and

rescheduling policies on total instability and FTWT for the case when the processing time real-

izations become known only once a job is completed. We call this experiment the “stochastic case”

since, at the time when rescheduling decisions are made, the true processing times of uncompleted

jobs are not known. The goals of this experiment are the same as experiment 1.

5.4.1 Experiment Outline

Experiment 2 models the stochastic case where an estimated processing time, p̂j , is provided,

but the true processing time, pj , does not become known until job j has completed processing.

In this experiment, we investigate the effects of different true processing time distributions on the

instability and efficiency results under various rescheduling policies. To reduce the dimensionality

in this experiment, we assume a fixed distribution for p̂j as the Uniform distribution over the interval

[43.62, 236.92] from Section 5.1.4.

As in experiment 1, the distributions of job arrivals and priorities are defined in Section 5.1.4
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and the construction of the due dates follows Equation 12. Initial states are generated according

to the procedures outlined in Section 5.2.1 and, based on the analysis in Section 5.2.2, we use 100

replications for each scenario. We use the same period of interest as experiment 1 with τ = 10080

minutes, corresponding to one week.

Independent Variables

The following true processing time distributions are used in this experiment (see Section 5.1.4):

• Deterministic (pj = p̂j ∀j ∈ J)

• Uniform

• Normal

• Bounded Uniform: Uniform distribution with level of uncertainty parameters ϵ− = 0.1 and

ϵ+ = 0.2

• Bounded Normal: Normal distribution with level of uncertainty parameters ϵ− = 0.1 and

ϵ+ = 0.2

To further reduce the computational requirement of this experiment, we have chosen to evaluate

a subset of the nine different rescheduling policies implemented in experiment 1. In particular, we

choose the following rescheduling policies:

• periodic180: periodic policy with ∆ = 180

• eventArrival: event job arrival policy

• eventHighPriority: event priority arrival policy with priority set {3}

• eventJobCompletion: event job completion policy

• eventScheduleCompletion: event schedule completion policy

• hybrid220HighPriority: combination of event driven on high priority arrivals (event priority

arrival policy with priority set {3}) and periodic rescheduling with ∆ = 220

Using the formula |R| · |D|, we conclude that this experiment requires 30 scenarios.
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Dependent Variables

The dependent variables are FTWT and total instability.

5.4.2 Experiment Results

In this section, we explore the results of experiment 2, the stochastic experiment. We compare

FTWT and total instability by scenario, analyze the effect of the average length of the rescheduling

interval, and report on the percent of subproblems which reached the time limit resulting in subop-

timal solutions. Refer to Section A.5.2 for a discussion of the variability in the two performance

metrics for scenario subsets.

Comparing Total Instability and FTWT by Scenario

Figure 5.6 plots the average of total instability and FTWT over 100 replications where shapes

represent the processing time distribution assumptions and colours represent the rescheduling poli-

cies. Also following experiment 1, for every possible pair of scenarios we construct regular 95%

paired-t confidence intervals and perform the related paired t-tests for difference in means. See

Section 5.3.1 for a description of why it is not feasible to use the Bonferroni equation to adjust for

the multiple comparisons for this experiment (with c = 60(60−1)
2 = 1770 and a confidence level of

1− α
c = 1− 0.05

1770 = 0.99998). We emphasize that all conclusions made in the analysis of experiment

2 assume that the decision maker cares about both performance metrics equally. Recall the units of

measurement for total instability and FTWT are minutes and weighted minutes respectively.

We observe the following results:

(1) In Figure 5.6, we observe that, similarly to experiment 1, eventHighPriority (rescheduling

every time a high priority job arrives) performs poorly with high average FTWT and total

instability. For each distribution, there is a statistically significant difference between even-

tHighPriority and each of the remaining policies (p < 0.001) for both performance metrics.

Moreover, for each distribution, the 95% paired-t confidence interval shows that the even-

tHighPriority policy performs worse than every other policy in both FTWT and total insta-

bility. For example, assuming a Normal distribution for the true processing times, the 95%
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Figure 5.6: Average total instability (minutes) vs. average FTWT (weighted minutes) for the
stochastic case by scenario, where a scenario comprises a rescheduling policy (colours) and a pro-
cessing time distribution assumption (shapes).

paired-t confidence intervals constructed for eventHighPriority minus eventJobCompletion

for FTWT and total instability are [39743.04, 53491.1] and [7669.17, 12162.36] respectively.

(2) As in experiment 1, eventScheduleCompletion results in zero total instability for each sce-

nario. We again use this policy to determine if another policy is worth considering. Paired-t

confidence intervals and paired t-tests for the difference of means in FTWT between eventSched-

uleCompletion and each of eventHighPriority, periodic180, and hybrid220HighPriority are

shown in Table 5.14. We see that eventHighPriority performs worse in FTWT than eventSched-

uleCompletion at the 95% confidence level and the difference between the two policies is

statistically significant (p < 0.001) across all distributions. The hybrid220HighPriority pol-

icy performs worse than eventScheduleCompletion with statistically significant differences in

means (p < 0.001) for the Normal and Uniform distributions only. Furthermore, periodic180

does not show statistically significant differences in FTWT compared to eventScheduleCom-

pletion for any of the distributions. Even inn cases where a statistically significant difference

is not found, the policy is likely not advantageous due to the increase in total instability com-

pared to the zero instability of the eventScheduleCompletion policy.
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Scenario
Rescheduling Policy Distribution CI p-value

eventHighPriority

Deterministic [-36746.34, -24380.74] 3.66E-16***
Normal [-44238.22, -29417.81] 2.81E-16***
Uniform [-44211.06, -29506.54] 1.83E-16***

Normal[0.1, 0.2] [-39173.52, -25792.39] 8.79E-16***
Uniform[0.1, 0.2] [-39808.89, -26181.65] 9.95E-16***

hybrid220HighPriority

Deterministic [-2065.73, 362.78] 0.17
Normal [-5374.45, -1393.78] 1.11E-03**
Uniform [-4237.65, -964.93] 2.24E-03**

Normal[0.1, 0.2] [-2409.63, 749.64] 0.30
Uniform[0.1, 0.2] [-2333.07, 742.04] 0.31

periodic180

Deterministic [-560.85, 1771.5] 0.31
Normal [-3919.5, 399.03] 0.11
Uniform [-2731.97, 633.16] 0.22

Normal[0.1, 0.2] [-699.61, 2318.11] 0.29
Uniform[0.1, 0.2] [-693.39, 2125.43] 0.32

Table 5.14: Stochastic experiment 95% paired-t confidence intervals and p-values (* : p < 0.05, **
: p < 0.01, *** : p < 0.001) for paired two-tailed t-test for FTWT of eventScheduleCompletion
minus eventHighPriority, hybrid220HighPriority, and periodic180.

Question 1: Does the assumption of a specific true processing time distribution have an effect

on FTWT and total instability?

(1) Figure 5.6 suggests that the deterministic case results in the lowest average FTWT and aver-

age total instability for all rescheduling policies. For each rescheduling policy, we perform

paired t-tests for difference in means between the deterministic case and each of the remaining

distributions for both FTWT and total instability. Our results show that there is a statistically

significant difference (p < 0.001) between the deterministic case and each of the other dis-

tributions for both metrics (with the exception of the total instability of eventScheduleCom-

pletion which is zero for all distributions). We conclude that there is a statistically significant

difference in FTWT and total instability between the deterministic and stochastic cases.

(2) Based on Figure 5.6, it appears that the two bounded distributions (Normal[0.1, 0.2] and Uni-

form[0.1, 0.2]) yield similar results across all rescheduling policies. In Table 5.15, we record

the p-values for the paired t-test between the bounded Normal and the bounded Uniform dis-

tributions for both FTWT and total instability. The only statistically significant difference that
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p-value
Rescheduling Policy FTWT Total Instability

eventArrival 0.54 0.27
eventHighPriority 0.02 * 0.12

eventJobCompletion 0.48 0.51
eventScheduleCompletion 0.92 –

hybrid220HighPriority 0.98 0.60
periodic180 0.46 0.09

Table 5.15: P-values (* : p < 0.05, ** : p < 0.01, *** : p < 0.001) for the paired t-test for
difference in means between the bounded Normal and bounded Uniform distributions across all
rescheduling policies for the stochastic experiment. We use ‘–’ to denote the scenario where we are
unable to compute a p-value due to the zero variance in total instability when the eventJobComple-
tion policy is used.

p-value
Rescheduling Policy FTWT Total Instability

eventArrival 0.30 0.28
eventHighPriority 0.13 0.40

eventJobCompletion 0.66 0.32
eventScheduleCompletion 0.16 –

hybrid220HighPriority 0.44 0.60
periodic180 0.44 0.36

Table 5.16: P-values (* : p < 0.05, ** : p < 0.01, *** : p < 0.001) for the paired t-test for
difference in means between the Normal and Uniform distributions across all rescheduling policies
for the stochastic experiment. We use ‘–’ to denote the scenario where we are unable to compute a
p-value due to the zero variance in total instability when the eventJobCompletion policy is used.

can be observed occurs for the FTWT of the eventHighPriority policy (p < 0.05).

We perform the same analysis between the Normal and Uniform distributions as shown in

Table 5.16. Although Figure 5.6 suggests that the Normal distribution results in slightly

worse outcomes than the Uniform distribution, the difference is not statistically significant,

as shown in Table 5.16.

Taken together, the results of Tables 5.15 and 5.16 demonstrate that, across nearly all policies,

there are no statistically significant differences in either performance metrics when distribu-

tions with similar means and variances are used for the true processing times.

(3) To simplify the analysis of performing a pairwise comparison of all distributions, we focus

on the periodic180 rescheduling policy as in experiment 1. Table 5.17 shows the p-values
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resulting from the paired t-tests between every possible pair of distributions assuming the

periodic180 policy is used. As previously observed, the deterministic distribution has sta-

tistically significant differences from each of the remaining distributions in both FTWT and

total instability (p < 0.001). The Normal and Uniform distributions differ statistically from

the bounded Normal and bounded Uniform distributions in both FTWT and total instability

(p < 0.001). However, there is no statistically significant difference between the Normal

and Uniform distribution for either performance metric. Similarly, the two bounded distribu-

tions do not show statistically significant differences in either of the two metrics. We observe

similar results for the remaining five policies. 2

The previous three results suggest that the level of variability in the true processing time distri-

butions, which is highest for the Uniform and Normal distributions and zero for the deterministic

case (see Table 5.5 for an example), has a larger impact on the FTWT and total instability results

than the shape of the distribution.

Question 2: Can we determine a rescheduling policy which performs well under all distribu-

tions?

• As shown in Figure 5.6, eventJobCompletion is the best performing policy for any distribu-

tion. This is a compelling observation as eventJobCompletion was also the best performing

policy in experiment 1.

Again, due to the large number of scenarios, we focus on a single distribution, specifically the

Normal distribution, to perform statistical analysis. In Table 5.18, we present the confidence

intervals and p-values for the difference in means between the eventJobCompletion policy and

every other policy for both FTWT and total instability. The eventJobCompletion policy differs

significantly in both FTWT and total instability from each of the remaining rescheduling

policies (p < 0.001) when the Normal distribution is used for the true processing durations.

Furthermore, the confidence intervals indicate that eventJobCompletion outperforms every
2The only exception being that eventHighPriority shows a statistically significant difference (p < 0.05) between the

bounded normal and bounded uniform distributions. It is also worth noting that, since the eventScheduleCompletion
policy results in zero total instability for all distributions, p-values for the total instability cannot be constructed.
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FTWT Total Instability
Rescheduling Policy p-Value CI p-Value CI

eventArrival 4.05E-10*** [-6513.94, -3629.73] 1.34E-09*** [-3668.41, -1996.91]
eventHighPriority 6.02E-24*** [-53491.10, -39743.04] 6.93E-14*** [-12162.36, -7669.17]

eventScheduleCompletion 5.79E-11*** [-12418.94, -7159.17] 9.17E-14*** [4792.92, 7624.52]
hybrid220HighPriority 2.87E-22*** [-15239.1, -11107.24] 2.22E-07*** [-3652.2, -1739.91]

periodic180 1.36E-17*** [-13738.35, -9360.24] 4.08E-06*** [-4274.07, -1811.47]

Table 5.18: Stochastic experiment 95% paired-t confidence intervals and p-values (* : p < 0.05,
** : p < 0.01, *** : p < 0.001) for paired t-test of eventJobCompletion minus eventArrival,
eventHighPriority, eventScheduleCompletion, hybrid220HighPriority, and periodic180 assuming
Normal distribution for the true processing times.

other policy in FTWT and total instability with the one exception being the total instability

eventScheduleCompletion, which has zero total instability by definition.

In both experiment 1 and experiment 2, there is a statistically significant difference (p <

0.001) between the eventArrival and eventJobCompletion policies for each distribution with

respect to total instability. As discussed in Section 5.3.2, there are no statistically significant

differences between the two policies across almost all distributions with respect to FTWT

(with the exception being the exponential distribution) in experiment 1. However, in exper-

iment 2, there are statistically significant differences (p < 0.001) between the FTWT of the

two policies for every distribution except the deterministic case. We conclude that adding

uncertainty in the processing times caused these two policies to differ from one another with

respect to FTWT. Intuitively, in experiment 1 where the only source of uncertainty is the dy-

namic arrival of jobs, both eventArrival and eventJobCompletion make maximum use of the

uncertainty information. However, in experiment 2, uncertainty arises from both the stochas-

tic processing times and dynamic arrival of jobs. In this case, eventJobCompletion reacts to

realizations of the uncertainty in processing times more effectively than eventArrival, result-

ing in a better FTWT.
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Question 3: Can we identify a rescheduling policy whose performance is least affected by the

different processing time distributions?

• We identify eventJobCompletion to be the policy which is least affected by the assumption of

a specific statistical distribution based on the proximity of the blue points in Figure 5.6. We

find this to be an interesting conclusion given that eventJobCompletion is the policy which

performs best in both the deterministic case and the various stochastic true processing time

distributions.

Effect of the Average Length of the Rescheduling Interval on Total Instability and FTWT

Here we determine if there is a relationship between the average length of the rescheduling

interval and either FTWT or total instability. The importance of using the average length of the

rescheduling interval as opposed to the average number of rescheduling actions is described in

experiment 1. Figure 5.7 shows the average FTWT and average total instability plotted against the

average length of the rescheduling interval.

Figure 5.7(a) indicates that there may be a slight positive relationship between the average length

of the rescheduling interval and the average FTWT, although this does not hold in all cases. Again,

intuitively, one may expect more frequent rescheduling to result in a lower average FTWT. However,

as shown in Figure 5.7(a), hybrid220HighPriority reschedules more frequently than eventSchedule-

Completion for each distribution except deterministic and hybrid220HighPriority results in a larger

average FTWT for all distributions. The difference in means between hybrid220HighPriority and

eventScheduleCompletion is statistically significant (p < 0.05) for the Normal and Uniform distri-

butions only. This example shows that increasing the rescheduling frequency does not necessarily

lead to a decrease in FTWT. In our experiments using eventScheduleCompletion, the average length

of the queue (number of jobs which have not yet started processing) ranges from 1.28 in the deter-

ministic case to 1.92 under the assumption of the Uniform distribution for the true processing times

in the stochastic case. The relatively small average number of uncompleted jobs in any given sched-

ule likely contributes to the positive performance of eventScheduleCompletion and we emphasize

that different arrival and or average processing times could change the performance of this policy.
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(a) Average FTWT vs. average length of the rescheduling interval by scenario.

(b) Average total instability vs. average length of the rescheduling interval by scenario.

Figure 5.7: Scatter plots of (a) average FTWT (weighted minutes) and (b) average total instability
(minutes) vs. average length of the rescheduling interval for the stochastic experiment by scenario,
where a scenario comprises a rescheduling policy (colours) and a processing time distribution as-
sumption (shapes).
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Rescheduling Policy Average % Exceeding Time Limit
periodic180 0.90

hybrid220HighPriority 1.00
eventScheduleCompletion 0.07

eventJobCompletion 0.28
eventHighPriority 7.11

eventArrival 1.00

Table 5.19: The percent of rescheduling actions exceeding the time limit averaged across all dis-
tributions for each rescheduling policy for the stochastic experiment (including the deterministic
case).

These findings coincide with the conclusion made in experiment 1 that FTWT is affected by the

quality of the information obtained at time of rescheduling. Figure 5.7(b) does not demonstrate a

relationship between the average length of the rescheduling interval and the average total instability.

Percent of Suboptimal Solutions

Due to the computational complexity of the MIP required to be solved during a rescheduling

action (see Section 4.4.4), we enforce a time limit of 300 seconds for each MIP model. Table A.5

shows the number of rescheduling actions which reached the time limit and the average optimality

gap for each scenario. In Table 5.19, we observe that the average percent of rescheduling actions

which exceed the time limit for the eventHighPriority policy is substantially higher than the remain-

ing policies. This is in accordance with the results of experiment 1 which also demonstrate that the

eventHighPriority policy reaches the time limit more often. Nearly all rescheduling policies reach

the MIP time limits less frequently in the deterministic case as compared to the stochastic cases, but

do not necessarily have a smaller average optimality gap (see Table A.5).

5.5 Conclusion

We began this chapter with experimental preliminaries including synthetic data collection, fit-

ting a distribution to the data, and estimating job attribute parameters. In order to conduct rigorous

simulation experiments, we outlined the setup steps which include generating the initial states and

determining the number of replications.
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From the results of experiment 1, we observe that eventHighPriority performs poorly while

eventJobCompletion performs the best across all distributions. The exponential distribution has the

largest effect on the FTWT results, likely due to the high variability of this distribution.

In experiment 2, we again observe that eventHighPriority performs poorly while eventJobCom-

pletion performs the best across all distributions. The variance of the distributions used to generate

the stochastic processing times in this experiment appears to have a larger effect on the results than

the shape of the distributions. In addition, in both experiments, we see that FTWT is affected by

the quality of the information obtained at the time of rescheduling rather than the frequency of

rescheduling actions.

The two main goals of this dissertation are to evaluate the effect that the rescheduling policies

and assumption of a specific distribution for the processing times have on FTWT and total instabil-

ity. With respect to the rescheduling policies, both the deterministic and the stochastic experiments

show that the quality and completeness of information at the time of performing a rescheduling

action, rather than the frequency of rescheduling, contributes to a lower average FTWT, or a better

efficiency. Furthermore, both the deterministic and stochastic experiments show that instability is

not directly correlated with the frequency of rescheduling actions. A decision maker should choose

a rescheduling policy which makes use of the most complete information based on the sources of

uncertainty present in their problem. Amongst the policies analyzed in this thesis, eventJobCom-

pletion has the most complete information at the time of rescheduling in both the deterministic and

stochastic experiments. With respect to the processing time statistical distribution assumptions, we

note that the variance of the distributions analyzed has a greater effect on the results than the shape

of the distribution in both the deterministic and stochastic cases.
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Chapter 6

Conclusions and Future Work

This final chapter concludes the work presented in this thesis and provides suggestions for future

work.

6.1 Conclusions

Operating rooms (ORs) are a costly component of a hospital and difficult to schedule due to the

uncertainties involved. Motivated by OR scheduling, we solve a simplified OR scheduling problem

posed as a single machine scheduling problem with dynamic arrivals and stochastic processing

times. Although motivated by OR scheduling, we believe that the insights gained from this research

can be applied to other service industry or job scheduling applications.

Taking a predictive-reactive approach, we employ rescheduling to react to realizations of un-

certainty. In particular, we conduct two experiments: the deterministic experiment has uncertainty

in the dynamic arrivals of jobs while the stochastic experiment contains uncertainty in both the dy-

namic arrivals of jobs and the processing times of jobs. The main goal of this thesis is to determine

the effect of various rescheduling policies and processing time distributional assumptions on effi-

ciency, specifically final total weighted tardiness (FTWT), and total instability. In particular, we ask

the following three questions:

(1) Does the assumption of a specific statistical distribution for processing times have an effect

on FTWT and total instability?
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(2) Can we determine a rescheduling policy which performs well under all distributions?

(3) Can we identify a rescheduling policy whose performance is least affected by the different

processing time distributions?

Furthermore, we determine the effect of the average length of the rescheduling interval on total

instability and FTWT and, given the time limit imposed on the complete rescheduling mixed-integer

programming (MIP) model, we analyze the percent of suboptimal solutions per scenario.

To answer the aforementioned questions, we developed a discrete-event simulation (DES) frame-

work, varied the rescheduling policies and processing time distributional assumptions, and per-

formed statistical analysis on the results. Our results indicate that, for both experiments, the vari-

ance of the processing time distribution has a greater impact than the shape of the distribution, and

that the eventJobCompletion policy performs well across all distributions. For the stochastic ex-

periment, we were able to identify eventJobCompletion as the policy whose performance is least

affected by the different processing time distributions. In both experiments, the average length of

the rescheduling interval does not appear to have an effect on total instability and FTWT. Finally,

the eventHighPriority policy reached the computational time limit more often than the remaining

policies in both experiments.

6.2 Future Work

To further advance the research presented in this thesis, we propose relaxing some of the as-

sumptions made for the simplified OR scheduling problem presented in Section 3.1.2 and studied

throughout this thesis. This will be of particular importance if this methodology is to be replicated

and implemented for a specific hospital. For example, future work could consider incorporating the

breakdowns of medical equipment, the availability of upstream or downstream resources, and the

challenge of scheduling personnel resources from different departments. Furthermore, future work

may focus on including sequence-dependent setup times in the model (e.g., cleaning and prepping

the OR between related versus unrelated surgeries), and allowing for the cancellation or long-term

postponement of surgeries (e.g., due to patient availability or worsening patient conditions).
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One of the motivations for modelling the estimated and true processing times separately is the

possibility to incorporate machine learning, where the estimated processing time would be the pre-

diction and the true processing time reflects the error in the prediction. Future work can embed

machine learning methods into the DES framework. Furthermore, future work may consider addi-

tional points in time at which more information regarding the processing time of the job becomes

known, rather than the two points of time included in this thesis: the estimated processing time

known at a job’s arrival and the true processing time known at a job’s completion. In the stochastic

experiment, to reduce the number of scenarios, we fix a distribution for the estimated processing

times while allowing the true processing time distributions to vary. Future work may vary both the

estimated and true processing time distributions simultaneously in the stochastic experiment.

In addition, further work may perform a similar analysis under different arrival rates to deter-

mine if the results are consistent under different demands. As higher arrival rates result in a larger

queue, this may require a heuristic rather than solving a MIP model at each subproblem. Future

work should also explore and discuss the trade-off between the quality of the subproblem solutions

and the computational costs of producing the schedules (see [13]).

In this thesis, we study instability without minimizing it directly. A potential area for future

work includes considering instability when solving the sub problems, either directly in the objective

function or through anticipatory scheduling [22]. Extending this research to different environments,

such as parallel machine scheduling, would broaden the findings of this research.
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Appendix A

A.1 Example of Computing Total Instability and Final Total Weighted

Tardiness

This example demonstrates how total instability and final total weighted tardiness (FTWT) are

computed for the single machine scheduling problem defined in Chapter 3. In this example, we

consider τ = 3 and choose to perform periodic rescheduling with ∆ = 4. At each rescheduling

action, complete rescheduling is performed (using IBM’s Decision Optimization CPLEX Modeling

for Python, DOcplex version 2.23.222 [66]).

We consider three different priority classes with wj = 3 being the highest priority class. Fur-

thermore, due dates are assigned following equation 13. All of the data used in this example is

found in Table A.1.

dj(rj , wj) =


rj + 2, if job wj = 3

rj + 5, if job wj = 2

rj + 9, if job wj = 1

(13)

Example:

• t = 0: Job 0 arrives.

• t = 1: Job 1 arrives.

• t = 2: Job 2 arrives.
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job wj rj dj p̂j pj
0 2 0 5 2 3
1 1 1 10 3 4
2 3 2 4 1 3
3 3 5 7 3 3
4 2 6 11 2 2
5 1 8 17 5 5
6 1 11 20 2 6
7 3 14 16 3 4
8 2 20 25 2 2

Table A.1: Job data for example of computing metrics.

• t = 4: Periodic rescheduling (r = 1).

t

S1

0 5 10 15 20 25

t

S′
1

0 5 10 15 20 25

2 0 1

J∗
1 = {}

I(S1, S
′
1) =

∑
j∈J∗

1
|Cj − C ′

j | = 0

• t = 4: Job 2 starts processing.

• t = 5: Job 3 arrives.

• t = 6: Job 4 arrives.

• t = 7: Job 2 finishes processing. Since p2 > p̂2, the schedule is updated using the right shift

heuristic for feasibility.
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t

S′
1

0 5 10 15 20 25

2 0 1

• t = 7: Job 0 starts processing.

• t = 8: Periodic rescheduling (r = 2).

t

S2

0 5 10 15 20 25

2 0 1

t

S′
2

0 5 10 15 20 25

2 0 4 3 1

J∗
2 = {0, 1, 2}

I(S2, S
′
2) =

∑
j∈J∗

2
|Cj − C ′

j | = |C0 − C ′
0|+ |C1 − C ′

1|+ |C2 − C ′
2| = 0 + 0 + 5 = 5

• t = 9: Job 5 arrives.

• t = 10: Job 0 finishes processing. Since p0 > p̂0, the schedule is updated using the right

shift heuristic for feasibility.

t

S′
2

0 5 10 15 20 25

2 0 4 3 1

• t = 10: Job 4 starts processing.

• t = 11: Job 6 arrives.

• t = 12: Job 4 finishes processing.
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• t = 12: Periodic rescheduling (r = 3).

t

S3

0 5 10 15 20 25

2 0 4 3 1

t

S′
3

0 5 10 15 20 25

2 0 4 3 1 6 5

J∗
3 = {0, 1, 2}

I(S3, S
′
3) =

∑
j∈J∗

3
|Cj − C ′

j | = |C0 − C ′
0|+ |C1 − C ′

1|+ |C2 − C ′
2| = 0 + 0 + 0 = 0

• t = 12: Job 3 starts processing.

• t = 14: Job 7 arrives.

• t = 14: Job 3 finishes processing.

• t = 14: Job 1 starts processing.

• t = 16: periodic rescheduling (r = 4).

t

S4

0 5 10 15 20 25

2 0 4 3 1 6 5

t

S′
4

0 5 10 15 20 25

2 0 4 3 1 7 6 5

J∗
4 = {0, 1, 2}

I(S4, S
′
4) =

∑
j∈J∗

4
|Cj − C ′

j | = |C0 − C ′
0|+ |C1 − C ′

1|+ |C2 − C ′
2| = 0 + 0 + 0 = 0
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• t = 18: Job 1 finishes processing. All jobs in J∗ have now completed processing and the

simulation terminates at T = 18.

Total instability is computed as shown in Equation 14. Finally, the computation of FTWT is

shown in Equation 15 where J∗
T = {0, 1, 2}.

Itot =
∑
r∈R

I(Sr, S
′
r) = I(S1, S

′
1) + I(S2, S

′
2) + I(S3, S

′
3) + I(S4, S

′
4)

= 0 + 0 + 5 + 0 = 5

(14)

FTWT =
∑
j∈J∗

T

wjTj = w0T0 + w1T1 + w2T2

= 2(5) + 1(8) + 3(3) = 10 + 8 + 9 = 27

(15)

A.2 Inputs to the Simulation Framework

Below is a list describing the input parameters to the discrete-event simulation (DES) framework

and their acceptable inputs. Unless otherwise specified, all time units are given in minutes.

• num priority levels ∈ N: the number of priority levels.

• machine capacity ∈ N: the capacity of the machine (current code only supports machine capacity =

1).

• stats rounding ∈ W: the number of decimal places that the reported statistics should be

rounded to.

• replications ∈ N: the number of replications for the specific scenario.

• store all events ∈ {0, 1}: binary variable indicating whether or not the event log should be

stored.

• parent folder name: text variable for the parent folder name.
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• folder name: text variable for the folder name (child of parent folder given in parent folder name).

• version num ∈ R+: represents the version number of the scenario.

• overwrite files ∈ {0, 1}: binary variable to indicate whether files can be overwritten. If files

cannot be overwritten and already exist, an error will occur and the user must change the

folder names and or version numbers before proceeding.

• arrival distribution ∈ {exponential}: name of the distribution that will be used for arrivals.

Additional distributions can easily be added to the code in the future.

• processing distribution ∈ {lognormal, uniform, left truncated normal, exponential, bimodal}:

name of the distribution that will be used for processing times. For future work, additional

distributions can easily be added to the code.

• arrival params: comma separated list of the parameters that are required for the arrival

distribution. All parameters are described in detail in Section 5.1.4.

◦ if arrival distribution == exponential: [ 1λ ] where λ is the rate parameter.

• processing params: comma separated list of the parameters that are required for the pro-

cessing distribution. All parameters are described in detail in Sections 5.1.4 and A.3.1.

◦ if processing distribution == lognormal: [µ, σ].

◦ if processing distribution == uniform: [a, b].

◦ if processing distribution == left truncated normal: [γ, µ, σ2].

◦ if processing distribution == exponential: [σ].

◦ if processing distribution == bimodal: [µ1, σ1, µ2, σ2, ρ].

• priority distribution ∈ {discrete uniform}: name of the distribution to be used for the pri-

orities. Additional distributions can easily be implemented if desired in future work.

• priority params: comma separated list of the parameters that are required for the priority

distribution.
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◦ if priority distribution == discrete uniform: [1, num priority levels].

• due dates: Comma separated list of the parameters required for construction of due dates:

[δ1, δ2, δ3] (see Equation 11).

• rescheduling type ∈ {periodic, event, hybrid}: indicates the type of rescheduling desired.

• rescheduling period ∈ N: the rescheduling period, ∆, must be non-empty if reschedul-

ing type ∈ {periodic, hybrid}.

• rescheduling event list: the rescheduling event list takes a comma separated list (if reschedul-

ing type ∈ {event, hybrid}, the list length must be greater than or equal to one) where possible

list entries are:

◦ arrival: reschedule when a new job arrives.

◦ completion: reschedule when a job finishes processing.

◦ departure: reschedule when a job departs.

◦ started processing: reschedule when a job starts processing.

◦ priority arrival: reschedule when a job of a certain priority arrives.

◦ num arrivals: reschedule when a certain number of jobs has arrived (i.e. every x ar-

rivals).

◦ num unscheduled: reschedule when the number of arrived, unscheduled jobs reaches a

certain number.

◦ schedule completion: reschedule when the last job of the current schedule has been

completed.

• priority arrival list with elements ∈ {1, ..., num priority arrivals}: comma separated

list of the priorities whose arrivals should indicate rescheduling. This field must be non-

empty when priority arrival ∈ rescheduling event list.

• num arrivals parameter ∈ N: the value, n, for which num arrivals rescheduling policy

operates on. This field must be non-empty if num arrivals ∈ rescheduling event list.
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• num unscheduled parameter ∈ N: the value, l, for which num unscheduled policy operates

on. This field must be non-emtpy if num unscheduled ∈ rescheduling event list.

• mdl time limit ∈ N: the time limit, in seconds, for the optimization model. If left empty, no

time limit on the complete optimization will be enforced.

• stochastic ∈ {0, 1}: a binary variable indicating whether the simulation contains processing

times that are stochastic (1) or deterministic (0).

• extend negative ∈ [0, 1]: this variable, denoted ϵ−, is used to determine the lower bound for

true processing time distribution (p̂j − p̂jϵ
−).

• extend positive ∈ [0, 1]: this variable, denoted ϵ+, is used to determine the upper bound for

the true processing time distribution (p̂j + p̂jϵ
+).

• true distribution ∈ {uniform, normal, deterministic}: name of the distribution that will

be used for the true processing times (deterministic implies p̂j = pj).

• true params: comma separated list of the parameters that are required for the true distribution.

All parameters are described in detail in Section A.3.2.

◦ if true distribution == uniform: [σ]

◦ if true distribution == normal: [σ]

◦ if true distribution == deterministic: []

• t1 ∈ W: the starting time of the simulation (normally set to 0).

• t2 ∈ W: equivalent to τ , the stopping time of the period of interest where t2 > t1.

• num jobs random number generation ∈ W: determines the number of entries for a job’s

attribute that should be generated per replication if a common random number file needs to be

created. Due to the small storage requirements, it is best to overestimate this parameter. Note

that if this parameter is not large enough, the simulation will run out of jobs and the user will

encounter an error.
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• scheduling strategy ∈ {complete}: indicates the method which should be implemented for

solving the subproblems. Currently only complete rescheduling is implemented for the pur-

pose of this thesis. However, this parameter could be adapted in future work to instead use a

heuristic or solve the problem suboptimally for computational efficiency.

• generate pseudo warm up ∈ {0, 1}: binary variable to indicate whether the goal of the

scenario is to determine the pseudo warm-up period (1) or not (0).

• pseudo warm up sim length ∈ N: the simulation run length required to determine the

pseudo warm-up period. This value should be much larger than the expected pseudo warm-up

period. If generate pseudo warm up == 1, then this field must be non-empty.

• generate initial states ∈ {0, 1}: binary variable to indicate whether the goal of the scenario

is to generate the initial states (1) or not (0).

• pseudo warm up period ∈ N: the previously determined pseudo warm up period which

acts as the stopping criteria when generating the initial states. If generate initial states == 1,

then this field must be non-empty.

• number initial states ∈ N: the number of initial states that should be generated. This field

must be non-empty if generate initial states == 1.

A.3 Distribution Parameter Details

This chapter provides details regarding the parameter estimation of the various distributions for

the estimated processing time durations and true processing time durations respectively. Parameter

estimation is accomplished using the method-of-moments approach [71] with sample mean x̄ =

140.27 and sample standard deviation s = 55.80.

A.3.1 Estimated Processing Time Distributions

This section focuses on the parameter estimation of the estimated processing time distributions.

The distributions used in this section are Uniform, Exponential, Left Truncated Normal, Lognormal,

95



and Bimodal. The probability density function (PDF) of the distributions using the parameters

estimated in this section is shown in Figure A.1.

Uniform Distribution

For the continuous Uniform distribution, we aim to estimate parameters a and b using the equa-

tions µ = (b + a)/2 and σ = (b − a)/
√
12. The parameter estimates, denoted as â and b̂, are then

computed as shown in Equation 16 and Equation 17 respectively [71].

â = x̄− s
√
12

2
= 140.268715− 55.803025

√
12

2
= 43.61504 (16)

b̂ = x̄+
s
√
12

2
= 140.268715 +

55.803025
√
12

2
= 236.922390 (17)

With respect to the continuous Uniform distribution, we have the unique advantage of being able

to compare the parameter estimates resulting from the MoM with the parameter estimates arising

from the MLE approach taken in Section 5.1.3 (âMLE = 45 and b̂MLE = 239). However, to be

consistent with all distributions that will be evaluated in the experiments, we will use the parameters

estimated from the MoM.

Exponential Distribution

The exponential distribution assumes µ = σ. Although this assumption does not fit our data

well, we still choose to evaluate the exponential distribution due to its unique shape. The single

parameter, θ, is estimated using the MoM where µ = σ = 1
θ [71] as shown in Equation 18.

θ̂ =
1

x̄
=

1

140.268715
= 0.007129 (18)

Left Truncated Normal Distribution

The left truncated Uniform distribution was chosen where the truncation is required to ensure

positive processing times. The truncation threshold, denoted as γ, is set to zero. Then the remaining

parameters µ and σ2 can be estimated according to Equations 19 and 20 [71].
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µ̂ = x̄ = 140.268715 (19)

σ̂2 = s2 = 55.8030252 = 3113.977599 (20)

Lognormal Distribution

The lognormal distribution for a variable x is related to the normal distribution through the

normally distributed variable y such that y = ln(x) and x = ey [71]. Using the same notation as

[71], we define the distributions of x ∼ LN(µy, σ
2
y) and y ∼ N(µy, σ

2
y). Since we are assuming

our data comes from a lognormal distribution, we have µx = x̄ = 140.268715 and σ2
x = s2 =

55.8030252. We must then use the MoM to provide parameter estimations for µy and σy using

Equations 21 and 22 respectively [71].

µ̂y = ln

[
x̄2√

x̄2 + s2

]
= ln

[
140.2687152√

140.2687152 + 55.8030252

]
= 4.870097 (21)

σ̂2
y = ln

[
1 +

s2

x̄2

]
= ln

[
1 +

55.8030252

140.2687152

]
= 0.146926 (22)

Bimodal Distribution

We can define a Bimodal distribution as a mixture of two normal distributions f(x) = ρg1(x)+

(1− ρ)g2(x) where ρ is the mixing parameter, g1(x) ∼ N(µ1, σ
2
1) and g2(x) ∼ N(µ2, σ

2
2). Due to

the number of parameters requiring estimation, we make the following additional assumptions:

• We assume a mixing parameter of ρ = 0.6.

• We assume the mean for the second component distribution is µ2 = 200.

• A relationship between the variances of the two component distributions is defined as σ2
2 =

4σ2
1 .

By implementing these assumptions, we reduce the number of parameters that need to be esti-

mated (µ1, σ1, σ2), and add an additional equation to make this possible.
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We define Y ∼ f(x), X1 ∼ g1(x), and X2 ∼ g2(x) and let D represent the random variable for

the component distributions. We use the law of total expectation to determine the expected value of

the distribution Y as shown in Equation 23 [83].

E[Y ] = E[E[Y |D]] =
2∑

d=1

E[Y |Xd]P (Xd)

= ρµ1 + (1− ρ)µ2

(23)

Similarly, we use the law of total variance to determine the variance of the distribution as shown

in Equation 24 [83].

V ar(Y ) = E[V ar(Y |D)] + V ar(E[Y |D])

=
2∑

d=1

V ar(Y |Xd)P (Xd) +
2∑

d=1

V ar(E[Y |Xd])

= ρσ2
1 + (1− ρ)σ2

2 + ρ(µ1 − µ)2 + (1− ρ)(µ2 − µ)2

(24)

By rearranging Equations 23 and 24, we are able to estimate µ1 as shown in Equation 25.

Substituting σ̂2
2 = 4σ̂1

2 and µ̂1 into Equation 24 allows us to rearrange and solve for σ̂12 as shown

in Equation 26. Finally, we obtain the estimate σ̂2 using Equation 27.

µ̂1 =
x̄− (1− ρ) · µ2

ρ
=

140.268715− (0.4)(200)

0.6
= 100.447858 (25)

σ̂1 =

√
s2 − ρ · (µ̂1 − x̄)2 − (1− ρ) · (µ2 − x̄)2

4− 3 · ρ

=

√
55.8030252 − 0.6 · (100.447858− 140.268715)2 − 0.4 · (200− 140.268715)2

4− 3(0.6)

= 18.283770

(26)
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σ̂2 = 2σ̂1 = 2(18.283770) = 36.567540 (27)

Figure A.1: PDF of estimated processing time distributions.

A.3.2 True Processing Time Distributions

This section focuses on the parameter estimation for the true processing time distributions which

include Left Truncated Normal, Uniform, Bounded Normal, and Bounded Uniform. Since the distri-

bution of pj depends on p̂j , we demonstrate an example of determining the distribution parameters

for pj assuming that p̂j = x̄ = 140.27 (Table 5.1). Hence, for this example, lj = 126.24 and

uj = 168.32 given ϵ+ = 0.2 and ϵ− = 0.1.

Left Truncated Normal Distribution

Given the assumption of p̂j = x̄ used for this example, the parameters for the normal distribution

are identical to those for the left truncated normal distribution in Section A.3.1. The distribution is

again left truncated (γ = 0) to avoid negative processing times. The estimated parameters are then

µ̂ = 140.268715 and σ̂ = 3113.977599.
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Uniform Distribution

Again, given the assumption of p̂j = x̄, the parameters for the Uniform distribution are iden-

tical to those shown for the Uniform distribution in Section A.3.1 with â = 43.61504 and b̂ =

236.922390.

Bounded Normal Distribution

We renormalize the normal distribution between [lj , uj]. The remaining parameters µ̂ = p̂j =

140.268715 and σ̂2 = s2 = 3113.977599 remain the same.

Bounded Uniform Distribution

After defining lj and uj , the parameters for the renormalized Uniform distribution (â′ and b̂′)

are simply given by lj and uj respectively.

A.4 Tables of DES Framework Inputs

The inputs to the DES framework for determining the pseudo warm-up period and generating

the initial states are presented in Tables A.2 and A.3 respectively. Any fields not included in Tables

A.2 and A.3 are left blank in the spreadsheet which is read into the DES framework.

A.5 Analysis of the Variability in FTWT and Total Instability Results

Sections A.5.1 and A.5.2 analyze the variability in the FTWT and total instability results for

experiment 1 and experiment 2 respectively.

A.5.1 Experiment 1 Analysis of Variability

Given the large number of scenarios considered (45), we investigate the variability in FTWT

and total instability for a subset of the scenarios that performed well based on the previous sec-

tion: eventJobCompletion, eventArrival, and periodic180 (performs average and the length of the
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Input Value
num priority levels 3
machine capacity 1

stats rounding 6
replications 2

store all events 1
parent folder name ExperimentalSetup

folder name DeterminingWarmUpPeriod
version num {1.1, 1.2, 1.3, 1.4}

overwrite files 1
arrival distribution exponential

processing distribution uniform
arrival params 180

processing params 45, 239
priority distribution discrete uniform

priority params 1, 3
due dates 900, 540, 180

num jobs random number generation 100000
generate pseudo warm up 1

pseudo warm up sim length {89280, 803520, 44640, 1036800}
generate initial states 0

Table A.2: Inputs for generating pseudo warm-up period.

rescheduling interval is in the middle of the periodic policies considered). Variability in the per-

formance metrics, measured using the interquartile range (IQR), is visually represented with the

boxplots shown in Figure A.2(a) for the chosen scenario subset. For both metrics, the IQR is largest

for the exponential distribution as shown in Figure A.2(a).

The variability of FTWT and total instability is further explored based on a subset of ‘extreme’

rescheduling policies: eventJobCompletion (performs the best across all distributions), eventSched-

uleCompletion (extreme in its zero total instability), and eventHighPriority (performs poorly across

all distributions). As demonstrated in Figure A.2(b), eventHighPriority performs poorly and has

a large IQR in both FTWT and total instability across all distributions. Based on Figures A.2(a)

and A.2(b), we see that the Exponential distribution leads to the largest IQR in FTWT and total

instability for all rescheduling policies evaluated, except eventHighPriority.
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Input Value
num priority levels 3
machine capacity 1

stats rounding 6
replications 1

store all events 1
parent folder name ExperimentalSetup

folder name GeneratingInitialStates
version num 1

overwrite files 1
arrival distribution exponential

processing distribution uniform
arrival params 180

processing params 45, 239
priority distribution discrete uniform

priority params 1, 3
due dates 900, 540, 180

num jobs random number generation 100000
generate pseudo warm up 0

generate initial states 1
pseudo warm up period 129600

num initial states 100

Table A.3: Inputs for generating initial states.
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(a) Boxplot of total instability and FTWT by scenario for well-performing policies.

(b) Boxplot of total instability and FTWT by scenario for extreme policies.

Figure A.2: Boxplots of total instability (minutes) and FTWT (weighted minutes) by scenario for
chosen scenario subsets of the stochastic experiment with n = 100. The x-axis represents the sce-
nario, where the first line refers to the processing time distribution with Exponential (E), lognormal
(L), Bimodal (B), Left Truncated Normal (LTN), and Uniform (U). The second line of the x-axis
label refers to the rescheduling polices of eventJobCompletion (eJC), eventArrival (eArrival), peri-
odic180 (p180), eventScheduleCompletion (eSC), and eventHighPriority (eHP).
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A.5.2 Experiment 2 Analysis of Variability

We investigate the variability in total instability and FTWT for a subset of the scenarios which

performed well to moderately well: eventJobCompletion, eventArrival, and periodic180. The vari-

ability in the results, measured using the interquartile range (IQR), is visually represented with

boxplots as shown in Figure A.2(a) for the scenario subset. Across nearly all rescheduling policies

considered, the Normal and Uniform distributions have larger IQR in both metrics than the other

distributions 1. Both of these unbounded distributions have larger variance in their processing times,

compared to the bounded distributions or deterministic case (see Table 5.5 for an example).

Figure A.3(b) depicts boxplots for the same subset of ‘extreme’ policies as in experiment 1.

The figure demonstrates a large IQR in both performance metrics for eventHighPriority (which also

performs poorly in both performance metrics).

1The only exception is the IQR of the Uniform and bounded Uniform distributions for the eventJobCompletion policy
which are similar.

104



(a) Boxplot of total instability and FTWT by scenario for a scenario subset of well performing policies.

(b) Boxplot of total instability and FTWT by scenario for a scenario subset of extreme policies.

Figure A.3: Boxplots of total instability (minutes) and FTWT (weighted minutes) by scenario for
chosen scenario subsets of the stochastic experiment with n = 100. The x-axis represents the
scenario, where the first line refers to the processing time distributions of deterministic (D), Normal
(N), Uniform (U), Normal[0.1, 0.2] (N.1.2), and Uniform[0.1, 0.2] (U.1.2). The second line of the
x-axis label refers to the rescheduling polices of eventJobCompletion (eJC), eventArrival (eArrival),
periodic180 (p180), eventScheduleCompletion (eSC), and eventHighPriority (eHP).
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A.6 Analysis of the Percent of Subotimal Solutions

In this section, we report the full analysis regarding the subproblems which result in suboptimal

solutions due to exceeding the user-defined time limit of 300 seconds. The results are aggregated

by scenario in Tables A.4 and A.5 for experiment 1 and experiment 2 respectively. Each table

records the total number of rescheduling actions taken over the 100 replications, the total number of

subproblems which exceeded the time limit (over all 100 replications), the percent of subproblems

which exceeded the time limit, and the average relative optimality gap of the subproblems which

exceeded the time limit.

106



Scenario

Rescheduling Policy Distribution Total NRA
Total

Exceeded
Time Limit

Percent Exceed
Time Limit

Average
Optimality

Gap
eventArrival Exponential 6366 3 4.71E-02 0.09
eventArrival Lognormal 6137 20 3.26E-01 0.13
eventArrival Bimodal 6070 25 4.12E-01 0.11
eventArrival LeftTruncatedNormal 6277 106 1.69E+00 0.09
eventArrival Uniform 6151 85 1.38E+00 0.10

eventHighPriority Exponential 2387 23 9.64E-01 0.07
eventHighPriority Lognormal 2371 157 6.62E+00 0.10
eventHighPriority Bimodal 2380 171 7.18E+00 0.09
eventHighPriority LeftTruncatedNormal 2367 176 7.44E+00 0.10
eventHighPriority Uniform 2417 167 6.91E+00 0.09

eventJobCompletion Exponential 7636 3 3.93E-02 0.09
eventJobCompletion Lognormal 7524 23 3.06E-01 0.13
eventJobCompletion Bimodal 7383 28 3.79E-01 0.09
eventJobCompletion LeftTruncatedNormal 7609 112 1.47E+00 0.07
eventJobCompletion Uniform 7490 90 1.20E+00 0.09

eventScheduleCompletion Exponential 4364 8 1.83E-01 0.08
eventScheduleCompletion Lognormal 4918 6 1.22E-01 0.06
eventScheduleCompletion Bimodal 4732 5 1.06E-01 0.08
eventScheduleCompletion LeftTruncatedNormal 4821 8 1.66E-01 0.10
eventScheduleCompletion Uniform 4817 10 2.08E-01 0.08

hybrid220HighPriority Exponential 7324 2 2.73E-02 0.13
hybrid220HighPriority Lognormal 7046 20 2.84E-01 0.15
hybrid220HighPriority Bimodal 6975 23 3.30E-01 0.10
hybrid220HighPriority LeftTruncatedNormal 7174 91 1.27E+00 0.08
hybrid220HighPriority Uniform 7057 68 9.64E-01 0.10

hybrid220ScheduleCompletion Exponential 6509 2 3.07E-02 0.13
hybrid220ScheduleCompletion Lognormal 6576 14 2.13E-01 0.13
hybrid220ScheduleCompletion Bimodal 6532 20 3.06E-01 0.09
hybrid220ScheduleCompletion LeftTruncatedNormal 6670 56 8.40E-01 0.08
hybrid220ScheduleCompletion Uniform 6570 40 6.09E-01 0.08

periodic140 Exponential 8179 1 1.22E-02 0.03
periodic140 Lognormal 7864 20 2.54E-01 0.11
periodic140 Bimodal 7800 23 2.95E-01 0.08
periodic140 LeftTruncatedNormal 8004 102 1.27E+00 0.07
periodic140 Uniform 7887 78 9.89E-01 0.10
periodic180 Exponential 6406 2 3.12E-02 0.06
periodic180 Lognormal 6176 14 2.27E-01 0.11
periodic180 Bimodal 6092 18 2.95E-01 0.09
periodic180 LeftTruncatedNormal 6275 77 1.23E+00 0.09
periodic180 Uniform 6169 57 9.24E-01 0.10
periodic220 Exponential 5270 2 3.80E-02 0.12
periodic220 Lognormal 5090 9 1.77E-01 0.12
periodic220 Bimodal 5061 21 4.15E-01 0.09
periodic220 LeftTruncatedNormal 5170 63 1.22E+00 0.09
periodic220 Uniform 5096 48 9.42E-01 0.11

Table A.4: Data on the suboptimal solutions arising from the time limit imposed on the MIP models
used to solve the subproblems for the deterministic experiment by scenario.
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Scenario

Rescheduling Policy Distribution Total NRA
Total

Exceeded
Time Limit

Percent Exceed
Time Limit

Average
Optimality

Gap
periodic180 TrueNormal 6582 102 1.55 0.07
periodic180 Normal[.1,.2] 6079 25 0.41 0.06
periodic180 TrueUniform 6691 136 2.03 0.06
periodic180 Uniform[.1,.2] 6077 26 0.43 0.07
periodic180 Deterministic 5954 5 0.08 0.06

hybrid220HighPriority TrueNormal 5407 80 1.48 0.07
hybrid220HighPriority Normal[.1,.2] 5050 38 0.75 0.07
hybrid220HighPriority TrueUniform 5502 109 1.98 0.05
hybrid220HighPriority Uniform[.1,.2] 5035 37 0.73 0.07
hybrid220HighPriority Deterministic 4899 4 0.08 0.10

eventScheduleCompletion TrueNormal 4435 6 0.14 0.07
eventScheduleCompletion Normal[.1,.2] 4679 2 0.04 0.05
eventScheduleCompletion TrueUniform 4443 6 0.14 0.11
eventScheduleCompletion Uniform[.1,.2] 4676 0 0.00
eventScheduleCompletion Deterministic 5081 2 0.04 0.08

eventJobCompletion TrueNormal 7323 22 0.30 0.07
eventJobCompletion Normal[.1,.2] 7188 27 0.38 0.08
eventJobCompletion TrueUniform 7326 23 0.31 0.10
eventJobCompletion Uniform[.1,.2] 7185 26 0.36 0.07
eventJobCompletion Deterministic 7280 11 0.15 0.07

eventHighPriority TrueNormal 2546 218 8.56 0.08
eventHighPriority Normal[.1,.2] 2411 144 5.97 0.09
eventHighPriority TrueUniform 2584 256 9.91 0.08
eventHighPriority Uniform[.1,.2] 2419 156 6.45 0.09
eventHighPriority Deterministic 2341 110 4.70 0.09

eventArrival TrueNormal 6310 109 1.73 0.08
eventArrival Normal[.1,.2] 5970 33 0.55 0.09
eventArrival TrueUniform 6510 126 1.94 0.06
eventArrival Uniform[.1,.2] 5975 35 0.59 0.09
eventArrival Deterministic 5860 10 0.17 0.07

Table A.5: Data on the suboptimal solutions arising from the time limit imposed on the MIP models
used to solve the subproblems for the stochastic experiment by scenario.
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