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ABSTRACT

Detection and Isolation of Faults and Cyberattacks in Nonlinear

Cyber-Physical Systems using Neural Networks

Bita Afshar

The theory of Cyber-physical systems (CPSs) has applications in critical infrastructures

such as smart grids, manufacturing systems, transportation systems, and autonomous sys-

tems such as Unmanned Aerial Vehicles(UAVs). In the CPS, there is a coordination between

communication, computation, and control. The communication link in CPS can be sub-

jected to malicious cyberattacks. On the other hand, the physical system in CPS can be faced

with different faults such as sensor, actuator, and component faults. Therefore, two signifi-

cant and challenging problems in CPS can be the detection of faults and cyberattacks. These

two threats are intrinsically distinctive and need different strategies to deal with when they

occur. This research mainly focuses on providing a methodology to detect and isolate faults

and cyberattacks.

This work considers false data injection and replay attacks as security threats. Two dif-

ferent adaptive neural network-based detection methods are proposed in this thesis. These

adaptive neural networks are able to detect, isolate, and estimate false data injection, and

replay attacks.

Another contribution of this thesis is to provide a scheme for isolating faults and cyber-
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attacks (false data injection and replay attacks) by using virtual sensors on the plant side,

which makes the simultaneous detection of faults and false data injection cyberattacks pos-

sible.

A nonlinear model of a quadrotor is considered the case study, and the performance of

the neural network-based schemes is evaluated through various numerical simulation sce-

narios.
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Chapter 1

INTRODUCTION

Cyber-physical systems (CPS) have three main parts: communication, computation, and

control units. A communication network is needed among several components, such as

sensors, actuators, and controllers in a standard control system. Communication networks

in several modern control systems are wireless, making them more accessible to the cy-

ber world [2]. The communication network can face different issues, such as data packet

dropouts, network-induced delays, and cyberattacks, to name a few. The security of CPS de-

pends on the integration of vulnerable cyberspace, and complex physical dynamics [3].

The cyber part of the CPS is vulnerable to malicious attacks due to ease of accessibility

and inadequate protection. For instance, adversaries can falsify data packets, redirect the

transmission path of data packets, block the communication network, degrade the system

performance, destabilize the system, or lead to the loss of control in CPSs [4].

Cyberattacks can harmfully lead to substantial economic loss or endanger human lives.

The damage to the system can be under control if the cyberattacks are detected, isolated,

and mitigated in time. Therefore, attack detection is the first and vital step to avoiding ex-

tensive damage to critical industrial infrastructures in the CPS framework [5]. Consequently,
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studying cyberattack detection, isolation and mitigation are essential for protecting the CPS

against cyberattacks.

1.1 Problem Statement

The general objective of this work is to study the security of nonlinear autonomous un-

manned systems such as quadrotors under cyberattacks (false data injection and replay at-

tacks) and the isolation of faults and cyberattacks. The quadrotor connecting to the ground

control station (GCS) is studied as a case study for this research.

The GCS unit monitors and supervises the operation of the quadrotor and sends the de-

sired trajectory to the quadrotor. In this case, the attacker injects false data into the commu-

nication link between the GCS and quadrotor and targets data integrity by altering sensors’

data which are sent to the command and control center. For instance, the GCS may have

wrong information about the quadrotor’s location and may issue incorrect commands.

This work provides a framework to simultaneously detect the faults in the sensors and

false data-injected attacks in the communication network using neural network-based diag-

nosis techniques. Since the dynamic model of the quadrotor is nonlinear, neural networks

have been considered as a proper choice.

Two scenarios have been investigated in this work. The first scenario is to detect bias

sensor faults and multiplicative false data injection attacks and propose a scheme to isolate

the faults and false data injection attacks. Moreover, a recovery methodology is presented

based on the estimation of the sensor faults and multiplicative false data injection attacks

driven by neural networks.

The second scenario studies the detection of replay attacks in the unmanned aerial ve-

hicle (UAV). In this case, the quadrotor has sensor faults while the adversary applies replay
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attacks to the CPS system. The isolation of sensor faults and replay attacks is a great chal-

lenge in this scenario.

1.2 Literature Review

1.2.1 Security of CPS

Three main properties in data and IT services are defined for security, including confiden-

tiality, integrity, and availability (CIA) [6]. Confidentiality refers to the non-disclosure of

data by unauthorized persons; integrity focuses on the trustworthiness of data which means

that unauthorized ones do not change data contents and properties. Availability guarantees

timely access to data or system functionalities for tracking the occurring events in the sys-

tem. The two crucial security objectives are data availability and data integrity in system

monitoring and control [6; 7]. Therefore, cyberattacks from the control perspective can be

categorized into two main categories:

• Data Availability Attacks: The Denial-of-Service (DoS) refers to a lack of data availabil-

ity in the system. This attack interrupts the transmission of information from sensors

and actuators to their destination. Generally, the DoS attack does not need any model

knowledge of the system. However, in some sophisticated cases, the adversary uses

model knowledge and additional resources. Therefore, this type of attack leads to data

absence and a lack of timely access to data or system functionalities [8; 9].

• Data Integrity Attacks: Deception attacks are a class of attacks that affect data integrity

in the system. In most cases, data integrity attacks are more tricky than data availability

attacks since the manipulated data is spread through the network. Different types of

deception attacks are considered in the literature, including replay attacks, false data
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injection attacks, covert attacks, and zero dynamics attacks [8; 10; 11]

1.2.1.1 False Data Injection Attack Scenario

False data injection attacks are one class of deception attacks where the adversary manipu-

lates the input or output data by injecting false data through the communication network.

This type of attack targets data integrity by altering sensors’ and actuators’ data. Based on

the ability of the attacker to compromise the system, three different scenarios can be con-

sidered for this type of attack: the attacker injects false data into the actuators, injects false

data into the sensors, or injects false data into the sensors and actuators [12; 8].

There are two essential techniques for securing the CPS against cyber attacks in recent

literature, including protecting crucial system components in advance and the next step,

identifying the false data injection attack in the system [5].

Several methods can be employed for the first approach, such as redundant components

or pathways, cryptography, firewalls, etc. It should be pointed out that above approaches are

not adequate against cyberattacks. Thus, the second approach is needed to detect cyberat-

tacks and find a way to remove or modify the manipulated data [5].

These false data-injected attack detection approaches can be categorized into the model-

or learning-based methods [5]. Some well-known model-based techniques for cyberattack

detections are Bayesian detection considering binary hypothesis [13], weighted least square

(WLS) approaches [14], ¬2 -detector based on Kalman filters [15], and quasi-FDI (fault de-

tection and isolation) techniques [16]. Learning-based approaches such as neural networks

and machine learning techniques can also detect false data-injected attacks [17].

Each of the model-based and learning-based approaches has advantages and disadvan-

tages. For instance, in model-based approaches, real-time anomaly detection is possible
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with low computational complexity; however, this detection method is strongly dependent

on the system’s accurate mathematical model [17; 18].

The learning-based methods effectively detect false data-injected attacks without great

knowledge of the physical process model and are appropriate for complex dynamical sys-

tems. However, there is no need to formulate complex nonlinear dynamics, but it should

be noted that the learning-based algorithms rely on the training process, such as supervised

learning or reinforcement learning, and accurate and healthy data are needed to avoid mis-

training the system [17; 18].

Although learning-based techniques are utilized for complex systems, they require com-

putationally heavy tasks run online and might not scale well. Moreover, it is more compli-

cated to analyze the system’s stability using learning-based techniques. The learning-based

algorithms will be more accurate by merging with model-based algorithms, while the com-

putational burden and complexity will decrease [17; 18].

Neural networks (NN) have recently been proposed as a practical approach for detect-

ing false data-injected attacks. NN can learn the mathematical connections between inputs

and corresponding outputs [19]. Several approaches, including supervised, semisupervised,

classifier and feature space fusion, and online learning algorithms, are applied to detect cy-

berattacks.

Kravchik et al. in [20] apply convolutional neural networks for detecting cyberattacks

on industrial control systems. This work detects anomalies by measuring the difference be-

tween the predicted and observed values. In [21], Chen et al. studied reinforcement learning

techniques for studying false data injected attacks on power systems with automatic voltage

controls assuming that the attacker conducts cyberattacks with data-driven methods.

Foroutan et al. in [17] present a framework for false data injected attacks detection based
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on machine learning techniques, and a semi-supervised approach is introduced based on a

mixture of Gaussian distribution.

One of the problems in the above works is that a proper training data set should be cho-

sen. It means that by using the small training data set, the fault or cyberattacks may not be

recognized. On the other hand, the big data set led to significant computation time that may

lead to detection delays. Therefore, neural networks have significantly been considered for

online anomaly detection [19].

For instance, Abbaspour et al. in [19] proposed a neural network-based fault detection

design for quadrotor which is subjected to faults and cyberattacks. In this work, false data

injection attacks and faults can be detected in the sensors of the quadrotor. However, this

work cannot isolate faults and attacks in the sensor measurements.

Sargolzaei et al. in [18] proposed a mitigation and detection scheme for false data injec-

tion attacks in the measurement data. The isolation of faults and cyberattacks is not con-

sidered, and the false data injection attack is just considered in the measurement channel.

Farivar et al. in [22] proposed a detection, estimation, and mitigation scheme for cyber-

attacks launched in the input channel of nonlinear CPS. In this work, attack estimation is

done with a neural network and is used for mitigation purposes in the control law.

Abbaspour et al. in [23] proposed a detection method for a false data injection attack in

the senor of UAV. The online tunning of the neural network is designed based on an embed-

ded Kalman filter (EKF).

1.2.1.2 Replay Attack Scenario

One kind of deception attack is the replay attack, in which the attacker replaces the real-time

measurement with the former recorded data. Two steps are mentioned for this attack: firstly,
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data is collected, and the system is not disturbed in this phase, and secondly, the recorded

data will be replayed in the system by the attacker while the exogenous signal is injected into

the system. In this type of attack, the adversary does not need to know the system’s model.

However, if the attacker has adequate knowledge of the system more damaging attack can

be designed [8; 10].

There are several studies considering the security of the CPS against replay attacks. One

of the primary approaches to detecting replay attacks is adding an authentication signal to

the control signal [24; 25; 26; 27]. However, this approach can lead to the degradation of the

control performance.

Dan et al. in [28] proposed a detection strategy against cyberattacks based on the sensor

coding information. This paper employs stochastic coding to add the coding signal to the

sensor information communication link. This approach can detect replay attacks without

degradation of the nominal system performance.

Miao et al. in [29] present noncooperative stochastic games to provide an optimal con-

trol policy for balancing the control system performance and replay attack detection rate.

A data-driven approach for replay attack detection is presented by Ma et al. in [30]. This

work uses the Support Vector Machine (SVM) as a classifier and a set of self-correlation co-

efficient data feature space for replay attack detection.

Taheri et al. in [31] present a simultaneous detection method for isolating faults and

cyberattacks . In this work, an unknown input observer at the plant side is used for fault

detection, and two filters on the plant side and the command and control side are designed

for detecting deception attacks, such as covert attacks, zero dynamics attacks, and replay at-

tacks.

Ramadan et al. in [32] proposed an approach for isolating sensor faults and replay attacks
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by designing two groups of observers, including the Luenberger observer and Unknown In-

put Observer (UIO), and adding watermarking signals to the system inputs.

1.2.2 Faults in CPS

One of the critical and challenging problems in controlling many industrial systems is fault

detection, isolation, and reconfiguration (FDIR) [33]. Kanev [34] defined fault as "an un-

permitted deviation of at least one characteristic property or parameter of the system from

the acceptable/usual/standard condition." Faults can be categorized based on physical lo-

cations and resources, like actuator faults, sensor faults, and plant component faults. Due

to the massive economic and human losses, efficiently and timely detecting and identifying

faults in control systems is essential [35; 34].

The control methodology of the FDIR is to guarantee the safe and satisfactory opera-

tion of the system when a fault occurs. In this approach, fault detection and isolation (FDI)

distinguishes the fault’s occurrence and location. Then the FDI technique will support the

controller reconfiguration design [35; 33].

1.2.3 Case Study (Unmanned Aerial Vehicle (UAV) in the CPS framework )

Unmanned aerial vehicles (UAVs) are flying entities commonly known for the ability to be

remotely controlled or autonomously without a human involved [36]. UAVs have been in-

creasingly utilized in civilian and military applications, and it is crucial to consider the im-

pact of cyberattacks and faults on their desired performance. In UAV design, the integration

of computation, control, and communication components exists like other cyber-physical

systems (CPS).
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Figure 1.1: The architecture of UAVs in a cyber-physical system perspective [37] .

In Figure 1.1, the cyber and physical domains of a typical UAV is illustrated. It is shown

that the cyber layer consists of computation, communication, control modules, and the

physical layer elements, including onboard sensors and actuators. The sensors transfer the

data from the physical world to the cyber domain through the communication channel. The

computation module analyzes the data and decides based on the gathered information. Fi-

nally, the control units send the decision commands to the actuator, which impacts the phys-

ical world [36; 38; 37].

Figure 1.1 shows the data flows and coupling effects within the components. The stated

coupling effects show the bilateral influences and dependency between the cyber and physi-

cal layer components. Single UAVs are generally employed in simple and low-scale missions,

and the communication network is considered between the UAV and the ground control

station (GCS) through uplinks and downlinks. This framework’s computation modules are

responsible for task allocation, path planning, and navigation based on optimization and in-

telligent algorithms. The control module is accountable for flight control, and ensuring the
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mission’s fulfillment [36; 38; 37].

The swarm of UAVs, a coordinated unit to complete the desired task, is utilized for more

significant, complex, and systematic tasks. Each agent should cooperate reasonably with

other agents to complete the task with efficient coordination in this architecture. The com-

munication links here are UAV-GCS and UAV-UAV. UAVs can directly communicate with each

other or through multi-hop links. The computation modules are utilized for joint path plan-

ning and task allocation. The control modules should handle cooperative control, collision

avoidance, and formation control [36; 38; 37].

As a cyber-physical system, a UAV includes several components, such as sensors, com-

munications, computation, and control modules. These elements may be subject to cyberat-

tacks, resulting in undesired states, system performance degradation, and significant failures

[36; 38; 37].

1.2.3.1 Fault Diagnosis of Unmanned Aerial Vehicles

UAVs have been widely used in various critical applications over the last few years. There-

fore, they should operate reliably with minimum faults. Unfortunately, the presence of faults

in the most advanced technologies is unavoidable. UAVs have different components, such as

sensors and actuators, which are vulnerable to malfunction. Moreover, unexpected circum-

stances and operational environments can lead to failure in physical components. Thus, it

is vital to design and employ fault diagnosis methods to detect and isolate fault occurrences

in the UAVs’ sensors and actuators [39].

• UAV Sensor Faults:

UAV sensor fault occurres while receiving incorrect measurement data from the UAVs’

sensors. For instance, inertial measurement units (IMU) consisting of three-axis gyro-

10



scopes, an accelerometer, and a magnetometer have a crucial role in controlling the

quadcopters. Therefore, detecting and isolating sensor faults is essential to safe flight

operations, accomplishing scheduled missions, and avoiding vehicle crashes [39; 40;

41].

Different approaches, such as hardware redundancy, model-based, and knowledge-

based methods, are applied for FDI in UAVs’ sensors. Drak et al. in [42] and Shi et al.

in [43] use a hardware redundancy approach for the altitude sensors’ measurements.

Lopez-Estrada et al. [44] modeled the quadrotor as a Linear Parameter Varying

(LPV) system. The bank of robust LPV observers detects and isolates sensor faults. In

[45], a sliding-mode observer is used to estimate roll and pitch angles in order to de-

tect, isolate, and estimate sensor bias faults in the gyroscope and accelerometer mea-

surements.

In [46], Hansen et al. present parameter adaptive estimators for fault diagnosis of

UAV airspeed sensors. This work employs an extended Kalman filter to estimate the

wind velocity vector. One of the knowledge-based approaches is applied in the work

of Guo et al. [47], which is an optimized one-class support vector machine approach

regulated by local density for UAV sensor fault detection. In the work of Sun et al. [48],

a novel data-driven Adaptive Neuro-Fuzzy Inference System (ANFIS)-based approach

is introduced to detect onboard navigation sensor faults in UAVs, which is a fast and

accurate fault detection method for real-time applications.

• UAV Actuator Faults:

Actuators have the responsibility for converting control signals into mechanical mo-

tions in UAVs. Faults and malfunctions in the actuator of the UAV lead to flight prob-

lems and crashes. Thus, it is crucial to detect and isolate faults in actuators [39].
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Different types of FDI approaches, such as hardware redundancy, model-based,

and knowledge-based, are utilized for fault detection in UAV actuators. For instance, a

robust actuator fault detection and diagnosis architecture is presented in the work of

Zhong et al. [49]. In this work, an adaptive augmented state Kalman filter (AASKF) is

presented to detect and estimate actuator faults, while the dynamics model of actuator

faults and disturbances are not completely available.

In the work of Avram et al. [50], a bank of nonlinear adaptive estimators is presented

for fault detection and isolation in the quadrotors’ actuators. In order to improve fault

detection and isolation, nonlinear adaptive thresholds are designed. A deep-learning-

based method for fault diagnosis in the UAV actuators is proposed in [51]. This work

applies a hybrid Convolutional Neural Network and Long Short-Term Memory (CNN-

LSTM) technique for actuator fault diagnosis in the six-rotor UAVs by extracting fea-

tures and finding internal connections.

1.2.3.2 Cybersecurity of Unmanned Aerial Vehicles

UAVs as cyber-physical systems (CPS) consist of several components such as sensors, com-

munications, computation, and control elements. Each component is vulnerable to cyber-

attack, leading to physical system malfunctions and undesired states. Since the communi-

cation links in the UAVs are wireless, the adversary can easily falsify and manipulate control

and sensor data through cyberattacks, leading to the loss of UAVs’control [37; 52].

Typically, two kinds of cyberattacks can be considered for UAVs, including data availabil-

ity attacks such as Denial of Service (DoS) attacks and deception attacks, which impact data

integrity such as false data injection attacks, replay attacks, etc [53].
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• UAVs under Denial of Service (DoS) Attacks:

In this type of attack, the adversary tries to stop legitimate users from accessing the de-

sired resources. As shown in Figure 1.2, the adversary prevents users from connecting

with the access points [54; 55]. Distributed Denial of Service attack (DDoS) is an up-

graded version of a DoS attack in which the attacker utilizes multiple sources to flood

packets. A DDoS attack on the UAV transceiver or the control center that works with

the UAV communication channel can lead to loss and damaged sensitive information

packets [56].

Figure 1.2: DoS attack on the UAV [55] .

Chen et al. in [57] present a defense mechanism against DoS attacks for three cru-

cial system components: CPU, memory, and communication channel. In this work, a

software framework provided DoS attack resilient control for real-time UAVs. Ouiaz-

zane et al. in [58] designed a model of DoS intrusion detection systems for UAV net-

works by using a multiagent system and applying the machine learning decision tree

algorithm. It is shown that the proposed method effectively detects known and un-

known DoS attacks in the UAV network. In the work of Garg et al. in [59], a tree-based

attack-defense model and a game-theoretic approach are proposed for the multi-UAV
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network with the case study of DDoS attacks.

• UAVs under Deception Attacks:

In deception attacks, the adversary tampers with the information intentionally. In Gu

et al. [53] work, a UAV safety problem under the false data injection attack is investi-

gated. In this paper, the attack characteristics and influencing factors are calculated,

and with this regard, the false data injected attack model is obtained. In the next step,

the attack detection mechanism is proposed, and finally, the effect of false data in-

jected attack on the control system will be compensated.

Lin et al. [60] designed a framework to detect false data-injected attacks in UAVs.

A Linear Quadratic Gaussian (LQG) controller has been designed in this framework to

provide sufficient conditions to guarantee the security of the closed-loop system.

Abbaspour et al.[23] proposed an adaptive neural network to detect false data-

injected attacks in UAV sensors. This work uses a neural network observer to detect

possible attacks on UAV IMU sensors online. Abbaspour et al. [19] studied false data

injected attacks and natural faults on the sensors of the UAV. This paper uses the neural

network-based fault detection method to estimate the real-time faults and false data

injection attacks on the quadrotors’ sensors.

Bahrami et al. in [61] proposed a model-based centralized and decentralized ob-

server approach to detect stealthy attacks such as zero-dynamics and covert attacks on

the network of UAVs through switching communication topology.

1.3 Thesis Contributions

In this section, the main thesis contributions are presented and briefly explained. To the

best of the author’s knowledge, the isolation of faults and cyberattacks is an open area in the
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cyber security research domain, particularly in nonlinear control systems. A fault detection

strategy for sensors of a nonlinear underactuated quadrotor is presented. A neural network-

based detection strategy is employed to detect sensor faults in the nonlinear underactuated

quadrotor. The detection approach is based on Talebi et al. [62], which is also used in Ab-

baspour et al.[19] for sensor fault and cyberattack detection. The main contribution of this

work is considering the multiplicative false data injection attacks as well as the isolation of

faults and false data injection attacks in the quadrotor.

This observer can detect faults in one or more sensors of the quadrotors, and it is placed

on the plant side. Meanwhile, another neural network-based detector is designed to detect

multiplicative false data injection attacks in the communication link. This detector is placed

in the command and control center and can detect different types of false data injection

attacks, such as multiplicative constant cyberattacks or multiplicative time-variant nonlin-

ear cyberattacks with periodic behavior. The false data injection attack can impact sensor

measurement data and command reference signal sent from command and control to the

quadrotor through a communication channel. Considering the multiplicative false data in-

jection attack and presenting a neural network-based detector is one of the contributions

of this work. The significant improvement in this work is providing an isolation scheme for

faults and false data injection attacks for the nonlinear CPS. Moreover, the effects of faults

and false data injection attacks are mitigated by using virtual sensors. Therefore, simulta-

neous detection of faults and false data injection attacks on the communication channels is

possible in this work.

Although the above two filters are well designed for detecting sensor faults and false data

injection attacks in the case of replay attacks, these neural network-based filters are inef-

ficient since they cannot detect, isolate and estimate the injected attack into the control
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signal. Therefore, a new neural network-based detection strategy is presented, which can

detect replay attacks in the nonlinear quadrotor. The idea of designing a neural network-

based detector for detecting false data injection attacks on the CPS input comes from the

work of Talebi et al. [63]. In that work, a neural network-based detector for the detection of

multiplicative actuator faults is proposed. In this work, a new detection scheme is proposed

to detect additive false data injection attacks on the control input of the CPS. This new detec-

tion scheme can also detect replay attacks. More importantly, the replay attack and sensor

faults will be isolated by using virtual sensors.

1.4 Thesis Outline

This dissertation consists of five chapters, as described as follows. Chapter one briefly in-

troduces the cyberattacks and fault detection problems in CPSs. The UAV as a case study

is further investigated. The UAV in the CPS framework is studied from the point of view of

cybersecurity and fault detection. The problem statement and contributions have also been

addressed in this section.

The second chapter introduces different types of cyberattacks in the CPS, as well as de-

tection methods. Some background information on different fault detection approaches has

been provided. Finally, the mathematical model of the nonlinear quadrotor is considered.

In this chapter, the kinematic and dynamic equations, as well as controller design, are pre-

sented.

Chapter three first introduces a new neural network-based approach to detect multi-

plicative false data injection attacks and is placed on the command and control center. The

neural network can also estimate false data injection attacks and can be used in the vir-

tual sensor for mitigation purposes. Moreover, a fault detection approach based on neural
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networks-based detectors is considered for quadrotor sensor fault detection. This approach

also estimates the faults that can be used in virtual sensors to isolate sensor faults.

Chapter four presents a neural network-based strategy that can detect false data injection

attacks on the input control of CPS and replay attacks. Two neural network-based detectors

are designed and considered to isolate faults and replay cyberattacks.

Chapter five is assigned to the thesis conclusion and some suggestions for the open prob-

lems to be considered for future works.
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Chapter 2

BACKGROUND INFORMATION

This chapter provides a brief introduction regarding various types of cyberattacks and faults

in the control system. Moreover, the derivation of the quadrotor model as the case study is

reviewed. Section 2.1 explains the possibility of cyberattacks on the communication channel

and describes different types of cyberattacks in CPS from the control perspective. Section 2.2

provides a short review of fault modeling for the control system and introduces fault diagno-

sis approaches. In Section 2.3, the movement and dynamics of the quadrotor are provided.

In order to derive the dynamic equations of quadrotor motion, the Newton-Euler equations

are applied. Section 2.4 introduces the nonlinear control approach for quadrotor hovering

flight.

2.1 Cyberattacks Definitions

Cyber-physical systems are vulnerable to various types of cyberattacks, and Figure 2.1 illus-

trates different types of attacks. This figure introduces four types of attacks: Physical attack,

deception attack, disclosure attack, and disruption attack.
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Figure 2.1: A schematic of various attacks in a CPS [64].

Disclosure attacks are trying to access informative information. Deception attacks refer

to intentional tampering with information. Disruption attacks describe the lack of sensor

or control data availability, making it impossible for the subsystems and their components

to communicate and transfer data [64]. Five types of cyberattacks can be categorized in the

attack space, as shown in Figure 2.2.

Figure 2.2: Five types of cyberattacks in the attack space [8].

The nonlinear CPS model can be represented as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

(2.1)
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where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output. C denotes a

constant measurement matrix.

2.1.1 Denial-of-Service (DoS) Attack

The Denial-of-Service (DoS) refers to a lack of data availability in the system. This attack in-

terrupts the transmission of information from sensors and actuators to their destination[8;

9]. Figure 2.3 shows an example of a DoS attack in which the adversary prevents data trans-

mission between controller and plant.

Figure 2.3: DoS attack scenario.

The DoS attack can be modeled in different ways, such as Bernoulli, Markov, and Queu-

ing models [8]. One of the models which are considered in [65] for defining DoS attack is

presented as follows:

8
>><
>>:

ẋ(t ) = f (x(t ),u) ,

y(t ) =Ø(t )C x(t ),

(2.2)

where Ø(t ) is used to show the impact of DoS attack, when the system is under DoS attack

Ø(t ) = 0, and otherwise Ø(t ) = 1.
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2.1.2 False Data Injection Attack

A false data injection attack targets data integrity by injecting false data into the input or

output channels of the CPS and altering sensors and actuators data [8]. The false data can

be injected into the cyber layer, as shown in Figure 2.4.

Figure 2.4: False Data Injection attack in CPS.

In the case that sensor measurements are manipulated, the system can be described as

[8]:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

ỹ(t ) =C x(t )+ ya(t ),

(2.3)

where ya(t ) is the false data that is added to the original measurement signal by the attacker.

ỹ(t ) is the manipulated signal received in the command and control center.

2.1.3 Covert Attack

A covert attack is another form of deception attack. In this type of attack, an adversary ma-

nipulates the control input signal, but its impact on the sensor output signal is compensated.

Therefore, the attacker can gain access to the measurement and actuator signals in the CPS.
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Since this attack is undetectable by the monitoring system, it can cause damage to the plant

[66]. This type of attack requires system knowledge, as shown in Figure 2.2. The covert attack

is shown in Figure 2.5.

Figure 2.5: Covert attack in CPS.

The CPS under covert attack can be described as [66]:

8
>>>>>>>>>>><
>>>>>>>>>>>:

ẋ(t ) = f (x(t ), ũ(t )) ,

y(t ) =C x(t ),

ũ(t ) = u(t )+u(a),

ỹ(t ) = y(t )° ya(t ),

(2.4)

where ua(t ) is the attack signal which is designed by the adversary and injected into the

control input while simultaneously its effect on the measurement signal is compensated by

the ya(t ) [66].

2.1.4 Replay Attack

A replay attack is a kind of deception attack which includes two phases of recording sensor

measurement data and replacing it with actual data while tampering with the input channel.

In this attack, it is assumed that the system is under a constant or periodic steady state [67].
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The replay attack can be described as follows [68; 67]:

• First Stage:

The attacker records all sensor measurement data from time t0 until t0 +w where w is the

time frame that the attack happens. The first step of the replay attack is shown in Figure 2.6.

Figure 2.6: Schematic of replay attack- first phase.

The nonlinear CPS in the first phase of replay attack can be described as [68; 67]:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

t0 ∑ t ∑ t0 +w. (2.5)

• Second Stage:

At time t1 the adversary replays the recorded sensor output data while simultaneously chang-

ing the control inputs.The second step of the replay attack is shown in Figure 2.7.

Figure 2.7: Schematic of replay attack- second phase.
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The nonlinear CPS in the second phase of replay attack can be described as [68; 67]:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ), ũ(t )) ,

ũ(t ) = u(t )+ua ,

ỹ(t ) = y(t + t0 ° t1 ° (N f °1)w),

t1 + (N f °1)w ∑ t ∑ t1 +N f w, N f 2N, N f ∏ 1. (2.6)

Figure 2.8 shows how the replay attack can affect the sensor measurement. The attacker

collects the actual sensor data in the time interval of [t0, t0 +w] and then replaces this data

in [t1, t1 +w]. While the adversary replays the collected data, the control signal is also ma-

nipulated. Since the system output shows the expected steady state, the attack will not be

recognizable [69].

Figure 2.8: Example of replay attack effect on sensor measurement [67].

2.1.5 Zero Dynamics Attacks

Zero dynamic attacks (ZDA) employ invariant zeros of the system, making the attack unde-

tectable, and there is no output for the attack signal. This type of attack needs the perfect

knowledge of the plant dynamics. If the adversary has comprehensive knowledge of the sys-

tem model and the plant has non-minimum phase zeros, unstable modes can be launched
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in the state response without being represented by any detectors [8]. ZDA for nonlinear

control-affine systems is defined in [70]. In this work, it assumed that some combination

of inputs and outputs are changed. The nonlinear control-affine system under ZDA can be

presented as follows [70]:

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ẋ(t ) = f (x(t ))+ g (x(t ))ũ(t ),

y(t ) =C x(t ),

ẋa(t ) = ay ,

ũ(t ) = u(t )+au ,

ỹ(t ) = y(t )°xa(t ),

(2.7)

where xa is the attack state, ay represents the output attack signal, and au denotes the input

attack signal. The block diagram of ZDA attacks is presented in Figure 2.9.

Figure 2.9: Zero Dynamics attacks in CPS.

2.2 Fault Modeling

Faults can be classified according to their physical locations and resources. They can be

defined as actuator, sensor, and plant component faults as shown in Figure 2.10. In this

section, faults in different components of the system will be introduced.
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Figure 2.10: Location of potential faults in a control system [35] .

2.2.1 Sensor Faults

Sensors transmit information about the system’s behaviour and internal states. Sensors mal-

functioning can lead to abnormal changes in the measurement process. For that reason,

faults in sensors may result in significant performance degradation, especially in decision-

making systems or processes such as feedback control systems, safety control systems, qual-

ity control systems, etc. Typical sensor faults are (a) bias; (b) drift; (c) performance degrada-

tion (or loss of accuracy); (d) sensor freezing; and (e) calibration error [35; 71; 69] which are

depicted in Figure 2.11 .
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Figure 2.11: The common types of sensor faults. The dotted lines show the desired value of

the sensor, and the solid lines show the actual value. a) bias; (b) drift; (c) performance

degradation (or loss of accuracy); (d) sensor freezing; and (e) calibration error [35] .

Generally, faults can be described as an additive or multiplicative term regarding the dy-

namics of the system [72]. The nonlinear continuous-time system with additive faults can

be represented in the general form as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t )+ fs(t ),

(2.8)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function, C is a constant measurement matrix, and fs(t ) 2Rq is an additive sensor

fault. Different types of additive sensor faults are mathematically represented in the follow-
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ing [35]:

fsi (t ) =

8
>>>>>>><
>>>>>>>:

bi (t ) ḃi (t ) = 0,bi (tF i ) 6= 0, Bi as,

bi (t ) |bi (t )| = ci (t ),0 ∑ ci ø 1, 8t ∏ tF i , Dr i f t ,

bi (t ) |bi (t )|∑ b̄i , ḃi (t ) 2 L1, 8t ∏ tF i , Loss o f accur ac y,

(2.9)

where tF i represents the time that a fault has occurred on the i th sensor and bi is the accu-

racy coefficient such that bi 2 [°b̄i , b̄i ] where b̄i > 0.

The nonlinear continuous-time system with a sensor freezing fault can be represented as

[35]:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

yi (t ) =Ci xi (tF i ), 8t ∏ tF i , Sensor f r eezi ng ,

(2.10)

where tF i represents the time that a fault has occurred on the i th sensor, and Ci is the i th row

of matrix C.

The nonlinear continuous-time system with a sensor calibration error can be represented

as [35]:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

yi (t ) = ki (t )xi (t ), 0 < k̄ ∑ ki (t ) ∑ 1, 8t ∏ tF i , C ali br ati on er r or,

(2.11)

where tF i represents the time that a fault has occurred on the i th sensor. The minimum

sensor effectiveness is shown by k̄i > 0 , ki 2 [k̄i ,1].
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2.2.2 Actuator Faults

Faults in the actuator describe abnormal changes in the actuator. Actuators are applied to

convert the control signal into mechanical motions. Actuator faults can adversely affect sys-

tem performance and may lead to complete system failure. Since actuators are typically

expensive, it is challenging to consider extra hardware redundancy. Actuator faults are usu-

ally contingent on the type of the actuator [35; 71; 69]; some actuator faults are illustrated in

Figure 2.12 .

Figure 2.12: The common types of actuator faults. Dotted lines show the desired value of

the actuator, and the solid lines show the actual value. (a) Lock-in-place (b) Float (c)

Hard-over (d) Loss of effectiveness [35] .

The nonlinear continuous-time system with a actuator fault can be represented as:

8
>><
>>:

ẋ(t ) = f (x(t ),ua(t )) ,

y(t ) =C x(t ),

(2.12)

where x 2Rn is the state variable, ua 2Rm is the actuator output, y 2Rq is the output , f is the

known nonlinear function, C is a constant measurement matrix. Different types of actuator
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faults are mathematically represented in the following [35]:

ui
a(t ) =

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ui
c (t ), No F aul t s,

ki (t )ui
c (t ), 0 < ≤i ∑ ki (t ) < 1, 8t ∏ tF i , (LOE),

0, 8t ∏ tF i , (F loat ),

ui
c (tF i ), 8t ∏ tF i , (LI P ),

ui mi n _ui max , 8t ∏ tF i , (HOF ),

(2.13)

where ui
c represent the actuator input to the i th actuator, tF i represents the time that a fault

has occurred on the i th actuator, and the actuator effectiveness is shown by k̄i > 0 , ki 2

[k̄i ,1], ≤i > 0. The lower and upper actuation level limits of the i th actuator is shown by

ui mi n and ui max .

2.2.3 Components Faults

Plant component faults may result in changes in the nominal dynamic relationship between

the variables of the system. Some physical parameter changes in the system, such as resis-

tance, inductance, and amplifier gain, may lead to these faults. Since faults in components

could lead to severe catastrophic consequences, it is essential to diagnose these faults from

the very early stages [35; 71; 69]. The components faults can represented as follows:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t ))+ fc (t ),

y(t ) =C x(t ),

(2.14)

where fc (t ) 2Rn is the plant component faults.
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2.2.4 Fault Diagnosis

Fault diagnosis methods enhance the system’s reliability by monitoring, locating, and iden-

tifying faults. FDI techniques employ the idea of redundancy, either hardware redundancy

or analytical redundancy, as shown in Figure 2.13 [33; 73].

Figure 2.13: The concepts of hardware redundancy and analytical redundancy [33] .

• Hardware Redundancy:

The main idea of hardware redundancy is to employ the same components with the

same input signal. The output of the replicated system will be compared to the plant

output signal to distinguish the occurrence of the fault. However, hardware redun-

dancy is a reliable method, but it is an expensive option that needs more resource and

space. Therefore, hardware redundancy approach can be applied for critical compo-

nents in the system, but it is not appropriate for the entire plant because of the cost

and constrained weight and space. Some of the standard techniques in the hardware

redundancy approach are the cross channel monitoring (CCM) method, residual gen-
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eration using parity generation, and signal processing methods such as wavelet trans-

formation [33; 71; 73].

• Analytical Redundancy:

Analytical redundancy is another method for FDI that utilizes the system’s mathemati-

cal model and estimation approaches. This method is not as expensive as the hardware

redundancy approach since additional components are not required. However, this

approach can be more complicated by considering model uncertainties, noise, and

unknown disturbances. The analytical redundancy method can be categorized into

two leading groups: quantitative and qualitative methods [33]. A general framework of

the analytical redundancy approach for FDI is depicted in Figure 2.14.

Figure 2.14: A general framework of the analytical redundancy approach for FDI [33] .

Three steps are considered for FDIR, as shown in Figure 2.14. In the first step, certain

variables identified as residuals are generated using one or more generation filters. While

there is no fault condition in the system, the residual should be zero. In order to do fault iso-

lation in some FDIR frameworks, two or more residual generation filters are used in parallel.

Each residual generation filter is responsive only to this framework’s particular set of faults.

The second step is to decide fault occurrence (fault detection) and the fault types (fault isola-
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tion) based on the generated residual. Statistical tools can help test if the generated residual

differs considerably from zero. Lastly, in the third step, the controller will be reconfigured

online in response to detected faults [33]. The different classifications of FDIR approaches

are presented in Figure 2.15.

Figure 2.15: Classifications of FDIR methods [33] .

2.3 Mathematical Model of Quadrotor

There are two different configurations for the quadrotor, "×" and "+". The "×" configuration

is admitted as a more stable configuration than the "+," which is more agile [74]. The two

configurations are depicted in Figure 2.16.

Figure 2.16: Quadrotor configurations [74] .
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The quadrotor is an underactuated system with six degrees of freedom and four rotors

as four control inputs. Nevertheless, it is possible to control the quadrotor by choosing four

proper controllable variables. It is assumed that propellers rotate in the fixed and parallel

axes, and the structure of the propellers is relatively rigid. Four dc motors are placed on each

propeller. Therefore, by adjusting the speed of each rotor, the required trust and torques for

the quadrotor movement and balance are produced [75; 1].

The model of the quadrotor is illustrated in Figure 2.17. The quadrotor thrusts are rep-

resented as T1,T2,T3,T4 Moreover, to maintain quadrotor balance, the front and rear pro-

pellers’ rotation is counter-clockwise while clockwise in the right and left propellers. The

propellers’ rotation speeds are shown by≠i (r ad/s) and the rotation direction is shown by a

rotated curved arrow line, and a vertical line shows the thrust generated by each propeller.

Figure 2.17: The quadrotor schematic .

In order to reach the desired position and move the quadrotor, the propellers’ speeds are

appropriately changed. For instance, angular speed differences between two sets of rotors

lead to vertical rotation. The quadrotor can move upward and downward by simultaneously

increasing or decreasing all the rotors’ speeds [1]. The dynamic model of the quadrotor is

defined with two reference frames, i.e., body-fixed and earth-fixed. In order to define the

linear and angular position of the quadrotor, the earth-fixed frame is considered. However,

the linear velocity and angular velocity, forces, and torques are determined in the body-fixed

frame [75; 1]. The linear position and angular position in the earth-fixed frame are defined
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as [1]:

r E = [x, y, z]T ,

£E = [¡,µ,√]T .

(2.15)

The linear and angular velocities in the body-fixed frame are defined as [1]:

V B = [u, v,!]T ,

!B = [p, q,r ]T .

(2.16)

The rotation matrix R defines the rotation from the body to the earth frame, that is [1]:

R =

2
66666664

cos√cosµ cos√sinµ sin¡° sin√cos¡ cos√sinµcos¡+ sin√sin¡

sin√cosµ sin√sinµ sin¡+cos√cos¡ sin√sinµcos¡°cos√sin¡

°sinµ cosµ sin¡ cosµcos¡

3
77777775

. (2.17)

The angular transformation for the angular velocity is presented by the matrix T [76],

T =

2
66666664

1 sin¡ tanµ cos¡ tanµ

0 cos¡ °sin¡

0 sin¡
cosµ

cos¡
cosµ

3
77777775

. (2.18)

In order to derive the dynamic equations of quadrotor motion, the Newton-Euler formula

is applied, that is [76]:

V E = RV B ,

!E = T!B .

(2.19)
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The quadrotor kinematic model is given by [76]:

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ẋ =!
°
sin¡sin√+cos¡cos√sinµ

¢
° v

°
cos¡sin√°cos√sin¡sinµ

¢
+u

°
cos√cosµ

¢
,

ẏ = v
°
cos¡cos√+ sin¡cos√sinµ

¢
°!

°
cos√cos¡°cos¡sin√sinµ

¢
+u

°
cosµ sin√

¢
,

ż =!
°
cos¡cosµ

¢
°u (sinµ)+ v

°
cosµ sin¡

¢
,

¡̇= p + r
°
cos¡ tanµ

¢
+q

°
sin¡ tanµ

¢
,

µ̇ = q
°
cos¡

¢
° r sin¡,

√̇= r cos¡
cosµ +q sin¡

cosµ .

(2.20)

The following assumptions are considered for the quadrotor dynamic model [75]:

• The quadrotor structure is fixed.

• The structure of the quadrotor is symmetrical, and its inertia matrix is time-invariant and

diagonal.

• The quadrotor center of mass is located on the origin of the body frame.

• The blade deformation of the quadrotor at high velocities is neglected.

Newton’s second law is used to derive the translational dynamics of the quadrotor [76],

m
£
!B ^V B + V̇ B§

= F B , (2.21)

where m represents the quadrotor’s mass, ^ represents the cross product and F B = [ fx fy fz] 2

R3 is the total force.

Euler’s equation derives the total torque that affects the quadrotor [76],

I !̇B +!B ^
°
I !̇B ¢

= øB , (2.22)

where the total torque is given by øB = [øx øy øz]T and I is the inertia matrix that is time-
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invariant and diagonal, that is [76]:

I =

2
66666664

Ixx 0 0

0 Iy y 0

0 0 Izz

3
77777775
2 R3. (2.23)

The quadrotor dynamic model in the body-fixed frame is given by [76]:

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

fx = m
°
u̇ +q!° r v

¢
,

fy = m
°
v̇ °p!+ r u

¢
,

fz = m
°
!̇+pv °qu

¢
,

øx = ṗ Ixx °qr Iy y +qr Izz ,

øy = q̇ Iy y +pr Ixx °pr Izz ,

øz = ṙ Izz °pq Ixx +pq Iy y .

(2.24)

Several different forces affect the quadrotor while moving in the air, and the resultant

force determines the movement direction [77]. Figure 2.18 presents different forces such as

thrust, gravitational force, lift, and drag.

Figure 2.18: Quadrotor Forces.
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The external forces in the body-fixed frame z axis are presented as [76]:

F B = mg RT êz °Tt ê3 + fw , (2.25)

where êz is a unit vector in the z axis in the inertial coordinates, ê3 is a unit vector in the

z axis in the body-fixed coordinates, Tt is the total generated thrust by rotors, and fw =

[ fw x fw y fw z]T 2 R3 is disturbance that affect quadrotor, such as wind.

The external moments in body-fixed coordinates are presented as [76]:

øB = øB ° ga +øw , (2.26)

where ga denotes the gyroscopic moments, which result from joined rotation of all the four

rotors and quadrotor body, øB = [øx øy øz]T 2 R3 is the control torque which is generated

by the rotor speeds differences, øw = [øw x øw y øw z]T 2 R3 denotes the torque generated

by the disturbance affecting the quadrotor motion, like the wind, and ga is defined as [76]:

ga =
4X

i=1
Jt p (!B ^ ê3)(°1)i+1≠i , (2.27)

where Jt p represents each rotor inertia, ≠i is the angular speed of each rotor. In this work,

it is assumed Jt p to be small, and therefore, in the controller formulation and design, the

gyroscopic moments are eliminated. The complete quadrotor dynamic model is given by
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[76]:

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

°mg sinµ+ fw x = m
°
u̇ +q!° r v

¢
,

mg
°
cosµ sin¡

¢
+ fw y = m

°
v̇ °p!+ r u

¢
,

mg
°
cosµcos¡

¢
+ fw z °Tt = m

°
!̇+pv °qu

¢
,

øx +øw x = ṗ Ixx °qr Iy y +qr Izz ,

øy +øw y = q̇ Iy y +pr Ixx °pr Izz ,

øz +øw z = ṙ Izz °pq Ixx +pq Iy y .

(2.28)

A voltage is applied to each DC motor, and a net torque occurs in the shaft of the rotor,

which leads to a thrust Ti . A drag force Di is caused by forwarding velocity, and it performs

on the opposite direction of the motion [1]. The thrust and drag are formulated as follows

[1]:

Ti = b≠2
i ,

Di = d≠2
i .

(2.29)

The thrust and drag coefficients are represented by b and d , respectively.

In order to control the quadrotor’s behavior, the inputs are applied to the system [1],

8
>>>>>>>>>>><
>>>>>>>>>>>:

Tt = b
°
≠2

1 +≠2
2 +≠2

3 +≠2
4

¢
,

øx = bl
°
≠2

4 °≠2
2

¢
,

øy = bl
°
≠2

3 °≠2
1

¢
,

øz = d
°
≠2

2 +≠2
4 °≠2

3 °≠2
1

¢
,

(2.30)

where l is defined as the distance between the quadrotor rotors and center of mass, b, and d

are the thrust factor and the drag factor, respectively [1]. In order to simplify the model, the
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effect of disturbance is neglected, that is [1]

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

u̇ = r v °qw + g sinµ,

v̇ = pw ° r u ° g
°
sin¡cosµ

¢
,

!̇= qu °pv + g
≥
cosµ sin¡+ U1

m

¥
,

ṗ = Iy y°Izz

Ixx
r q ° Jt p

Ixx
q≠T + U2

Ixx
,

q̇ = Izz°Ixx
Iy y

pr + Jt p

Iy y
p≠T + U3

Iy y
,

ṙ = Ixx°Iy y

Izz
pq + U4

Izz
,

(2.31)

where the propellers’ speed input and total thrust are defined below. The control inputs

are dedicated to vertical trust U1 and each angular motion(U2 °U4). The overall propellers’

speed is shown by≠T (r ad/s) [1],

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

U1 = b
°
≠2

1 +≠2
2 +≠2

3 +≠2
4

¢
,

U2 = bl
°
≠2

4 °≠2
2

¢
,

U3 = bl
°
≠2

3 °≠2
1

¢
,

U4 = d
°
≠2

2 +≠2
4 °≠2

3 °≠2
1

¢
,

≠T =°≠1 +≠2 °≠3 +≠4.

(2.32)

The quadrotor dynamic model is represented in the body-fixed frame. For the control

objectives and in order to generalize the position vector, it is beneficial to represent quadro-

tor dynamics in the earth-fixed frame. It can be assumed that angular velocity is equal in

both frames because, in the hovering condition, the angular transformation matrix T is an

identity matrix. With this assumption, the quadrotor dynamics in the earth-fixed frame are
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represented as follows [1]:

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ẍ =
°
cos¡sinµcos√+ sin¡sin√

¢ U1
m ,

ÿ =
°
cos¡sinµ sin√° sin¡cos√

¢ U1
m ,

z̈ =°g +
°
cos¡cosµ

¢ U1
m ,

¡̈= µ̇¡̇
≥

Iy y°Izz

Ixx

¥
° Jt p

Ixx
µ̇≠T + U2

Ixx
,

µ̈ = ¡̇√̇
≥

Izz°Ixx
Iy y

¥
+ Jt p

Iy y
¡̇≠T + U3

Iy y
,

√̈= ¡̇µ̇
≥

Ixx°Iy y

Izz

¥
+ U4

Izz
.

(2.33)

2.4 Controller Design for the Quadrotor

In this section, a nonlinear control for the stabilization of the quadrotor is presented. In

order to design nonlinear control for the quadrotor, the FeedBack Linearization (FBL) tech-

nique and Linear Quadratic Regulator (LQR) approaches can be employed. The fundamental

concept of the feedback linearization technique is transforming the nonlinear dynamics of

the system into a fully or partially linearized system where linear feedback control can be

utilized. The nonlinearity functions can be canceled by applying the feedback linearization

technique, while the linear control approaches can be utilized. The LQR control methodol-

ogy is applied for tracking the desired trajectory based on a linear control system [1]. The

schematic of the control methodology is shown in Figure 2.19.
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Figure 2.19: Feedback linearization control schematic.

This work assumes that all the system states can be measured and full state feedback is

considered. The quadrotor has four inputs u = [U1 U2 U3 U4]T , and since the number of

control inputs is less than six degrees of freedom quadrotor, this system is under-actuated,

and four variables can be controlled. The position of the quadrotor can be determined by

its linear position [x y z] and yaw angle √, and these four variables can be controlled by

feedback linearization and LQR to stabilize the system and follow a desired trajectory [1].

This work assumes that the quadrotor’s motion is near the hovering condition and small

angular changes occur. Therefore, the gyroscopic effects in the quadrotor dynamic equa-

tions, the term of ¡̈ and µ̈, are neglected. Since the quadrotor has a symmetric structure, Ixx

and Iy y are equal, and it leads to some simplification in the √̈ equation. It should be pointed

out that in the hovering condition, the gravitational force is equal to the total thrust, which

means that when the height of the quadrotor arrives at its desired value, then z̈ ! 0. There-

fore, with this assumption and considering negligible roll and angle, it can be concluded that

U1 ! mg [1]. By considering these assumptions, the x and y equations can be simplified .

The quadrotor dynamics equation considering the movement vector dynamic is represented
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as follows :

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ẍ = g sinµ,

ÿ =°g sin¡,

z̈ =°g +
°
cos¡cosµ

¢ U1
m ,

¡̈= U2
Ixx

,

µ̈ = U3
Iy y

,

√̈= U4
Izz

.

(2.34)

As mentioned x, y, z and √ are variables that will be controlled by U1,U2,U3, and U4.

The quadrotor dynamics equation considering the movement vector dynamic shows that

the system can be divided into four semi-decoupled subsystems. The yaw angle can be con-

trolled with tunning U4. An LQR controller is considered for controlling this subsystem. This

subsystem’s control goal is to reach the desired zero yaw angle in the near hovering con-

dition. For the rest of the variables, three semi-decoupled subsystems are considered as

follows [1]:

8
>><
>>:

ẍ = g sinµ,

µ̈ = U3
Iy y

,

(2.35)

8
>><
>>:

ÿ =°g sin¡,

¡̈= U2
Ixx

,

(2.36)

z̈ =°g +
°
cos¡cosµ

¢ U1

m
, (2.37)
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These three subsystems will be controlled by applying input-output feedback lineariza-

tion and LQR approaches. The control approaches are completely explained in the work of

Ranjbaran et al. in [1]. The difference is that, in this work, the actuator dynamics is not con-

sidered.

The state space representation can be driven as below.

Ẋ = f (X ,u) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

X7

X8

X9

X10

X11

X12

g sin X5

°g sin X4

°g + (cos X4 cos X5) U1
m

U2
Ixx

U3
Iy y

U4
Izz

, (2.38)

where the states of the systems are:

X T = [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12] = [x y z ¡ µ √ ẋ ẏ ż ¡̇ µ̇ √̇], (2.39)

and the control inputs are:

uT = [U1 U2 U3 U4]. (2.40)
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2.5 Conclusions

This chapter first presents the concept of cyberattacks from the control viewpoint in CPS,

and introduces different types of attacks. Different types of faults in the control system are

then introduced, and fault diagnosis approaches are explained. Finally, the fundamental

notions of quadrotor motion and dynamics is discussed. The state space representation of

the nonlinear system is provided, and the control approach is explained.

The next chapter will be assigned to designing a neural network-based detector for the

detection of sensor faults and false data injection attacks and provide a schematic for the

isolation of faults and false data injection attack.
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Chapter 3

Detection and Isolation of Sensor Faults
and False Data Injection Attacks

This chapter will discuss the detection and isolation of false data injection attacks and sensor

faults in the quadrotor. One of this chapter’s great contributions is considering multiplica-

tive false data injection attacks. The second contribution of this chapter is employing virtual

sensors at the plant and command and control sides. Using a virtual sensor at the plant side

enables the isolation of faults and false data injection attacks in the quadrotor. The virtual

sensor at the command and control side recovers the sensor measurements data that are

subjected to multiplicative false data injection attacks. The data recovery implemented at

the command and control center can mitigate the impact of multiplicative false data injec-

tion attacks on the path generator module.

Section 3.1 introduces the false data injection attacks and sensor faults in the quadro-

tor and presents the data transmission scheme between the quadrotor and the GCS. Section

3.2 deals with the online detection, isolation, and estimation of multiplicative false data in-

jection attacks that impact communication links. Section 3.3 provides the sensor fault de-

tection, isolation, and estimation approach with an online neural network-based detection

technique. Section 3.4 presents a typical data recovery approach by introducing the concept

of virtual sensors employed at command and control and plant sides. Section 3.5 provides
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the simulation results by considering different scenarios of sensor faults and false data injec-

tion attacks. Section 3.6 investigates the performance of the designed detectors and provides

confusion matrices results for the detectors.

3.1 False Data Injection Attacks and Sensor Faults in Quadro-
tors

A false data injection attack can manipulate the input or output channels of the CPS. The

false data can be injected into the cyber layer, as shown in Figure 3.1. The sensor faults

are considered in this work, as shown in Figure 3.1. In the quadrotor, as a case study, the

false data are injected through the communication link between the quadrotor and GCS. The

desired trajectory is sent to the quadrotor from the GCS, and in the opposite direction, the

quadrotor will send the measurement data. Both directions are vulnerable to cyberattacks,

and the adversary may manipulate the transmitted data.

Figure 3.1: CPS under false data injection attack.

In this work, it is assumed that the output communication channel is under multiplica-

tive false data injection attacks. In this scenario, the output communication channel which

sends data to the command and control center is under attack. Therefore, the received sen-
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sor measurement data is manipulated, and it can be described as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

ỹ(t ) =Æ§C x(t ),

(3.1)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output. C denotes a

constant measurement matrix. Æ represents the attack signal multiplied by the sensor mea-

surement data sent to the command and control center.

The faults in the sensors will be detected, isolated, and estimated on the plant side. False

data injection attacks will be detected, isolated, and estimated on the command and control

sides, as shown in Figure 3.2.

Figure 3.2: Sensor fault and false data injection attacks detection and isolation scheme .

3.2 Detection, Isolation, and Estimation of Multiplicative False
Data Injection Attacks

In this section, an approach for the detection, isolation, and estimation of multiplicative
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false data injection attacks is presented. The false data can be injected through the commu-

nication channel between the quadrotor and the command and control center. The output

channel can be under multiplicative false data injection attacks, as it is shown in Figure 3.2.

The sensor measurement data is transmitted to the command and control center, where

an attacker can manipulate it by multiplication of the attack signal in the transmitted data.

The manipulated data received at the command and control center can adversely affect the

path generation process, misguide the quadrotor, and lead to a collision. The designed neu-

ral network-based detector can detect, isolate, and estimate the false data injection attacks

on the output communication channel.

The schematic of the NN-based detector in the command and control side is shown in

Figure 3.3.

Figure 3.3: The schematic of NN observer for False Data Injection attack detection,

isolation, and estimation.

The control signal required for the NN observer can be generated at the command and

control center, taking into account the nominal model of the system and utilizing feedback

linearization control. The control signal u and the manipulated signal ỹ are then transmitted
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to the adaptive NN observer. The NN’s output represents an estimate of the attack signal, and

the structure of the NN is described further below.

The nonlinear continuous-time system under multiplicative false data injection attacks

can be represented in the general form as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =Æ (x(t ),u(t ))§C x(t ),

(3.2)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function and Æ denotes the unknown multiplicative false data injection attack.

A neural network detection module will be considered to detect, isolate, and estimate the

multiplicative false data injection attacks. The false data injection attack detection structure

is depicted in Figure 3.4. It is shown that a neural network (NN) will detect, isolate, and

estimate the multiplicative false data injection attacks.

Figure 3.4: Neural-network-based scheme for multiplicative false data injection attacks

detection, isolation, and estimation.

As it is shown in Figure 3.4, the nonlinear state space representation of the observer con-
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sidering the multiplicative false data injection attacks can be rewritten as follows:

8
>><
>>:

˙̂x = Ax̂ + g (x̂,u) ,

ŷ = Æ̂ (x̂(t ),u(t ))§C x̂,

(3.3)

where A is a Hurwitz matrix and g (x̂,u) = f (x̂,u)° Ax̂. The transfer matrix M(s) is defined

as follows [62]:

M(s) = (sI ° A)°1 . (3.4)

The NN is going to estimate the multiplicative false data injection attacks Æ̂ (x̂(t ),u(t )).

This detection scheme will detect, isolate and estimate multiplicative false data injection

attacks in the nonlinear quadrotor. The NN in this structure has three layers, including input,

hidden, and output, as shown in Figure 3.5.

Figure 3.5: Neural network structure.

The NN will obtain the approximation of false data injection attacks with the following
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structure:

Æ̂
°

ˆ̄x(t ),u(t )
¢
= Ŵæ(V̂ ˆ̄x), (3.5)

where ˆ̄x =
£
x̂T uT §

, and Ŵ and V̂ are neural network weight matrices.

The activation function is defined as [62]:

æi (V i ˆ̄x) = 2

1+exp°2V i ˆ̄x
°1, i = 1,2, ..., N , (3.6)

where N is the number of neurons in the hidden layer.

The weights of this NN are updated based on the theorem stated in the work of Talebi et

al.[62].

ˆ̇W =°¥1

µ
@J

@Ŵ

∂
°Ω1||

°
y ° ŷ

¢
||Ŵ ,

ˆ̇V =°¥2

µ
@J

@V̂

∂
°Ω2||

°
y ° ŷ

¢
||V̂ ,

(3.7)

where ¥1 and ¥2 > 0 are learning rates and Ω1 and Ω2 are small positive constants and the

objective function of neural network is defined as [62]:

J = 1
2

((y ° ŷ)T (y ° ŷ)). (3.8)
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In order to define learning rules, the first two variables are defined as [62]:

netv̂ = V̂ ˆ̄x,

netŵ = Ŵ S1,

S1 =æ(V̂ ˆ̄x),

S2 = I °§(V̂ ˆ̄x),

§(V̂ ˆ̄x) = di ag {æ2
i

°
V i ˆ̄x

¢
}.

(3.9)

Therefore,
@J

@Ŵ
and

@J

@V̂
can be determined as [63; 78]:

@J

@Ŵ
= @J
@netŵ

· @netŵ

@Ŵ
,

@J

@V̂
= @J
@netv̂

· @netv̂

@V̂
.

(3.10)

Then,

@J
@netŵ

= @J
@ŷ

· @ŷ
@netŵ

=°(y ° ŷ)T @ŷ
@netŵ

,

@J
@netv̂

= @J
@ŷ

· @ŷ
@netv̂

=°(y ° ŷ)T @ŷ
@netv̂

,

(3.11)

and,

@ŷ
@netŵ

=C x̂,

@ŷ
@netv̂

= @ŷ
@netŵ

· @netŵ

@netv̂
=

C x̂.Ŵ .
@æ(V̂ ˆ̄x)
@netv̂

=C x̂Ŵ S2,

(3.12)
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and,

@netŵ

@Ŵ
= ST

1 ,

@netv̂

@V̂
= ˆ̄x,

@æ(V̂ ˆ̄x)
@netv̂

= ST
2 .

(3.13)

The weight matrices will be updated as below:

ˆ̇W =°¥1
°
ỹT A°1

C C di ag (x)
¢T

ST
1 °Ω1||ỹ ||Ŵ ,

ˆ̇V =°¥2
°
ỹT A°1

C C di ag (x)Ŵ S2
¢T ˆ̄xT °Ω2||ỹ ||V̂ ,

(3.14)

where ¥1 and ¥2 > 0 are learning rates and Ω1 and Ω2 are small positive constants. AC is a

Hurwitz matrix which can help to speed the convergence.

By using this method, the false data injection attack that is injected into the output com-

munication channel is estimated. The estimated attack which is the output of the NN is

derived by (3.5) and can be represented as:

Æ̂= [Æ̂1 Æ̂2 Æ̂3 Æ̂4 Æ̂5 Æ̂6 Æ̂7 Æ̂8 Æ̂9 Æ̂10 Æ̂11 Æ̂12], (3.15)

where each element of Æ̂ represents the estimated false data injection attacks for each of the

sensor measurements data.

The neural network output, Æ̂, is close to one when the system operates under normal

conditions. However, when a cyberattack is injected into the system, the neural network es-

timates the attack signal, and the output is considered as the residual. To reduce false alarms

resulting from measurement noise in the system, a Monte Carlo test is performed under dif-

ferent conditions to determine a suitable threshold. If the residual, which represents the

54



estimation of the attack signal, exceeds the threshold determined through the Monte Carlo

test, the attack is detected,

|Æ̂i | > 1±±Æi , i = 1, ...,12, (3.16)

where ±Æi represents the threshold for the i th sensor measurement data.

The detection approach employs a neural network-based detector that estimates the

multiplicative false data injected into each sensor measurement data, resulting in estima-

tion for each signal. This estimated value is considered as the residual for the cyberattack

diagnosis procedure. By analyzing these residuals, the neural network can identify which

output sensor measurement data are under attack. Thus, if the estimation of the attack is

not close to one, the neural network-based detection approach can achieve attack isolation.

Specifically, the neural network can detect and isolate the multiplicative false injection data

attack in the output channel if it estimates the cyberattack signal correctly.

3.3 Detection, Isolation, and Estimation of Sensors Bias Faults

The fault detection procedure will be done on the plant side. In this work bias faults for sen-

sors are considered and the neural network-based detection strategy for bias fault detection

is presented in [62]. The nonlinear continuous-time system with bias sensor faults can be

represented in the general form as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t )+Ts (x(t ),u(t )) ,

(3.17)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function and Ts denotes the unknown sensor fault.
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A neural network detection module will be considered to detect the sensors faults. The

sensor fault detection structure is depicted in Figure 3.6. It is shown that the neural network

will estimate the sensor faults.

Figure 3.6: Neural-network-based scheme for sensor faults detection and isolation.

As shown in Figure 3.6, the nonlinear state space representation of the observer consid-

ering sensor faults can be rewritten as follows [62]:

8
>><
>>:

˙̂x = Ax̂ + g (x̂,u) ,

ŷ =C x̂ + T̂s (x̂,u) ,

(3.18)

where A is a Hurwitz matrix and g (x̂,u) = f (x̂,u)° Ax̂. The transfer matrix M(s) is defined

as follows [62]:

M(s) = (sI ° A)°1 . (3.19)

The NN is going to estimate the bias bias sensor faults Ts (x,u). This detection scheme

will detect, isolate and estimate sensor faults in the nonlinear quadrotor.
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The NN will obtain the approximation of fault with the following structure [62]:

T̂s
°

ˆ̄x,u
¢
= Ŵæ(V̂ ˆ̄x), (3.20)

where ˆ̄x =
£
x̂T uT §

, and Ŵ and V̂ are neural network weights matrices.

The activation function is defined as below [62]:

æi (V i ˆ̄x) = 2

1+exp°2V i ˆ̄x
°1, i = 1,2, ..., N , (3.21)

where N is the number of neurons in the hidden layer.

The weight matrices will be updated as follows [62] :

ˆ̇W =°¥1
°
ỹT A°1

C

¢T
ST

1 °Ω1||ỹ ||Ŵ ,

ˆ̇V =°¥2
°
ỹT A°1

C Ŵ S2
¢T ˆ̄xT °Ω2||ỹ ||V̂ ,

S1 =æ(V̂ ˆ̄x),

S2 = I °§(V̂ ˆ̄x),

§(V̂ ˆ̄x) = di ag {æ2
i

°
V i ˆ̄x

¢
},

(3.22)

where ¥1 and ¥2 > 0 are learning rates and Ω1 and Ω2 are small positive constants. AC is a

Hurwitz matrix which can help to speed the convergence [62].

By using this method, the bias sensor faults are estimated. The estimated sensor faults

which is the output of the NN is derived by (3.20) and can be represented as:

T̂s = [T̂s1 T̂s2 T̂s3 T̂s4 T̂s5 T̂s6 T̂s7 T̂s8 T̂s9 T̂s10 T̂11 T̂12], (3.23)

where each element of T̂s represents the estimated bias faults for each of the twelve sensors.

57



During normal operation, the neural network output T̂s is close to zero. But when there

are bias sensor faults in the system, the neural network estimates the faults and takes this

estimated value as the residual, which can be used for attack detection. To minimize false

alarms caused by measurement noise, a Monte Carlo test is performed under different con-

ditions to identify an appropriate threshold [62]. If the residual, which represents the esti-

mated bias sensor faults, exceeds the selected threshold, then the sensor fault is detected,

|T̂si | > ±Tsi , i = 1, ...,12, (3.24)

where ±T Ai represents the threshold for the i th sensor.

The detector estimates the bias sensor faults for each sensor, and the estimated value is

considered as the residual for each signal. These residuals can also be used for the fault isola-

tion procedure, which can determine which sensors are under bias sensor fault by compar-

ing each residual with a predefined threshold and isolating faulty sensors. Thus, the neural

network-based detection approach can achieve fault isolation if the estimation of the fault

is nonzero. If the neural network accurately estimates the bias sensor faults signal, it can

simultaneously detect and isolate faults in various sensors.

3.4 Virtual Sensors for Mitigating Multiplicative False Data
Injection Attacks and Sensor Faults

In this section, the concept of virtual sensors is discussed. Generally, faults in the con-

trol systems can lead to performance degradation or instability. Therefore it is essential to

provide fault-tolerant control techniques which help the desired system performance main-

tained while the control system is stable [79].

Fault-hiding is an effective and practical active fault-tolerant control approach. This ap-
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proach involves reconfiguring the faulty system to hide the fault from the controller and ob-

server’s perspective, allowing the faulty component to be used without modifications while

maintaining stability in the reconfiguration block. In this method, virtual actuators and vir-

tual sensors are introduced into the control loop when actuator and sensor faults are present

in the system. These blocks serve to mask the faults and ensure that the control loop oper-

ates correctly despite the presence of faulty components [80; 81].

Virtual sensors are mathematical models, not physical components, based on received

data from various sensors. They use available sensor measurements and system parameters

to estimate faults in the sensors. In the case of sensor faults, virtual sensors employ an ob-

server to estimate and calculate a replacement value [82; 83; 84].

In this work, virtual sensors offer an effective solution for mitigating false data injection

attacks and sensor faults by providing replacement data. Placing virtual sensors on the plant

side conceals faults from the controller and command and control center and provide a re-

placement data. Moreover, this scheme makes isolating simultaneous faults and false data

injection attacks at the output channel possible. Additionally, virtual sensors can be utilized

to recover sensor measurement data that has been compromised by multiplicative false data

injection attacks at the command and control center. This ensures that accurate and reliable

decisions are made regarding the desired trajectory of the quadrotor.

3.4.1 Virtual Sensors for Faulty Sensor Recovery

Figure 3.7 is shown the active fault-tolerant control by using virtual sensor is shown. The fig-

ure demonstrates the use of virtual sensors for fault-tolerant control. Virtual sensors conceal

faults in sensor data from the controller and command and control center, allowing normal

operation. In case of a false data injection attack, the command and control center’s detector

will identify and isolate it from sensor bias faults.
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Figure 3.7: Active fault -tolerant control scheme using virtual sensor

The nonlinear continuous-time system with bias sensor faults can be represented in the

general form as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t )+Ts (x(t ),u(t )) ,

(3.25)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function and Ts denotes the unknown sensor fault.

A neural network-based observer is utilized in the virtual sensor block to detect sensor

faults. The observer’s schematic is depicted in Figure 3.6. The virtual sensor structure for

sensor bias faults is defined as follows:

8
>><
>>:

˙̂xv s = Ax̂v s + g (x̂v s ,u) ,

ŷv s = y ° T̂s (x̂,u) ,

(3.26)

where A is a Hurwitz matrix and g (x̂,u) = f (x̂,u)°Ax̂ and M(s) is the transfer matrix defined

in (3.19). T̂s represents the estimate of the sensor faults which is obtained by using equations

(3.20), (3.21), and (3.22).

By adding a virtual sensor block, the output of a faulty sensor can be replaced with healthy

data that mimics the output of a normal, functioning sensor. This allows for the continuation

60



of normal system operations despite the presence of faults in the physical sensor.

3.4.2 Virtual Sensors for Multiplicative False Data Injection Attacks Re-
covery

The proposed neural network-based detection method enables the detection, isolation,

and estimation of multiplicative false data injection attacks. The estimated false data can

then be utilized in the recovery process. One solution to recover sensor measurement data

is to employ a virtual sensor, which can replace manipulated data with healthy data. The

recovery scheme is illustrated in Figure 3.8.

Figure 3.8: Virtual sensor scheme for sensor measurement recovery after the occurrence of

multiplicative false data injection attacks.

The nonlinear continuous-time system under multiplicative false data injection attacks

can be represented in the general form as:

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =Æ (x(t ),u(t ))§C x(t ),

(3.27)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function and Æ denotes the unknown multiplicative false data injection attack.

In the virtual sensor block at the command and control center, a neural network-based
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observer is used to detect, isolate and estimate multiplicative false data injection attacks as

shown in Figure 3.4.

The virtual sensor structure for sensor bias faults is defined as follows:

8
>><
>>:

˙̂xv s = Ax̂v s + g (x̂v s ,u) ,

ŷv s = Æ̂°1 y,

(3.28)

where Æ̂ represents the estimate of the multiplicative false data injection attacks which is

obtained by using equations (3.5), (3.13), and (3.14).

The virtual sensor block at the command and control center replaces sensor measure-

ment data subject to multiplicative false data injection attacks with healthy data. The recov-

ery of the manipulated data helps the command and control center to generate the proper

desired trajectory despite the cyberattacks on the communication link.

3.5 Simulation Results

This section presents the simulation results and evaluates the performance of the sensor

fault detectors and false data injection attack detectors. Different scenarios are considered

to assess the performance of the detectors. Section 3.5.1 represents the operation of the

nonlinear quadrotor in a healthy condition with no faults and no false data injection attacks.

Section 3.5.2 investigates the system’s performance and fault detection mechanism while

the sensors are faulty. Section 3.5.3 studies the detection of false data injection attacks in

the communication channels by the designed NN-based detectors. Section 3.5.4 analyzes

the system under multiplicative false data injection attacks in the communication channel

while the sensors are faulty.

The quadrotor model parameters are the same as Ranjbaran et al. in [1], and it is pre-
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sented in the Table 3.1.

Table 3.1: OS4 Quadrotor Physical Parameters [1]

Name Parameter Value Unit
mass m 0.650 kg

Iner t i a on x axi s Ixx 7.5e°3 kg .m2

Iner t i a on y axi s Iy y 7.5e°3 kg .m2

Iner t i a on z axi s Izz 1.3e°2 kg .m2

thr ust coe f f i ci ent b 3.13e°5 N .s2

dr ag coe f f i ci ent d 7.5e°7 N .s2

ar m leng th l 0.23 m
pr opel l er i ner t i a Jp 6e°5 kg .m2

g ear box e f f i ci enc y ¥ 90%
g ear box r ati o r 4 : 1
motor i ner ti a Jm 6e°5 kg .m2

motor i nter nal r esi st ance Rmot 0.6 ≠
back °E MF const ant ke 5.2 V.s.r ad°1

The parameters of the neural network-based fault detector are considered as follows:

A =°0.02§ I12£12,

number o f hi dden l ayer = 7,

¥1 = 20,

¥2 = 20,

Ω1 = 1e°6,

Ω2 = 1e°6.

The threshold for the sensor fault detector has been defined through a Monte Carlo test

that was performed in the absence of sensor faults and false data injection attacks, while

considering noise in the system,

±T Ai = 0.05.

The parameters of the neural network-based multiplicative false data injection attack

detector are considered as follows:
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A =°0.02§ I12£12,

number o f hi dden l ayer = 7,

¥1 = 200,

¥2 = 200,

Ω1 = 1,

Ω2 = 1.

The threshold for the multiplicative false data injection attack detector is determined by

conducting a Monte Carlo simulation with noise on the normal system in the absence of

sensor faults and false data injection attacks,

±Æi = 0.03.

An additive white Gaussian noise is considered in the sensor measurements and the

signal to noise ratio (SNR) is considered as:

SN R = 30db.

3.5.1 Fault-Free and Attack-Free Scenario

The objective of the quadrotor operation is to start from the origin (0,0,0), with an initial roll,

yaw, and pitch angle set to zero, and follow the desired trajectory consisting of specific points

and then return to the origin. The real-time path planning topic is a broad and important

subject that can be studied from different aspects, such as generating cost-effective paths.

In this work, a simple real-time path generator is selected to highlight the significance of

data recovery from sensor faults and multiplicative false data injection attacks. The path-

planning process is based on time and the current position of the quadrotor.

The specific points are defined, and the quadrotor will go to the points and hover for a

determined time as shown in Figure 3.9.
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Figure 3.9: Quadrotor path planning model.

The function that depends on the position of the quadrotor and time is considered as

follows:

rd (t ) = y(t )+ s( f (t )° y(t )), (3.29)

where rd represents the desired trajectory generated at the command and control center. y is

the sensor measurement data sent from the quadrotor to the command and control center,

and s is step size, and it is the time interval between two successive updates of the current

position in the path generation process. f is the final point and the desired target position

that the algorithm is trying to reach.

Figure 3.10 depicts the quadrotor’s position and Euler angles in time following the com-

manded trajectory from the command and control which is shown in Figure 3.9 .
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Figure 3.10: Linear position and Euler angles of the quadrotor.

In this work, the x, y , and z states are used to generate the trajectory of the quadrotor.

The generated trajectory is then transmitted from the command and control center to the

quadrotor. The actual trajectory represents the path the quadrotor physically follows, while

the planned trajectory refers to the intended path. The trajectory generation process is based

on the planned trajectory. Figures 3.11, 3.12, and 3.13 show the actual, planned, and gener-

ated trajectory of the quadrotor. It is shown that quadrotor follows the planned trajectory

effectively and the generated path matching the planned path.

66



Figure 3.11: The actual, planned, and generated trajectory of the quadrotor in x direction.

Figure 3.12: The actual, planned, and generated trajectory of the quadrotor in y direction.
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Figure 3.13: The actual, planned, and generated trajectory of the quadrotor in z direction.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.14. The sudden variations in the tracking error are a result of the abrupt changes in

the trajectory of the quadrotor.

Figure 3.14: The tracking error between the actual, and generated trajectory of the

quadrotor.

Tracking error between the planned and generated trajectory of the quadrotor, shown in
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Figure 3.15. It is shown that the generated trajectory is perfectly matching with the intended

path.

Figure 3.15: The tracking error between the planned, and generated trajectory of the

quadrotor.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.16. The abrupt changes in the trajectory of the quadrotor result in sudden variations in

the tracking error between planned and actual trajectory.

Figure 3.16: The tracking error between the planned, and actual trajectory of the quadrotor.
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Figure 3.17 illustrates the behavior of the sensor fault detector under normal operating

conditions when there are no sensor faults or false data injection attacks. As shown in the

figure, the detector briefly activates for less than one second when the path of the system

changes, but it does not exceed the predefined threshold (as described on page 63), indicat-

ing that no faults are present in the system.The full-state measurement system uses twelve

sensors, and the sensor fault detector provides twelve outputs that estimate faults in each

sensor. These outputs are shown in the Figure 3.17.

Figure 3.17: The response of the sensor fault detection diagnosis on the plant side in normal

condition. Refers to page 63 for the selection of the threshold.

Figure 3.18 depicts the performance of the multiplicative false data injection attack de-

tector under normal operating conditions, where no faults or attacks are present. As can be

seen, the detector remains inactive throughout the entire operation, as it never reaches the

predefined threshold (as described on page 64) at any point in time. This indicates that there
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are no multiplicative false data injection attacks present in the system during the duration of

the experiment.

Figure 3.18: The response of the false data injection attack detection diagnosis on the C&C

side in normal condition. Refers to page 64 for the selection of the threshold.

3.5.2 Bias Fault In Sensors and Attack-Free Scenario

In this section, the faults in the sensors of the quadrotors are considered, and it is assumed

that the system is not under false data injection attacks. In this case, some sensors of the

quadrotors are faulty, and the performance of the sensor fault detector on the plant side is

studied. The sensor faults are considered in the time interval of [20,120], and it is considered

that ten of the sensors are faulty. The fault signal is defined as:

Ts = [0.4 0.6 0.5 0.45 0.7 0.25 0 0.1 0.2 0.28 0 0.15].

A) Simulation results without considering virtual sensor

This part presents the simulation results for the quadrotor under bias sensor faults. Figure
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3.19 shows the impact of sensors faults on the quadrotor’s linear position and Euler angles. It

is shown that during the time interval of [20,120], the system experiences bias sensor faults,

which have an impact on the system states.

Figure 3.19: Linear position and Euler angles of the quadrotor under sensor fault.

Figures 3.20, 3.21, and 3.22 show the actual, planned, and generated trajectory of the

quadrotor. It is shown that the bias sensor faults impact the quadrotor’s generated trajectory

and actual trajectory, and the quadrotor does not follow the intended trajectory anymore.
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Figure 3.20: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of bias sensor faults.

Figure 3.21: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of bias sensor faults.
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Figure 3.22: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of bias sensor faults.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.23. The tracking error between the generated and actual trajectories in all three

directions is evident due to bias sensor faults in the system.

Figure 3.23: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of bias sensor faults.
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Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.24. It is shown that during the time interval of [20,120], the planned and generated

trajectories do not match, and the presence of sensor faults has impacted the path genera-

tion process.

Figure 3.24: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of bias sensor faults.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.25. The existence of bias sensor faults results in tracking errors between the intended

and real-time trajectories of the quadrotor.

75



Figure 3.25: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of bias sensor faults.

Figure 3.26 shows the output of the neural network-based sensor fault detector when

bias sensor faults are present. As can be seen from the figure, the detector is able to estimate

bias sensor faults, which are considered as residuals. When these residuals exceed a certain

threshold which is defined in 63, the detector is able to detect the presence of sensor faults.

Additionally, the detector is capable of identifying which specific sensors are affected by bias

sensor faults.

3.27 illustrates the output of the neural network-based false data injection attack detec-

tor when bias sensor faults are present. It can be seen that this detector is triggered during

the bias sensor faults. This highlights the significance of virtual sensors on the plant side.

The occurrence of bias sensor faults leads to changes in the sensor outputs, which are then

transmitted to the command and control center. Thus, the detection mechanism in the com-

mand and control center is unable to differentiate between sensor faults and false data in-

jection attacks, as both result in altered measurement data. Virtual sensors are essential for

data recovery and isolation of sensor faults and false data injection attacks.
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Figure 3.26: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of bias sensor faults.

Figure 3.27: The response of the false data injection attack detection diagnosis on the C&C

side while the system is under bias sensor faults.

B) Simulation results with considering virtual sensor

In this part the simulation results are presented with considering virtual sensors. Figure 3.28

shows how the impact of sensors faults on the quadrotor’s linear position and Euler angles
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is eliminated by using virtual sensors. Therefore, even with the existence of sensor faults,

the quadrotor is going to follow the desired trajectory. At the initial stages of the bias sensor

faults, small fluctuations or spikes can be seen in the graphs, which represent the time taken

by the virtual sensor to effectively mitigate the impact of the sensor faults.

Figure 3.28: Linear position and Euler angles of the quadrotor under sensor fault using a

virtual sensor.

Figures 3.29, 3.30, and 3.31 show the actual, planned, and generated trajectory of the

quadrotor It has been shown that the effect of bias sensor faults on the generated and actual

trajectories of the quadrotor can be mitigated by incorporating a virtual sensor at the plant

side. The small fluctuations in the graphs indicate the time taken by the virtual sensor to

cancel the impact of the bias sensor faults.
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Figure 3.29: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of bias sensor faults and using a virtual sensor.

Figure 3.30: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of bias sensor faults and using a virtual sensor.

79



Figure 3.31: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of bias sensor faults and using a virtual sensor.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.32. The abrupt changes in the trajectory of the quadrotor lead to sudden changes

in the tracking error. Moreover, some bumps are shown in the graph caused by the virtual

sensor.

Figure 3.32: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of bias sensor faults and using a virtual sensor.
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Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.33. It is shown that the planned and generated trajectories of the quadrotor match,

except for some deviations and bumps due to the presence of a virtual sensor on the plant

side. It is important to note that the mismatch between the generated and planned trajecto-

ries is not as apparent as it was in Figure 3.23.

Figure 3.33: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of bias sensor faults and using a virtual sensor.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.34. Using a virtual sensor at the plant side ensures that the actual trajectory of the

quadrotor follows the planned trajectory. However, there may be some small deviations at

the start of the trajectory and at the beginning and end of the fault period, which are caused

by the utilization of the virtual sensor at the plant side.
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Figure 3.34: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of bias sensor faults and using a virtual sensor.

Figures 3.35 displays the output of the neural network-based sensor fault detector in the

presence of bias sensor faults. As shown in the figure, the detector can estimate bias sensor

faults and treat them as residuals. When the magnitude of these residuals exceeds a thresh-

old value (defined in page 63), the detector can detect the presence of sensor faults. Fur-

thermore, the detector can identify which specific sensors are affected by bias sensor faults.

It is shown that the presence of a virtual sensor does not affect the performance of the bias

sensor fault detector at the plant side.

Figure 3.36 depicts the output of the neural network-based detector designed for detect-

ing multiplicative false data injection attacks at the command and control center. The figure

shows the detector’s performance in the presence of bias sensor faults and with the use of

a virtual sensor at the plant side. As can be seen from the figure, the detector does not trig-

ger false alarms in the presence of bias sensor faults when a virtual sensor is employed. The

detector briefly activates for less than five seconds before falling below the threshold, as de-

termined through Monte Carlo tests and discussed on page 64.
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Figure 3.35: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of bias sensor faults using virtual

sensors.

Figure 3.36: The response of the false data injection attack detection diagnosis on the C&C

side while the system is under bias sensor faults using virtual sensors.
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3.5.3 Fault Free and False Data Injection Attacks on the Communication
Channel Scenario

In this section, the false data is injected through the output communication channels.

It is assumed that the sensors of the quadrotor are not faulty and the system is just under

false data injection attacks. The false data is injected through a communication channel in

the time interval of [35,80] and multiplied by the sensor data sent from the quadrotor to the

command and control center. The attack signal is defined as :

ya = [2 1.5 1.5+ si n(t ) 1 1 1 1 1 1 1 1 1].

A) Simulation results without considering virtual sensor

The Figure 3.37 shows the effect of multiplicative false data injection attacks on the linear

position and Euler angles of the quadrotor. As seen in the figure, the multiplicative false data

injection attacks result in significant deviations from the intended trajectory, causing the

quadrotor’s actual path to deviate from its planned trajectory.

Figure 3.37: Linear position and Euler angles of the quadrotor under false data injection

attacks.
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Figures 3.38, 3.39, and 3.40 show the actual, planned, and generated trajectory of the

quadrotor. It has been shown that when the sensor measurement data are multiplied by the

false data injection attacks, the generated trajectory and the actual path in all three directions

will not follow the intended trajectory.

Figure 3.38: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of multiplicative false data injection attacks.

Figure 3.39: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of multiplicative false data injection attacks.
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Figure 3.40: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of multiplicative false data injection attacks.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.41. Due to the multiplicative false data injection attacks in the communication link

of the quadrotor, a noticeable tracking error between the generated and actual trajectories is

evident in all three directions.

Figure 3.41: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks.
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Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.42. It is shown that during the time interval of [35,80], the planned and generated

trajectories do not match, and the multiplicative false data injection attacks in the commu-

nication link has impacted the path generation process.

Figure 3.42: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.43. The existence of multiplicative false data injection attacks in the communication

link leads to rising tracking errors between the intended and real-time trajectories of the

quadrotor.
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Figure 3.43: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of multiplicative false data injection attacks.

Figures 3.44 shows the output of the neural network-based sensor fault detector in the

presence of multiplicative false data injection attacks. As it is shown in figure, the sensor

fault detector does not trigger when multiplicative false data injection attacks are present.

However, the detector experiences bumps at the starting points where the path suddenly

changes.

Figure 3.45 depicts the effectiveness of the neural network-based false data injection at-

tack detector, which can detect, isolate, and estimate the multiplicative false data injection

attacks at the appropriate time and with high accuracy. The figure shows that the detector

can estimate the multiplicative false data injection attacks and consider them as residuals.

When the magnitude of the residuals exceeds a threshold value (defined in page 64), the de-

tector can detect the presence of multiplicative false data injection attacks. Furthermore, the

detector can identify which specific sensor measurement data are affected by multiplicative

false data injection attacks.
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Figure 3.44: The response of the sensor fault detection diagnosis on the plant side while the

system is under multiplicative false data injection attacks.

Figure 3.45: The response of the False Data Injection attack detection diagnosis on the C&C

side demonstrates its ability to detect, isolate, and estimate the severity of an attack in the

presence of multiplicative false data injection attacks.
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B) Simulation results with considering virtual sensor

In this part, the simulation results are presented by considering a virtual sensor at the com-

mand and control center to recover sensor measurement data from multiplicative false data

injection attacks. Figure 3.46 demonstrates the elimination of the impact of multiplicative

false data injection attacks on the linear position and Euler angles of the quadrotor through

the utilization of virtual sensor at the command and control center. As a result, the quadrotor

will follow the intended trajectory even in the presence of multiplicative false data injection

attacks.

Figure 3.46: Linear position and Euler angles of the quadrotor under false data injection

attacks using a virtual sensor.

Figures 3.47, 3.48, and 3.49 show the actual, planned, and generated trajectory of the

quadrotor. It has been shown that the effect of multiplicative false data injection attacks on

the generated and actual trajectories of the quadrotor can be mitigated by incorporating a

virtual sensor at the command and control side.
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Figure 3.47: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of multiplicative false data injection attacks and using a virtual sensor.

Figure 3.48: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of multiplicative false data injection attacks and using a virtual sensor.
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Figure 3.49: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of multiplicative false data injection attacks and using a virtual sensor.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.50. The abrupt changes in the trajectory of the quadrotor lead to sudden changes in

the tracking error.

Figure 3.50: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks and using a virtual

sensor.
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Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.51. It is demonstrated that the planned and generated trajectories of the quadrotor

match, except for minor deviations at the start and end time intervals where false data injec-

tion attacks have been multiplied by the sensor measurement data. It is worth noting that

the mismatch between the generated and planned trajectories is less noticeable compared

to what is shown in Figure 3.41.

Figure 3.51: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks and using a virtual

sensor.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.52. It can be seen that utilizing a virtual sensor at the command and control side en-

sures that the actual trajectory of the quadrotor follows the intended trajectory.
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Figure 3.52: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of multiplicative false data injection attacks and using a virtual sensor.

Figures 3.53 and 3.54 show the outputs of the detectors during multiplicative false data

injection attacks on the system. The performance of these two neural network-based detec-

tors is similar to the situation in which there is no virtual sensor on the command and control

side. The sensor fault detector does not trigger during multiplicative false data injection at-

tacks. Still, it shows a bump at the start time of the path changing. The neural network-based

false data injection attack detector can effectively detect, isolate, and estimate the attack with

high accuracy.
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Figure 3.53: The response of the sensor fault detection diagnosis on the plant side while the

system is under multiplicative false data injection attacks using virtual sensors.

Figure 3.54: The response of the False Data Injection attack detection diagnosis on the C&C

side demonstrates its ability to detect, isolate, and estimate the severity of an attack in the

presence of multiplicative false data injection attacks and using virtual sensors.
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3.5.4 Bias Faults in Sensors and Multiplicative False Data Injection At-
tacks on the Communication Channels Scenario

This section considers the scenario with multiplicative false data injection at the output

communication channel and sensor faults. The false data is injected through a commu-

nication channel in the time interval of [35,80] and multiplied by the sensor data sent from

the quadrotor to the command and control center. The attack signal is defined as :

ya = [2 1.5 1.5+ si n(t ) 1 1 1 1 1 1 1 1 1].

The bias sensor faults are considered in the time interval of [20,120], and it is considered

that ten of the sensors are faulty. The fault signal is defined as:

Ts = [0.4 0.6 0.5 0.45 0.7 0.25 0 0.1 0.2 0.28 0 0.15].

A) Simulation results without considering virtual sensors

The Figure 3.55 shows the effect of multiplicative false data injection attacks and sensor

faults on the linear position and Euler angles of the quadrotor. As seen in the figure, the

presence of multiplicative false data injection attacks and bias sensor faults result in signifi-

cant changes in the states of the quadrotor.
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Figure 3.55: Linear position and Euler angles of the quadrotor under false data injection

attacks and sensor faults.

Figures 3.56, 3.57, and 3.58 show the actual, planned, and generated trajectory of the

quadrotor. It has been demonstrated that when the bias sensor faults exist, and sensor mea-

surement data are affected by multiplicative false data injection attacks in the communica-

tion channel, the generated trajectory and actual path in all three directions deviate signifi-

cantly from the planned trajectory and do not follow the intended path.
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Figure 3.56: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of multiplicative false data injection attacks and sensor faults.

Figure 3.57: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of multiplicative false data injection attacks and sensor faults.
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Figure 3.58: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of multiplicative false data injection attacks and sensor faults.

Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.59. Due to the multiplicative false data injection attacks in the communication link

of the quadrotor and sensor faults, a significant tracking error between the generated and

actual trajectories is apparent in all three directions.

Figure 3.59: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks and sensor faults.
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Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.60. It is shown that the planned and generated trajectories do not match, and the

multiplicative false data injection attacks in the communication link and sensor faults have

impacted the path generation process.

Figure 3.60: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of multiplicative false data injection attacks and sensor faults.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.61. The existence of multiplicative false data injection attacks in the communication

link and sensor faults resulted in significant tracking errors between the intended and real-

time trajectories of the quadrotor.
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Figure 3.61: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of multiplicative false data injection attacks and sensor faults.

Figure 3.62 illustrates the output of the neural network-based sensor fault detector when

both bias sensor faults and multiplicative false data injection attacks are present. As can be

seen from the figure, the detector is capable of estimating bias sensor faults and consider-

ing them as residuals. When the magnitude of these residuals exceeds the threshold value,

which is defined in page 63, the detector can detect the presence of sensor faults and identify

which specific sensors are affected by bias sensor faults. Importantly, the detector does not

trigger false alarms for the multiplicative false data injection attacks, as demonstrated in the

figure. It should be noted that because of sudden path changes, the detector has bumps at

the starting points the path is going to change.

Figure 3.63 shows that the false data injection attack detector is triggered for both sensor

faults and false data injection attacks. Unfortunately, the bias sensor faults impact the neu-

ral network-based detector in the command and control center, making it disable to isolate

both sensor faults and false data injection attacks, as well as leading to improper estimation

of the false data injection attacks.
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Figure 3.62: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of bias sensor faults and False Data

Injection attacks.

Figure 3.63: The response of the false data injection attack detection diagnosis on the C&C

side while the system is under multiplicative false data injection attacks and sensor faults.
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B) Simulation results with considering virtual sensors

This section presents the simulation results by considering virtual sensors at the com-

mand and control center and plant side. The virtual sensor at the plant side is used to re-

cover the sensor measurement data from bias faults, while at the command and control side,

a virtual sensor is employed to recover sensor measurement data that are subjected to mul-

tiplicative false data injection attacks.

Figure 3.64 depicts the elimination of the impact of multiplicative false data injection

attacks and sensor faults on the linear position and Euler angles of the quadrotor through

the utilization of virtual sensors at the command and control center and plant side. As a re-

sult, the quadrotor will follow the intended trajectory even in the presence of multiplicative

false data injection attacks and sensor faults. There are some bumps in the quadrotor states

graphs which are resulted from using virtual sensors and the time that it takes to recover the

data.

Figure 3.64: Linear position and Euler angles of the quadrotor under false data injection

attacks and sensor faults using virtual sensors.

103



Figures 3.65, 3.66, and 3.67 show the actual, planned, and generated trajectory of the

quadrotor. It has been shown that the effect of multiplicative false data injection attacks

on the generated and actual trajectories of the quadrotor can be mitigated by incorporating

virtual sensors at the plant side and command and control side. The small rises visible in the

figures indicate the time taken by the virtual sensors to recover data.

Figure 3.65: The actual, planned, and generated trajectory of the quadrotor in x direction in

the presence of sensor faults and multiplicative false data injection attacks and using virtual

sensors.
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Figure 3.66: The actual, planned, and generated trajectory of the quadrotor in y direction in

the presence of sensor faults and multiplicative false data injection attacks and using virtual

sensors.

Figure 3.67: The actual, planned, and generated trajectory of the quadrotor in z direction in

the presence of sensor faults and multiplicative false data injection attacks and using virtual

sensors.

105



Tracking error between the actual and generated trajectory of the quadrotor, shown in

Figure 3.68. The abrupt changes in the trajectory of the quadrotor lead to sudden changes in

the tracking error. Moreover, some rises are shown in the figure and are caused by the virtual

sensors.

Figure 3.68: The tracking error between the actual, and generated trajectory of the

quadrotor in the presence of sensor faults and multiplicative false data injection attacks

and using virtual sensors.

Tracking error between the planned and generated trajectory of the quadrotor, shown in

Figure 3.69. It is shown that the planned and generated trajectories of the quadrotor match,

except for minor deviations at the start and end time intervals where false data injection

attacks have been multiplied by the sensor measurement data. Moreover, some jumps are

shown in the figure, which is resulted from the virtual sensor that is used at the plant side for

sensor fault recovery. It should be mentioned that the mismatch between the generated and

planned trajectories is less noticeable compared to what is shown in Figure 3.59.
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Figure 3.69: The tracking error between the planned, and generated trajectory of the

quadrotor in the presence of sensor faults and multiplicative false data injection attacks

and using virtual sensors.

Tracking error between the planned and actual trajectory of the quadrotor, shown in Fig-

ure 3.70. It can be seen that employing virtual sensors at the command and control and

plant sides confirms that the real-time trajectory of the quadrotor follows the intended tra-

jectory. However, because of sudden path changes, the detector has raises at the starting

points the path is going to change. Additionally, some bumps are existed due to the virtual

sensor, which is used for sensor fault recovery.
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Figure 3.70: The tracking error between the planned, and actual trajectory of the quadrotor

in the presence of sensor faults and multiplicative false data injection attacks and using

virtual sensors.

Figures 3.71 shows the output of the neural network-based sensor fault detector when

bias sensor faults and multiplicative false data injection attacks are present, and virtual sen-

sors are utilized for data recovery at both the plant and command and control sides. As

demonstrated in the figure, the detector can estimate bias sensor faults and treat them as

residuals. When the magnitude of these residuals exceeds the threshold value, as defined

in page 63, the detector can detect the presence of sensor faults and identify which specific

sensors are affected by bias sensor faults. The detector does not trigger false alarms for the

multiplicative false data injection attacks, as shown in the figure. However, due to sudden

path changes, the detector has bumps at the starting points where the path changes.

Figure 3.72 displays the output of the false data injection attack detector when the system

is under both multiplicative false data injection attacks and sensor faults, and virtual sensors

are employed for data recovery at both the plant and command and control sides. The figure

shows that the detector can estimate the multiplicative false data injection attacks and treat
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them as residuals. When the magnitude of these residuals exceeds the threshold value, as

defined in page 64, the detector can detect the presence of multiplicative false data injection

attacks and identify which specific sensor measurements are affected. Notably, the detector

is not triggered by sensor faults when a virtual sensor is utilized at the plant side, and it is

only sensitive to the multiplicative false data injection attacks.

Figure 3.71: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of bias sensor faults and

multiplicative false data injection and using virtual sensors.
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Figure 3.72: The response of the False Data Injection attack detection diagnosis on the C&C

side demonstrates its ability to detect, isolate, and estimate the severity of an attack in the

presence of sensor faults and multiplicative false data injection attacks and using virtual

sensors.

3.6 Performance Analysis

In this section, the performance of the designed NN-based diagnosis is investigated. In this

case, the confusion matrix will be used to analyze the performance by calculating the de-

tection, isolation, and estimation rate of the diagnosis. In this regard, four possibilities for

the detector results are considered consisting of True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). According to [85], two different metrics, precision and

accuracy, can be defined. This work will calculate the precision metric and accuracy metric

for evaluating NN-based fault and false data injection attack detectors. The precision metric

is defined as [85] :
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PPV = T P
T P +F P

. (3.30)

The accuracy metric is defined as [85] :

ACC = T P +T N
T P +T N +F P +F N

. (3.31)

System under bias sensor faults

In this section, it is assumed that system is just under bias sensor faults and there is no virtual

sensor in the system. The values in these tables are derived from 100 simulation runs.The

confusion matrices for the two detectors are represented in Tables 3.2 and 3.3 when the sys-

tem is under bias sensor faults. Table 3.2 presents the results of the performance evaluation

of the neural network-based diagnosis system in terms of its ability to detect, isolate, and

estimate sensor faults. The Table 3.3 presents the performance of the false data injection at-

tack detector in detecting the bias sensor faults. Since there is no recovery scheme in place

to address these faults, the performance of the detector is degraded.

Table 3.2: Confusion matrix for the sensor fault diagnosis when the system is under bias

sensor faults.

TN FP TP FN
Bias Sensor Fault 97.79 2.21 98.81 1.19

PPV 97.81%
ACC 98.3%
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Table 3.3: Confusion matrix for the false data injection attack diagnosis when the system is

under bias sensor faults.

TN FP TP FN
Bias Sensor Fault 87.34 12.66 92.08 7.92

PPV 87.91%
ACC 89.71%

System under bias sensor faults using a virtual sensor at plant side

In this section a virtual sensor is employed at the plant side to recover the sensor measure-

ment data from bias sensor faults. The performance of the sensor fault detector is the same

as the mentioned performance in Table 3.2. The performance of the false data injection at-

tack detector has been enhanced in terms of its ability to detect, isolate, and estimate false

data injection attack and it is now not affected by bias sensor faults. The new confusion

matrix is presented in Table 3.4.

Table 3.4: Confusion matrix for the false data injection attack diagnosis when the system is

under bias sensor faults and using a virtual sensor.

TN FP TP FN
Bias Sensor Fault 98.73 1.27 98.19 1.81

PPV 98.19%
ACC 98.46%

System under bias sensor faults and multiplicative false data injection attacks using vir-
tual sensors

In this section it is assumed that system is under multiplicative false data injection attacks

and bias sensor faults. The performance of two neural network-based diagnosis approaches

is evaluated in terms of their ability to detect, isolate, and estimate sensor faults and false
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data injection attacks and are shown in Tables 3.5 and 3.6 respectively.

Table 3.5: Confusion matrix for the sensor fault diagnosis when the system under bias sensor

faults and multiplicative false data injection attacks using virtual sensors.

TN FP TP FN
Faults & False Data Injection attacks 98.15 1.85 93.83 6.16

PPV 98.06%
ACC 95.99%

Table 3.6: Confusion matrix for the false data injection attack diagnosis when the system

under bias sensor faults and multiplicative false data injection attacks using virtual sensors.

TN FP TP FN
Faults & False Data Injection attacks 97.21 2.79 94.62 5.38

PPV 97.13%
ACC 95.91%

3.7 Conclusions

This chapter provides the detection, isolation, and estimation of bias sensor faults and mul-

tiplicative false data injection attacks in the quadrotor. An online neural network-based

diagnosis technique is proposed, which can be used for the detection, isolation, and esti-

mation of false data injection attacks. The estimated sensor faults can be used in virtual

sensors, making possible simultaneous detection of sensor faults and false data injection at-

tacks. Moreover, a virtual sensor module is utilized in order to recover sensor measurement

data which are subjected to multiplicative false data injection attacks. The performance of

the diagnoses are also calculated in this chapter.
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Chapter 4

Detection and Isolation of Sensor Faults
and Replay Attacks

This chapter proposes a new online neural network-based approach for detecting, isolating,

and estimating replay attacks on the input of CPS. The great contribution of this chapter is

the detection, isolation, and estimation of replay attacks by considering two neural network-

based detectors at the plant and command and control sides. In the case that a replay attack

occurs, just the detector on the plant side is triggered. Therefore, by comparing the output

of these detectors and assuming that the binary flag indicating the activation of the plant

side detector, which is sent to the command and control center, is not under attack and

is sent through a secure channel, the replay attack can be detected. Moreover, the other

contribution is that bias sensor faults and replay attacks can be isolated by employing the

virtual sensor at the plant side.

Section 4.1 presents a detection approach for false data injection attacks on the input of

CPS and provides a scheme for isolating false data injection attacks from bias sensor faults.

Section 4.2 provides the simulation results by considering different scenarios of sensor faults

and replay attacks. Section 4.3 investigates the performance of the designed detector and

provides confusion matrices results for the detectors.
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4.1 Detection of Replay Attacks and Isolation from Sensor
Faults on the CPS

In this section, the detection of replay attacks on the nonlinear quadrotor has been studied.

In the replay attack case, the adversary tries to replay the sensors’ measurements in the sys-

tem to damage the control system without being detected. For instance, it is considered that

the adversary can inject false data into the control signal while replaying the previous sen-

sors’ measurement data to fool the controller and also not being detected in the command

and control center.

This section proposes a schematic that can detect a replay attack while the adversary

injects false data into the control signals. Figure 4.1 shows how the adversary tries to dam-

age the system with replay attacks. In this case, the adversary replays the output of virtual

sensors, which is sent to the controller and the command and control center, meanwhile

injecting false data into the control signal to damage the system.

Figure 4.1: Structure of the adaptive neural network-based detection strategy for replay

attacks with considering sensor faults

Figure 4.1 illustrates that two cyberattack detectors are considered. When the system is
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under replay attack, the adversary hides the attack’s impact from the command and control

center, but it can be detected at the plant side. Therefore, if the plant-side attack detection is

triggered and the one in the command and control is not activated, it can be concluded that

the system is under replay attack.

One of the significant advantages of this schematic is that it can isolate sensor faults from

replay attacks. By using the virtual sensor, the signature of bias sensor faults is mitigated, and

the recovered data is sent for feedback linearization control and the command and control

center. This approach helps to mitigate the impact of bias sensor faults before the data is

sent to the controller and the command and control center, thus ensuring that the replay at-

tacks do not affect the process of fault detection, isolation, and estimation. The sensor faults

detection, isolation, and estimation methodology are completely explained in the previous

chapter, Section 3.3. Section 3.4.2 explains the process of recovering sensor measurement

data from bias sensor faults using virtual sensors.

4.1.1 Replay Attack Detection strategy

In the first phase of the replay attack the nonlinear system can be written as [67; 68] :

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

t0 ∑ t ∑ t0 +w, (4.1)

where x 2 Rn is the state variable, u 2 Rm is the input, y 2 Rq is the output , f is the known

nonlinear function, and w is the time frame that the attacker record the data.

During the second stage, the adversary manipulates the control input to cause damage

to the system while replaying the system output to the controller and command and control
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center. The nonlinear CPS can be represented as [67; 68]:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ), ũ(t )) ,

ũ(t ) = u(t )+ua ,

ỹ(t ) = y(t + t0 ° t1 ° (N f °1)w).

t1 + (N f °1)w ∑ t ∑ t1 +N f w, N f 2N, N f ∏ 1, (4.2)

In this work, a neural network-based detector is considered to detect replay attacks. The

neural network-based observer estimates the injected attack, and it is placed at both the

plant and command and control sides.

During a replay attack, the adversary replays recorded data for some time, and the out-

put simulates the system’s normal condition while injecting false data into the input signal.

As shown in Figure 4.2, the control signal u generated at the command and control center

is unaffected, and the received manipulated sensor measurement ỹ is the healthy recorded

data resulting in no detector activation.

Figure 4.2: Structure of the neural network-based detection strategy at the command and

control center.

On the other hand, as shown in Figure 4.3 the detector at the plant side receives the ma-
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nipulated control signal ũ and manipulated sensor measurement ỹ , which is the healthy

sensor measurement data, and this leads to triggering the neural network-based detector.

Therefore, the attack signal is detected, isolated, and estimated at the plant side neural network-

based detector.

Figure 4.3: Structure of the neural network-based detection strategy at the plant.

If the system is subjected to false data injection attacks on the control input signal, the

command and control side detector is triggered. However, if the system is under replay at-

tack, since the attacker replays healthy data and sends it to the command and control center,

only the detector on the plant side is triggered. It is assumed that the binary flag indicating

the activation of the plant side detector is sent securely to the command and control center.

By comparing the output of the neural network detectors, it is possible to recognize that a

replay attack has occurred in the system.

Detection of the attack signal injected to the control input

By considering a Hurwitz matrix A the nonlinear model in the second phase can be rewritten
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as:

8
>>>>>>><
>>>>>>>:

ẋ = Ax + g (x, ũ) ,

ũ(t ) = u(t )+ua ,

ỹ(t ) = y(t + t0 ° t1 ° (N f °1)w),

t1 + (N f °1)w ∑ t ∑ t1 +N f w, N f 2N, N f ∏ 1, (4.3)

where g (x, ũ) = f (x, ũ)° Ax.

The control signal which is manipulated by the adversary can be represented as:

ũ(t ) = u +TA(x,u), (4.4)

where TA represents the additive false data that is injected into the control signal. Four

assumptions which are introduced in [63], should be taken into account, such as open-loop

observability of the nonlinear system, stability of the nominal closed-loop system and etc.

The structure of the neural network-based observer for the detection, isolation, and es-

timation of injected false data into the control input is shown in Figure 4.4. As it is shown, a

neural network (NN2) is used to map TA(x,u).

Figure 4.4: Structure of the adaptive neural network-based scheme for the detection of false

data injection attacks on the control input signal.
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The nonlinear state space representation of the observer considering false data injection

attack on the CPS input can be rewritten as below:

8
>>>>>>><
>>>>>>>:

˙̂x = Ax̂ + g (x̂, ũ) ,

ũ = T̂A
°
x̂,Ŵ

¢
+u,

ŷ =C x̂,

(4.5)

where A is a Hurwitz matrix and g (x̂, ũ) = f (x̂, ũ)°Ax̂. The transfer function M(s) is defined

as below [63]:

M(s) = (sI ° A)°1 . (4.6)

The NN2 estimates false data injection attack which is shown by T̂A
°
x̂,Ŵ

¢
with adaptable

variables which are weight matrices.

T̂A
°

ˆ̄x,Ŵ
¢
= Ŵæ

°
V̂ ˆ̄x

¢
, (4.7)

where ˆ̄x = [x̂ u]T , and Ŵ and V̂ are neural network weights matrices. The activation func-

tion is defined as below [63]:

æi (V i ˆ̄x) = 2

1+exp°2V i ˆ̄x
°1, i = 1,2, ..., N , (4.8)

where N is the number of neurons in the hidden layer.

The weights of this NN are updated based on the theorem stated in the work of Talebi et
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al.[63].

ˆ̇W =°¥1

µ
@J

@Ŵ

∂
°Ω1||

°
y ° ŷ

¢
||Ŵ ,

ˆ̇V =°¥2

µ
@J

@V̂

∂
°Ω2||

°
y ° ŷ

¢
||V̂ ,

(4.9)

where ¥1 and ¥2 > 0 are learning rates and Ω1 and Ω2 are small positive constants and the

objective function of neural network is defined as [63]:

J = 1
2

((y ° ŷ)T (y ° ŷ)). (4.10)

In order to define learning rules, the first two variables are defined as [63]:

netv̂ = V̂ ˆ̄x,

netŵ = Ŵ S1,

S1 =æ(V̂ ˆ̄x).

(4.11)

Therefore,
@J

@Ŵ
and

@J

@V̂
can be determined as [63; 78]:

@J

@Ŵ
= @J
@netŵ

· @netŵ

@Ŵ
,

@J

@V̂
= @J
@netv̂

· @netv̂

@V̂
.

(4.12)

Then,

@J
@netŵ

= @J
@(y ° ŷ)

· @(y ° ŷ)
@x̂

· @x̂
@netŵ

=°(y ° ŷ)T C
@x̂

@netŵ
,

@J
@netv̂

= @J
@(y ° ŷ)

· @(y ° ŷ)
@x̂

· @x̂
@netv̂

=°(y ° ŷ)T C
@x̂

@netv̂
.

(4.13)
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And,

@netŵ

@Ŵ
= ST

1 ,

@netv̂

@V̂
= ˆ̄x.

(4.14)

By utilizing (4.5) and the notion of netv̂ and netŵ the following formulas can be obtained:

@ ˆ̇x
@netŵ

= A
@x̂

@netŵ
+ @g
@x̂

@x̂
@netŵ

+ @g

@ ˆ̃u

@ ˆ̃u
@netŵ

,

@ ˆ̇x
@netv̂

= A
@x̂

@netv̂
+ @g
@x̂

@x̂
@netv̂

+ @g

@ ˆ̃u

@ ˆ̃u
@netv̂

.

(4.15)

The gradients can be defined as below:

ḋxw = (A+ Ac )dxw +B ,

ḋxv = (A+ Ac )dxv +BŴ S2,

(4.16)

where dxw = @x̂
@netŵ

and dxv = @x̂
@netv̂

and the parameters B and S2 are defined as:

S2 = I °di ag {æ2
i

°
V l ˆ̄x

¢
}, i = 1,2, ...,m,

B = @g
@ûa

|x̂=0, ˆ̃u=u ,

Ac =
@g
@x̂

|x̂=0, ˆ̃u=u .

(4.17)

Therefore, the learning rules in (4.9) become:

ˆ̇W =°¥1

≥°
y ° ŷ

¢T C dxw

¥T
ST

1 °Ω1||y ° ŷ ||Ŵ ,

ˆ̇V =°¥2

≥°
y ° ŷ

¢T C dxv

¥T
ˆ̄xT °Ω2||y ° ŷ ||V̂ .

(4.18)

By using this method, the false data injection attack that is injected into the control signal
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is estimated. The estimated attack which is the output of the NN is derived by (4.7) and can

be represented as:

T̂A = [T̂A1 T̂A2 T̂A3 T̂A4], (4.19)

where each element of T̂A represents the estimated false data injection attacks for each of

the four input signals.

When the system operates in normal conditions, the neural network’s output T̂A is close

to zero. However, when an attack is injected, the neural network estimates the attack, and

the output can be considered as the residual. To reduce false alarms caused by measurement

noise in the system, a Monte Carlo test is conducted under different conditions to determine

a suitable threshold. If the residual, which is the estimation of the attack signal, exceeds the

determined threshold, the attack is detected,

|T̂Ai | > ±T Ai , i = 1, ...,4, (4.20)

where ±T Ai represents the threshold for the i th control signal.

This detector estimates the false data injected into each of the control signals, producing

a residual for each signal. This estimated value is considered the residual for the cyberattack

diagnosis procedure. By analyzing these residuals, the neural network can determine which

control inputs are under attack. Therefore, the neural network-based detection approach

can achieve attack isolation if the estimation of the attack is nonzero. If the neural network

estimates the cyberattack signal properly, it can simultaneously detect and isolate the false

injection data attack in the control signal.
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4.2 Simulation Results

This section presents the simulation results and evaluates the performance of the sensor

faults detectors and false data injection attack detectors. Different scenarios are considered

to assess the performance of the detectors.

The parameter of the neural network-based detectors are considered as below:

A =°5§ I ,

number o f hi dden l ayer = 7,

¥1 = 115,

¥2 = 115,

Ω1 = 0.08,

Ω2 = 0.08.

The threshold for the replay attack detector is determined by conducting a Monte Carlo

simulation with noise on the normal system in the absence of sensor faults and false data

injection attacks,

±T A = 0.08.

A band-limited white noise is considered in the first six sensor measurements and the

noise power defined as:

Noi se power = 0.0001.

The threshold for the sensor fault detector has been defined through a Monte Carlo test

that was performed in the absence of sensor faults and replay attacks, while considering

noise in the system,

±Ts = 0.03.
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4.2.1 Detection of Replay Attacks and Isolation from Sensor Faults on the
Quadrotor- First Scenario

4.2.1.1 Fault-Free and Attack-Free Scenario

In the first scenario, it is considered that the mission of the quadrotor is to start from the

origin (0,0,0) by considering the roll, yaw, and pitch angles initially set to zero and reach the

point (10,10,10) and hover at this point.

Figure 4.5 depicts the quadrotor’s position and Euler angles in time following the com-

manded trajectory from the command and control.

Figure 4.5: Linear position and Euler angles of the quadrotor while there are no attack and

sensor faults.

Figures 4.6 and 4.7 show the performance of the detectors while there is no sensor fault

and replay attacks in the system. It is shown that these detectors are not triggered when there

are no faults and replay attacks in the system.
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Figure 4.6: The response of the sensor fault detection diagnosis on the plant side in normal

condition. Refers to page 124 for the selection of the threshold.

Figure 4.7: The response of the replay attack detection diagnosis on the C&C side and plant

side in normal condition. Refers to page 124 for the selection of the threshold.
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4.2.1.2 Fault-Free and Replay Attack Scenario

In this section, the detection of replay attacks on the nonlinear quadrotor has been investi-

gated. In the replay attack case, the adversary first tries to replay the sensors’ measurements

in the system to damage the control system without being detected. In this case, the mea-

surement data from the time interval [20,60] is recorded

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

20 ∑ t ∑ 60, (4.21)

In the second stage, the attacker replayed the previously recorded data between the time

window of [60,100]. In this stage, attacker wants to cause damage to the system without

being detected on the command and control center, by manipulating the control input. The

sensor measurements were replaced by the previously recorded data, and the abnormality

of the system’s operation was hidden from the command and control center. In order to

damage the system, the attacker injected false data into the control input, as represented:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ), ũ(t )) ,

ũ(t ) = u(t )+ua ,

ỹ(t ) = y(t °40),

60 ∑ t ∑ 100, (4.22)

where the attack signal is defined as :

ua = [0.4si n(t ) 0.2 0.1 0.5].

Figure 4.8 shows the real linear position and Euler angles of the quadrotor. It is shown

that the replay attack can harmfully affect the quadrotor and destabilize the system. How-

ever, the impact of replay attack is hidden from controller and command and control center

and it is shown in Figure 4.9.
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Figure 4.8: Quadrotor linear position and Euler angles under the replay attack.

Figure 4.9: The sensor measurements data for linear position and Euler angles of the

quadrotor under the replay attack.

Figure 4.10 represents the output of the sensor fault detector. It is shown that this detec-

tor works accurately for sensor fault detection, and replay attacks do not trigger it.
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Figure 4.10: The response of the sensor fault detection diagnosis on the plant side while the

system is under the replay attack.

Two neural network-based detectors are employed on both the plant and the command

and control sides to detect replay attacks. Figure 4.11 depicts the output of the neural network-

based detector on the plant side. The figure shows that the detector can successfully estimate

false data injection attacks on the control input signals, which are then considered residuals.

These residuals exceed a predefined threshold, enabling the detector to detect cyberattacks.

Also, the detector can isolate false data injection attacks in different control input signals. It

should be mentioned that the estimated attack signal has an inverted sign compared to the

actual attack signal because of the structure of both the neural network-based detector and

the replay attack. However, the neural network-based detector on the command and control

side does not trigger, as shown in Figure 4.12, showing that the attack signal is not detectable

at the command and control systems. This means that a replay attack has occurred in the
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system.

Figure 4.11: The response of a replay attack detection diagnosis on the plant side

demonstrates its ability to detect, isolate, and estimate the severity of an attack.

Figure 4.12: The response of a replay attack detection diagnosis on the C&C side.
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4.2.1.3 Sensor Fault and Replay Attack Scenario without using a Virtual Sensor

In this scenario, in addition to the replay attack, the system has bias sensor faults in the inter-

val [50,90]. In this case, the virtual sensor for recovery of bias sensor faults is not considered

at the plant side. The bias sensor faults are considered as:

Ts = [0.9 0 0.7 0 0.3 0 0 0 0.5 0 0.6 0].

Figure 4.13 shows the sensor measurement data for the linear position and Euler angles

of the quadrotor, which is sent to the command and control center and controller. The fig-

ure shows that sensor faults occur at time 50 but do not persist until the end of the period

because the data is replayed from the time window of [20, 60]. Since, in the replay attack

scenario, the sensor measurements are replaced by the previously recorded data, the impact

of the replay attack is not evident.

Figure 4.13: The sensor measurements data for linear position and Euler angles of the

quadrotor under replay attack and sensor faults.
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Figure 4.14 depicts the actual linear position and Euler angles of the quadrotor. The figure

illustrates that a replay attack can cause significant harm to the quadrotor and destabilize the

system. However, the impact of the replay attack is hidden from the command and control

center.

Figure 4.14: Quadrotor linear position and Euler angles under replay attack and sensor

faults.

In Figure 4.15, the sensor fault detector’s output is displayed. The figure demonstrates

that the detector can successfully estimate bias sensor faults, which are then considered as

residuals. These residuals exceed a certain threshold, enabling the detector to detect sensor

faults. Furthermore, the detector is capable of isolating bias sensor faults in different sensors.

It can be noted that this detector is not triggered for replay attacks, and it is just sensitive to

bias sensor faults.
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Figure 4.15: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of replay attacks and bias sensor

faults.

Figure 4.16 depicts the output of the neural network-based detector. The figure shows

that the detector on the plant side is triggered by the bias sensor faults since there is no

recovery scheme for bias sensor faults. Figure 4.17 displays a zoomed-in view of the time

frame in which the replay attack occurred. It can be seen that the detector can detect the

attack on the last three input channels, although the estimation of the false data injected

into the first input control signal is not correct. This indicates that the sensor faults triggered

the replay attack detector and also affected the detector’s performance when replay attacks

were present.
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Figure 4.16: The response of the replay attack detection diagnosis on the plant side while

the system under replay attack and sensor faults.

Figure 4.17: The response of the replay attack detection diagnosis on the plant side during a

system under replay attack and sensor faults zoomed-in view.
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Figure 4.18 represents the neural network-based detector on the command and control

center. This figure shows the sensitivity of the detector to the bias sensor faults, and it indi-

cates that the faults trigger the detector.

Figure 4.18: The response of the replay attack detection diagnosis on the C&C side during a

system under replay attack and sensor faults.

4.2.1.4 Sensor Fault and Replay Attack Scenario using a Virtual Sensor

In this scenario, the virtual sensor for data recovery of bias sensor faults is placed at the plant

side. Figure 4.19 shows the sensor measurements data for linear position and Euler angles

of the quadrotor. The impact of bias sensor faults is recovered by using a virtual sensor at

the plant side. Since in the replay attack, the sensor measurements are replaced by the pre-

viously healthy recorded data, the impact of the replay attack is not shown.

Figure 4.20 depicts the actual linear position and Euler angles of the quadrotor. It is evi-

dent from the figure that a replay attack can cause significant damage to the quadrotor and

destabilize its dynamics. However, the effects of the replay attack may not be apparent to the
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controller and the command and control center.

Figure 4.19: The sensor measurements data for linear position and Euler angles of the

quadrotor under replay attack and sensor faults using a virtual sensor.

Figure 4.20: Quadrotor linear position and Euler angles under replay attack and sensor

faults using a virtual sensor.
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The output of the sensor fault detector is shown in Figure 4.21. The figure illustrates that

the detector can accurately estimate bias sensor faults, which are then treated as residuals.

These residuals exceed a predefined threshold, and the bias sensor faults can be detected.

Additionally, the detector can isolate bias sensor faults in various sensors. It is worth noting

that the detector does not detect replay attacks and is only sensitive to bias sensor faults.

Figure 4.21: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of replay attacks and bias sensor

faults using a virtual sensor.

Figure 4.22 shows the output of the replay attack detector on the plant side. This detec-

tor shows that by utilizing a virtual sensor, the detector is only triggered by replay attacks,

while it is not affected by bias sensor faults. The figure highlights the neural network-based

detector’s ability to detect, isolate, and estimate the severity of an attack. The figure demon-

strates that the detector estimates false data injection attacks and considers them as resid-
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uals. These residuals are compared to a threshold to determine whether a cyberattack has

occurred. Additionally, the detector can identify the control input signals affected by the cy-

berattack for attack isolation. The figure displays two transient bumps that last for less than

two seconds. These bumps are caused by bias sensor faults occurring at times 50 and 90,

which are shown in the figure.

Figure 4.22: The response of a replay attack detection diagnosis on the plant side

demonstrates its ability to detect, isolate, and estimate the severity of an attack in the

presence of a replay attack and bias sensor faults using a virtual sensor.

Figure 4.23 depicts the output of the replay attack detector on the command and con-

trol side. It is observed that this detector is unable to detect the false data injection attack

because the sensor measurement data are manipulated, and healthy data is replayed. By

comparing the results of the detectors on the plant and command and control sides, it can

be concluded that a replay attack scenario has occurred. The figure depicts two transient
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bumps lasting for less than two seconds, occurring at times 50 and 90. It is important to note

that these bumps are due to the occurrence of bias sensor faults.

Figure 4.23: Replay attack detector on the C&C side while the system is under replay attack

and sensor faults using a virtual sensor.

4.2.2 Detection of Replay Attacks and Isolation from Sensor Faults on the
Quadrotor- Second Scenario

4.2.2.1 Fault-Free and Attack-Free Scenario

In the second scenario, The performance of the neural network-based detector while the

desired trajectory is in the periodic steady-state condition is investigated. The desired tra-

jectory in x and z direction is to start from the origin and reach the point (10,10). However,

the desired path in y direction is defined as follows:
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y = 0.75§ si n(0.5t ).

In Figure 4.24, the quadrotor’s position and Euler angles are displayed as follows a com-

manded trajectory from the command and control. The figure shows that the quadrotor

maintains a hovering position at the point (10,10) in the x and z directions while indicating

a sinusoidal behavior in the y direction. No attack or sensor faults are present during this

time period.

Figure 4.24: Linear position and Euler angles of the quadrotor while there are no attack and

sensor faults.

Figures 4.25 and 4.26 display the performance of the detectors in the absence of sensor

faults and replay attacks. The figures demonstrate that these detectors remain inactive when

the system operates without sensor faults or attacks.
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Figure 4.25: The response of the sensor fault detection diagnosis on the plant side in normal

condition. Refers to page 124 for the selection of the threshold.

Figure 4.26: The response of the replay attack detection diagnosis on the C&C side and

plant side in normal condition. Refers to page 124 for the selection of the threshold.
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4.2.2.2 Fault-Free and Replay Attack Scenario

This section explores the detection of replay attacks on a nonlinear quadrotor. In a replay

attack, the attacker replays sensor measurements in the system to disrupt the control sys-

tem without being detected. To achieve this, the attacker records measurement data from a

specific time interval, such as the [20,60] interval, and replays it at a later time.

8
>><
>>:

ẋ(t ) = f (x(t ),u(t )) ,

y(t ) =C x(t ),

20 ∑ t ∑ 60, (4.23)

In the second stage, the attacker replayed the recorded data from the time window of

[60,100] to cause damage to the system without being detected. During this stage, the sen-

sor measurements were replaced with previously recorded data, and the system’s abnormal

behavior was concealed from the command and control center. The attacker manipulated

the control input to achieve this goal. The false data injected into the control input is repre-

sented as:

8
>>>>>>><
>>>>>>>:

ẋ(t ) = f (x(t ), ũ(t )) ,

ũ(t ) = u(t )+ua ,

ỹ(t ) = y(t °40),

60 ∑ t ∑ 100, (4.24)

where the attack signal is defined as :

ua = [0 0.5§ cos(t ) 0 0.2].

The real linear position and Euler angles of the quadrotor under a replay attack scenario

are shown in Figure 4.27. The figure highlights that the replay attack can significantly impact

and destabilize the quadrotor’s operation. However, the effect of the replay attack is con-

cealed from the controller and the command and control center. The impact of the replay
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attack on the quadrotor’s position and Euler angles is shown in Figure 4.28. It is shown that

from the command and control point of view, nothing abnormal happened.

Figure 4.27: Quadrotor linear position and Euler angles under the replay attack.

Figure 4.28: The sensor measurements data for linear position and Euler angles of the

quadrotor under the replay attack.
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The output of the sensor fault detector is depicted in Figure 4.29. The figure indicates

that the sensor fault detector is not triggered by replay attacks.

Figure 4.29: The response of the sensor fault detection diagnosis on the plant side while the

system is under the replay attack.

Two neural network-based detectors have been employed for detecting replay attacks on

both the plant side and the command and control side. Figure 4.30 illustrates the output

of the neural network-based detector on the plant side. The figure shows that the detector

can successfully estimate false data injection attacks on the control input signals, which are

then considered residuals. These residuals overreach a predefined threshold, and allow the

detector to detect cyberattacks. Also, the detector can isolate false data injection attacks in

two control input signals. It should be noted that, due to the structure of the neural network-

based detector and the replay attack, the estimated attack signal has the opposite sign of

the actual attack signal. However, the neural network-based detector on the command and
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control side does not trigger, as shown in Figure 4.31, indicating that the attack signal is

not detected at the command and control center. Since the attack is detected on the plant

side and is not detected on the command and control side, it means that a replay attack has

occurred on the system.

Figure 4.30: The response of a replay attack detection diagnosis on the plant side

demonstrates its ability to detect, isolate, and estimate the severity of an attack.
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Figure 4.31: The response of a replay attack detection diagnosis on the C&C side.

4.2.2.3 Sensor Fault and Replay Attack Scenario without using a Virtual Sensor

In this scenario, in addition to the replay attack, the system has bias sensor faults in the inter-

val [50,90]. In this case, the virtual sensor for recovery of bias sensor faults is not considered

at the plant side. The bias sensor faults are considered as:

Ts = [0 0.2 0.25 0.3 0 0.1 0 0.32 0 0.15 0 0.45].

Figure 4.32 shows the sensor measurement data for the linear position and Euler angles

of the quadrotor, which is sent to the command and control center and controller. The fig-

ure shows that sensor faults occur at time 50 but do not persist until the end of the period

at 90 because the data is replayed from the time interval [20, 60]. However, at 90, the fault

presence is shown again in the linear position and Euler angles of the quadrotor. Since, in

the replay attack scenario, the sensor measurements are replaced by the previously recorded

data, the severe impact of the replay attack is not evident.
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Figure 4.32: The sensor measurements data for linear position and Euler angles of the

quadrotor under replay attack and sensor faults.

The linear position and Euler angles of the quadrotor are shown in Figure 4.33, revealing

the damaging effects of a replay attack on the system. Despite the significant harm caused

to the quadrotor and its destabilization, the command and control center remains unaware

of the attack’s impact..
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Figure 4.33: Quadrotor linear position and Euler angles under replay attack and sensor

faults.

Figure 4.34 presents the output of the sensor fault detector, presenting its effectiveness

in detecting bias sensor faults. The detector estimates the faults, considers them residuals,

and triggers an alert when they exceed a specific threshold. Moreover, the detector can iso-

late bias sensor faults in multiple sensors. Additionally, the detector does not detect replay

attacks, as it correctly detects bias sensor faults.
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Figure 4.34: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of replay attacks and bias sensor

faults.

Figure 4.35 displays the output of the replay attack detector on the plant side. As there

is no virtual sensor to recover data from bias sensor faults on the plant side, the detector is

triggered by such faults. However, at time 60, a replay attack occurs, and the neural network-

based detector on the plant side detects it. Without a virtual sensor, the replay attack detec-

tor cannot function correctly regarding isolating and estimating the false data injected into

input control signals. Moreover, sensor faults and replay attacks cannot be isolated in this

case.

Figure 4.36 presents the output of the neural network-based detector on the command

and control side. Bias sensor faults trigger the detector, but it cannot detect replay attacks.
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Figure 4.35: The response of the replay attack detection diagnosis on the plant side during a

system under replay attack and sensor faults.

Figure 4.36: The response of the replay attack detection diagnosis on the C&C side during a

system under replay attack and sensor faults.
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4.2.2.4 Sensor Fault and Replay Attack Scenario using a Virtual Sensor

In this scenario, a virtual sensor for data recovery of bias sensor faults is employed on the

plant side. Figure 4.37 displays the sensor measurement data for the quadrotor’s linear posi-

tion and Euler angles, with the impact of bias sensor faults, successfully recovered. However,

since replay attacks replace the sensor measurements with previously recorded data, their

impact is not visible in this figure.

Figure 4.38 shows the actual linear position and Euler angles of the quadrotor, indicating

the significant damage and destabilization that a replay attack can cause. However, these

effects may not be evident to the controller and the command and control center.

Figure 4.37: The sensor measurements data for linear position and Euler angles of the

quadrotor under replay attack and sensor faults using a virtual sensor.
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Figure 4.38: Quadrotor linear position and Euler angles under replay attack and sensor

faults using a virtual sensor.

Figure 4.39 displays the output of the sensor fault detector. The figure demonstrates

the detector’s ability to estimate bias sensor faults and then consider them as residuals.

These residuals exceed a predefined threshold, allowing the detector to detect the bias sen-

sor faults. Furthermore, the detector can isolate bias sensor faults in different sensors. It

is important to note that the detector is not capable of detecting replay attacks and is only

designed to detect bias sensor faults.
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Figure 4.39: The sensor fault detection diagnosis response demonstrates its ability to detect,

isolate, and estimate bias sensor faults in the presence of replay attacks and bias sensor

faults using a virtual sensor.

Figure 4.40 presents the output of the neural network-based detector on the plant side.

By employing a virtual sensor on the plant side, this detector is just triggered by replay at-

tacks, whereas bias sensor faults do not impact it. The figure shows the detector’s ability

to detect, isolate, and estimate the severity of a cyberattack. The figure illustrates that the

detector estimates false data injection attacks by treating them as residuals, which are then

compared to a predefined threshold to determine the occurrence of a cyberattack. Addition-

ally, the detector can identify the control input signals affected by the attack and can isolate

the attack. The figure features two transient bumps that last for less than two seconds, which

are caused by bias sensor faults occurring at times 50 and 90, as displayed in the figure. It

should be taken into account that the estimated attack signal has the opposite sign due to
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the structure of the neural network-based detector and the replay attack.

Figure 4.40: The response of a replay attack detection diagnosis on the plant side

demonstrates its ability to detect, isolate, and estimate the severity of an attack in the

presence of a replay attack and bias sensor faults using a virtual sensor.

In Figure 4.41, the output of the replay attack detector on the command and control side

is displayed. The figure shows that the detector is unable to detect the false data injection at-

tack into control input signals as the sensor measurement data are manipulated, and healthy

data is replayed. By comparing the results of the detectors on the plant and command and

control sides, it can be concluded that a replay attack scenario has occurred. The figure dis-

plays two transient bumps occurring at times 50 and 90, lasting for less than two seconds. It

is important to note that bias sensor faults cause these bumps.
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Figure 4.41: Replay attack detector on the C&C side while the system is under replay attack

and sensor faults using a virtual sensor.

4.3 Performance Analysis

In this section, the performance of the designed NN-based diagnosis is investigated. The

approach for calculating confusion matrix is explained in the previous chapter in the section

3.6.

System under bias sensor faults and replay attacks

It is assumed that system is under bias sensor faults and replay attacks, and there is no virtual

sensor on the plant side. The values in these tables are derived from 100 simulation runs.

Table 4.1 presents the results of the performance evaluation of the neural network-based

diagnosis system in terms of its ability to detect, isolate, and estimate sensor faults. Table 4.2
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presents the performance of the replay attack detector on the C&C side in detecting the bias

sensor faults and replay attacks.

Table 4.1: Confusion matrix for the sensor fault diagnosis when the system under bias sensor

faults and replay attacks.

TN FP TP FN
Faults&replay attack 98.01 1.99 97.63 2.37

PPV 98%
ACC 97.82%

Table 4.2: Confusion matrix for the replay attack diagnosis when the system under bias

sensor faults and replay attacks.

TN FP TP FN
Faults&replay attack 73.42 26.58 81.23 18.77

PPV 75.34%
ACC 77.32%

System under bias sensor faults and replay attacks using a virtual sensor on the plant side

It is assumed that system is under bias sensor faults and replay attacks and there is a virtual

sensor on the plant side. The values in these tables are derived from 100 simulation runs.

The performance of two neural network-based diagnosis approaches is evaluated in terms

of their ability to detect, isolate, and estimate sensor faults and replay attacks, and it is pre-

sented in Tables 4.3 and 4.4.
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Table 4.3: Confusion matrix for the sensor fault diagnosis when the system under bias sensor

faults and replay attacks using a virtual sensor.

TN FP TP FN
Faults&replay attack 97.24 2.76 98.86 1.14

PPV 97.28%
ACC 98.05%

Table 4.4: Confusion matrix for the replay attack diagnosis when the system under bias

sensor faults and replay attacks using a virtual sensor.

TN FP TP FN
Faults&replay attack 93.78 6.22 92.28 7.72

PPV 93.68%
ACC 93.03%

4.4 Conclusions

This chapter provides a neural network-based detection technique for the detection, isola-

tion, and estimation of replay attacks, as well as isolating them from sensor faults. Unlike

the method proposed in Chapter 3, this approach is capable of detecting replay attacks. The

virtual sensor used on the plant side for bias sensor faults recovery makes it possible to iso-

late sensor faults and replay attacks. The performance of the diagnoses are also calculated

in this chapter.
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Chapter 5

Conclusions and Future Work

In this chapter, the outcomes of the thesis are concluded, and some potential directions for

future work are provided.

5.1 Conclusions

This thesis investigates the problem of isolating faults and cyberattacks in the nonlinear CPS.

Isolation of faults and cyberattacks is considered one of the challenging problems in control

systems. The main focus of this thesis is to provide schematics to isolate sensor faults, false

data injection attacks, and replay attacks.

Firstly, the quadrotor mathematical model is derived using the Newton-Euler formula-

tions in the second chapter. The feedback linearization control approach, one of the non-

linear control techniques, is introduced. The possible faults and cyberattacks in the CPS are

briefly introduced.

The third chapter investigates the problem of detecting multiplicative false data injection

attacks and isolation from bias sensor faults. The neural network-based detection approach

is used for detecting, isolating, and estimating faults and false data injection attacks. Two
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neural network-based detectors are used in this chapter. In order to detect sensor faults, a

detector is placed at the plant side. The estimated sensor faults can be used in virtual sen-

sors, which enables simultaneous detection of sensor faults and false data injection attacks.

The other detector is placed at the command and control center to detect false data injection

attacks in the output communication channel. The false data injection attacks on the sensor

measurement data sent from the quadrotor to GCS and the desired trajectory sent from GCS

to the quadrotor can be detected in this approach. Since the desired trajectory is generated

on the command and control it is affected by the multiplicative false data injection attacks.

Therefore, a virtual sensor is considered at the command and control center for data recov-

ery. The proposed approach is not able to detect replay attacks. Therefore, a new neural

network-based detector is proposed in chapter four.

In chapter four, the problem of detecting replay attacks is considered, as well as the iso-

lation of replay attacks from sensor faults. A new online neural network-based detection

approach is introduced. In order to detect replay attacks, one detector is placed on the plant

side, and the other one is placed on the command and control side. If there is a replay at-

tack on the system, the one on the plant side is just triggered. Observing these two detectors

makes it possible to distinguish between false data injection attacks and replay attacks.

Simulation results are provided to show the effectiveness of the proposed detectors for

the detection of sensor faults, false data injection attacks, and replay attacks in different sce-

narios.

5.2 Future Work

In this work, it is assumed that a full-state measurement is available. Considering this as-

sumption is not possible in most cases. Hence, an extension to this work can be using a state
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estimator for general output feedback scenarios.

This work just considered the faults in the sensor of the quadrotors. However, the ac-

tuator faults can also affect the system’s performance. Therefore, one of the great potential

extensions to this work is considering actuator faults in the quadrotor and designing a detec-

tor for fault estimation. If an online neural network-based detection approach is considered,

it can be used in virtual actuators.

The neural network-based detection mechanisms which are proposed in this thesis are

able to estimate the attack signal. Thus, presenting a mitigation scheme for the mitigation

of replay attacks can be an exciting topic for further research.

If a secure channel is considered for data transformation by using the proposed detector,

it is possible to detect covert attacks. Accordingly, another direction of future studies can

be working on the necessary condition for detecting covert attacks in the nonlinear CPS and

isolating covert attacks and faults.
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