
MARFL: An Intensional Language for Demand-Driven

Management of Machine Learning Backends

Vashisht Marhwal

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Ful�llment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montréal, Québec, Canada

March 2023

© Vashisht Marhwal, 2023

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Vashisht Marhwal

Entitled: MARFL: An Intensional Language for Demand-

Driven Management of Machine Learning Backends

and submitted in partial ful�llment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the �nal examining committee:

Chair
Dr. Yann-Gaël Guéhéneuc

Examiner
Dr. Weiyi Shang

Examiner
Dr. Yann-Gaël Guéhéneuc

Supervisor
Dr. Joey Paquet

Supervisor
Dr. Serguei A. Mokhov

Approved by
Dr. Lata Narayanan, Chair of Department

20
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

MARFL: An Intensional Language for Demand-Driven Management of

Machine Learning Backends

Vashisht Marhwal

Arti�cial Intelligence (AI) is a rapidly evolving �eld that has transformed

numerous industries and one of its key applications, Pattern Recognition, has been

instrumental to the success of Large Language Models like ChatGPT, Bard, etc.

However, scripting these advanced systems can be complex and challenging for some

users. In this research, we propose a simpler scripting language to perform complex

pattern recognition tasks.

We introduce a new intensional programming language, MARFL, which is an

extension of the Lucid family supported by General Intensional Programming System

(GIPSY). Our solution focuses on providing syntax and semantics forMARFL, which

enables scripting of Modular A* Recognition Framework (MARF)-based applications

as context aware, where the notion of context represents �ne-grained con�guration

details of a given MARF instance. We adapt the concept of context to provide an

easily comprehensible language that can perform complex pattern recognition tasks

on a demand-driven system such as GIPSY. Our solution is also generic enough to

handle other machine learning backends such as PyTorch or TensorFlow in the future.

We also provide a complete implementation of our approach, including a new

compiler component and MARFL-speci�c execution engines within GIPSY. Our

work extends the use of intensional programming to modeling and executing scripted

pattern recognition tasks, which can be used for implementing di�erent algorithmic

speci�cations. Additionally, we utilize the demand-driven distributed computing

capabilities of GIPSY to enable an e�cient and scalable execution.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Dr. Joey Paquet and

Dr. Serguei A. Mokhov, for their invaluable guidance and support throughout my

research. Their feedback and encouragement have been instrumental in shaping this

thesis.

I am also grateful to Concordia University for providing me with the resources and

facilities necessary to carry out this research. I appreciate the e�orts of the faculty

and sta� who have contributed to my education over my academic years.

To my friends, thank you for always being there for me, whether it was to listen

to my frustrations or celebrate my successes. Your support has meant the world to

me.

To my family, thank you for your love, encouragement, and unwavering belief in

me. Your support has been the foundation of my success, and I couldn't have done

it without you.

Finally, I want to give a special thanks to my girlfriend, Saumya. You have been

my constant source of motivation, inspiration, and love throughout this journey. Your

unwavering support, patience, and understanding have been invaluable. Thank you

for being my rock, my guiding light and for always believing in me.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Research Domain . 3

1.1.1 Intensional Programming Paradigm 3

1.1.2 Lucid . 4

1.2 Motivation . 5

1.2.1 Motivational Scenarios . 7

1.3 Problem Statement and Gap Analysis 9

1.4 Proposed Solution . 12

1.5 Thesis Objectives . 14

1.6 Summary . 15

1.7 Thesis Organisation . 16

2 Background 17

2.1 The Lucid Programming Language Family 17

2.1.1 Lucid Overview . 17

2.1.2 Eductive Model of Computation 23

2.1.3 Lucid Dialects . 26

2.2 Modular A* Recognition Framework (MARF) 28

2.2.1 MARF Overview . 28

v

2.2.2 MARF Architecture . 29

2.2.3 Pattern Recognition Pipeline 30

2.2.4 MARFCAT . 32

2.3 The General Intensional Programming System 33

2.3.1 General Intensional Program Compiler (GIPC) 37

2.3.2 GICF Overview . 38

2.3.3 General Eduction Engine (GEE) 39

2.3.4 Scalability . 46

2.4 Summary . 46

3 MARFL Speci�cations and Design 48

3.1 MARFL Language Requirements and Design Considerations 49

3.1.1 Core Language Properties, Features, and Requirements 49

3.1.2 Higher Order Context . 50

3.1.3 Formal Syntax and Semantics De�nitions 50

3.2 Concrete MARFL Syntax . 54

3.2.1 Core Operators . 56

3.2.2 MARFL Context Operators 61

3.3 Operational Semantics . 62

3.4 Summary . 64

4 Implementing MARFL in GIPSY 66

4.1 MARFL Compiler . 66

4.1.1 MARFL Parser . 67

4.1.2 MARFL Semantic Analyzer 67

4.2 Updates to GIPSY's Frameworks' Design 68

4.2.1 General Design Overview . 68

4.2.2 Execution Engine Redesign 72

4.3 Compiling and Executing MARFL on GIPSY 76

4.3.1 Compilation Phase - GIPC . 76

4.3.2 Execution Phase - GEE . 78

vi

4.4 Summary . 80

5 Evaluation and Results 81

5.1 Evaluation Methodology . 81

5.2 Evaluation Environment . 82

5.2.1 Environment Speci�cations . 82

5.2.2 Environment Design . 84

5.3 Evaluation of MARFL-speci�c Engine to Execute MARFL Programs 85

5.3.1 Vulnerable Code Classi�cation in Common Vulnerabilities and

Exposures (CVE) . 86

5.3.2 Speaker Identi�cation . 87

5.3.3 Detection and Classi�cation of Malware in Network Tra�c . . 88

5.4 Evaluation of MARFL Programs on a Distributed Architecture 89

5.4.1 Results for Single Instance Execution 90

5.4.2 Results for Multiple Instance Execution 91

5.5 Summary . 93

6 Conclusion and Future Work 94

6.1 Conclusion . 94

6.2 Limitations and Future Work . 96

6.3 Summary . 98

Bibliography 99

Appendix 114

A Classi�cation Results for Wireshark CVE Dataset 114

B Classi�cation Results for Speaker Identi�cation 115

vii

List of Figures

1 GIPL syntax expressions . 18

2 GIPL operators . 19

3 Extract of operational semantics rules of GIPL [1] 20

4 Extract of operational semantics of Lucx [2, 3] 23

5 The natural-numbers problem in Objective Lucid [4] 24

6 Eduction tree as a trace for the natural-numbers problem in

Objective Lucid [5] . 25

7 MARF's pattern-recognition pipeline [6] 30

8 MARF's pattern-recognition pipeline sequence diagram [7] 31

9 High-level structure of GIPSY's GEER �ow overview [8] 35

10 High-level structure of the GIPC framework [8] 36

11 GMT use-case diagram . 42

12 Design of the GIPSY node[9, 10] . 43

13 Detailed GMT context use case diagram 45

14 Concrete MARFL syntax . 55

15 Concrete MARFL syntax (MLid, SLid, PRid, FEid, CLid) 56

16 Concrete MARFL syntax (operators) 56

17 Operators translated to GIPL-compatible de�nitions [1] 61

18 Operational semantics rules of MARFL: E and Q Core 63

19 Operational semantics rules of MARFL: E and Q Core Context . . . 65

20 MARFL Compilation and Evaluation �ow in GIPSY 69

21 Updated high-level structure of the GIPC framework 70

22 Semantic analyzers framework . 71

viii

23 Class diagram for MARFLDGT . 74

24 Class diagram for MARFL interpreter 75

25 AWS EC2 instances setup . 83

26 MARFL execution pipeline on GIPSY 84

27 Execution time by number of workers 90

28 Execution time comparison: single instance vs. multiple instances . . 91

ix

List of Tables

1 Possible identi�er types [1] . 22

2 MARFL identi�er types in D . 51

3 Hardware con�guration for each EC2 instance 83

x

Chapter 1

Introduction

Pattern recognition is a fast-growing area within the �eld of data analysis, which

focuses on developing algorithms capable of identifying and interpreting complex

patterns and regularities within datasets. It involves a multi-stage process that begins

with the acquisition of raw and unprocessed data, which is then analyzed to detect

underlying patterns and structures. Once identi�ed, these patterns can be used to

derive meaningful insights and inform decision-making in a range of domains, from

�nance and marketing to healthcare and engineering. At its core, pattern recognition

is a powerful tool that enables us to extract valuable knowledge from large and

complex datasets, providing a means to unlock new opportunities and solve some

of the most pressing challenges.

In psychology and cognitive science, it can be used to analyze brain activity

data, enabling researchers to identify patterns and connections between di�erent

regions of the brain. Biometric recognition systems use pattern recognition algorithms

to analyze and identify unique physical and behavioral characteristics, such as

�ngerprints, facial features, or voice patterns. This technology is used in security

systems, law enforcement, and access control applications. Pattern recognition

algorithms are also used in forensic investigation to analyze and compare patterns

found in evidence, such as �ngerprints, DNA, and handwriting. Overall, pattern

recognition provides a powerful tool for analyzing and understanding complex data

1

in a wide range of domains, enabling us to extract valuable insights and solve real-

world problems.

This thesis presents an e�ort to expand the use of intensional programming

paradigm and the science behind it to implement a formal model for scripting pattern

recognition tasks for researchers and scientists. Our proposed solution is built to

be a practical and easy to follow context-aware improvement over existing scripting

methods. Our work elaborates on the required syntactical and semantic constructs

of context de�nitions for the con�guration of a new intensional programming

language, i.e., Modular A* Recognition Framework Lucid (MARFL). Our proposed

solution o�ers a practical, context-aware approach that inherits some properties

from other Lucid dialects of intensional programming languages, e.g., GIPL and

Forensic Lucid as well as context navigation operators like @ and # to switch

and query context. We build the initial syntax, semantics, and brief type system

to express the MARF con�guration-as-context in the new language. The MARFL

compiler and run-time system is designed within an established intensional evaluation

platform called General Intensional Programming System (GIPSY). Intensionality

and compatibility within the intensional programming paradigm makes this an easier

to follow reproducible approach in the research community. Utilizing the GIPSY

environment enables the integration of parallel intensional approach with a highly

e�cient demand-driven distributed computing platform.

In this chapter we begin by providing the reader with a brief overview of

the research domain in Section 1.1, explaining the essential concepts of IPP and

Lucid in Section 1.1.1 and Section 1.1.2. Followed by the principal motivations

in Section 1.2 with an example of few motivational real world scenarios. Then,

we present our problem statement and do a gap analysis for existing technologies

in Section 1.3. Then, we provide high-level objectives for this dissertation

in Section 1.4. In Section 1.5, we de�ne the primary objectives of our thesis followed

by a summary of the chapter in Section 1.6 which also outlines the structure for the

rest of this dissertation in Section 1.7.

2

1.1 Research Domain

In order to describe and understand the domain of this research work, we discuss

the two main concepts which is involved in our work � the intensional programming

paradigm and the Lucid intensional programming language.

1.1.1 Intensional Programming Paradigm

The intensional programming paradigm �nds its roots in intensional logic. Intensional

logic is a family of mathematical formal systems that allows expressions evaluation to

be dependent on an inherent context [11]. It �rst emerged while researching in natural

language understanding and one of the early research into the concept of intension

by Carnap [12] suggests that the intention of a natural language expression is its

true meaning, whose value relies on the context in which it is uttered. The extension

of that statement is a set of values, each associated with the context of utterance.

There are a wide variety of intensional logics, where each variety can cover di�erent

problems pertaining to time, belief, space, etc. As described in Paquet's thesis [1], the

possible contexts of evaluation can be viewed as points in a multidimensional space.

For instance, expressions de�ned under temporal logic vary in time dimension, i.e., it

can have di�erent values, depending on the instant in which it is evaluated. Basically,

intensional logic allows the addition of dimensions to logical expressions whereas non-

intensional logic is viewed as constant in all the dimensions. To navigate in a given

context space, intensional operators are de�ned. Along with these operators, some

dimension tags are required to provide placeholders along dimensions. These tags

de�ne the context for evaluating intensional expressions. For example, an expression

de�ned as:

E: Ice Hockey is now the o�cial winter sport here.

Such an expression would be considered intensional because the truth value of this

expression depends on the context in which its evaluated. The explicit context of this

expression is [place: here, time: now], where place and time are dimensions and

3

here and now are place holder tags along those dimensions respectively. Dimension

names along with tag values form the evaluation context in this expression. If we �x

now to present and assume it is a constant, this expression will be evaluated to true

if here is Canada but if the place holder tag for dimension place changes to some

other country like India, then this expression might have a di�erent value. Similarly,

if we assume here to be constant as Canada, the expression will be evaluate to false

if time is set to any year before 1994 (as hockey was only declared as the o�cial

winter sport of Canada in 1994). Hence, the core concept of context in intensional

logic is the principle basis of Intensional Programming Languages (IPL).

The programming paradigm retains two important aspects of intensional logic:

�rst, at the syntactic level, are context-switching operators knows as intensional

operators, second, at semantic level, is the use of possible world semantics. IPL

follows a more declarative way of programming than procedural languages while

dealing with in�nite entities of ordinary data values. This in�nite nature of IPL

allows it to describe behaviour of systems that can change with time or properties

depending on more than one contextual parameters. However, traditional approaches

cannot be applied to these in�nite entities since that would require in�nite amount of

time or space. To solve this, the computation model of eduction is used. It is based

on lazy demand driven strategy which delays evaluation of an expression until its

value is needed. We will go into more detail about eduction in Chapter 2.

1.1.2 Lucid

Lucid, which was originally developed as a program veri�cation language by Ashcroft

and Wadge [13], evolved into a data�ow language over its several iterations. Gradually

as its applicability got wider, it became a multidimensional intensional programming

language [14], whose semantics is based on the possible world semantics [15�17] of

intensional logic. It is a functional language in which expressions and their valuations

are allowed to vary in an arbitrary number of dimensions. In fact, today it has become

a family of intentional languages that promote context-aware evaluation in a given

set of dimensions over a given set of tag values. Any programs written in some Lucid

4

dialect consist of expressions that may contain subexpressions which are evaluated

at a certain context which represent a point in a multidimensional context space. As

explained in the example in Section 1.1.1, each program will have a set of dimensions

in which an expression can vary with a corresponding set of tags over each dimension.

This context is represented as as et of <dimension : tag> mappings.

The General Intensional Programming Language (GIPL), a general implementa-

tion of Lucid, provides de�nitions for the two fundamental operators @ and # to

navigate (context switching and context query) in a given context space [1]. The GIPL

is de�ned using just the two intensional operators @ and #. It has been demonstrated

in the past works that other dialects of Lucid can be translated back into GIPL.

One of the main objectives to develop Lucid and its dialects is to allow easier

human comprehension of programs pertaining to a certain problem. The fundamental

syntax and semantics of Lucid are rather simple, hence allowing easier compiler

implementations providing the �exibility to develop various dialects for application

domain speci�c purpose while still using the core baseline as a fundamental building

block. Availability of extensive libraries and mutual advantage of eductive evaluation

contributes to choosing this language for this dissertation. We will brie�y discuss

several dialects of Lucid with their core properties and concrete features we inherit

for MARFL in Chapter 2.

1.2 Motivation

Multimedia pattern recognition applications have evolved to meet demands in many

domains such as cognitive sciences, biomedical systems, forensic analysis systems,

etc. Several frameworks for general or speci�c tasks have been developed given the

expanding possibilities this �eld o�ers. One such framework, that our work is heavily

based on, is Modular A* Recognition Framework (MARF). MARF is an open-source

research framework, implemented in Java, which has a collection of general-purpose

pattern-recognition algorithms, APIs, and concrete algorithms [18]. Although this

framework was initially designed for audio recognition, it has since evolved and

5

is no longer only restricted to audio. In addition to handling natural language

processing tasks, it can act as a re-usable Java library for developing applications

due to its generality. We use MARF as an investigation platform to select the best

�t con�guration for any given pattern recognition task. Although the developers

of MARF made every e�ort to make it accessible and easier to follow with sample

applications, the usage still requires a skilled Java programmer who has a relatively

good understanding of MARF's design structure. Often, scientists and researchers

who want to use the framework's pattern recognition algorithms and applications in

their simulations and experiments do not fall into this category. Thus, a need of a

scripting medium that is simpler and more natural than Java, that can cater to the

user's intent while specifying all parts or con�guration context parameters of these

applications, rises.

Moreover, the size of training datasets for any pattern recognition task has

increased tenfold compared to what it was just 5 years back. To solve this,

popular machine learning libraries like TensorFlow and PyTorch provide support for

distributed computation as it can handle the scalability factor of the growing training

demands. However, the usage of such libraries require explicit coding for distributed

training which can be challenging and time-consuming for researchers who do not have

experience with distributed computing. One of our overarching motivation other than

providing a simpler way to script pattern recognition tasks, is to provide users with a

framework that utilizes distributed computation without the need for explicit coding.

By leveraging existing distributed computing infrastructures, our solution will enable

users to execute computationally intensive pattern recognition tasks on a distributed

system with no extra e�ort.

The foundational structure of our work is primarily motivated by Mokhov's

research work in [6] that presents the initial syntax and semantics for Modular A*

Recognition Framework Lucid, orMARFL for short. While his work allows de�ning

context expressions that allow scripting MARF based applications in a context-aware

environment in a given instance, it was only preliminary research. Our focus is to

extend and improve the initial syntactical and semantic de�nitions and use them

6

to build a compiler on an intensional evaluation platform, such as GIPSY. The

General Intensional Programming System (GIPSY) is an open-source multi-language

intensional programming platform implemented primarily in Java [19�21]. It is used

to investigate the implementation and investigation of several Lucid dialects and

their properties, about which we will discuss more in Section 2.1. Its multi-tier

distributed system execution architecture evaluates Lucid programs using a demand-

driven distributed generator-worker architecture. We will go into more detail about

its architecture as well as why GIPSY is our platform of choice in Section 2.3. Further,

We aim to provide context speci�cation for multimedia pattern recognition tasks that

use the available MARF resources for its applications. We will explore topics related

to GIPSY and MARF in detail in Chapter 2.

1.2.1 Motivational Scenarios

We came up with the following primary scenarios that are based on actual and

potential real-life use-cases which help us set objectives for our solution. As discussed

earlier, our aim is to provide researchers with a simpler scripting method to perform

scalable pattern recognition tasks. Our scenarios described below assume that the

user is familiar with the requirements of our solution and has access to our evaluation

platform i.e GIPSY.

� Scenario I: Speech recognition for language learning applications

In this scenario, the researcher is developing a language learning application

that can identify if the user is correctly pronouncing words or phrases.The

application uses speech recognition technology to enable learners to practice

speaking and receive personalized feedback on their pronunciation. To develop a

robust application which can cater to wide variety of user accents, the researcher

needs to meet following requirements:

1. Select the best �t pattern recognition pipeline for speech recognition

that also meets the functional requirements for the language learning

7

application. The researcher will have to perform a comparative study

between all available algorithms.

2. To ensure accuracy of the selected algorithm, the researcher needs to train

it with a wide range of accents and dialects to ensure it can accurately

recognize speech from di�erent regions.

3. The hyper parameters of the selected algorithm need to be tuned to provide

good precision as the application o�ers personalized feedback to the user

based on input.

To meet most of these requirements, the researcher can use the solution

provided in this research work to script several pattern recognition pipelines

which may use di�erent machine learning sub-systems to �nd the best �t for

their application. Moreover, MARF already provides a collection of concrete

algorithms which also include speech recognition algorithms that can be used for

the language learning application. This can save the researcher time and e�ort

as they do not have to implement the algorithms from scratch. Applications

provided in MARF has been used for similar purpose in [22]. Additionally,

the researcher can leverage the power of our solution to utilize distributed

computation without explicit coding, allowing them to train on large datasets

with ease and improve the training process.

� Scenario II: Fixing Software Vulnerabilities Through Code Analysis

In this scenario, our primary user is a software tester trying to ensure that a

given software source code is free of any vulnerabilities that may be exploited

by attackers. To perform comprehensive quality assurance testing, the tester

needs to meet the following requirements:

1. Leverage appropriate pattern recognition algorithms to analyze the

software code and identify any potential vulnerabilities. These algorithms

should be able to analyze speech, audio, and text input to identify security

gaps in the system.

8

2. Perform comprehensive testing to ensure that the software is free from

vulnerabilities. This involves running the developed classi�cation scripts

again and verifying that the source code is free from vulnerabilities.

Our proposed solution can be used to leverage available speech, text, and audio

algorithms available in MARF. Our work also uses a MARF based framework

called MARFCAT [23] which can be used by the tester to perform vulnerability

analysis or to classify exploitable code in a given dataset. As discussed before,

the tester would not require to explicitly code for distributed computation

since our implementation platform handles that inherently without any explicit

coding.

In short, our solution should be able to script computation intensive pattern

recognition tasks in a simpler way when compared to existing machine learning

libraries and should be able to distribute the computation of sub processes in an

inherent manner with minimal to no user interference.

1.3 Problem Statement and Gap Analysis

One of the most popular and widely used programming language for machine learning

and pattern recognition tasks is Python. Due to its huge community support

and abundance of libraries like NumPy, SciPy, TensorFlow, PyTorch etc. that can

cater to complex machine learning tasks, Python is a widely sought-after skill in the

scienti�c programming �eld. Since it can be used to write programs in a Map-Reduce

model, it can even handle big data analysis in a Hadoop ecosystem. But like every

programming language it requires its user to learn, understand and then experiment

with di�erent libraries to achieve the required result. So a researcher will be required

to understand each di�erent library, its parameters, and methods for carrying out

speci�c experiments. Also, Python is not inherently parallel, that is the researcher

will have to code, after understanding several modules it does o�er, to write an

experiment that can be carried out in a parallel computing model. With each passing

9

year, the amount of data that can be used to train a machine learning model increases.

The libraries like TensorFlow do o�er distributed computing via an api but it requires

the user to have a basic understanding of how a distributed architecture works. To

keep up with the demand and to shorten the time for training an entire pipeline,

one requires either high powered GPUs or a parallel implementation for concurrent

training or a combination of both. Also, it certainly does not o�er the user to change

scienti�c libraries at backend as per user con�guration for comparative study.

Although MARF provides researchers and scientists with a platform for practical

comparison of algorithms in a uniform environment, all its application requires

the user to have some knowledge of working in Java programming language.

Since MARF, its derivatives, and applications can be used for tasks beyond audio

processing, the developers built several useful Java classes to handle several �le types.

The �les can be read through a �le system or an URI. Essentially these �les are used

for training the algorithms for any (un)supervised machine learning model that is

part of the MARF pipeline. It is not reasonable or expected from the researcher

to learn Java before performing any pattern recognition experiment. Therefore, we

require a scripting medium for MARF applications that is human comprehensive and

can manipulate its con�gurations.

The very �rst approach for scripting a contextually aware Lucid language for

handling MARF con�gurations was given by Mokhov in 2008 [6]. This approach

provided the initial syntax and semantics for MARFL. The author also provided a

translated sample program which followed the proposed speci�cations of MARFL.

However, it was only preliminary research that had practical implications on usability

of MARF's resources as its future work. The author focused exclusively on context

speci�cation for multimedia pattern recognition tasks and available MARF resources

for its applications. While the initial syntax was used as a basis for MARFL of

this research work, we made considerable changes to the proposed syntax to satisfy

our requirements and make the speci�cations in-line with the required GIPL syntax

and implementation. At the base level, the Lucid intensional programming language

has been in development for more than 40 years. Its represents a paradigm that

10

evolves constantly. However, its concrete applicability needs to be proven to become

accepted. A lot of Lucid dialects that are context-aware with a speci�c purpose in

mind, which we will discuss more in Chapter 2, have been created.

Overall, there are some unaddressed problems and gaps with theories, techniques

and technologies used, which we will summarize below.

1. Procedural programming languages like Python:

(a) Do not provide human comprehensible syntax at the same level as an IPL,

for example from the perspective of the expression of inherently multi-

dimensional expressions without having explicitly express extensionally the

required procedures to augment their values.

(b) Are not inherently parallel while performing complex scienti�c experi-

ments.

(c) Do not o�er the user to dynamically change library backends or

con�guration.

2. The proposed MARFL:

(a) Requires formal concrete syntax that can handle several context-aware

speci�cations and its subsequent parameters in MARF.

(b) Needs several additions in concrete syntax to handle libraries other than

MARF.

3. GIPSY:

(a) Needs update to the runtime system to support MARFL.

(b) Needs a compiler for MARFL.

(c) Needs a MARFL Semantic Analyzer that can account for new node types

in AST corresponding to the MARFL speci�c extensions introduced.

(d) Needs an eductive evaluation interpreter which can read the AST to

generate speci�c demands.

11

(e) Needs an execution engine that can delegate demands to problem speci�c

sub-systems such as MARF or TensorFlow.

1.4 Proposed Solution

This research work focuses on the re�nement and implementation of MARFL

concrete syntax introduced in [6], followed by a formal implementation of the re�ned

syntax and updated semantics into the GIPSY compiler and runtime system. At

the same time, we update the Intensional Programming Paradigm with new context

operators introduced in MARFL.

The majority of this dissertation is focused in creating the MARFL dialect of

Lucid so that an easy comprehensible scripting medium for pattern recognition tasks

can be provided to researchers for performing and evaluating experiments. MARFL

is a combination of the syntax and its operational semantics inference rules inside a

uniform demand-driven environment.

Thus, our approach is tailored to addressing a subset of problems and gaps outlined

in the previous section. Speci�cally:

1. Addressing the conventional programming language gaps.

One of the major goals of this research work is to provide a scripting medium

that is human comprehensible and yet can perform the complex scienti�c tasks

such as training (un)supervised machine learning models for classi�cation of

data in several domains. We want to reduce verbosity of a pattern recognition

script by using the inherent context-aware model of Lucid. We also aim to

resolve the drawbacks of conventional approach that are usability and lack

of inherent parallel computing. we bene�t by using a parallel demand-driven

context-aware evaluation platform that the current approach lacks. Choosing a

Lucid approach over a platform like GIPSY is major solution to these problems.

2. Addressing the MARFL improvements.

12

The Lucid family of languages is built around intensional logic that takes the

notion of context as explicit, central, as well as a �rst-class value [24, 25] that

can be passed around as function parameters and have a set of operators de�ned

upon. Our solution greatly draws on this notion by providing a context-aware

hierarchical way to specify MARF con�gurations for model speci�cation. We

use the higher-order context hierarchy to specify di�erent parameters and its

sub-parameters in our con�guration. Such a proposition has been already done

in [26] to de�ne and modify expressions in a cyberforensic context.

With regards to syntax and semantics for MARFL, we bene�t in large part,

as it has been initially de�ned by Mokhov in [6]. The initial syntax is

largely based on its predecessors and codecessor Lucid dialects, such as GIPL,

Indexical Lucid [27], Lucx [2], and Forensic Lucid [26] bound by high

order intensional logic (HOIL) [24,25] that is behind them. This work continues

to formally specify the operational semantics of MARFL language extending

the previous related work [6].

We inherit the de�nitions of speci�cation of hierarchical context expressions and

the operators used while modelling them from Forensic Lucid. Implementing

MARFL in GIPSY provides us a demand-driven evaluation of Lucid programs

in a more e�cient way when compared to other conventional languages like

Python for pattern recognition tasks.

3. Addressing the GIPSY gaps.

GIPSY is used as a demand-driven evaluation platform for several Lucid

dialects. We need to provide a compiler for MARFL that can interpret a

MARFL Lucid program. We also need to provide the semantic analyser based

on the operational semantics de�ned for MARFL. The analyser should be able

to handle new node types in AST which are introduced from MARFL speci�c

extensions. We aim to adapt similar methods de�ned in [3,5,28,29] for building

the semantic analyser for predecessor dialects like Lucx. Following that, we

need to update framework with an Interpreter that can handle and produce the

13

intermediary con�guration �les required for a MARF instance.

1.5 Thesis Objectives

Given our motivational scenarios in Section 1.2.1, we list our major objectives that

will help accomplish our goals. Each of these objectives are necessary to describe our

solution, its functionality and eventual execution on a demand-driven platform. The

objectives are given a speci�c identi�er so we can refer them and make it easier for

the reader to follow.

1. O1: MARFL syntax and operational semantics (Chapter 3)

Our �rst primary objective towards ful�lment of an intensional scripting

medium is to provide the concrete syntax as well as operational semantics

of our proposed language, MARFL. Based on our scenarios, the user needs

to have a simple intensional way to script pattern recognition tasks which do

not require extensive knowledge of programming. The speci�cations should also

include ways to execute multiple tasks so that the user can perform an extensive

comparative analysis of used pattern recognition algorithms.

2. O2: MARFL compiler (Chapter 4, Section 4.1)

Following O1, we need to provide a compiler that can conform to the rules of

syntax de�ned, perform semantic analysis by doing type checking, and ensure

that the program semantics are correct. It needs to be implemented inside

the GIPSY compiler framework, GIPC. This essential component compiles the

MARFL program written by the user in any of the discussed scenario and is

responsible for giving an intermediate representation of the program which can

be used in further execution.

3. O3: MARFL-speci�c execution engine (Chapter 4, Section 4.2.2)

To execute a MARFL program, we need to implement and redesign some

basic architectural components that are able to evaluate and understand the

14

new MARFL speci�cations. To facilitate execution of di�erent machine

learning sub-systems, our implementation platform needs to be updated with

functionality to handle these sub-systems.

4. O4: Executing MARFL Programs (Chapter 4, Section 4.3)

Following our implementation objectives O1 through O3, the system should be

able to run the pattern recognition task speci�ed inside aMARFL program and

provide the user with results. As described in our motivational scenarios, the

user should be allowed to script these tasks without the need of having extensive

knowledge of any particular programming language essentially by passing the

need of writing or re-writing long lines of code. Therefore, this is one of our two

major functional objectives.

5. O5: Distributed execution of a MARFL program (Chapter 5, Section 5.4)

As discussed in our motivation for this research work as well as potential

scenarios, the system should be able to perform computationally intensive

tasks in a distributed manner so as to reduce training or classi�cation times.

This should require no explicit coding from the user and must be handled

automatically by the implementation platform. This is our second major

functional objective which will help ful�l our overarching goal of doing this

research work.

1.6 Summary

To summarise, we will show that the intensional approach with a Lucid-based dialect

to a pattern recognition task is a far more practical and comprehensible approach for

researchers and scientists as compared to using plain Python or Java libraries.

Building upon the concept of �rst-class context value, introduced in Lucx [29] and

then inherited by Forensic Lucid [26], we will de�ne a novel Lucid dialect with

a new set of prede�ned context operators, that can script high order context-aware

programs which can run inside the GIPSY environment. We will then de�ne the

15

operational semantics of our dialect, subsequently integrating a semantic analyser

inside GIPSY to allow use speci�c SIPL nodes introduced in our dialect. Unlike the

conventional approaches, our evaluation method will be inherently parallel due to

GIPSY's demand-driven general eduction engine (GEE) so the user does not have to

code separate parallelized programs.

1.7 Thesis Organisation

We begin by reviewing the relevant background knowledge in Chapter 2 where

we start with the notion of Intensional Logic, Lucid, and its several dialects,

followed by speci�cations about the MARF package. Then we talk in-depth about

the GIPSY architecture. Chapter 3 presents the theoretical basis of this work,

including the syntax and operational semantics for MARFL. Chapter 4 speci�es

the implementation details of how MARFL compiler is constructed, integration of

semantic analyser with parser, and the several updates to the GIPSY runtime system

like addition of aMARFL speci�c interpreter, etc. Chapter 5 presents the evaluation

methods used to test the modules implemented in Chapter 4 and the subsequent

results of our experiments. Chapter 6 concludes our research work with a discussion

about potential future work.

16

Chapter 2

Background

2.1 The Lucid Programming Language Family

In this chapter we �rst review the background on the several Lucid dialects as

instantiations of various HOIL realizations giving an overview in Section 2.1.1 followed

by the several dialects in Section 2.1.3. Section 2.2 talks about the MARF platform,

from which this work heavily inspires from. We then explain GIPSY, the evaluation

platform used for this research work in Section 2.3. We then provide a summary

of the �ndings in Section 2.4. The use of Lucid is crucial in this thesis due to its

ability to e�ciently process streams of data and its simple syntax, as well as its strong

mathematical and theoretical foundation, making it well-suited for representing and

reasoning within large amounts of information.

2.1.1 Lucid Overview

As discussed in Section 1.1.2, Lucid [13, 14, 30�32] is a data�ow intensional and

functional programming language which has now evolved to a family of languages

that are built using intensional logic upon a context-aware demand-driven parallel

computation model [33]. A Lucid program is an expression that may have

subexpressions that need to be evaluated at a certain context. Essentially, it is a

declarative language declared in an embedded where clause. The very �rst generic

17

version of Lucid, the General Intensional Programming Language (GIPL) [1], de�nes

two basic operators @ and # to navigate (switch and query) in the context space.

This context space is where the expressions are evaluated and can potentially yield

di�erent results based on their coordinates within this space, which is essentially a

set of dimensions. It has been demonstrated that other languages within the Lucid

family that utilize intensional programming can be converted into GIPL [1,4,34,35].

However, our work more closely follows the implementation presented by Lucx [2]

and Forensic Lucid [26] where newly introduced AST nodes are handled by the

semantic analyzer instead of requiring speci�c translation rules.

2.1.1.1 Fundamental Syntax and Semantics

E ::= id
| E (E,...,E)
| E E,...,E
| if E then E else E fi
| # E

| E @ [E :E]
| E @ E

| E where Q end;
| [E :E,...,E :E]
| iseod E ;

Q ::= dimension id,...,id;
| id = E ;
| id(id,....,id) = E ;
| id[id,...,id](id,....,id) = E ;
| QQ

Figure 1: GIPL syntax expressions

The fundamental syntax and semantics of Lucid were given by Ashcroft and

Wadge in the 70s-90s which evolved with each iteration [13]. The syntax is

rather simple which allows an easier compiler implementation as well as human

comprehensible Lucid programs. As shown in GLU [36�38], Lucid can easily be

integrated with other imperative programming languages which allows it to bene�t

from the eductive evaluation model. These factors were important in the decision to

use this language in this research work. We provide examples of syntax and semantics

of Lucid dialects that directly a�ect our work. Lucid has inherited several features

18

from its other dialects, andMARFL is an extension of same with its own new speci�c

context operators. We de�ne the syntax and semantics of MARFL in much more

detail in Chapter 3.

2.1.1.2 Lucid Syntax

Figure 1 and Figure 2 presents the syntax for expressions, de�nitions, and operators

for a hypothetical language that is a uni�cation of the all the current Lucid dialects.

This is only done for illustratory purposes so the reader can understand and familiarise

with the necessary features of the Lucid dialects we inherit from.
op ::= intensional-op

| data-op

intensional-op ::= i-unary-op

| i-binary-op

i-unary-op ::= first | next | prev
i-binary-op ::= fby | wvr | asa | upon

data-op ::= unary-op

| binary-op

unary-op ::= ! | − | iseod
binary-op ::= arith-op

| rel-op

| log-op

arith-op ::= + | - | * | / | %
rel-op ::= < | > | <= | >= | == | !=
log-op ::= && | ||
Figure 2: GIPL operators

2.1.1.3 Operational Semantics of Lucid

Our chosen environment for implementing MARFL is GIPSY. GIPL is the generic

counterpart of all the Lucid dialects. It only has two standard intensional operators:

@ and #. In E @ C, @ is used for evaluating the expression E in context C, and #d

is used to determine the position in dimension d of the current context of evaluation

in the context space [1]. Speci�c Intensional Programming Languages (SIPL) are the

other Lucid dialects which have their own attributes and objectives. The operational

19

semantics of GIPL are presented in Figure 3.

Ecid :
D(id) = (const, c)

D,P ⊢ id : c
(1)

Eopid :
D(id) = (op, f)

D,P ⊢ id : id
(2)

Edid :
D(id) = (dim)

D,P ⊢ id : id
(3)

Efid :
D(id) = (func, idi, E)

D,P ⊢ id : id
(4)

Evid :
D(id) = (var, E) D,P ⊢ E : v

D,P ⊢ id : v
(5)

Eop :
D,P ⊢ E : id D(id) = (op, f) D,P ⊢ Ei : vi

D,P ⊢ E(E1, . . . , En) : f(v1, . . . , vn)
(6)

Efct :
D,P ⊢ E : id D(id) = (func, idi, E′) D,P ⊢ E′[idi ← Ei] : v

D,P ⊢ E(E1, . . . , En) : v
(7)

EcT :
D,P ⊢ E : true D,P ⊢ E′ : v′

D,P ⊢ if E then E′ else E′′ : v′
(8)

EcF :
D,P ⊢ E : false D,P ⊢ E′′ : v′′

D,P ⊢ if E then E′ else E′′ : v′′
(9)

Etag :
D,P ⊢ E : id D(id) = (dim)

D,P ⊢ #E : P(id)
(10)

Eat :
D,P ⊢ E′ : id D(id) = (dim) D,P ⊢ E′′ : v′′ D,P†[id ↦→ v′′] ⊢ E : v

D,P ⊢ E @E′ E′′ : v
(11)

Ew :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ E : v

D,P ⊢ E where Q : v
(12)

Qdim :
D,P ⊢ dimension id : D†[id ↦→ (dim)],P†[id ↦→ 0]

(13)

Qid :
D,P ⊢ id = E : D†[id ↦→ (var, E)],P

(14)

Qfid :
D,P ⊢ id(id1, . . . , idn) = E : D†[id ↦→ (func, idi, E)],P

(15)

QQ :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ Q′ : D′′,P ′′

D,P ⊢ Q Q′ : D′′,P ′′ (16)

Figure 3: Extract of operational semantics rules of GIPL [1]

Following is the description of the GIPL semantic rules as presented in [1]:

D ⊢ E : v (17)

tells that under the de�nition environment D, expression E would evaluate to value v.

D,P ⊢ E : v (18)

20

speci�es that in the de�nition environment D, and in the evaluation context P (some-

times also referred to as a point in the context space), expression E evaluates to v.

The de�nition environment D retains the de�nitions of all of the identi�ers that

appear in a Lucid program, as created with the semantic rules 12�15 in Figure 3. It

is therefore a partial function

D : Id→ IdEntry (19)

where Id is the set of all possible identi�ers and IdEntry, summarized in Table 1,

has �ve possible kinds of values, one for each of the kinds of identi�er [33,39]:

� Dimensions de�ne the coordinate pairs, in which one can navigate with the #

and @ operators. Their IdEntry is simply (dim) [1].

� Constants are external entities that provide a single value, regardless of the

context of evaluation. Examples are integers and Boolean values. Their

IdEntry is (const, c), where c is the value of the constant [1].

� Data operators are external entities that provide memoryless functions.

Examples are the arithmetic and Boolean functions. The constants and data

operators are said to de�ne the basic algebra of the language. Their IdEntry

is (op, f), where f is the function itself [1].

� Variables carry the multidimensional streams. Their IdEntry is (var, E),

where E is the Lucid expression de�ning the variable. It should be noted

that this semantics makes the assumption that all variable names are unique.

This constraint is easy to overcome by performing compile-time renaming or

using a nesting level environment scope when needed [1].

� Functions are non-recursive user-de�ned functions. Their IdEntry is

(func, idi, E), where the idi are the formal parameters to the function and

E is the body of the function [1].

21

Table 1: Possible identi�er types [1]

type form
dimension (dim)
constant (const, c)
operator (op, f)
variable (var, E)
function (func, idi, E)

The evaluation context P , which is changed when the @ operator is evaluated, or

a dimension is declared in a where clause, associates a tag (i.e., an index) to each

relevant dimension. It is, therefore, a partial function

P : Id→ N (20)

Each type of identi�er can only be used in the appropriate situations. Identi�ers of

type op, func, and dim evaluate to themselves (Figure 3, rules 2, 3, 4). Constant

identi�ers (const) evaluate to the corresponding constant (Figure 3, rule 1). Function

calls, resolved by the Efct rule (Figure 3, rule 7), require the renaming of the formal

parameters into the actual parameters (as represented by E ′[idi ← Ei]). The function

P ′ = P † [id ↦→ v′′] speci�es that P ′(x) is v′′ if x = id, and P(x) otherwise.

The rule for the where clause, Ew (Figure 3, rule 12), which corresponds to the

syntactic expression E where Q, evaluates E using the de�nitions Q therein. The

additions to the de�nition environment D and context of evaluation P made by the

Q rules (Figure 3, rules 13, 14, 15) are local to the current where clause. This

is represented by the fact that the Ew rule returns neither D nor P . The Qdim

rule adds a dimension to the de�nition environment and, as a convention, adds this

dimension to the context of evaluation with the tag 0 (Figure 3, rule 13). The Qid

and Qfid simply add variable and function identi�ers along with their de�nition to

the de�nition environment (Figure 3, rules 14, 15) [1, 33,39].

As an extension to GIPL, Lucx's semantics introduced the context as a �rst-class

value, as described by the rules in Figure 4. The semantic rule 22 (Figure 4) creates

a context as a semantic item and returns it as a context P that can then be used by

22

the rule 23 to navigate to this context by making it override the current context. The

E#(cxt) :
D,P ⊢ # : P

(21)

Econstruction(cxt) :

D,P ⊢ Edj : idj D(idj) = (dim)
D,P ⊢ Eij : vj P ′ = P0†[id1 ↦→ v1]†. . .†[idn ↦→ vn]

D,P ⊢ [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein] : P ′ (22)

Eat(cxt) :
D,P ⊢ E′ : P ′ D,P†P ′ ⊢ E : v

D,P ⊢ E @ E′ : v
(23)

E. :
D,P ⊢ E2 : id2 D(id2) = (dim)

D,P ⊢ E1.E2 : tag(E1 ↓ {id2})
(24)

Etuple :
D,P ⊢ E : id D†[id ↦→ (dim)] P†[id ↦→ 0] D,P ⊢ Ei : vi

D,P ⊢ ⟨E1, E2, . . . , En⟩E : v1 fby.id v2 fby.id . . . vn fby.id eod
(25)

Eselect :
E = [d : v’] E′ = ⟨E1, . . . , En⟩d P ′ = P†[d ↦→ v′] D,P ′ ⊢ E′ : v

D,P ⊢ select(E,E′) : v
(26)

Eat(s) :
D,P ⊢ C : {P1, . . . ,P2} D,Pi:1...m ⊢ E : vi

D,P ⊢ E @C : {v1, . . . , vm}
(27)

Cbox :

D,P ⊢ Edi : idi D(idi) = (dim)
{E1, . . . , En} = dim(P1) = . . . = dim(Pm)
E′ = fp(tag(P1), . . . , tag(Pm)) D,P ⊢ E′ : true

D,P ⊢ Box [E1, . . . , En|E′] : {P1, . . . ,Pm}
(28)

Cset :
D,P ⊢ Ew:1...m : Pm

D,P ⊢ {E1, . . . , Em} : {P1, . . . ,Pw}
(29)

Cop :
D,P ⊢ E : id D(id) = (cop, f) D,P ⊢ Ci : vi

D,P ⊢ E(C1, . . . , Cn) : f(v1, . . . , vn)
(30)

Csop :
D,P ⊢ E : id D(id) = (sop, f) D,P ⊢ Ci : {vi1 , . . . , vik}
D,P ⊢ E(C1, . . . , Cn) : f({v11 , . . . , v1s}, . . . , {vn1 , . . . , vnm})

(31)

Figure 4: Extract of operational semantics of Lucx [2, 3]

semantic rule 21 expresses that the # symbol evaluates to the current context. When

used as a parameter to the context calculus operators, this allows for the generation

of contexts relative to the current context of evaluation [1, 2, 29]

2.1.2 Eductive Model of Computation

Cargill at the University of Waterloo and May at the University of Warwick,

independently developed the �rst operational model for computing Lucid

programs [40]. It was directly based on the formal semantics of Lucid, which

was based on Kripke's models and possible-worlds semantics [41, 42]. Ostrum later

extended this technique with the implementation of the Luthid interpreter [43] which

was later adopted by by Faustini and Wadge [44] in their design of pLucid interpreter.

23

This evaluation model is now known as eduction which helps us now for distributed

execution [24] of Lucid programs [9, 10,45�48].
#typedecl
Nat42;

#JAVA
class Nat42
{

private int n;

public Nat42()
{

n = 42;
}

public Nat42 inc()
{

n++;
return this;

}

public void print()
{

System.out.println("n = " + n);
}

}

#OBJECTIVELUCID

(N @.d 2).print[d]()
where

dimension d;
N = Nat42[d]() fby.d N.inc[d]();

end

Figure 5: The natural-numbers problem in Objective Lucid [4]

Figure 6 [5] represents the trace of an eduction tree during execution of a natural-

numbers problem in a Objective Lucid program. To understand eduction, the

problem was re-written in Objective Lucid and is presented in Figure 5. As

highlighted in Figure 6, the outermost boxes labeled {d:0} etc. represent the current

context of evaluation, demands for values to be computed under that context are

represented as gray rectangular boxes with expressions, and the red boxes with

the terminal bullets next to them represent the results of the computation of the

expressions. In our proposed solution, such an eduction tree can be adapted to

back-tracing in context evaluation, e.g., when the inner-most sub-parameters for an

algorithm are traced back to the �nal result of the entire computation. The same

method was adopted by Mokhov in his thesis, implementing Forensic Lucid for

forensic evaluation [4, 26].

The concept of eduction can be described as a �tagged-token demand-driven

24

Figure 6: Eduction tree as a trace for the natural-numbers problem in Objective
Lucid [5]

25

data�ow� [49] computing paradigm. This model of execution is built upon on the

notion of generation, propagation, and consumption of demands and their resulting

values. Lucid programs are declarative in nature where every identi�er is de�ned

as a HOIL expression using other identi�ers and an underlying algebra. When value

of any identi�er is generated, it results in an initial demand. The eduction engine

then generates requests for the identi�ers that make up this expression, using the

de�ning expression of this identi�er. Operators are then applied to these identi�ers

in their embedded expressions. These demands in turn generate other demands, until

some demands eventually evaluate to some values, which are then propagated back

in the chain of demands, operators are applied to compute expression values, until

eventually the value of the initial demand is computed and returned [24].

2.1.3 Lucid Dialects

We brie�y review some of the core dialects that directly in�uence and contribute to

the construction ofMARFL in addition to the information provided in Section 2.1.1.

More detailed information on the dialects and related publications can be found

in [50].

2.1.3.1 Lucx

Wan's Lucx [2,29] (which stands for Lucid enriched with context) provides a pivotal

contribution to the syntax for MARFL. It is a fundamental extension of GIPL and

the Lucid family as a whole that promotes the contexts as �rst-class values thereby

creating a �true� generic Lucid language. An excerpt of its semantics is provided in

Figure 4. A new collection of set operators (e.g., union, intersection, box, etc.)

was de�ned by Wan [2, 29] on the multidimensional contexts, which then help with

the parameters and sub-parameters for a particular algorithm in aMARFL program.

Lucx's further speci�cation, re�nement, and implementation details were produced

by Tong [3, 51] in 2007�2008 based on Wan's design [4, 24]. We will later elaborate

on some of the formal de�nitions of context and context operators that were added

26

by Wan in her PhD thesis [29] in Section 3.1.3.2.

2.1.3.2 JLucid

JLucid [5, 52] was the �rst attempt on having intensional arrays and �free Java

functions� in the GIPSY environment. The main computation was driven by Lucid

language, where Java methods were peripheral and could be invoked from the Lucid

segment, but not the other way around. This was one of the �rst instances of

combination with an Object-Oriented language within GIPSY. The semantics of this

approach was not completely de�ned, and, it was only a single-sided view (Lucid-

to-Java) of the problem. JLucid eventually served as a precursor to Objective

Lucid [33, 35, 53].

2.1.3.3 Objective Lucid

Objective Lucid [5, 54] was a natural extension to the JLucid language since it

inherited all of the JLucid's features and introduced Java objects that can be used

by Lucid. Objective Lucid expanded the notion of the Java object (a collection

of members of di�erent types) to the array (a collection of members of the same

type) and �rst introduced the dot-notation in the syntax and operational semantics.

Like in JLucid, Objective Lucid's focus was on the Lucid part being the �main�

computation program and did not allow Java to call intensional functions or use

intensional constructs from within a Java class. Objective Lucid was the �rst

in GIPSY to introduce the more complete operational semantics of the hybrid OO

intensional language [33,35,53].

2.1.3.4 JOOIP

Wu introduced JOOIP [53, 55] which greatly complements Objective Lucid by

allowing Java to call the intensional language constructs closing the gap and making

JOOIP a complete hybrid OO intensional programming language within the GIPSY

environment. JOOIP's semantics further re�nes in a greater detail the operational

semantics rules of Lucid and Objective Lucid in the attempt to make them

27

complete [33, 35,53]. Especially, Java is a very popular and widely used language in

today's application domains. By being a hybrid between Java and Lucid, JOOIP

aimed to increase the visibility of Intensional Programming [56,57] and make it more

mainstream.

2.1.3.5 Forensic Lucid

Mokhov introduced Forensic Lucid in his PhD Thesis [26], along with a proposed

re-design of the GIPSY platform. Forensic Lucid can be used to represent the

knowledge of forensic cases, including evidential description, witness accounts, assign

credibility values to them, all in a common shape and form and then validate

hypotheses claims against evidential data.

Forensic Lucid is a context-oriented language where a crime scene model

comprises a state machine of evaluation and the forensic evidence and witness

accounts comprise the context for its possible worlds. Like some of its predecessors,

it inherits and is in�uenced by the productions from Lucx [2, 29], JLucid and

Objective Lucid [5], GIPL and Indexical Lucid [1]. The hierarchical contexts

were �rst formally de�ned by Mokhov in his theoretical presentation of MARFL in [6]

which were then incorporated into Forensic Lucid. We inherit and formalise these

same hierarchical context productions and add our own set of context operators for

implementing MARFL.

2.2 Modular A* Recognition Framework (MARF)

2.2.1 MARF Overview

Modular A* Recognition Framework (MARF), introduced in the year 2002 by

Mokhov and other collaborators [18] , is an open-source project that provides pattern

recognition APIs with sample implementation for (un)supervised machine learning

and classi�cation applications written in Java [22, 58, 59]. It serves as a testbed

to verify common and novel algorithms for sample loading, pre-processing, feature

28

extraction, training, and classi�cation stages of any pattern recognition experiment.

MARF o�ers several applications that provide various con�guration options inside

a uniform environment that gives researchers a tool for practical comparison of

algorithms. Over the years, a fair number of implementations have been added for

each of the pipeline stages (cf. Figure 7, page 30) in MARF which allows to perform

various pattern recognition tasks. MARF, its derivatives, and applications can now

also be used beyond audio processing tasks due to the generality of the design and

implementation in [48,60,61] and other works [7, 62].

One of its application, FileTypeIndentApp, was used to employ MARF's

functionality for forensic analysis of �le types [7]. Mokhov, based on the open-

source MARF architecture, developed MARFCAT application which can be used as

a static code analysis tool [63]. We discuss more about the MARFCAT application

in Section 2.2.4. Some of the MARF's architectural design even in�uenced GIPSY [5]

and MARF's utility modules are likewise in use by GIPSY.

2.2.2 MARF Architecture

MARF architecture consists of pipeline stages that communicate with each other

to get the data needed in a chained manner. MARF's pipeline of algorithm

implementations is illustrated in Figure 7, where the implemented algorithms are

in white boxes, and the stubs or in-progress algorithms are in gray. The four basic

stages of the pipeline will be discussed in more detail in Section 2.2.3

MARF's functionality can be tested via number of applications it comes with.

They also serve as samples on how to use MARF's modules. One of the

most prominent applications, that we will reproduce with MARFL for evaluation

purposes, is SpeakerIdentApp�Text-Independent Speaker Identi�cation (who,

gender, accent, spoken language, etc.) [64]. Its derivative, FileTypeIdentApp, was

used to employ MARF's capabilities for forensic analysis of �le types [7] in [26].

29

Figure 7: MARF's pattern-recognition pipeline [6]

2.2.3 Pattern Recognition Pipeline

The conceptual pattern recognition pipeline consists of four basic stages: loading,

preprocessing, feature extraction, and training/classi�cation [48, 65]. The design

presented in Figure 7 depicts the core of the data �ow and transformation between

the stages in MARF [18,58].

The basic steps in classical pattern recognition involve loading a sample, such

as an audio recording, text, or image �le, then preprocessing it with techniques like

normalization and removing noise, followed by extracting the most important features,

and then either training the system to learn new features for a speci�c task or using

those features to classify the subject [7].

30

Figure 8: MARF's pattern-recognition pipeline sequence diagram [7]

31

The outcome of training is a set of feature vectors or clusters [22], known as

training sets, which are saved for each learned subject. The outcome of classi�cation

is an instance of the ResultSet data structure, which is a sorted collection of IDs

(int) and their corresponding outcome values (double); with the most likely outcome

listed �rst. The most likely one is the ultimate outcome to be interpreted by the

application. The steps involved in this process of classi�cation in the main MARF

module are demonstrated with the help of a sequence diagram in Figure 8 [7].

2.2.4 MARFCAT

In 2010, Mokhov demonstrated a tool to analyse static source and binary code

in search for and investigation on program weaknesses and vulnerabilities during

the SATE2010 workshop [63, 66, 67]. The MARF-based Code Analysis Tool, or

MARFCAT [63] employed machine learning techniques along with signal processing

and NLP alike for forensic investigation purposes. The core ideas and principles

behind this tool were inherited from MARF's pipeline and testing methodology for

various algorithms. MARFCAT machine-learns from the (Common Vulnerabilities

and Exposures) CVE-based vulnerable as well as synthetic CWE-based cases to verify

the �xed versions as well as non-CVE based cases from the projects written in various

programming languages. MARFCAT's design from the beginning in 2010 was made

independent of the language being analyzed, be it source code, bytecode, or binary.

In order to enhance the scalability of the approach, Mokhov converted the

MARFCAT stand-alone application to a distributed one using an eductive model of

computation (demand-driven) implemented in the General Intensional Programming

System (GIPSY)'s multi-tier run-time system [9, 68�70], which can be executed

distributively. To adapt the application to the GIPSY's multi-tier architecture,

he created a problem-speci�c generator and worker tiers (PS-DGT and PS-DWT

respectively) for the MARFCAT application. The generator(s) produce demands of

what needs to be computed in the form of a �le (source code �le or a compiled binary)

to be evaluated and deposit such demands into a store managed by the demand store

tier (DST) as pending. Workers pickup pending demands from the store, and them

32

process then (all tiers run on multiple nodes) using a traditional MARFCAT instance.

Once the result (a Warning instance) is computed, the PS-DWT deposit it back into

the store with the status set to computed. The generator �harvests� all computed

results (warnings) and produces the �nal report for a test cases. Since, this work is

imperative to digital investigations MARF and MARFCAT both were designed to

export evidence in the Forensic Lucid format [71].

2.3 The General Intensional Programming System

The General Intensional Programming System (GIPSY) [1,5,9,10,20,21,24,72�76], is

an open-source platform implemented primarily in Java to investigate properties

of the Lucid [30�32] family of intensional programming languages and beyond.

Currently, GIPSY is being developed and maintained by the GIPSY Research and

Development Group at Concordia University, Montreal, Canada. It follows a multi-

tiered distributed architecture, which can evaluate Lucid programs by following a

demand-driven distributed generator-worker approach. It is designed as a modular

collection of frameworks where components related to the development (RIPE1),

compilation (GIPC2), and of Lucid [32] programs are decoupled allowing easy

extension, addition, and replacement of the components and subcomponents. The

high-level general architecture of GIPSY is presented in Figure 9 as well as the high-

level structure of the GIPC framework is in Figure 10 [4,33,34,48,65]. In this section

we aim to present a general GIPSY overview followed by its key architectural design

points to provide an in-depth background overview.

GIPSY [5,20,21,24,74,75] is a continued e�ort for the design and development of

a �exible and adaptable multi-lingual programming language development framework

aimed at the investigation on the Lucid family of intensional programming

languages [1, 13, 14, 30, 31, 43, 50, 77, 78]. Using this platform, programs written in

various dialects of Lucid can be compiled and executed in a variety of ways [8,10,24,

1Run-time Integrated Programming Environment, implemented in gipsy.RIPE
2General Intensional Programming Compiler, implemented in gipsy.GIPC

33

79]. GIPSY follows a modular framework approach that makes it easier to develop

compiler components for other languages of intensional nature, and to execute them

on a generally language-independent run-time system. As discussed in Section 2.1,

Lucid is a functional �data-�ow� language and, its programs can be executed in a

distributed processing environment [8].

GIPSY's design includes a �exible compilers framework and a run-time system

that allows for the processing of programs written in multiple dialects of Lucid, as

well as the ability to mix those dialects with common imperative languages like Java,

all within the same source code "program" or �le. This feature sets GIPSY apart from

being just a single Lucid dialect and instead positions it as a complete programming

system for multiple languages.

As a result, by being multi-lingual, GIPSY's design includes the �exible compilers

framework and a run-time system to allow processing of programs written in multiple

dialects of Lucid as well as the ability to mix those dialects with common imperative

languages, such as Java, all withtin the same source code �program�. This feature sets

GIPSY apart from being �just a Lucid dialect� into a complete programming system

for multiple languages and the �meta� preprocessor language of various declarations

to aid compilation [5, 79, 80].

GIPSY is the proposed platform for the compilation and distributed evaluation

of the MARFL programs. GEE is the component where the distributed demand-

driven evaluation takes place, subtasked to di�erent evaluation engines implemeting

the GEE framework. We rely on the GIPSY's compilers for the intensional languages

like GIPL [1], Lucx [2], Objective Lucid [5], and JOOIP [53]. We inherit the

syntax and operational semantics of those languages implemented in GIPSY and

draw ideas from them for the simple context speci�cation of dimensions and tags,

the navigational operators @ and #, and the �dot-notation� for object properties and

apply it to context spaces. The dialects that are referred to encompass a wide range

of issues that MARFL takes advantage of.

Intensional programming [56, 57], in the context of the Lucid programming

language, implies a declarative programming paradigm. The declarations are

34

Figure 9: High-level structure of GIPSY's GEER �ow overview [8]

evaluated in an inherent multi-dimensional context space [3,10]. Initially GIPSY was

a modular collection of frameworks for local execution. It subsequently evolved into a

multi-tier architecture [9,10] keeping in mind �exibility in order to cope with the fast

evolution and diversity of the Lucid family of languages, thus necessitating a �exible

compiler architecture, and a language-independent run-time system for the execution

of Lucid programs. As a result, the GIPSY project's architecture [5, 24, 72, 75, 80]

aims at providing such a �exible platform for the investigation on intensional and

hybrid intensional-imperative programming [10].

The architecture of the General Intensional Programming Compiler (GIPC) is

framework-based, allowing the modular development of compiler components (e.g.,

parser, semantic analyzer, and translator). It is based on the notion of the

Generic Intensional Programming Language (GIPL) [1, 51], which is the core run-

time language into which all other �avors of the Lucid (a family of intensional

programming languages) language can be translated to [24]. The language-

independence problem of the run-time system was solved by using the generic

implementation which allowed a common representation for all compiled programs

into the Generic Eduction Engine Resources (GEER). GEER is a dictionary of run-

time resources compiled from a GIPL program, that had been previously generated

from the original program using semantic translation rules that de�ne how the original

Lucid program is translated into the GIPL [10, 24]. A generic distributed run-time

35

Figure 10: High-level structure of the GIPC framework [8]

system has been proposed in [9, 10].

Under the GIPC (see Figure 10) framework, GIPSY has a collection of compilers

and the corresponding run-time environment under the eduction execution engine

(GEE) among other things that communicate through the GEE Resources (GEER)

(see the high-level architecture in Figure 9). These two are the major primary

components for compilation and execution of intensional programs, which require

amendments for the changes proposed in this work [4, 48,65].

36

2.3.1 General Intensional Program Compiler (GIPC)

The more detailed architecture of GIPC is conceptually represented at the higher

level in Figure 10. It has the type abstractions and implementations that are located

in the gipsy.lang package and serve as a glue between the compiler (the GIPC�

a General Intensional Program Compiler) and the run-time system (known as the

GEE�a General Eduction Engine) to do the static and dynamic semantic analyses

and evaluation respectively. The abstract syntax tree (AST) generated is stored in

GEER which is followed by its own type checking at run time. Since both the GIPC

and the GEE use the same type system to do their analysis, they consistently apply

the semantics and rules of the type system with the only di�erence that the GEE, in

addition to the type checks, does the actual evaluation [8, 24]. As seen in Figure 10,

the Preprocessor [5,80] is invoked �rst by the GIPC on incoming GIPSY program's

source code stream. Preliminary program analysis, processing, and splitting the

source GIPSY program into �chunks�, is handled by the Preprocessor. Each chunk

of a source GIPSY program can potentially be written in a di�erent language and

identi�ed by a language tag. In that sense, a GIPSY program is a hybrid program

written in di�erent language variants in one or more source �le. The Preprocessor

after some initial parsing produces the initial parse tree, then constructs a preliminary

dictionary of symbols used throughout all parts of the program. The Preprocessor

then splits the code segments of the GIPSY program into chunks preparing them to be

fed to the respective concrete compilers for those chunks. The chunks are represented

through the CodeSegment class, instances of which the GIPC collects [8, 24].

GIPSY Program Segments. There are four baseline types of segments de�ned

in a GIPSY program [8]. These are:

� #funcdecl: It declares function prototypes written as imperative language

functions de�ned later or externally from this program to be used by the

intensional language part. The syntactical form of these prototypes is particular

to GIPSY programs and need not resemble the actual function prototype

declaration they describe in their particular programming language. They serve

37

as a basis for static and dynamic type assignment and checking within the

GIPSY type system with regards to procedural functions called by other parts

of the GIPSY program, e.g., the Lucid code segments [8].

� #typedecl: It lists all user-de�ned data types that can potentially be used by

the intensional part, e.g., classes. These are the types that do not explicitly

appear in the matching table describing the basic data types allowed in GIPSY

programs [8].

� #<IMPERATIVELANG> declares that this is a code segment written in whatever

IMPERATIVELANG may be, e.g., #JAVA for Java, #CPP for C++, #FORTRAN

for Fortran, #PERL for Perl, and #PYTHON for Python, etc. [8].

� #<INTENSIONALLANG> declares that what follows is a code segment written in

whatever INTENSIONALLANG may be, for example #GIPL, #LUCX, #JOOIP,

#INDEXICALLUCID, #JLUCID, #OBJECTIVELUCID, #TENSORLUCID, #MARFL,

#FORENSICLUCID [39], and #ONYX [81], etc., as speci�ed by the available GIPSY

implementations and stubs. An example of a hybrid program is presented in

Listing 2.1. The preamble of the program with the type and function declaration

segments are the main source of type information that is used at compile time

to annotate the nodes in the tree to help both static and semantic analyses [8].

2.3.2 GICF Overview

The General Imperative Compiler Framework (GICF) [82] is GIPSY's compiler

framework that allows for a generalized way of inclusion of any imperative languages

into intensional variants within the GIPSY environment. It essentially allows the

syntactical co-existence of the intensional and imperative languages in one source �le

by providing a Preprocessor that splits the intensional and imperative code chunks

that are then fed to their respective compilers. the results are then gathered and

linked together to form a compiled hybrid program as an instance of GEER [53].

38

#typedecl
myclass;

#funcdecl
myclass foo(int,double);
float bar(int,int):"ftp://localhost/cool.class":baz;
int f1();

#JAVA
myclass foo(int a, double b) {

return new myclass(new Integer((int)(b + a)));
}
class myclass {

public myclass(Integer a) {
System.out.println(a);

}
}

#CPP
#include <iostream>
int f1(void) {

cout << "hello";
return 0;

}

#OBJECTIVELUCID
A + bar(B, C)
where
A = foo(B, C).intValue();
B = f1();
C = 2.0;
end;

Listing 2.1: Example of a hybrid GIPSY program

Since GIPSY targets to unite most intensional paradigms in one research system,

it makes an e�ort to be as general as possible and as compatible as possible and

pragmatic at the same time [48]. GIPSY's GIPC can be extended to support compiler

module for C and Fortran functions as it does for Java. Towards that goal, GICF

is made extensible so that later on the language support for C++, Perl, Python,

shell scripts, and so on can be relatively easily added.

2.3.3 General Eduction Engine (GEE)

The primary purpose of the GEE is to evaluate compiled Lucid programs following

their operational semantics either locally or distributively using the lazy demand-

driven model (i.e., eduction). To address run-time scalability concerns, GEE is the

component where the distributed demand-driven evaluation takes place by relying

on the Demand Migration System (DMS) [70, 83] and on the multi-tier architecture

39

overall [9, 10, 48, 65]. The distributed system [84, 85] design architecture adopted for

the run-time system is a distributed multi-tier architecture, where each tier can have

any number of instances [24]. The architecture bears resemblance with a peer-to-peer

architecture [9, 10], where [24]:

� Demands are propagated without knowing where they will be processed or

stored.

� Any tier or node can fail without the system to be fatally a�ected.

� Nodes and tiers can seamlessly be added or removed on the �y as computation

is happening.

� Nodes and tiers can be a�ected at run-time to the execution of any GIPSY

program, i.e., a speci�c node or tier could be computing demands for di�erent

programs.

Below, we explain the important components of GEE.

1. Generic Eduction Engine Resources.

One of the pivotal concepts of the GIPSY's' solution is language independence

of the run-time system. In order to achieve that, the design relies on an

intermediate representation that is generated by the compiler: the Generic

Eduction Engine Resources (GEER). The GIPC compiles a program into an

instance of the GEER(s), including a dictionary of identi�ers extracted from the

program [5, 73, 80]. Since the compiler framework provides with the potential

to allow additions of any dialect of the Lucid language to be added through

automated compiler generation taking semantic translation rules in input [28],

the compiler designers need to provide a parser and a set of rules to compile and

link a GEER, often by translating a speci�c Lucid dialect to GIPL �rst [24].

Our work will handle these translations inside the Semantic Analyzer like its

predecessor Lucx.

40

As the name suggests, the GEER structure is generic, in the sense that the

data structure and semantics of the GEER are independent of the source

language. The engine was designed to be �source-language independent�, an

important feature made possible by the presence of the Generic Intensional

Programming Language (GIPL) as a generic language in the Lucid family of

languages [9, 10, 24]. The GEER contains, for all Lucid identi�ers in a given

program, typing information, rank (i.e., dimensionality information), as well as

an abstract syntax tree (AST) representation of the declarative de�nition of

each identi�er [9, 10, 24]. It is this latter tree that is traversed later on by the

demand generator tier in order to proceed with demand generation.

2. GIPSY Tier.

The architecture adopted for the most recent evolution of the GIPSY is a multi-

tier architecture where the execution of GIPSY programs is divided in three

di�erent tasks assigned to separate tiers [9, 10].

Each GIPSY tier is a separate process that communicates with other tiers using

demands, i.e., the GIPSY Multi-Tier Architecture operational mode is fully

demand-driven. The demands are generated by the tiers and migrated to other

tiers using the Demand Store Tier. We refer to a tier as an abstract and generic

entity that represents a computational unit independent of other tiers and that

collaborates with other tiers to achieve program execution as a group (GIPSY

network) [9, 10, 24].

In Figure 11 is the context use case diagram describing user interaction with

the nodes and tiers to get them started to form a GIPSY software network. The

user interaction is done either via command line or GUI support in the RIPE

package interfacing the GMT [86].

3. GIPSY Node.

Abstractly, a GIPSY Node is a computer (physical or virtual) that has been

registered for the hosting of one or more GIPSY Tiers. GIPSY Nodes are

41

Figure 11: GMT use-case diagram

registered through a GIPSY Manager Tier (GMT) instance. Technically, a

GIPSY Node is a controller that wraps GIPSY Tier instances, and that is

remotely reporting and being controlled by a GIPSY Manager Tier [9, 10]. As

shown in Figure 12, a GIPSY Node hosts one tier controller for each kind of

Tier. The Tier Controller acts as a factory that will, upon necessity, create

instances of this Tier, which provide the concrete operational features of the

Tier in question. This model permits scalability of computation by allowing

the creation of new Tier instances as existing tier instances get overloaded or

lost [9, 10,24].

4. GIPSY Instance.

A GIPSY Instance is a set of interconnected GIPSY Tiers deployed on GIPSY

Nodes executing GIPSY programs by sharing their respective GEER instances.

A GIPSY Instance can be executed across di�erent GIPSY Nodes, and the

same GIPSY Node may host GIPSY Tiers that are members of separate GIPSY

42

Figure 12: Design of the GIPSY node[9, 10]

Instances [9,10,24]. In Figure 12 is Paquet's rending of the described design [9].

GIPSY Instances form the GIPSY software networks, similar in a way to

software-de�ned networks [87].

5. Demand Generator Tier.

The Demand Generator Tier (DGT) generates demands according to the

program declarations and de�nitions stored in one of the instances of GEER

that it hosts. The demands generated by the Demand Generator Tier instance

can be further processed by other Demand Generator Tier instances (in the

case of intensional demands) or Demand Worker Tier instances (in the case of

procedural demands), the demands being migrated across tier instances through

a Demand Store Tier instance. Each DGT instance hosts a set of GEER

instances that corresponds to the Lucid programs it can process demands

for. A demand-driven mechanism allows the Demand Generator Tier to issue

system demands requesting for additional GEER instances to be added to its

GEER Pool (a local collection of cached GEERs it has learned), thus enabling

DST instances to process demands for additional programs in execution on the

GIPSY networks they belong to [9, 10,24].

43

6. Demand Store Tier.

The Demand Store Tier (DST) acts as a tier middleware in order to migrate

demands between tiers. In addition to the migration of the demands

and values across di�erent tiers, the Demand Store Tiers provide persistent

storage of demands and their resulting values, thus achieving better processing

performances by not having to re-compute the value of every demand every time

it is re-generated after having been processed. From this latter perspective, it

is equivalent to the historical notion of an intensional value warehouse [20, 88]

in the eductive model of computation (Section 2.1.2, page 23). A centralized

communication point or warehouse is likely to become an execution bottleneck

for large long-running computations. In order to avoid that, the Demand Store

Tier is designed to incorporate a peer-to-peer architecture as needed and a

mechanism to connect all Demand Store Tier instances in a given GIPSY

network instance. This allows any demand or its resulting value to be stored

on any available DST instance, but yet allows abstract querying for a speci�c

demand value on any of the DST instances.

7. Demand Worker Tier.

The Demand Worker Tier (DWT) processes primarily procedural demands, i.e.,

demands for the execution of functions or methods de�ned in a procedural

language, which are only present in the case where hybrid intensional programs

are being executed. The DGT and DWT duo is an evolution of the generator-

worker architecture adopted in GLU [36, 37, 89]. It is through the operation of

the DWT that the increased granularity of computation is achieved. Similarly

to the DGT, each DWT instance hosts a set of compiled resident procedures

(sequential thread procedure classes) that corresponds to the procedural

demands it can process pooled locally. A demand-driven mechanism allows

the Demand Worker Tier to issue system demands requesting for additional

GEERs to be added to its GEER pool, thus achieving increased processing

knowledge capacity over time, eductively [9, 10, 24].

44

8. General Manager Tier.

A General Manager Tier (GMT) is a component that enables the registration of

GIPSY Nodes and Tiers, and to allocate them to the GIPSY network instances

that it manages. The General Manager Tier interacts with the allocated tiers

in order to determine if new tiers and/or nodes are necessary to be created, and

issue system demands to GIPSY Nodes to spawn new tier instances as needed.

As with DSTs, multiple GMTs are designed to be peer-to-peer components,

i.e., users can register a node through any GMT, which will then inform all the

others of the presence of the new node, which will then be available for hosting

new GIPSY Tiers at the request of any of the GMT currently running. The

GMT uses system demands to communicate with Nodes and Tiers [9,10,24], in

a way similar to SNMP get and set requests [90�92]. In Figure 13 is a more

Figure 13: Detailed GMT context use case diagram

detailed GMT-oriented use case diagram of Figure 11 (where other tiers are

implied with the focus on the GMT). Once started, the GMT acts as a service

using the DMS, which is designed to play an active role in managing the GIPSY

software network instance along with the interacting user.

45

2.3.4 Scalability

The GIPSY multi-tier architecture after extensive design revision, implementation

and refactoring [10, 68, 69, 93] was put to scalability tests by Ji [69]. The need for

such is also emphasized in the work by Fourtounis et al . [94] where eduction and

massive parallelism of intensional evaluation are discussed in a formal model and

PoC implementation for analysis.

Scalability is an important attribute of any computing system as it represents the

ability to achieve long-term success when the system is facing growing demands load.

The multi-tier architecture was adopted for the GIPSY runtime system for research

goals such as scalability [9, 10]; therefore, upon implementation of the PoC Jini and

JMS DMS, the scalability of the GIPSY runtime system was assessed and validated

by Ji in his mater's thesis [69,95].

Researchers use scalability to denote the capability for the long-term success of a

system in di�erent aspects, such as the ability of a system to hold increasing amount

of data, to handle increasing workload gracefully, and/or to be enlarged easily [69,

95,96]. Ji did testing which showed that Jini DMS was better or worse over the JMS

circumstances in terms of scaling out of GIPSY Nodes onto more physical computers

and their available CPUs for the tiers, then the amount of memory used on the nodes

before DSTs run out of memory, amount of demands they could handle, network

delays and turnaround time, and other characteristics [69].

The scalability aspect is very important to this work as there is always a possibility

of a need to do heavy-weight pattern recognition tasks and process vast amounts of

di�erent types of data e�ciently, robustly, and e�ectively.

2.4 Summary

To summarize this chapter, we �rst established that expressions written in all Lucid

dialects correspond to higher-order intensional logic (HOIL) expressions with dialect-

speci�c instantiations. The contextual expression can be passed as parameters and

returned as results of a function and constitute the multi-dimensional constraint

46

on the Lucid expression being evaluated. Followed by, an explanation of MARF

architecture and pipeline and how it is a pivotal contributor to this research work.

Then we end our discussion by giving the necessary background on the General

Intensional Programming System (GIPSY) and its core components like GIPC and

GEE. We explain in detail the GIPC and GEE frameworks with the goal of �exibility

(data types, languages, replaceable components) and scalability (multi-tier DMS) in

mind, important for the MARFL project presented in this thesis.

47

Chapter 3

MARFL Speci�cations and Design

This chapter discusses the concrete syntax, operational semantics, as well as provide

de�nitions of operators introduced for MARFL. The inherited operators from other

languages such as Lucx along with their de�nitions will also be reviewed.

MARFL is a computational context speci�cation language that allows scripting

of MARF-based applications as context-aware, where the notion of context represents

�ne-grained con�guration details of a given MARF instance, which allows us to

execute it onto the GIPSY runtime system. It can also extend to other machine

learning backends such as TensorFlow. The language itself is general enough to specify

any parameters or sub-parameters for a context-oriented system model. MARFL is

based on Lucid [13, 14, 30] and its various dialects that allow natural expression of

various phenomena, inherently parallel, and most importantly, context-aware, i.e.,

the notion of context is speci�ed as a �rst-class value [2, 3, 51].

As previously mentioned (Chapter 1), the �rst formal approach to provide syntax

and operational semantics for MARFL was given by Mokhov in [6]. However, their

approach was only limited to presenting a conceptual and theoretical de�nitions for

the language. The aim of this research work is to extend, improve and implement the

syntax and operational semantics provided in [6] inside the GIPSY environment.

This chapter presents the summary of the design, and formalization of the syntax

and semantics of our proposed language. That includes the design and requirements

considerations of theMARFL language (Section 3.1), including higher-order contexts

48

(Section 3.1.2), syntax (Section 3.2) and semantics (Section 3.3).

3.1 MARFL Language Requirements and Design

Considerations

This section presents concepts and considerations in the design of the MARFL

language. The end goal is to de�ne our MARFL language where its syntactic

constructs and expressions concisely model properties of algorithms present for a

given MARF instance. The implementing system, GIPSY, provides the ability to

perform evaluations in a distributed manner based on several con�gurations that are

modelled in an intensional manner.

3.1.1 Core Language Properties, Features, and Requirements

We de�ne and use MARFL to specify context-aware con�gurations for MARF

representing the parameters for available algorithms for each of the stages in a MARF

pipeline described in Section 2.2.3. One of the goals is to be able to �script� the

machine learning tasks using available machine learning backends as expressions and

run that �script� through an evaluation system that provides the results of speci�ed

pattern recognition task [6].

MARFL builds its design by aggregating the features and semantics of multiple

Lucid dialects mentioned in Chapter 2 along with its own extensions. Lucx's

context calculus with contexts as �rst-class values [2] and operators on simple

contexts and context sets are adopted to manipulate hierarchical contexts inMARFL.

Additionally, MARFL inherits the properties of Forensic Lucid, Objective

Lucid and JOOIP and their comprising dialects for the arrays and structural

representation of parameters for providing con�gurations. Hierarchical contexts in

MARFL follow the examples given in [6] and by overloading both @ and # (de�ned

further in Section 3.2, page 54) to accept di�erent types as their left and right

arguments.

49

One of the basic requirements while designing MARFL is that the �nal

language should be a conservative extension of the previous Lucid dialects (valid

programs in those languages are valid programs in MARFL). This is helpful

when complying with the compiler (GIPC) and the run-time subsystem (GEE)

frameworks within the implementing system, the General Intensional Programming

System (GIPSY) [21,75]. The partial translation rules (Section 3.2.1.2) are provided

when implementing the language compiler within GIPSY, such that the run-time

environment (General Eduction Engine, or GEE) can execute it with minimal changes

to GEE's implementation

3.1.2 Higher Order Context

Higher-order context (HOC) hierarchy was introduced by Mokhov as a theoretical

concept in [6] which was later adopted in his PhD thesis [26] titled Intensional

Cyberforensics where HOC was used to model evidential statements for forensic

speci�cation evaluations. As mentioned brie�y in Chapter 1, Lucid dialects rely on

higher-order intensional logic (HOIL) to provide context-oriented multidimensional

reasoning of intensional expressions. HOIL combines functional programming with

various intensional logics to allow explicit context expressions that can be evaluated as

�rst-class values which can be passed as parameters to functions and return as results

with set of operators de�ned on contexts [24, 25]. Mokhov's HOC interpretation for

MARFL in [6] allows evaluation at arbitrary nesting of the con�guration context

with some defaults in the intermediate and leaf context nodes [24].

3.1.3 Formal Syntax and Semantics De�nitions

The MARFL language includes the necessary syntax and semantics constructs as

detailed in the following sections. We start by de�ning the common terminology used

subsequently in the chapter throughout the formal de�nition of MARFL syntax and

semantics and their description.

50

3.1.3.1 Structural Operational Semantics

We use structural operational semantics to describe the semantics of MARFL.

Paquet [1] in 1999 has given a structural operational semantics of GIPL in 1999. The

subsequently produced work on Lucx [2,3], JOOIP [55], other intensional languages

used this semantics style consistently ever since. The basic operational semantics

description has rules in the form of Premises
Conclusions

with Premises de�ned as possible

computations, which, if take place, Conclusions will also take place [2, 97].

Following the steps and identi�ers presented in Section 2.1.1.3, [1,2] we thus de�ne

the following:
Table 2: MARFL identi�er types in D

type form
dimension (dim)
constant (const, c)
operator (op, f)
variable (var, E)
context operator (cop, f)
context set operator (sop, f)
MARFL operator (mop, f)

De�nition environment: The de�nition environment D stores the de�nitions of

all of the identi�ers that appear in a MARFL program. As in Equation 19, it

is a partial function

D : Id→ IdEntry (32)

where Id is the set of all possible identi�ers and IdEntry, summarized in

Table 2, has possible kinds of values for each identi�ed kind. (This table is

an extended version of Table 1 with additional entries we de�ne further.) Per

Equation 17, D ⊢ E : v means the expression E evaluates to the value v under

D [1].

Evaluation context: The current evaluation context P (sometimes also referred to

as a point in the context space) is an additional constraint put on evaluation,

so per Equation 18, D,P ⊢ E : v speci�es that given D, and in P , expression E

evaluates to v [1].

51

Identi�er kinds: The following identi�er kinds can be found in D:

1. Dimensions de�ne simple coordinate pairs, which one can query and

navigate with the # and @ operators. Their IdEntry is simply (dim) [1].

2. Constants (IdEntry = (const, c), where c is the value of the constant)

are external entities that provide a single value independent of the context

of evaluation. Examples are integers, strings, and Boolean values, etc. [1].

3. Data operators are external entities that provide memoryless functions.

Examples are the arithmetic and Boolean functions. The constants and

data operators are said to de�ne the basic algebra of the language. Their

IdEntry is (op, f), where f is the function itself [1].

4. Variables carry the multidimensional streams. Their IdEntry is (var, E),

where E is the MARFL expression de�ning the variable. Variable

names are unique [1]. Finite variable streams can be bound by the

special beginning-of-data (bod) and end-of-data (eod) markers (eod was

introduced in [98]).

5. Context operators (cop, f) is a Lucx-style simple context operator type [2,

3]. These operators help us to manipulate context components in set-

like operations, such as union, intersection, di�erence, and the like. Both

simple context and context set operators are de�ned further.

6. Context set operators (sop, f) is a Lucx-style context set operator type [2,

3]. Both simple context and context set operators are de�ned further.

7. ML subsystem is a MARFL dimension type which provides the machine

learning sub-system chosen by the user for implementing the speci�ed

pattern recognition pipeline. This dimension can vary over tags such as

MARF, TensorFlow, PyTorch, etc.

8. Sample Loader is a MARFL dimension type which encodes the type of

data the pattern recognition pipeline is going to use. This dimension can

vary over tags such as WAV, MP3, TEXT, etc.

52

9. Preprocessing is a MARFL dimension type which speci�es the pre-

processing algorithm for the loaded data type. It can vary over available

algorithms in the machine learning subsystem selected.

10. Feature Extraction is a MARFL dimension type which can specify the

feature extraction algorithm to be used in the pipeline. This dimension can

vary over tags such as FFT, Random Feature Extraction, etc. Essentially

over all the available algorithms in the selected subsystem.

11. Classi�cation is a MARFL dimension type which speci�es the

classi�cation algorithm to be used for the pipeline. It can vary over

available algorithms in the machine learning subsystem selected.

MARFL operators (mop, f) is aMARFL context operated de�ned further

in Section 3.2.2

3.1.3.2 Context Types.

A general de�nition of context is [2, 3]:

De�nition 1. Context: A context c is a �nite subset of the relation: c ⊂ {(d, x)|d ∈

DIM ∧ x ∈ T}, where DIM is the set of all possible dimensions, and T is the set of

all possible tags [2, 3].

De�nition 2. Tag: Tags are the indices to mark positions in dimensions to identify

a context. [2, 3].

De�nition 3. Simple context: A simple context is a collection of ⟨dimension : tag⟩

pairs, where there are no two such pairs having the same dimension component.

Conceptually, a simple context represents a point in the context space, i.e., this is

the traditional GIPL context P. A simple context having only one ⟨dimension : tag⟩

pair is called a micro context. It is the building block for all the context types [2, 3].

Syntactically, a simple context is [E : E, ..., E : E] [2, 3], i.e., [Ed1 : Et1 , ..., Edn :

Etn] where Edi evaluate to dimensions and Eti evaluate to tags.

53

De�nition 4. Context set: A context set (also known as �non-simple context�) is a

set of simple contexts. Context sets represent regions of the context space, which can

be seen as a set of points, considering that the context space is discrete. Formally

speaking, context set is a set of ⟨dimension : tag⟩ mappings that are not de�ned by a

function [2,3].

Syntactically, context set is {E, ..., E}, where E → [E : E, ..., E : E].

Following the above fundamental de�nitions, Section 3.2 explains the complete

syntax speci�cation and Section 3.3 explains the operational semantics speci�cation

for MARFL.

3.2 Concrete MARFL Syntax

The concrete syntax of the MARFL language is presented in Figure 14. As

stated before, it is in�uenced by the productions from Lucx [2, 29], JLucid and

Objective Lucid [5], GIPL and the hierarchical contexts given in [6] which were

then implemented in Forensic Lucid [26]. Presenting this concrete syntax partially

ful�ls our Objective O1.

In Figure 14, we �rst start by providing common top-level syntax expressions E

of the language from identi�ers, operators, arrays, the where clause, dot-notation,

and so on. Then we provide the Q where productions containing various types

of declarations, including the common GIPL dimensions and the new constructs

for MARF built-in dimension types such as ml_subsystem, sampleLoader, etc. In

Figure 15 we elaborate on the syntactical details on the hierarchicalMARFL context

speci�cation of themachine learning id (MLid), sample loader id (SLid), preprocessing

id (PRid), feature extraction id (FEid), and classi�cation id (CLid). The various

parameters involved in MARF's contexts require a hierarchy of contexts, subcontexts,

and sub-subcontexts, with each level providing greater detail in the con�guration

settings. This contextuality results in a speci�c con�guration instance with the

required settings. In cases where some dimensions are missing in the MARFL

speci�cation, default values from the relevant module are used to �ll them in. The

54

modules themselves represent higher-order dimensions that can be added or removed

as the system evolves. However, user-de�ned variables, identi�ers, and functions are

not supported in this context, and have therefore been excluded from the syntax

and semantics. The dimension identi�ers currently used are constants derived from

MARF's available modules and are considered reserved words in MARFL.

In Figure 16 is a syntax speci�cation of di�erent types of operators, such as

arithmetic, logic, and intensional operators, in their unary and binary forms as well

as context operators(cxtop) for MARF speci�cations.

E ::= id (33)

| E(E, ..., E) (34)

| EE, ..., E (35)

| if E then E else E fi (36)

| # E (37)

| E @ E (38)

| E bin-op E (39)

| un-op E (40)

| E i-bin-op E (41)

| i-un-op E (42)

| E where Q end; (43)

| [E : E, ..., E : E] (44)

| cxtop E (45)

| [E, ..., E] (46)

Q ::= dimension id, ..., id; (47)

| id = E; (48)

| E.id = E; (49)

| ml_subsystem id = MLid ; (50)

| sampleLoader id = SLid E ; (51)

| preprocessing id = PRid E ; (52)

| featureExtraction id = FEid E ; (53)

| classification id = CLid E ; (54)

| QQ (55)

Figure 14: Concrete MARFL syntax

55

MLid ::= MARF (56)

| TensorFlow (57)

SLid ::= WAV (58)

| MP3 (59)

| TEXT (60)

| SINE (61)

| AU (62)

| MIDI (63)

PRid ::= FFT-LOW-PASS-FILTER (64)

| RAW-PREPROCECESSING (65)

FEid ::= FFT (66)

| RANDOM-FEATURE-EXTRACTION (67)

CLid ::= CHEBYSHEV-DISTANCE (68)

| RANDOM-CLASSIFICATION (69)

Figure 15: Concrete MARFL syntax (MLid, SLid, PRid, FEid, CLid)

bin-op ::= arith-op | logical-op | bitwise-op (70)

un-op ::= + | - (71)

arith-op ::= + | - | * | / | % | ˆ (72)

logical-op ::= < | > | >= | <= | == | in | && | || | ! (73)

bitwise-op ::= | | & | ˜ | !| | !& (74)

i-bin-op ::= @ | i-bin-op-forw | i-logic-bitwise-op (75)

i-bin-op-forw ::= fby | upon | asa | wvr (76)

i-logic-bitwise-op ::= and | or | xor (77)

i-un-op ::= # | i-bin-un-forw (78)

i-bin-un-forw ::= first | next | iseod (79)

cxtop ::= train | classify (80)

Figure 16: Concrete MARFL syntax (operators)

3.2.1 Core Operators

We de�ne the basic set of the classic intensional operators [1] that are present to

familiarize the reader what they do.

56

3.2.1.1 De�nitions of Core Operators

The operators are de�ned below to give a more complete picture. The classical

operators first, next, fby, wvr, upon, and asa were previously de�ned in [1] and

earlier works (see [56,57] and papers and references therein).

De�nition 5. Let X be a stream of natural numbers. Let Y be another stream of

Boolean values; true is cast to 1 and false to 0 when used together with X in one

stream.

X = (x0, x1, . . . , xi, . . .)

= (0, 1, . . . , i, . . .)

Y = (y0, y1, . . . , yi, . . .)

= (true, false, . . . , true, . . .)

De�nition 6. first: a stream of the �rst element of the argument stream.

first X = (x0, x0, . . . , x0, . . .)

De�nition 7. next: a stream of elements of the argument stream after the �rst.

next X = (x1, x2, . . . , xi+1, . . .)

De�nition 8. fby: the �rst element of the �rst argument stream followed by all of

the second argument stream.

X fby Y = (x0, y0, y1, . . . , yi−1, . . .)

De�nition 9. and: a logical AND stream of truth values of its arguments.

X and Y = (x0 && y0, x1 && y1, x2 && y2, . . . , xi+1 && yi+1, . . .)

57

De�nition 10. or: a logical OR stream of truth values of its arguments.

X or Y = (x0 || y0, x1 || y1, x2 || y2, . . . , xi+1 || yi+1, . . .)

De�nition 11. xor: a logical XOR stream of truth values of its arguments.

X xor Y = (x0 ⊕ y0, x1 ⊕ y1, x2 ⊕ y2, . . . , xi+1 ⊕ yi+1, . . .)

De�nition 12. wvr (stands for whenever): wvr chooses from its left-hand-side

operand only values in the current dimension where the right-hand-side evaluates to

true. This is a classical Indexical Lucid operator.

X wvr Y =

if first Y ̸= 0

then X fby (next X wvr next Y)

else (next X wvr next Y)

De�nition 13. asa (stands for as soon as): asa returns the value of its left-hand-

side as a �rst point in that stream as soon as the right-hand-side evaluates to true.

This is a classical Indexical Lucid operator.

X asa Y = first (X wvr Y)

De�nition 14. upon (stands for advances upon): unlike asa, upon switches context

of its left-hand-side operand if the right-hand side is true. This is a classical

Indexical Lucid operator.

58

X upon Y = X fby (

if first Y ̸= 0

then (next X upon next Y)

else (X upon next Y))

De�nition 15. �.� (dot): is a scope membership navigation operator.

The �.� operator is employed in multiple uses, so we include it into our syntax

and semantics.

� From indexical expressions [1, 99] with the operators de�ned in the preceding

and following sections it facilitates operations on parts of the evaluation context

to denote the speci�c dimensions of interest to work with.

� Additional use in MARFL (inspired from Forensic Lucid) and introduced

in [6], is the contextual depth navigation, similar in a way to the OOmembership

navigation.

De�nition 16. #: queries the current context of evaluation.

Traditionally[1] # is de�ned as:

= 0 fby (#+ 1)

for N tag set, that were in�nite and ordered, essentially being akin to array indices

into the current dimension X, and #X returned the current implicit index within X.

59

Subsequently,

#.E = 0 fby.E(#+ 1)

#C = C

#S = S

#.E was introduced to allow querying any part of the current multidimensional context

where E evaluates to a dimension, a part of the context. C and S are Lucx simple

contexts and context sets.

De�nition 17. @ : switches the current context of evaluation.

Traditionally [1],a @ is de�ned as:

X @ Y =if Y = 0 then first X

else (next X) @ (Y − 1)

for N tag set in a single dimension. Subsequently,

X @ .dE

X @ C

X @ S

are also provided. X @ .dE is the indexical way to work with parts of the context [1];

C and S are the simple contexts and context sets [2].

@ is likewise adapted to work inside MARFL. For example, WAV @ [channels

: 1] - switches WAV loader's con�guration dimensions channels to mono, essentially

returning a loader with the new con�guration setting.

60

3.2.1.2 De�nition of Core Operators by Means of @ and #

This step follows the same tradition as the most of the SIPLs in GIPSY

(Section 2.1.3), which are translated into GIPL. The existing rules are applied

here for the majority of our operators to bene�t from the existing interpretation

available in GEE (Section 2.3.3) for evaluation purposes. Following the steps

similar to Paquet's [1]. There is a mix of classical operators that were previously

de�ned in [1, 56], such as first, next, fby, wvr, upon, and asa.The collection of

the translated operators is summarized in Figure 17. Following the same reasons

of (im)practicality as in the PoC implementation of Lucx's parser and semantic

analyzer [3], we don't translate some MARFL constructs. Instead, dedicated

interpreter plug-ins are designed to work directly with the untranslated constructs,

and their operators.

first X = X@0 (81)

last X = X@(#@(#iseod(#)− 1)) (82)

next X = X@(#+ 1) (83)

prev X = X@(#− 1) (84)

X fby Y = if # = 0 then X else Y@(#− 1) (85)

X pby Y = if iseod # then X else Y@(#+ 1) (86)

X wvr Y = X@T where (87)

T = U fby U@(T + 1)

U = if Y then # else next U

end

X asa Y = first (X wvr Y) (88)

X ala Y = last (X rwvr Y) (89)

X upon Y = X@W where (90)

W = 0 fby (if Y then (W + 1) else W)

end

X and Y = X&&Y (91)

X or Y = X||Y (92)

X xor Y = not((X and Y) or not (X or Y)) (93)

Figure 17: Operators translated to GIPL-compatible de�nitions [1]

3.2.2 MARFL Context Operators

While the operators presented so far in the preceding sections are designed to support

MARFL context in addition to their traditional behavior, the operators presented

here were designed to work speci�cally with MARFL to specify if the intention is to

61

train or classify in the pipeline. These operators were introduced in the initial syntax

provided by Mokhov in [6] and are de�ned as:

De�nition 18. train is an extension of a free function that translates to a concrete

subsystem's function for starting the training procedure. It is a pre-de�ned procedural

demand which can start the training phase on the loaded dataset within the selected

subsytem.

De�nition 19. classify is also an extension of a free function that translates

to a concrete subsystem's function for starting the classi�cation procedure. It is a

parametrized procedural meta function corresponding to the selected subsystem which

creates dynamic procedural demands.

3.3 Operational Semantics

Like the syntax, the operational semantics of MARFL takes advantage of the

semantic rules of GIPL [1] (Section 2.1.1.3, page 19), Indexical Lucid [100],

Objective Lucid [5], and Lucx [2], JOOIP [55], and Forensic Lucid [26].

It also takes inspiration from the work in [6], augmented with the new operators,

and de�nitions. We specify resulting semantic de�nitions in MARFL along with the

explanation of the rules and the notation. We use the same notation as the referenced

languages to maintain consistency in de�ning our rules.

The rules are grouped in several �gures: the basic core rules are in Figure 3,

additional rules for MARFL are shown in Figure 18. What follows are notes on the

additional details of rules of interest.

1. The evaluation context environment P de�nes a point in the multidimensional

context space at which an expression E is to be evaluated [1, 53]. P changes

when the @ operator is evaluated, or a dimension is declared in a where clause.

It is a set of ⟨dimension : tag⟩ mappings, associating each dimension with a tag

index over this dimension. P is thus a partial function:

P : EI → T (100)

62

Ecid :
D(id) = (const, c)

D,P ⊢ id : c
(94)

Eopid :
D(id) = (op, f)

D,P ⊢ id : id
(95)

Eop :
D,P ⊢ E : id D(id) = (op, f) D,P ⊢ Ei : vi

D,P ⊢ E(E1, . . . , En) : f(v1, . . . , vn)
(96)

Ew :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ E : v

D,P ⊢ E where Q : v
(97)

Qid :
D,P ⊢ id = E : D†[id ↦→ (var, E)],P

(98)

QQ :
D,P ⊢ Q : D′,P ′ D′,P ′ ⊢ Q′ : D′′,P ′′

D,P ⊢ Q Q′ : D′′,P ′′ (99)

Figure 18: Operational semantics rules of MARFL: E and Q Core

where EI is a set of possible dimension identi�ers, declared statically or

computed dynamically. T is a tag set.

In traditional Lucid semantics, the tag set T = N, i.e., a set of natural

numbers [1]. In Lucx's extension, T = U is any enumerable tag set [2], that may

include various orderings of numerical or string tag sets, both �nite and in�nite

([3]). In MARFL, T is a set of tags corresponding to individual parameter

con�guration for the selected algorithm in a MARF instance.

2. The initial de�nition environment includes the prede�ned operators, the

constants, and P0 de�nes the initial context of evaluation [1,2]. Thus, D0,P0 ⊢

E : v represents the computation of any mar� expression E resulting in value v.

3. The semantic operator † represents the addition of a mapping in the de�nition

environment D, associating an identi�er with its corresponding semantic record,

here represented as a tuple [1, 55].

4. The function P ′ = P† [id ↦→ v′′] speci�es that P ′(x) is v′′ if x = id, and P(x)

otherwise.

5. The rule for the where clause, Ew (Figure 18, rule 97), which corresponds to

the syntactic expression E where Q, evaluates E using the de�nitions Q therein.

63

6. The additions to the de�nition environment D and context of evaluation P

made by the Q rules (Figure 19, rule 108; Figure 18, rules 98) are local to the

current where clause. This is represented by the fact that the Ew rule returns

neither D nor P .

7. The evaluation rule for the navigation operator @ , Eat(cxt) (106), which

corresponds to the syntactic expression E @ E ′, evaluates E in context E ′ [2].

8. The semantic rule Econstruction(cxt) (105, Figure 19) evaluates [Ed1 :

Ei1 , . . . , Edn : Ein] to a simple context [2]. It speci�cally creates a context

as a semantic item and returns it as a context P that can then be used by the

rule 106 to navigate to this context by making it override the current context.

9. The semantic rule 96 is valid for the de�nition of the context operators, where

the actual parameters evaluate to values vi that are contexts Pi.

10. The semantic rule 104 expresses that the # symbol evaluates to the current

context. When used as a parameter to the context calculus operators, this allows

for the generation of contexts relative to the current context of evaluation [1,2,

29].

3.4 Summary

To summarize, we start by explaining the core concept of higher order context which

was initially implemented in Lucx and is adapted into our research work. We

provide the formal syntax for MARFL followed by the de�nitions for core operators

as well as the newly introduced MARFL context operators. We go on to provide

the core operational semantic rules as well as context speci�c semantic rules for

our language. MARFL o�ers a new way to formalize pattern recognition tasks by

providing the testing parameters in form of high order contexts as well as accessibility

to a wider audience due to the simpler nature of Lucid-based languages. This ful�ls

our Objective O1 in Section 1.5.

64

Edid :
D(id) = (dim)

D,P ⊢ id : id
(101)

EE.did :
D(E.id) = (dim)

D,P ⊢ E.id : id.id
(102)

Etag :
D,P ⊢ E : id D(id) = (dim)

D,P ⊢ #E : P(id)
(103)

E#(cxt) :
D,P ⊢ # : P

(104)

Econstruction(cxt) :

D,P ⊢ Edj : idj D(idj) = (dim)
D,P ⊢ Eij : vj P ′ = P0†[id1 ↦→ v1]†. . .†[idn ↦→ vn]

D,P ⊢ [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein] : P ′ (105)

Eat(cxt) :
D,P ⊢ E′ : P ′ D,P†P ′ ⊢ E : v

D,P ⊢ E @ E′ : v
(106)

Edot :
D,P ⊢ E2 : id2 D(id2) = (dim)

D,P ⊢ E1.E2 : tag(E1 ↓ {id2})
(107)

Qdim :
D,P ⊢ dimension id : D†[id ↦→ (dim)],P†[id ↦→ 0]

(108)

(109)

Figure 19: Operational semantics rules of MARFL: E and Q Core Context

65

Chapter 4

Implementing MARFL in GIPSY

This chapter discusses the proposed software design and implementation aspects

behind MARFL (presented in the preceding chapter). This includes speci�c

contributions to GIPSY in terms of its GIPC and GEE frameworks redesign to

support the MARFL compilation and run-time. The architectural design centers

around theMARFL parser and semantic analyzer as well as various re-design details

of GEE to supportMARFL execution. W e present the necessary architectural design

concepts, frameworks, and some of their PoC implementation.

4.1 MARFL Compiler

The general design approach (Section 2.3.1, page 37) for adding a new SIPL compiler

calls for implementing the IIntensionalCompiler interface augmented with a

speci�c IPL parser and a semantic analyzer. Accordingly, we add the corresponding

new MARFL compiler framework to GIPC of GIPSY. We create a JavaCC [101]

grammar to generate a MARFL parser that is then integrated into the GIPC

framework followed by an extension of the MARFL semantic analyzer for speci�c

MARFL AST nodes introduced in this work, such that GEE can evaluate them

at run time. We likewise introduce the MARFL FormatTag to handle MARFL-

speci�c constructs. These constitute annotations of the AST nodes that allow GEE's

evaluation engines to deal appropriately with them when an interpreter encounters

66

such nodes. The MARFL annotation allows to invoke the appropriate operators from

the GIPSY type system at run-time.

4.1.1 MARFL Parser

Following the tradition of many GIPC's parsers, MARFL's grammar (in accordance

with its syntax presented in Section 3.2, page 54) is speci�ed in a particular grammar

format. We use Java Compiler Compiler (JavaCC) [101] to generate the parser for

MARFL. We give a brief overview of JavaCC and its speci�cations.

JavaCC along with the built-up JJTree, is the tool the GIPSY project is relying

on since the �rst implementation [27] to create Java-language parsers and ASTs

for source grammar �les. The Java Compiler tool implements the same idea for

Java, as do lex/yacc [102] (or flex/bison) for C � reading a source grammar they

produce a parser that complies with this grammar and gives you a handle on the root

of the abstract syntax tree. JavaCC requires a grammar speci�cation of the target

programming language, written in the syntax of JavaCC.

4.1.2 MARFL Semantic Analyzer

MARFL's semantic analyzer's design is primarily [3], because Lucx is not fully

translated into GIPL and because MARFL adds new constructs, such as machine

learning subsystem contexts that don't have yet any known translation algorithm

into GIPL. Thus, MARFLSemanticAnalyzer is created to account for the new node

types in AST corresponding to the extensions. MARFLSemanticAnalyzer capitalizes

on the earlier semantic analyzers implemented by Tong [3] and Wu [28].

MARFLSemanticAnalyzer's responsibility is to ensure that the static compiled

AST and the Dictionary of identi�ers adhere to the declarative aspects of the

MARFL language's operational semantics described in Section 3.3, page 62. The

semantic analyzer traverses the AST that came out of the JJTree tool of JavaCC top-

down/depth-�rst to do the static type-checking, identi�er scope and de�nition checks,

initial rank analysis, and other typical semantic analysis tasks [28]. The di�erences

67

from the traditional GIPL- and Indexical Lucid-based dialects are that additional

type checks are done for Lucx-derived simple contexts and context sets [3].

Since not all of the semantic checks can be done at the compile time, the run-time

evaluation engines does some of the run-time checks during program execution. This

ful�ls our Objective O2 presented in Section 1.5.

4.2 Updates to GIPSY's Frameworks' Design

To facilitate the addition and execution of MARFL into the GIPSY evaluation

platform, number of design changes were carried out in various GIPSY frameworks,

including GIPC and GEE to support MARFL. GEE's Lucid interpretation module

(Interpreter) was already upgraded during the implementation of Forensic

Lucid by Serguei Mokhov [26] to be GIPSYContext-aware and use other GIPSY

type system's types consistently (as its previous iteration [72] was using arrays of

integers to represent the context of evaluation and did not support any of the new

Lucx constructs).

4.2.1 General Design Overview

In Figure 20 is a general conceptual design overview of the MARFL compilation

and evaluation process involving various components and systems. Of main interest

to this work are the inputs to the compiler�the MARFL fragments (subsystem

algorithms that represent the stages of a pattern recognition pipeline) and programs

act as input. The exact speci�cations for selected algorithms, choice of training or

classi�cation phase with the dataset path are combined to form a MARFL program.

The complete speci�cation is then processed by the compiler depicted as GIPC on

the image (the General Intensional Program Compiler) through the invocation of

the MARFL SIPL compiler that is aware of the MARFL constructs, such as the

sample loader, machine learning subsystem, their properties along with operators

detailed in Section 3.2, page 54. The compiler produces an intermediate version

of the compiled program as an AST and a contextual dictionary of all identi�ers

68

Figure 20: MARFL Compilation and Evaluation �ow in GIPSY

(e.g., context identi�ers for each stage), encapsulated in a GEER that evaluation

engines (under the GEE component) understand. The compiled GEER and engine

con�guration (either a default, or a custom �le) can be now fed to either the GEE

for processing by one or more evaluation engines or to the General Manager Tier

(GMT). Either way it reaches the MARFLDGT which calls for MARFLInterpreter for

evaluation of the MARFL program. Upon evaluation, an instance of DST is started

and workers are assigned using the sub-system speci�c DWT. The sub-system speci�c

69

DGT generates and stores demands in the DST which are then picked up by workers,

which essentially replace those demands with the results using the same generated

signature inside the DST. The said MARFL evaluation engines are designed to use

the traditional eduction architecture while processing the GEER.

Figure 21: Updated high-level structure of the GIPC framework

In Figure 21 is the updated high-level structure of GIPC (cf. Figure 10, page 36

in Section 2.3). This design presents and follows the same framework for semantic

analyzers that was introduced in [26,29]. Introduced semantic analyzers may behave

di�erently for di�erent SIPLs. As stated earlier, the modi�cations (detailed further)

70

comprise the fact that MARFL SIPL produces an AST that is not necessarily

translated (fully, or partially) into GIPL (as is the case of Lucx and Forensic

Lucid) bypassing the SIPLtoGIPLtranslator. For such cases in the past, the

speci�c semantic analyzers were created to work speci�cally with such ASTs. The

speci�c semantic analyzers are aware of any additional types in the type system

particular to the language in question and rely on its validating methods. In �gure,

the semantic analyzers, translators, and GEER linkers are conceptually represented as

one class simply because these modules work together closely. At the implementation

level, they are separate Java classes.

Figure 22: Semantic analyzers framework

At present, the semantic analyzers framework is represented by the

ISemanticAnalyzer interface and has three concrete instances implementing it:

SemanticAnalyzer, which is the general analyzer that is originally capable of

handling of classical GIPL, Indexical Lucid, JLucid, Objective Lucid,

and JOOIP programs (combined with the procedural code linking for the

hybrid dialects in ProcedureClassGenerator) contributed to by Wu [28,

55] and Mokhov [5]. Then follow LucxSemanticAnalyzer, produced by

Tong [3], the ForensicLucidSemanticAnalyzer produced in [26] by Mokhov,

and the MARFLSemanticAnalyzer produced for the work presented here on

MARFL following the inheritance hierarchy for convenience and code re-use

for many of the semantic rules. All semantic analyzers adhere to the same

71

API and produce a GEER, corresponding to their syntactical and semantic

annotations. In Figure 22 is the class diagram corresponding to the just

described framework. Using ForensicLucidSemanticAnalyzer as inspiration,

MARFLSemanticAnalyzer primarily inherits from LucxSemanticAnalyzer to work

with simple context, and context set type checks. Additional checks are added to

work with MARFL speci�c contexts and operators.

4.2.2 Execution Engine Redesign

Semantically speaking, the interpretation of a Lucid program happens at the

generator components, DGTs, because this is where the eductive evaluation engines

reside. The aforementioned compiled GIPSYProgram (a GEER instance) containing

the annotated AST as well as the Dictionary of identi�ers (corresponding to the

initial D0), and de�nitions, is passed to GEE (Figure 20, page 69). GEE then hands

them over to an interpreter. Traditionally, there was only one interpreter that could

handle the compiled GIPL as its only input language. Then this design morphed,

during implementation of Lucx, into a more general architecture to allow more

than one interpreter and demand generator types. Thus, to add interpretation of

non-translated-to-GIPL dialects like Forensic Lucid or Lucx, and in our case

MARFL, the architecture is updated to replace the Interpreter component in

the DGT based on the either a command-line option or the annotated node tag

in the GEER's AST. In this process the DST, the primary demand propagation

machinery, does not change. However, the worker side of DWT may occasionally

change, depending on the type of procedural demands made by the user.

The framework to support this was implemented during the implementation of

Forensic Lucid by Mokhov in [26]. It allowed for multiple evaluation engines

interpreting new input language material. In the case of MARFL, we override

standard DGT's Executor to be able to spawn MARFLDGT which is the main Java

class responsible for calling the newly introduced MARFLInterpreter which delegates

demands based on the machine learning subsystem it gets from eductive evaluation of

the AST. MARFLInterpreter overrides the standard Interpreter and is responsible

72

for traversing the annotated AST in the GIPSYProgram. The generality of this design

bene�ts us in implementing problem-speci�c (PS) DGTs for di�erent machine learning

subsystems like TensorFlow can have TensorFlowDGT and TensorFlowDWT, etc.

Currently, we only support using MARF subsystem for our pattern recognition tasks

which uses the MARFCAT PS DGT and DWT.

This non-GIPL engine software layer di�erentiation allows us to cater to problem-

speci�c-tiers as well as non-GIPL languages to be able to take advantage of the GEE's

distributed middleware infrastructure by improving the GEE framework making it

more �exible. This allows various programming language paradigms to be included

into GIPSY that are not necessarily compatible with GIPL or the translation e�ort

to undertake is too great to be e�ective, error-free, or e�cient as shown in [3]. The

addition of following components is towards ful�lment of our Objective O3.

4.2.2.1 MARFLDGT Components

MARFLDGT is our main Java program that is responsible for generating and storing the

demands into DST. It closely follows and inherits its functionalities from the legacy

DGTWrapper that handles tiered demand generation. It is responsible for loading

the compiledMARFL GIPSY program which is passed onto MARFLInterpreter for

evaluation. As discussed in Section 4.2.2, if the evaluated system is MARF it will call

MARFCATDGT and so on for other machine learning sub-systems. Below, we describe

the functionality of various methods that are implemented for MARFLDGT. The class

diagram for MARFLDGT is shown in Figure 23.

� init() - This method initializes the MARFLDGT object, setting up the necessary

properties from the con�guration object such as base directory for the

metadata, training data �lename,MARFL GIPSY program as well as a default

con�guration for the machine learning sub-system.

� startTier() - This method overrides the default method in DGTWrapper to

create a new instance of a TA (Transport Agent) using the con�guration object

passed via re�ection property in Java. It also creates a new instance of a

73

DemandDispatcher object using the implementation class name speci�ed in

the con�guration �le. In our case we use the Jini DMS as our dispatcher due

to scalability reasons mentioned in Section 2.3.4.

� stopTier() - This simple method is responsible for stopping the allocated tiers

during execution.

� run() - This is the main processing method which loads the GIPSY program,

evaluates it using MARFLInterpreter, updates the con�guration string and

starts the sub-system speci�c DGT.

� updateCon�gString() - This method uses a hashmap generated via

evaluation in MARFLInterpreter to update the con�guration string which

tells the system to use which particular algorithm to call for speci�c pattern

recognition stages.

Figure 23: Class diagram for MARFLDGT

4.2.2.2 MARFL Interpreter Components

As introduced earlier, MARFLInterpreter is a Java program responsible for eductive

evaluation of our GIPSY program by traversing the AST generated during the

compilation phase of the MARFL program in GIPC. Some functionality is borrowed

from the already existing LegacyInterpreter framework in GEE. We extend on top

74

Figure 24: Class diagram for MARFL interpreter

of it so that we can evaluate the newly introduced MARFL speci�c AST nodes. A

serialized GIPSY program is loaded into our MARFLDGT which then extracts the AST

forwarding it to MARFLInterpreter. Below, we describe the functionality of various

methods that are implemented inside MARFLInterpreter. As shown in the class

diagram (Figure 24) for MARFLInterpreter, it uses MARFLParserTreeConstants

generated from JavaCC to handle MARFL speci�c AST nodes.

� eval() - This is our primary method which traverses the AST. Based on the

annotated AST nodes it encounters, it either updates a HashMap, or starts

a sub-system speci�c DGT, or recursively calls the children of node until the

entire syntax tree is traversed. The HashMap includes speci�c algorithms to be

used for each pattern recognition stage as well as which sub-system to delegate

these tasks to.

� execute() - This method is responsible for handling legacy execution and

storing the results from the eval() method into a dictionary based on the context

it is evaluated in.

� getMARFLHashMap() - This method returns the HashMap which contains the

details of algorithms and sub-system based on the evaluation of AST.

75

4.3 Compiling and Executing MARFL on GIPSY

4.3.1 Compilation Phase - GIPC

As shown in Figure 20, we �rst need to compile a user generated MARFL program

which states the pattern recognition task speci�cations. The GIPC component

of GIPSY platform has been updated with the MARFL compiler, as explained

in Section 4.1 to handle the compilation of our new Lucid dialect. The following

command can be used to compile a MARFL program.

java -jar gipc.jar --marfl [FILENAME]

The -marfl tag makes sure that GIPC uses the MARFL SIPL compiler to

compile the passed IPL program. The tag also ensures that GIPC calls for

MARFLSemanticAnalyzer, described brie�y in Section 4.1.2 instead of regular GIPL

SemanticAnalyzer, to perform semantic analysis on the program. The name of

MARFL program, with extension .ipl needs to be included as last argument to this

command. Since MARFL is a conservative extension of Lucid, it can parse any

previous Lucid dialects as well.

A sample MARFL program is shown in Listing 4.1. The program

speci�es to use MARF as its machine learning sub-system and classify the

wireshark-1.2.0_train.xml dataset using FFT and Chebyshev Distance

algorithm for feature extraction and classi�cation respectively.

classify "wireshark-1.2.0_train.xml" @ [mls, sl, pr, fe, cl]

where

ml_subsystem mls = MARF;

sampleLoader sl = XML [encoding : utf-8]

where

dimension encoding;

end;

preprocessing pr = RAW_PREPROCESSING [cutoff: 2024, windowsize: 2048]

where

dimension cutofff, windowsize;

end;

featureExtraction fe = FFT [poles: 40]

where

76

dimension poles;

end;

classification cl = CHEBYSHEV_DISTANCE [r : 5]

where

dimension r;

end;

end

Listing 4.1: Sample MARFL program

Upon compilation, GIPC produces a GIPSY program with extension .gipsy which

is a serialized Java object containing the annotated AST from JJTree and a dictionary

of identi�ers from the MARFLSemanticAnalyzer. The obtained AST, shown in

Listing 4.2, can also be printed via debug (pass �debug option to gipc.jar) mode

for user convenience.

AT

CLASSIFY

STRING : "wireshark-1.2.0_train.xml"

WHERE

ARRAY

ID : mls

ID : sl

ID : pr

ID : fe

ID : cl

ML

ID : mls

ML_SUBSYSTEM

MARF

SL

ID : sl

SAMPLE_LOADER

XML

WHERE

SIMPLECONTEXT

CONTEXT_ELEMENT

ID : encoding

ID : utf8

DIMENSION

ID : encoding

PR

ID : pr

77

PRE_PROCESSING

RAW_PREPROCESSING

WHERE

SIMPLECONTEXT

CONTEXT_ELEMENT

ID : cutoff

INTEGER : 2024

CONTEXT_ELEMENT

ID : windowsize

INTEGER : 2048

DIMENSION

ID : cutofff

ID : windowsize

FR

ID : fe

FEATURE_EXTRACTION

FFT

WHERE

SIMPLECONTEXT

CONTEXT_ELEMENT

ID : poles

INTEGER : 40

DIMENSION

ID : poles

CL

ID : cl

CLASSIFICATION

CHEBYSHEV_DISTANCE

WHERE

SIMPLECONTEXT

CONTEXT_ELEMENT

ID : r

INTEGER : 5

DIMENSION

ID : r

Listing 4.2: AST generated for MARFL program

4.3.2 Execution Phase - GEE

As described in Figure 20, the execution a MARFL GIPSY program happens on a

tiered architecture inside GEE. There are some preliminary services required for the

correct execution of our program. We �rst require a middleware service such as Jini.

78

Jini DMS (Demand Migration System) is responsible for incorporating the demand

store with the distribution architecture. Once the service is active, we assign a GMT

node that can manage DST, DGT and DWT allocation. To do so one of the following

command need to be executed:

sudo ./startMARFLGMTNode.sh

sudo ./startMARFLGMTNode.sh -n gmtd

The �rst command starts a GEE instance with a GMT console window which

uses Java JFrames to communicate allocation of other tiers by taking further input

from the user. However, the second command is more user friendly as it uses a

GMT daemon to automatically start a GEE instance, bypassing the need for a GMT

console window. startMARFLGMTNode.sh executable �le uses a con�guration �le

shown in Listing 4.3.

gipsy.GEE.multitier.GMT.tierID=manager

gipsy.GEE.multitier.Node.GMTConfigs=GMT.config;GMTJini.config

gipsy.GEE.multitier.Node.DSTConfigs=JiniDST.config;JMSDST.config

gipsy.GEE.multitier.Node.DGTConfigs=marflDGT.config

gipsy.GEE.multitier.Node.DWTConfigs=marfcatDWT.config

Listing 4.3: MARFL GMT Node Con�g for MARF

The con�guration �le communicates with GEE to start a speci�c DST, Jini DST in

our case. It also includes the con�guration �les forMARFL speci�c DGT and a sub-

system speci�c DWT. Once the initial setup is done, we can use the GMT daemon

controller via a gmtc.sh script present on the GIPSY platform, to start allocation

of our demand store manager, workers and demand generators by using following

commands:

./gmtc.sh allocate NodeIndex DST JiniDST.config [number of instances to start]

./gmtc.sh allocate NodeIndex DWT marfcatDWT.config DSTIndexAtGMT [number of instances to start]

./gmtc.sh allocate NodeIndex DGT marflDGT.config DSTIndexAtGMT [number of instances to start]

The con�guration �le for DWT can be updated based on the sub-system selected

for pattern recognition task. The marflDGT.config �le is responsible for starting the

MARFLDGT(Section 4.2.2.1) on a GEE node via a Java feature, re�ection. Re�ection

79

allows us to manipulate the properties inside a executed Java program at run-

time, essentially allowing us to start a sub-system speci�c DGT based on AST

evaluation. Other properties include the name of compiled GIPSY program, the

name of the dataset to be used. It also includes default con�guration properties for a

machine learning sub-system. The last two properties are updated inside MARFLDGT

based on the evaluation of AST from MARFLInterpreter. A sample of default

marflDGT.config for MARF sub-system is shown in Listing 4.4.

gipsy.GEE.multitier.wrapper.impl=gipsy.GEE.multitier.DGT.marfl.MARFLDGT

gipsy.GEE.multitier.DGT.DemandDispatcher.impl=jini.rmi.JiniDemandDispatcher

marfcat.meta.basedir=.

marfcat.meta.filename=wireshark-1.2.0_train.xml

marfcat.args=--batch-ident -nopreprep -raw -fft -cheb --dgt

marfl.gipsy=wireshark-classify.gipsy

Listing 4.4: Default Con�guration for MARF

4.4 Summary

This chapter focuses on the architectural design details for the evaluating system

of GIPSY along with the related work and PoC implementation aspects. This

includes the necessary updates, modi�cations, and contributions to the design of

the GIPSY platform; which includes the updated compiler (GIPC) and the updates

to the semantic analyzers framework; the run-time system (GEE) with the additional

engines for MARFL. The JavaCC grammar speci�cation of the MARFL parser

can be found in GIPSY's source code repository. Its generated compiler sources

are integrated in gipsy.GIPC.intensional.SIPL.MARFL. We described the new

classes and their corresponding methods for problem-speci�c DGT forMARFL that is

implemented inside GEE followed by the execution procedure of aMARFL program.

A sample of aMARFLGIPSY program along with its generated AST is also discussed

for better understanding. Our research Objective O4 is ful�lled by the procedure

described in Section 4.3.

80

Chapter 5

Evaluation and Results

In Chapter 3, we presented the formal syntax and operational semantics for

our proposed intensional language, MARFL. We also explained the necessary

architectural modi�cations to the GIPSY platform to enable the compilation and

execution of MARFL programs, which can perform pattern recognition tasks

in Chapter 4. Moreover, we outlined the possible steps to execute a compiledMARFL

program on a single machine or a distributed architecture.

This chapter starts by comprehensively describing the evaluation methodology

that we will follow in the following sections. We present the results of our

experiments that provide an objective means of verifying that the requirements stated

in Section 1.5 are met.

5.1 Evaluation Methodology

In this section, we provide the reader with methods we follow in this research work

to evaluate that our solution truly solves the problems we mentioned in Section 1.3

and that our proposed solution meets the objectives we described in Section 1.5. We

propose the following to evaluate our solution:

� In order to measure the ability of our proposed language, MARFL and to

verify our Objective O1, we will represent three di�erent pattern recognition

81

tasks, which were initially done using Java, in MARFL. We will compare the

number of lines of code required to script these tasks using our solution versus

the original implementation. This comparison will highlight the ease of use

and e�ciency of our intension based solution compared to using conventional

approach.

� In order to assess the e�ectiveness of the new execution engine and to verify our

Objectives O3 and O4, we will conduct a performance evaluation by computing

the execution time of our three proposedMARFL programs. This will allow us

to compare the execution of our solution to existing Java based implementations

and determine how this architectural re-design a�ects execution. To ensure

a fair comparison, we will use the same hardware con�guration and dataset

for all evaluations. We will also compare the output obtained to original

implementation to ensure that our solution is producing comparable or better

results than their conventional implementations.

� To evaluate the e�ectiveness of distributed computing in pattern recognition and

to verify our Objective O5, we propose measuring the execution time of pattern

recognition tasks on distributed systems and comparing it to the non-distributed

version. To conduct this evaluation, we will use a distributed architecture

consisting of multiple distinct machines, each with its own processing power

and memory.

5.2 Evaluation Environment

5.2.1 Environment Speci�cations

To ensure the reliability and consistency of our experimental results, it was crucial

to conduct our research on a homogeneous distributed architecture. In order to

achieve this, we deploy our GIPSY architecture and our proposed solution within on

Amazon Web Services (AWS) cloud platform. To brie�y explain our experimental

environment, we created six dedicated Linux-based EC2 (Elastic Cloud Compute)

82

virtual machine instances. Each instance was assigned a speci�c role to ful�ll during

the execution of our experiments. The suitability of EC2 instances for scienti�c

computational tasks has been highlighted in previous research [103]. We chose the

same hardware con�guration, displayed in Table 3, for each instance.

Con�guration Component Speci�cations

EC2 Instance

Memory 32 GB
Processor Intel Xeon Platinum 8124M CPU @3.00GHz × 16
OS Ubuntu 22.04.3 LTS x86-64

Table 3: Hardware con�guration for each EC2 instance

One of our EC2 instance will act as GMT, whereas other instances are assigned the

role of acting as workers in DWT. To ensure proper communication between them, we

also setup a Network File System (NFS) which allows us to share the same dataset and

the required con�guration �les between them. For communication between the DWT

nodes, we setup a Virtual Private Cloud [104] and add all our instances to it. VPC

essentially ensures that all of our instances are part of the same network. Figure 25

demonstrates how our EC2 instances are setup to emulate a distributed architecture.

Figure 25: AWS EC2 instances setup

83

5.2.2 Environment Design

Before we discuss our proposed experiments to evaluate our MARFL execution

engine, we would like to brie�y familiarize the reader with our evaluation design.

As shown in Figure 26, the execution of a MARFL program can be depicted as a

linear data�ow graph which consists of three steps: (1) The fetching of training data

points from the DST by the DWT; (2) Calling machine learning sub-system speci�c

training or classi�cation methods; (3) Storing the results received from the training

or classi�cation method.

Figure 26: MARFL execution pipeline on GIPSY

In our architecture, demands can exist in two states: PENDING and

COMPUTED. The PENDING state indicates that a demand needs to be processed,

while the COMPUTED state indicates that the demand's processing has �nished.

The DGT is responsible for generating demands in the order speci�ed by the data

�ow graph of the pipeline. When demands enter the DST, they are initially in the

PENDING state. The DGT generates fetch demands, which specify the processing

of speci�c data points from the dataset. Each �le is assigned a demand signature,

typically as a hash code, and then stored in the DST.

Once the DGT has created the fetch demands, the DWTs take on the responsibility

of executing these demands. The number of demands directly correspond to the

number of training data points in the dataset provided. There can be multiple

instances of DWTs. The DWTs perform the required training or classi�cation tasks

and store the corresponding results back into the DST. Upon storing the results,

the demand transitions into the processed state. The pipeline begins with the DGT

generating fetch demands, and the DWTs start their processing. The DGT waits for

84

these demands to be processed by the DWTs. Once a DWT completes its processing,

it generates a result demand to store the obtained result set. This marks the end of

the pattern recognition pipeline for that particular demand.

After the results are achieved, both the DGT and DWTs wait for new demands to

be processed, while the DST holds the previous demand and its corresponding results.

This allows the architecture to handle subsequent demands e�ciently, as the DGT

and DWTs are ready to process new demands, and the DST retains the historical

demand and result data.

5.3 Evaluation of MARFL-speci�c Engine to Exe-

cute MARFL Programs

To complete our Objectives O1 to O4 which includes veri�cation that we can compile

and execute MARFL programs on the GIPSY platform following the additions

discussed in Section 4.2, we will perform three di�erent pattern recognition tasks.

The subsequent sections will describe the following aspects for each task:

� Brief description about the pattern recognition task: An overview of the

pattern recognition task is provided, highlighting its relevance as discussed

in Section 1.2.1.

� Comparison between the selected task implemented in a conventional language

and MARFL: We compare the number of lines of code required to script

the same task in a conventional language as compared to MARFL which

highlights the speci�c bene�ts of MARFL in terms of e�ciency and ease of

implementation. We also emulate the results achieved for the same machine

learning task when done using a conventional approach.

Successful execution of the following experiments will ful�ll our Objec-

tives O1, O2, O3, and O4 of allowing a user to script, compile and execute any

pattern recognition task in an intensional manner. These experiments highlight the

ease of our solution as opposed to conventional approaches.

85

5.3.1 Vulnerable Code Classi�cation in Common Vulnerabili-

ties and Exposures (CVE)

As described in our motivational scenarios Section 1.2.1, MARFL can be used

for scripting pattern recognition tasks that can classify vulnerabilities in a given

set of source codes. Prior to our solution, as discussed in Section 2.2.4, Mokhov

demonstrated a tool called MARF-based Code Analysis Tool, or MARFCAT [63],

which inherits MARF's pipeline and testing methodology to learn from the (Common

Vulnerabilities and Exposures) CVE-based vulnerable cases. We employ the services

of the same MARFCAT application but via aMARFL program to classify vulnerable

source code based on CVE. Since the design of MARFCAT is general enough to handle

all kinds of pattern recognition tasks, our solution allows a user to just script any

training or classi�cation tasks in an intensional way as opposed to writing new and

lengthy Java applications.

As shown in Listing 4.1, a MARFL program that can classify exploits and

vulnerabilities from CVE based source codes consists of only 20 lines whereas

the original MARFCAT Java based implementation has well over 1500 lines of

code. The dataset speci�ed in the program, wireshark-1.2.0_train.xml, consists

of 2401 source �les that need to classi�ed for various kind of CVE described

vulnerabilities [105].

Once the execution is accomplished, the DWT shows classi�cation results as an

output for each �le in the dataset. A excerpt of the DWT classi�cation results is

shown in Appendix A which shows File ID, the con�guration used for classi�cation

as speci�ed in the MARFL program, as well as the classi�ed subject and its ID.

In order to ensure the consistency of our �ndings with the original implementation,

we compare our result output with the conventional approach of using the MARFCAT

application. The comparison showed that our implementation produced a similar

output like original implementation.

86

5.3.2 Speaker Identi�cation

SpeakerIdentApp is a text-independent speaker identi�cation application, based

on MARF's API and its implementation. As the name suggests, it can be used

for identi�cation of speakers' as of who they are, their gender, and accent through

machine learning. Based on the pattern recognition pipeline algorithms available in

MARF for this task, we have scripted a MARFL program as shown in Listing 5.3.2.

As described in our �rst motivational scenario (Section 1.2.1), a researcher might

need to identify speakers to build a language learning application. MARFL

allows them to script these tasks without any prior knowledge about MARF or

the SpeakerIdentApp itself. The researcher can also perform comparative studies

by using di�erent con�gurations to �nd the best �t for their use case. The program's

current training data comprises 32 unique speakers, each of whom contributed voice

samples in the .wav format. This results in a total of 320 audio �les available for

training purposes.

train "speaker_ident_train.xml" @ [mls, sl, pr, fe, cl]

where

ml_subsystem mls = MARF;

sampleLoader sl = WAV [channels : 2, bitrate : 16]

where

dimension channels, bitrate;

end;

preprocessing pr = FFT_LOW_PASS_FILTER [windowsize: 2048]

where

dimension windowsize;

end;

featureExtraction fe = FFT [poles: 40]

where

dimension poles;

end;

classification cl = CHEBYSHEV_DISTANCE [r : 6]

where

dimension r;

end;

end

87

The MARF application, SpeakerIdentApp, the source code for which

can be found at https://sourceforge.net/projects/marf/files/MARF/MARF%

20Framework, consists of over 1100 lines of code whereas the same the speaker

identi�cation task can be performed using a MARFL script with only 20 lines of

code. The resulting machine learning model obtained from executing the MARFL

program shown in Listing 5.3.2 can be used to identify speakers from the testing

portion of the same dataset. An excerpt of results from this classi�cation task is

shown in Appendix B. To verify our obtained results, we compared our output with

the classi�cation results for the same con�guration as in [22].

5.3.3 Detection and Classi�cation of Malware in Network

Tra�c

Machine learning algorithms can be used to detect and classify malware in network

tra�c by training models on known malware pcap data. Mokhov created an extension

of MARFCAT called MARFPCAT (MARF-based PCap Analysis Tool) [106], which

speci�cally analyzed pcap traces in the given network tra�c data. This application

can be used as a evidence feed tool for network forensics related investigations about

malware and scanning. Most of the ideas in MARFCAT are still applicable here

where the same approach was used to machine-learn, detect, and classify vulnerable

or weak code fast and with relatively high precision. For our third experiment, we

provide a MARFL program that can use a previously trained model to classify these

malware in given pcap data using MARF as its machine learning sub-system. We use

800 pcap data �les to train a machine learning model using our MARFL program.

The original Java implementation of MARFPCAT is about 1500+ lines of code

whereas we can perform the same classi�cation or training task using a MARFL

script (shown in Listing 5.3.3) in less than 20 lines of code.

classify "marfpcat_test.xml" @ [mls, sl, pr, fe, cl]

where

ml_subsystem mls = MARF;

sampleLoader sl = XML [encoding : utf-8]

88

https://sourceforge.net/projects/marf/files/MARF/MARF%20Framework
https://sourceforge.net/projects/marf/files/MARF/MARF%20Framework

where

dimension encoding;

end;

preprocessing pr = FFT_LOW_PASS_FILTER [cutoff: 2024, windowsize: 2048]

where

dimension cutofff, windowsize;

end;

featureExtraction fe = MINMAX [poles: 40]

where

dimension poles;

end;

classification cl = COSINE_SIMILARITY_MEASURE [r : 6]

where

dimension r;

end;

end

5.4 Evaluation of MARFL Programs on a Dis-

tributed Architecture

In this section, we aim to evaluate a MARFL program on a distributed architecture.

To conduct this evaluation, we have chosen a speci�c experiment from Section 5.3,

focusing on the pattern recognition task of classifying vulnerable source code from

the CVE dataset (Section 5.3.1).

For this evaluation, we will replicate the experiment using the distributed

computation capabilities provided by the GIPSY platform. As per our objective O5,

our solution should enable users to perform complex pattern recognition computations

on a distributed architecture without requiring any additional code modi�cations

in their scripts. The environment speci�cations for this evaluation were described

in Section 5.2.1.

To begin, we will �rst allocate additional GIPSY nodes on a single machine.

Currently, the GIPSY architecture allows the allocation of only one DWT per GIPSY

node, but we can allocate an unlimited number of GIPSY nodes on a system. The

same MARFL program shown in Listing 4.1 will be used for this evaluation. We will

89

vary the number of DWTs available and compare the execution times for the pattern

recognition task. All these extra workers allow concurrent computing while on same

physical machine and distributed computation when allocated on di�erent machines.

Figure 27: Execution time by number of workers

5.4.1 Results for Single Instance Execution

1. Figure 27 illustrates the total execution time for each available number of

workers on GIPSY nodes. As depicted in the �gure, the execution time

decreases almost by 36% just by the addition of another worker. All the timings

mentioned include the time required for GIPSY node registration and speci�c

tier allocation.

2. For the same pattern recognition task, the original implementation of the

MARFCAT app takes 78.23s to execute without any distributed computations.

However, since MARFL can inherently execute on a distributed architecture,

addition of just one more worker node results in faster execution as compared

to non-distributed original implementation.

3. We also notice that for this speci�c task, the execution time begins to plateau

after �ve allocated DWTs, indicating that we do not require more than �ve

90

workers. It is important to note that the number of workers needed may vary

depending on the complexity and size of the dataset used in the selected pattern

recognition task.

4. We observe that as we increase the number of available workers, there is a

very slight increase in the total execution time. This slight increase can be

attributed to the allocation time required for these additional workers. However,

the impact on the overall execution time is negligible.

Followed by, we performed this experiment again but this time the workers were

allocated on six di�erent Amazon EC2 instances as demonstrated in Figure 25. Since

we implemented a Network File System (NFS), each of the EC2 instance will have

access to the same training dataset. NFS also helps us in keeping track of demands

in the DST over all the instances, since the con�guration �le of our Jini middleware

DST (RegDSTTA.config) is accessible to all machines.

Figure 28: Execution time comparison: single instance vs. multiple instances

5.4.2 Results for Multiple Instance Execution

1. Figure 28 presents the total execution time for di�erent numbers of DWTs, each

of which are deployed across an EC2 instance. It provides a comparison between

91

the execution times of DWTs on a single instance versus multiple instances.

The �gure clearly demonstrates that when each DWT has dedicated processing

power on its own instance, the execution time of the pattern recognition task is

further reduced making our solution even faster.

2. We clearly demonstrate that employing two workers in the DWT, each with

their own dedicated processing power, yields better executions times compared

to workers running on a single instance sharing computation resources. As

with the increase in workers on single instance, we notice that our executions

times start to �atten when we allocate four workers in DWT, surpassing the

performance achieved with �ve workers running on a single instance.

3. However, it is important to note that as we increase the number of workers and

corresponding instances, there is a trade-o� to consider. The communication

overhead between distinct instances introduces a slight increase in execution

time compared to workers running on the same instance. While the performance

bene�ts of using distinct instances for each worker are evident, it becomes

particularly justi�ed when dealing with larger datasets and more complex

algorithms. In such scenarios, the computational requirements and resource

demands are higher.

4. In summary, we showcase the advantage of distributing the workload across

distinct multiple worker machines. By leveraging the processing capabilities of

individual instances, the parallel execution of DWTs signi�cantly enhances the

overall performance for the pattern recognition task.

With these results, we have successfully achieved our Objective O5, demonstrating

that users can leverage the distributed computation capabilities of the GIPSY

platform without the need to add any speci�c code to theirMARFL scripts. Overall,

this evaluation highlights the e�ectiveness of the GIPSY platform's distributed

architecture in improving the execution time of pattern recognition tasks, showcasing

its potential for enhancing the performance of MARFL programs.

92

5.5 Summary

In this chapter, we start by describing our evaluation methodology, which serves as an

objective means of verifying the completion of the objectives outlined in Section 1.5.

Following this, we provide the hardware speci�cations and brief design details of our

evaluation environment. Then, we provide the MARFL scripts for three separate

pattern recognition tasks which were originally implemented in Java. We also present

the corresponding execution results for these tasks. Subsequently, we evaluate the

execution times for one of our tasks by varying the allocated DWTs, aligning with our

objective of demonstrating that MARFL programs can be executed on a distributed

architecture without necessitating additional coding from the user, thanks to the

capabilities of the GIPSY platform. Moving forward, the next chapter will present

our concluding remarks. We will also outline the limitations that we encountered

during our research and discuss potential future work in this �eld.

93

Chapter 6

Conclusion and Future Work

In Chapter 1, we introduced the problem for this research work and provided related

motivational scenarios in Section 1.2. We also described our objectives for this

dissertation in Section 1.5. Chapter 2 presented the background of our research

which included detailed introduction to the Lucid family of intensional languages

and the evaluation platform used. In Chapter 3 we present our new Lucid dialect

introduced for the ful�llment of our objectives. We go in detail about the syntax

and semantics of our language, providing de�nitions wherever required for newly

introduced operators or rules. Chapter 4 focuses on design and implementation of our

solution inside the selected GIPSY platform. We provide overview on evaluation �ow

of a MARFL program from compilation to execution phase. Chapter 5 presented

the results of various experiments conducted to evaluate the ful�llment of our

objectives. Eventually, in this chapter, we start by describing the our conclusion

to our dissertation in Section 6.1, followed by some limitations and potential future

work to be considered in Section 6.2.

6.1 Conclusion

In this section, we conclude our research based on the conducted experiments and

the results that we achieved in Chapter 5. Below we address the ful�llment of the

objectives that we stated in Chapter 1.

94

� In our research, we devised a solution which enables researchers to perform

complex pattern recognition tasks through an intensional scripting approach

without requiring knowledge of any speci�c machine learning framework. We

built upon the syntax and semantics of this language and used the JavaCC tool

to develop a compiler that can e�ectively compile these scripts. As a result,

our solution achieves the goals outlined in Objective O1 and O2, providing the

expected Abstract Syntax Tree and an intermediate representation for these

tasks. This approach streamlines the pattern recognition process, making it

more accessible to researchers without expertise in machine learning frameworks

or coding in general, and ultimately provides them with a feasible solution.

� We introduced a dedicated module within the GIPSY architecture speci�cally

designed to execute MARFL programs. This module includes a MARFL-

speci�c DGT responsible for loading and interpreting the intermediate object

produced by compiling a MARFL program. This interpretation is handled by

the MARFL interpreter that is designed to traverse the annotated AST, thus

enabling it to generate demand for the relevant machine learning sub-system in

an eductive manner. Additionally, the interpreter sets the evaluation context

for each stage of the pattern recognition pipeline using a con�guration string

that is passed to the relevant machine learning sub-system. These additions

to the architecture ensure that it can e�ectively execute MARFL programs,

ful�lling Objective O3.

� We successfully executed three di�erent MARFL programs presented

in Chapter 5. To achieve this, we utilized the MARFCAT DGT and DWT

modules, both of which are available on the GIPSY platform. By using our

solution, we were able to create concise and intensional scripts that e�ciently

accomplished complex pattern recognition tasks. Our approach eliminates the

need for lengthy lines of code and enables researchers to obtain training models

and classi�cation result sets with ease. Overall, the successful execution of these

MARFL programs con�rms the ful�llment of our research Objective O4.

95

� By integrating our solution inside the GIPSY platform, we not only take

advantage of the advanced GIPC and GEE framework but also the distributed

architecture. By leveraging these capabilities, we were able to distribute our

pattern recognition tasks e�ciently without signi�cant user intervention. Unlike

complex coding requirements in frameworks such as TensorFlow or PyTorch,

our approach enables researchers to initiate training or classi�cation processes

in a distributed manner with ease. Through our results in Section 5.4, we

successfully demonstrated that our solution can execute pattern recognition

tasks on a distributed platform without the need for additional code, ful�lling

Objective O5. This makes our devised solution scalable to increasing demand

particularly in the context of large and complex datasets.

6.2 Limitations and Future Work

While our research has made signi�cant strides in addressing the problem at hand,

and has successfully achieved the objectives outlined in Chapter 1, there are still some

limitations that need to be addressed. Most of these limitations can be overcome with

potential future work on this solution. Some of those limitations and future works

are listed below:

� Our current solution works with a wide variety of algorithms for each pattern

recognition stage but it is still limited by the algorithms available inside the sub-

system package used. Moreover, addition of any new algorithms or machine

learning sub-system would require the developer to update the syntax and

provide a new compiler. Future work could focus on exploring ways to improve

the �exibility and adaptability of our approach to handle new and emerging

algorithms and machine learning sub-systems. This could involve investigating

techniques for delegating algorithm selection to the execution engine, as well

as exploring ways to incorporate external libraries and frameworks into our

solution.

96

� Currently we only support MARF as our potential machine learning sub-system.

While our syntax implementation allows for the use of other sub-systems,

such as TensorFlow, the lack of sub-system-speci�c modules within GIPSY

presents a challenge for researchers looking to work with other systems. To

address this limitation, future work could focus on implementing sub-system-

speci�c modules for other popular frameworks and integrating them into the

GIPSY, particularly sub-system speci�c DGT and DWT like already present

for MARFCAT.

� At present, our presented solution is capable of only executing pattern

recognition tasks for a single con�guration. MARFL syntax allows users

to script tasks for multiple con�gurations of the pattern recognition pipeline

within the same program. Unfortunately, our current execution engine is not

equipped to handle evaluations involving multiple con�gurations. To address

this limitation, future work involves updating the execution engine to enable

users to execute a single MARFL program that can perform a speci�c task

for multiple machine learning con�gurations. This would facilitate the users to

obtain a comparative analysis between di�erent pipeline con�gurations. By

executing the same task using various con�gurations, users can assess the

performance of di�erent approaches and select the optimal con�guration for

their speci�c use case.

� While our approach successfully enabled the execution of MARFL programs

on a distributed architecture without requiring any additional code from the

user, there is still room for improvement in the allocation and management

of GIPSY nodes. Currently, the user can run executable scripts which can

somewhat automate the allocation of appropriate DST, DGT and DWT on

GIPSY nodes. However, in future we can look into completely automating this

node allocation process so the user only has to run the MARFL program and

wait for the results. Future work could focus on automatically allocating and

managing GIPSY nodes, potentially enabling users to simply run a MARFL

97

program and wait for the results. This could involve investigating techniques

for dynamically scaling the number of nodes based on the size and complexity

of the dataset or developing new approaches for optimizing node allocation and

utilization.

� In our research, we only focused on executing pattern recognition tasks using

MARFL on a distributed computation but we did not extensively test the fault

tolerance of the GIPSY platform. As a result, there may be scenarios where

GIPSY nodes fail during mid-computation, resulting in incomplete or inaccurate

results. To address this limitation, future work could focus on exploring

techniques for improving the fault tolerance of the evaluation platform. One

potential solution involves leveraging Kubernetes, as explored by Zahraei in

his master's thesis [107]. By integrating Kubernetes and other fault-tolerance

solutions, we can improve the management and utilization of GIPSY nodes for

computation, potentially minimizing the impact of node failures and improving

the overall accuracy and reliability of our approach.

6.3 Summary

In this chapter, we concluded our research by providing the list of achieved

experiments and the results that we conducted in this research in Section 6.1. Finally,

we talk about the limitations that a�ected our research �ndings followed by future

work for this research in Section 6.2. We consider the broader implications of our

work and provide a clear rationale for why this avenue of research is valuable.

98

Bibliography

[1] J. Paquet, �Scienti�c intensional programming,� Ph.D. dissertation, Depart-

ment of Computer Science, Quebec City, Canada, 1999.

[2] K. Wan, �Lucx: Lucid enriched with context,� Ph.D. dissertation, Department

of Computer Science and Software Engineering, Concordia University, Montreal,

Canada, 2006.

[3] X. Tong, �Design and implementation of context calculus in the GIPSY,�

Master's thesis, Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada, Apr. 2008, http://spectrum.library.

concordia.ca/975704/.

[4] S. A. Mokhov, J. Paquet, and M. Debbabi, �Designing Forensic Lucid � an

intensional speci�cation language for automated cyberforensic reasoning,� 2014,

being prepared for submission to Journal of Digital Forensics, Security, and Law

(JDFSL).

[5] S. A. Mokhov, �Towards hybrid intensional programming with JLucid,

Objective Lucid, and General Imperative Compiler Framework in the GIPSY,�

Master's thesis, Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada, Oct. 2005, ISBN 0494102934; online

at http://arxiv.org/abs/0907.2640.

[6] ��, �Towards syntax and semantics of hierarchical contexts in multimedia

processing applications using MARFL,� in Proceedings of the 32nd Annual IEEE

International Computer Software and Applications Conference (COMPSAC).

99

http://spectrum.library.concordia.ca/975704/
http://spectrum.library.concordia.ca/975704/
http://arxiv.org/abs/0907.2640

Turku, Finland: IEEE Computer Society, Jul. 2008. doi: 10.1109/COMP-

SAC.2008.206. ISSN 0730-3157 pp. 1288�1294.

[7] S. A. Mokhov and M. Debbabi, �File type analysis using signal processing

techniques and machine learning vs. file unix utility for forensic analysis,�

in Proceedings of the IT Incident Management and IT Forensics (IMF'08), ser.

LNI140, O. Goebel, S. Frings, D. Guenther, J. Nedon, and D. Schadt, Eds. GI,

Sep. 2008. ISBN 978-3-88579-234-5. ISSN 1617-5468 pp. 73�85.

[8] S. A. Mokhov, J. Paquet, and X. Tong, �A type system for hybrid intensional-

imperative programming support in GIPSY,� in Proceedings of the Canadian

Conference on Computer Science and Software Engineering (C3S2E'09). New

York, NY, USA: ACM, May 2009. doi: 10.1145/1557626.1557642. ISBN 978-1-

60558-401-0 pp. 101�107.

[9] J. Paquet, �Distributed eductive execution of hybrid intensional programs,� in

Proceedings of the 33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC'09). IEEE Computer Society, Jul. 2009.

doi: 10.1109/COMPSAC.2009.137. ISBN 978-0-7695-3726-9. ISSN 0730-3157

pp. 218�224.

[10] B. Han, S. A. Mokhov, and J. Paquet, �Advances in the design and

implementation of a multi-tier architecture in the GIPSY environment with

Java,� in Proceedings of the 8th IEEE/ACIS International Conference on

Software Engineering Research, Management and Applications (SERA 2010).

IEEE Computer Society, May 2010. doi: 10.1109/SERA.2010.40. ISBN 978-0-

7695-4075-7 pp. 259�266, online at http://arxiv.org/abs/0906.4837.

[11] D. Dowty, R. Wall, and S. Peters, Introduction to Montague Semantics.

Dordrecht, The Netherlands: D. Reidel, 1981.

[12] R. Carnap, Meaning and Necessity: a Study in Semantics and Modal Logic.

University of Chicago Press, Chicago, USA, 1947.

100

http://dx.doi.org/10.1109/COMPSAC.2008.206
http://dx.doi.org/10.1109/COMPSAC.2008.206
http://dx.doi.org/10.1145/1557626.1557642
http://dx.doi.org/10.1109/COMPSAC.2009.137
http://dx.doi.org/10.1109/SERA.2010.40
http://arxiv.org/abs/0906.4837

[13] W. W. Wadge and E. A. Ashcroft, Lucid, the Data�ow Programming Language.

London: Academic Press, 1985.

[14] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge,

Multidimensional Programming. London: Oxford University Press, Feb. 1995,

ISBN: 978-0195075977.

[15] W. W. Wadge, �Possible WOOrlds,� in Intensional Programming I, M. A. Orgun

and E. A. Ashcroft, Eds., vol. Intensional Programming I. World Scienti�c,

May 1995, pp. 56�62, invited Contribution.

[16] W. W. Wadge and A. Yoder, �The Possible-World Wide Web,� in Intensional

Programming I, M. A. Orgun and E. A. Ashcroft, Eds., vol. Intensional

Programming I. World Scienti�c, May 1995, pp. 207�213.

[17] B. Mancilla and J. Plaice, �Possible worlds versioning,� Mathematics in

Computer Science, vol. 2, no. 1, pp. 63�83, 2008. doi: 10.1007/s11786-008-

0044-8

[18] S. Mokhov, I. Clement, S. Sinclair, and D. Nicolacopoulos, �Modular Audio

Recognition Framework,� Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada, 2002�2003, project

report, http://marf.sf.net, last viewed April 2012.

[19] The GIPSY Research and Development Group, �The General Intensional

Programming System (GIPSY) project,� Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada, 2002�2014,

http://newton.cs.concordia.ca/~gipsy/, last viewed April 2014.

[20] J. Paquet and P. G. Kropf, �The GIPSY architecture,� in Proceedings of

Distributed Computing on the Web, ser. Lecture Notes in Computer Science,

P. G. Kropf, G. Babin, J. Plaice, and H. Unger, Eds., vol. 1830. Springer

Berlin Heidelberg, 2000. doi: 10.1007/3-540-45111-0_17 pp. 144�153.

101

http://dx.doi.org/10.1007/s11786-008-0044-8
http://dx.doi.org/10.1007/s11786-008-0044-8
http://marf.sf.net
http://newton.cs.concordia.ca/~gipsy/
http://dx.doi.org/10.1007/3-540-45111-0_17

[21] J. Paquet, S. A. Mokhov, E. I. Vassev, X. Tong, Y. Ji, A. H. Pourteymour,

K. Wan, A. Wu, S. Rabah, B. Han, B. Lu, L. Tao, Y. Ding, C. L. Ren,

and The GIPSY Research and Development Group, �The General Intensional

Programming System (GIPSY) project,� Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada, 2002�2014,

http://newton.cs.concordia.ca/~gipsy/, last viewed January 2014.

[22] S. A. Mokhov, �Study of best algorithm combinations for speech processing tasks

in machine learning using median vs. mean clusters in MARF,� in Proceedings

of C3S2E'08, B. C. Desai, Ed. Montreal, Quebec, Canada: ACM, May 2008.

doi: 10.1145/1370256.1370262. ISBN 978-1-60558-101-9 pp. 29�43.

[23] S. A. Mokhov, J. Paquet, M. Debbabi, and Y. Sun, �MARFCAT: A fast

approach to static vulnerable/weak code analysis and classi�cation,� [online],

2014, being prepared for submission to Journals of Computers and Security,

Elsevier; online pre-print at http://arxiv.org/abs/1207.3718.

[24] S. A. Mokhov and J. Paquet, �Using the General Intensional Programming

System (GIPSY) for evaluation of higher-order intensional logic (HOIL)

expressions,� in Proceedings of the 8th IEEE / ACIS International Conference

on Software Engineering Research, Management and Applications (SERA

2010). IEEE Computer Society, May 2010. doi: 10.1109/SERA.2010.23. ISBN

978-0-7695-4075-7 pp. 101�109, pre-print at http://arxiv.org/abs/0906.3911.

[25] ��, �A type system for higher-order intensional logic support for variable

bindings in hybrid intensional-imperative programs in GIPSY,� 2014, being

prepared for submission to the Transactions on Programming Languages and

Systems (TOPLAS).

[26] S. A. Mokhov, �Intensional cyberforensics,� Ph.D. dissertation, Department of

Computer Science and Software Engineering, Concordia University, Montreal,

Canada, Sep. 2013, online at http://arxiv.org/abs/1312.0466.

102

http://newton.cs.concordia.ca/~gipsy/
http://dx.doi.org/10.1145/1370256.1370262
http://arxiv.org/abs/1207.3718
http://dx.doi.org/10.1109/SERA.2010.23
http://arxiv.org/abs/0906.3911
http://arxiv.org/abs/1312.0466

[27] C. L. Ren, �Parsing and abstract syntax tree generation in the GIPSY

system,� Master's thesis, Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada, 2002, http://spectrum.

library.concordia.ca/1859/.

[28] A. H. Wu, �Semantic analysis and SIPL AST translator generation in the

GIPSY,� Master's thesis, Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada, 2002, http://spectrum.

library.concordia.ca/2018/.

[29] K. Wan, V. Alagar, and J. Paquet, �Lucx: Lucid enriched with context,� in

Proceedings of the 2005 International Conference on Programming Languages

and Compilers (PLC 2005). CSREA Press, Jun. 2005, pp. 48�14.

[30] E. A. Ashcroft and W. W. Wadge, �Lucid � a formal system for writing and

proving programs,� SIAM J. Comput., vol. 5, no. 3, 1976.

[31] ��, �Erratum: Lucid � a formal system for writing and proving programs,�

SIAM J. Comput., vol. 6, no. 1, p. 200, 1977.

[32] ��, �Lucid, a nonprocedural language with iteration,� Communications of the

ACM, vol. 20, no. 7, pp. 519�526, Jul. 1977. doi: 10.1145/359636.359715

[33] S. A. Mokhov, J. Paquet, and M. Debbabi, �Formally specifying operational

semantics and language constructs of Forensic Lucid,� in Proceedings of the IT

Incident Management and IT Forensics (IMF'08), ser. LNI, O. Göbel, S. Frings,

D. Günther, J. Nedon, and D. Schadt, Eds., vol. 140. GI, Sep. 2008. ISBN

978-3-88579-234-5. ISSN 1617-5468 pp. 197�216, online at http://subs.emis.de/

LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf.

[34] ��, �Towards automated deduction in blackmail case analysis with Forensic

Lucid,� in Proceedings of the Huntsville Simulation Conference (HSC'09), J. S.

Gauthier, Ed. SCS, Oct. 2009. ISBN 978-1-61738-587-2 pp. 326�333, online at

http://arxiv.org/abs/0906.0049.

103

http://spectrum.library.concordia.ca/1859/
http://spectrum.library.concordia.ca/1859/
http://spectrum.library.concordia.ca/2018/
http://spectrum.library.concordia.ca/2018/
http://dx.doi.org/10.1145/359636.359715
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://arxiv.org/abs/0906.0049

[35] ��, �Reasoning about a simulated printer case investigation with Forensic

Lucid,� in Proceedings of Digital Forensics and Cyber Crime (ICDF2C'11), ser.

LNICST, P. Gladyshev and M. K. Rogers, Eds., no. 0088. Springer Berlin

Heidelberg, Oct. 2011. doi: 10.1007/978-3-642-35515-8_23. ISBN 978-3-642-

35514-1. ISSN 1867-8211 pp. 282�296, accepted and presented in 2011, appeared

in 2012; online at http://arxiv.org/abs/0906.5181.

[36] R. Jagannathan and C. Dodd, �GLU programmer's guide,� SRI International,

Menlo Park, California, Tech. Rep., 1996.

[37] R. Jagannathan, C. Dodd, and I. Agi, �GLU: A high-level system for granular

data-parallel programming,� in Concurrency: Practice and Experience, vol. 1,

1997, pp. 63�83.

[38] N. S. Papaspyrou and I. T. Kassios, �GLU# embedded in C++: a marriage

between multidimensional and object-oriented programming,� Softw., Pract.

Exper., vol. 34, no. 7, pp. 609�630, 2004. doi: 10.1002/spe.582

[39] S. A. Mokhov and J. Paquet, �Formally specifying and proving operational

aspects of Forensic Lucid in Isabelle,� Department of Electrical and

Computer Engineering, Concordia University, Montreal, Canada, Tech. Rep.

2008-1-Ait Mohamed, Aug. 2008, in Theorem Proving in Higher Order

Logics (TPHOLs2008): Emerging Trends Proceedings. Online at: http:

//users.encs.concordia.ca/~tphols08/TPHOLs2008/ET/76-98.pdf and http://

arxiv.org/abs/0904.3789.

[40] T. Cargill, �Deterministic operational semantics of lucid,� University of

Waterloo, Tech. Rep. CS 76-19, Jun. 1976, https://cs.uwaterloo.ca/research/

tr/1976/CS-76-19.pdf.

[41] S. A. Kripke, �A completeness theorem in modal logic,� Journal of Symbolic

Logic, vol. 31, no. 2, pp. 276�277, 1966.

104

http://dx.doi.org/10.1007/978-3-642-35515-8_23
http://arxiv.org/abs/0906.5181
http://dx.doi.org/10.1002/spe.582
http://users.encs.concordia.ca/~tphols08/TPHOLs2008/ET/76-98.pdf
http://users.encs.concordia.ca/~tphols08/TPHOLs2008/ET/76-98.pdf
http://arxiv.org/abs/0904.3789
http://arxiv.org/abs/0904.3789
https://cs.uwaterloo.ca/research/tr/1976/CS-76-19.pdf
https://cs.uwaterloo.ca/research/tr/1976/CS-76-19.pdf

[42] ��, �Semantical considerations on modal logic,� Journal of Symbolic Logic,

vol. 34, no. 3, p. 501, 1969.

[43] C. B. Ostrum, The Luthid 1.0 Manual. Department of Computer Science,

University of Waterloo, Ontario, Canada, 1981.

[44] A. A. Faustini and W. W. Wadge, �An eductive interpreter for the

language Lucid,� SIGPLAN Not., vol. 22, no. 7, pp. 86�91, 1987. doi:

10.1145/960114.29659

[45] P. Swoboda, �A formalisation and implementation of distributed intensional

programming,� Ph.D. dissertation, The University of New South Wales, Sydney,

Australia, 2004.

[46] P. Swoboda and W. W. Wadge, �Vmake and ISE general tools for the

intensionalization of software systems,� in Intensional Programming II,

M. Gergatsoulis and P. Rondogiannis, Eds., vol. Intensional Programming II.

World Scienti�c, Jun. 1999, pp. 310�320, ISBN: 981-02-4095-3.

[47] P. Swoboda and J. Plaice, �A new approach to distributed context-aware

computing,� in Advances in Pervasive Computing, A. Ferscha, H. Hoertner,

and G. Kotsis, Eds. Austrian Computer Society, 2004, ISBN 3-85403-176-9.

[48] S. A. Mokhov, �Towards security hardening of scienti�c distributed demand-

driven and pipelined computing systems,� in Proceedings of the 7th

International Symposium on Parallel and Distributed Computing (ISPDC'08).

IEEE Computer Society, Jul. 2008. doi: 10.1109/ISPDC.2008.52. ISBN 978-0-

7695-3472-5 pp. 375�382.

[49] L. Verdoscia, �ALFA �ne grain data�ow machine,� in Intensional Programming

I, M. A. Orgun and E. A. Ashcroft, Eds., vol. Intensional Programming I.

World Scienti�c, May 1995, pp. 110�134.

[50] J. Paquet and S. A. Mokhov, �Furthering baseline core Lucid,� [online], 2011�

2014, http://arxiv.org/abs/1107.0940.

105

http://dx.doi.org/10.1145/960114.29659
http://dx.doi.org/10.1109/ISPDC.2008.52
http://arxiv.org/abs/1107.0940

[51] J. Paquet, S. A. Mokhov, and X. Tong, �Design and implementation of context

calculus in the GIPSY environment,� in Proceedings of the 32nd Annual IEEE

International Computer Software and Applications Conference (COMPSAC).

IEEE Computer Society, Jul. 2008. doi: 10.1109/COMPSAC.2008.200. ISSN

0730-3157 pp. 1278�1283.

[52] P. Grogono, S. Mokhov, and J. Paquet, �Towards JLucid, Lucid with embedded

Java functions in the GIPSY,� in Proceedings of the 2005 International

Conference on Programming Languages and Compilers (PLC 2005). CSREA

Press, Jun. 2005. ISBN 1-932415-75-0 pp. 15�21.

[53] A. Wu, J. Paquet, and S. A. Mokhov, �Object-oriented intensional

programming: Intensional Java/Lucid classes,� in Proceedings of the 8th

IEEE/ACIS International Conference on Software Engineering Research,

Management and Applications (SERA 2010). IEEE Computer Society, May

2010. doi: 10.1109/SERA.2010.29. ISBN 978-0-7695-4075-7 pp. 158�167, pre-

print at: http://arxiv.org/abs/0909.0764.

[54] S. Mokhov and J. Paquet, �Objective Lucid � �rst step in object-

oriented intensional programming in the GIPSY,� in Proceedings of the 2005

International Conference on Programming Languages and Compilers (PLC

2005). CSREA Press, Jun. 2005. ISBN 1-932415-75-0 pp. 22�28.

[55] A. H. Wu, �OO-IP hybrid language design and a framework approach to the

GIPC,� Ph.D. dissertation, Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada, 2009, http://spectrum.

library.concordia.ca/976610/.

[56] M. A. Orgun and E. A. Ashcroft, Eds., Proceedings of ISLIP'95, vol. Intensional

Programming I. World Scienti�c, May 1995, ISBN: 981-02-2400-1.

[57] M. Gergatsoulis and P. Rondogiannis, Eds., Proceedings of ISLIP'99, vol.

Intensional Programming II. World Scienti�c, Jun. 1999, ISBN: 981-02-4095-3.

106

http://dx.doi.org/10.1109/COMPSAC.2008.200
http://dx.doi.org/10.1109/SERA.2010.29
http://arxiv.org/abs/0909.0764
http://spectrum.library.concordia.ca/976610/
http://spectrum.library.concordia.ca/976610/

[58] The MARF Research and Development Group, �The Modular Audio

Recognition Framework and its Applications,� [online], 2002�2014, http://marf.

sf.net and http://arxiv.org/abs/0905.1235, last viewed May 2015.

[59] S. A. Mokhov, �Choosing best algorithm combinations for speech processing

tasks in machine learning using MARF,� in Proceedings of the 21st Canadian

AI'08, ser. LNAI 5032, S. Bergler, Ed. Berlin Heidelberg: Springer-Verlag,

May 2008. doi: 10.1007/978-3-540-68825-9_21 pp. 216�221.

[60] ��, �On design and implementation of distributed modular audio recognition

framework: Requirements and speci�cation design document,� [online], Aug.

2006, project report, http://arxiv.org/abs/0905.2459, last viewed April 2012.

[61] S. A. Mokhov, L. W. Huynh, and J. Li, �Managing distributed MARF with

SNMP,� Concordia Institute for Information Systems Engineering, Concordia

University, Montreal, Canada, Apr. 2007, project report. Hosted at http://

marf.sf.net and http://arxiv.org/abs/0906.0065, last viewed February 2011.

[62] S. A. Mokhov and Y. Sun, �OCT segmentation survey and summary reviews

and a novel 3D segmentation algorithm and a proof of concept implementation,�

[online], 2011�2014, online at http://arxiv.org/abs/1204.6725.

[63] S. A. Mokhov, �MARFCAT � MARF-based Code Analysis Tool,� Published

electronically within the MARF project, http://sourceforge.net/projects/marf/

�les/Applications/MARFCAT/, 2010�2015, last viewed February 2014.

[64] S. A. Mokhov, S. Sinclair, I. Clement, D. Nicolacopoulos, and the MARF

Research & Development Group, �SpeakerIdentApp � Text-Independent

Speaker Identi�cation Application,� Published electronically within the MARF

project, http://marf.sf.net, 2002�2014, last viewed February 2010.

[65] S. A. Mokhov, E. Vassev, J. Paquet, and M. Debbabi, �Towards a self-forensics

property in the ASSL toolset,� in Proceedings of the Third C* Conference on

Computer Science and Software Engineering (C3S2E'10). New York, NY, USA:

107

http://marf.sf.net
http://marf.sf.net
http://arxiv.org/abs/0905.1235
http://dx.doi.org/10.1007/978-3-540-68825-9_21
http://arxiv.org/abs/0905.2459
http://marf.sf.net
http://marf.sf.net
http://arxiv.org/abs/0906.0065
http://arxiv.org/abs/1204.6725
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://marf.sf.net

ACM, May 2010. doi: 10.1145/1822327.1822342. ISBN 978-1-60558-901-5 pp.

108�113.

[66] S. A. Mokhov, �The use of machine learning with signal- and NLP processing

of source code to �ngerprint, detect, and classify vulnerabilities and weaknesses

with MARFCAT,� [online], pp. 49�72, Oct. 2010, online at http://arxiv.org/

abs/1010.2511.

[67] V. Okun, A. Delaitre, P. E. Black, and NIST SAMATE, �Static Analysis

Tool Exposition (SATE) 2010,� [online], 2010, see http://samate.nist.gov/

SATE2010Workshop.html.

[68] B. Han, �Towards a multi-tier runtime system for GIPSY,� Master's thesis,

Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, 2010.

[69] Y. Ji, �Scalability evaluation of the GIPSY runtime system,� Master's

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, Mar. 2011, http://spectrum.library.concordia.

ca/7152/.

[70] E. I. Vassev, �General architecture for demand migration in the GIPSY demand-

driven execution engine,� Master's thesis, Department of Computer Science

and Software Engineering, Concordia University, Montreal, Canada, Jun. 2005,

http://spectrum.library.concordia.ca/8681/.

[71] S. A. Mokhov, J. Paquet, M. Debbabi, and Y. Sun, �MARFCAT: Transitioning

to binary and larger data sets of SATE IV,� [online], May 2012�2014, online at

http://arxiv.org/abs/1207.3718.

[72] B. Lu, �Developing the distributed component of a framework for processing

intensional programming languages,� Ph.D. dissertation, Department of

Computer Science and Software Engineering, Concordia University, Montreal,

Canada, Mar. 2004.

108

http://dx.doi.org/10.1145/1822327.1822342
http://arxiv.org/abs/1010.2511
http://arxiv.org/abs/1010.2511
http://samate.nist.gov/SATE2010Workshop.html
http://samate.nist.gov/SATE2010Workshop.html
http://spectrum.library.concordia.ca/7152/
http://spectrum.library.concordia.ca/7152/
http://spectrum.library.concordia.ca/8681/
http://arxiv.org/abs/1207.3718

[73] J. Paquet, A. Wu, and P. Grogono, �Towards a framework for the General

Intensional Programming Compiler in the GIPSY,� in Proceedings of the

19th Annual ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2004). New York, NY, USA: ACM,

Oct. 2004. doi: 10.1145/1028664.1028731. ISBN 1-58113-833-4 pp. 164�165.

[74] A. H. Wu and J. Paquet, �Object-oriented intensional programming in the

GIPSY: Preliminary investigations,� in Proceedings of the 2005 International

Conference on Programming Languages and Compilers (PLC 2005). CSREA

Press, Jun. 2005. ISBN 1-932415-75-0 pp. 43�47.

[75] J. Paquet and A. H. Wu, �GIPSY � a platform for the investigation on

intensional programming languages,� in Proceedings of the 2005 International

Conference on Programming Languages and Compilers (PLC 2005). CSREA

Press, Jun. 2005. ISBN 1-932415-75-0 pp. 8�14.

[76] E. Vassev and J. Paquet, �A generic framework for migrating demands in

the GIPSY's demand-driven execution engine,� in Proceedings of the 2005

International Conference on Programming Languages and Compilers (PLC

2005). CSREA Press, Jun. 2005. ISBN 1-932415-75-0 pp. 29�35.

[77] J. Plaice, B. Mancilla, G. Ditu, and W. W. Wadge, �Sequential demand-

driven evaluation of eager TransLucid,� in Proceedings of the 32nd

Annual IEEE International Computer Software and Applications Conference

(COMPSAC). Turku, Finland: IEEE Computer Society, Jul. 2008. doi:

10.1109/COMPSAC.2008.191. ISSN 0730-3157 pp. 1266�1271.

[78] T. Rahilly and J. Plaice, �A multithreaded implementation for TransLucid,� in

Proceedings of the 32nd Annual IEEE International Computer Software and

Applications Conference (COMPSAC). Turku, Finland: IEEE Computer

Society, Jul. 2008. doi: 10.1109/COMPSAC.2008.191. ISSN 0730-3157 pp.

1272�1277.

109

http://dx.doi.org/10.1145/1028664.1028731
http://dx.doi.org/10.1109/COMPSAC.2008.191
http://dx.doi.org/10.1109/COMPSAC.2008.191

[79] S. A. Mokhov and J. Paquet, �A type system for higher-order intensional

logic support for variable bindings in hybrid intensional-imperative programs

in GIPSY,� in 9th IEEE/ACIS International Conference on Computer and

Information Science, IEEE/ACIS ICIS 2010, T. Matsuo, N. Ishii, and R. Lee,

Eds. IEEE Computer Society, May 2010. doi: 10.1109/ICIS.2010.156. ISBN

978-0-7695-4147-1 pp. 921�928, presented at SERA 2010; pre-print at http:

//arxiv.org/abs/0906.3919.

[80] S. A. Mokhov, Hybrid Intensional Computing in GIPSY: JLucid, Objective

Lucid and GICF. LAP - Lambert Academic Publishing, Mar. 2010, ISBN

978-3-8383-1198-2.

[81] P. Grogono, �Intensional programming in Onyx,� Department of Computer

Science and Software Engineering, Concordia University, Montreal, Canada,

Tech. Rep., Apr. 2004.

[82] S. Mokhov and J. Paquet, �General imperative compiler framework within the

GIPSY,� in Proceedings of the 2005 International Conference on Programming

Languages and Compilers (PLC 2005). CSREA Press, Jun. 2005. ISBN 1-

932415-75-0 pp. 36�42.

[83] A. H. Pourteymour, �Comparative study of Demand Migration Framework

implementation using JMS and Jini,� Master's thesis, Department of Computer

Science and Software Engineering, Concordia University, Montreal, Canada,

Sep. 2008, http://spectrum.library.concordia.ca/975918/.

[84] S. Ghosh, Distributed Systems � An Algorithmic Approach. CRC Press, 2007,

ISBN: 978-1-58488-564-1.

[85] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts

and Design, 4th ed. Addison-Wesley, 2005, ISBN: 0-321-26354-5.

[86] S. Rabah, S. A. Mokhov, and J. Paquet, �An interactive graph-based

automation assistant: A case study to manage the GIPSY's distributed

110

http://dx.doi.org/10.1109/ICIS.2010.156
http://arxiv.org/abs/0906.3919
http://arxiv.org/abs/0906.3919
http://spectrum.library.concordia.ca/975918/

multi-tier run-time system,� in Proceedings of the ACM Research in Adaptive

and Convergent Systems (RACS 2013), C. Y. Suen, A. Aghdam, M. Guo,

J. Hong, and E. Nadimi, Eds. New York, NY, USA: ACM, Oct. 2011�2013.

doi: 10.1145/2513228.2513286. ISBN 978-1-4503-2348-2 pp. 387�394, pre-print:

http://arxiv.org/abs/1212.4123.

[87] N. Foster, M. J. Freedmany, A. Guha, R. Harrisonz, N. P. Kattay, C. Monsantoy,

J. Reichy, M. Reitblatt, J. Rexfordy, C. Schlesingery, A. Story, and D. Walkery,

�Languages for software-de�ned networks,� in Proceedings of IEEE COMS'13.

IEEE, 2013.

[88] L. Tao, �Intensional value warehouse and garbage collection in the GIPSY,�

Master's thesis, Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada, 2004, http://spectrum.library.

concordia.ca/8129/.

[89] I. Agi, �GLU for multidimensional signal processing,� in ISLIP'95: The

8th International Symposium on Languages for Intensional Programming,

M. A. Orgun and E. A. Ashcroft, Eds., vol. Intensional Programming

I. World Scienti�c, May 1995, ISBN: 981-02-2400-1. [Online]. Available:

citeseer.ist.psu.edu/agi95glu.html

[90] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd ed.

Addison-Wesley, 1999, ISBN: 0-201-48534-6.

[91] D. R. Mauro and K. J. Schmidt, Essential SNMP. O'Reilly, 2001, ISBN:

0-596-00020-00.

[92] D. Harrington, R. Presuhn, and B. Wijnen, �RFC 2571: An Architecture for

Describing SNMP Management Frameworks,� [online], Apr. 1999, http://www.

ietf.org/rfc/rfc2571.txt, viewed in January 2008.

[93] Y. Ji, S. A. Mokhov, and J. Paquet, �Unifying and refactoring DMF to

support concurrent Jini and JMS DMS in GIPSY,� in Proceedings of the Fifth

111

http://dx.doi.org/10.1145/2513228.2513286
http://arxiv.org/abs/1212.4123
http://spectrum.library.concordia.ca/8129/
http://spectrum.library.concordia.ca/8129/
citeseer.ist.psu.edu/agi95glu.html
http://www.ietf.org/rfc/rfc2571.txt
http://www.ietf.org/rfc/rfc2571.txt

International C* Conference on Computer Science and Software Engineering

(C3S2E'12), B. C. Desai, S. P. Mudur, and E. I. Vassev, Eds. New York, NY,

USA: ACM, Jun. 2010�2013. doi: 10.1145/2347583.2347588. ISBN 978-1-4503-

1084-0 pp. 36�44, online e-print http://arxiv.org/abs/1012.2860.

[94] G. Fourtounis, P. C. Ölveczky, and N. Papaspyrou, �Formally specifying

and analyzing a parallel virtual machine for lazy functional languages using

Maude,� in Proceedings of the 5th International Workshop on High-Level

Parallel Programming and Applications, ser. HLPP'11. New York, NY, USA:

ACM, 2011. doi: 10.1145/2034751.2034758. ISBN 978-1-4503-0862-5 pp. 19�26.

[95] Y. Ji, S. A. Mokhov, and J. Paquet, �Design for scalability evaluation and

con�guration management of distributed components in GIPSY,� 2010�2013,

unpublished.

[96] A. B. Bondi, �Characteristics of scalability and their impact on performance,�

in Proceedings of the 2nd international workshop on Software and performance,

2000. doi: 10.1145/350391.350432 pp. 195�203.

[97] P. Degano and C. Priami, �Enhanced operational semantics: A tool for

describing and analyzing concurrent systems,� ACM Computing Surveys,

vol. 33, no. 2, pp. 135�176, 2001.

[98] J. Paquet, �Relational databases as multidimensional data�ow,� Master's thesis,

Department of Computer Science, Quebec City, Canada, 1995.

[99] M. A. Orgun and W. Du, �Multi-dimensional logic programming: Theoretical

foundations,� Theoretical Computer Science, vol. 185, no. 2, pp. 319�345, 1997.

doi: 10.1016/S0304-3975(97)00048-0

[100] A. A. Faustini and R. Jagannathan, �Multidimensional problem solving in

Lucid,� SRI International, Tech. Rep. SRI-CSL-93-03, 1993.

[101] S. Viswanadha and Contributors, �Java compiler compiler (JavaCC) - the Java

parser generator,� [online], 2001�2008, https://javacc.dev.java.net/.

112

http://dx.doi.org/10.1145/2347583.2347588
http://arxiv.org/abs/1012.2860
http://dx.doi.org/10.1145/2034751.2034758
http://dx.doi.org/10.1145/350391.350432
http://dx.doi.org/10.1016/S0304-3975(97)00048-0
https://javacc.dev.java.net/

[102] K. C. Louden, Compiler Construction: Principles and Practice. PWS

Publishing Company, 1997, ISBN 0-564-93972-4.

[103] S. L. Gar�nkel, �An evaluation of amazon's grid computing services: Ec2, s3

and sqs,� Harvard Computer Science Group, Tech. Rep., 2007.

[104] B. B., A. S., B. R., and T. E., �Virtual private cloud,� Pro PowerShell for

Amazon Web Services, Sep. 2019. doi: 10.1007/978-1-4842-4850-8_5

[105] S. A. Mokhov, J. Paquet, and M. Debbabi, �The use of NLP techniques in static

code analysis to detect weaknesses and vulnerabilities,� in Canadian AI'14, ser.

LNAI, vol. 8436. Springer, 2014. doi: 10.1007/978-3-319-06483-3_33 pp. 326�

332, short paper.

[106] S. A. Mokhov, �MARFPCAT � MARF-based PCap Analysis Tool,� Published

electronically within the MARF project, 2012�2015, http://sourceforge.net/

projects/marf/�les/Applications/MARFCAT/.

[107] S. P. Zahraei, �A gipsy runtime system with a kubernetes underlay for

the opentdip forensic computing backend,� Master's thesis, Department of

Computer Science and Software Engineering, Concordia University, Montreal,

Canada, 2023, .

113

http://dx.doi.org/10.1007/978-1-4842-4850-8_5
http://dx.doi.org/10.1007/978-3-319-06483-3_33
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/

Appendix A

Classi�cation Results for Wireshark

CVE Dataset

File: wireshark-1.2.0/wsutil/unicode-utils.h

Path ID: 2401

Config: -noprep -raw -fft -cheb

Processing time: 0d:0h:0m:0s:22ms:22ms

Subject’s ID: 8

Subject identified: CVE-2009-2559

ResultSet: [suppressed; enable debug mode to show]

FileItem: strFileID: [2401]

strPath: [wireshark-1.2.0/wsutil/unicode-utils.h]

strFileType: [ASCII C program text]

bEmpty: [false]

oLocations: [[[]]]

Second Best ID: 2

Second Best Name: CVE-2010-2284

Date/time: Tue May 09 18:05:50 GMT 2023

Outcome o (classifier-specific): 1043.9241510316906

Distance threshold: 0.1

Computed raw P = 1/o: 0.0

Warning to be reported: false

Computed normalized P: 0.0

114

Appendix B

Classi�cation Results for Speaker

Identi�cation

File: speaker_ident_test/steve-test2.wav

Path ID: 5

Config: -noprep -fft -cheb

Processing time: 0d:0h:0m:0s:3ms:3ms

Subject’s ID: 3

Subject identified: Steve

ResultSet: [suppressed; enable debug mode to show]

FileItem: strFileID: [5]

strPath: [speaker_ident_test/steve-test2.wav]

strFileType: [Audio WAV file]

bEmpty: [false]

oLocations: [[[<<strLineNumber:0,,,

oCVEs:[Steve],,,

oCWEs:[],,,

strExplanation:[Unset explanation],,,

strCodeFragment:[Unset code fragment.],,,

strType:sink (default),,,

strIgnore:false,,,

bEmpty:false

/>>

]]]

Expected subject’s ID: 3 (possible: [3])

Expected subject: Steve

Second Best ID: 4

Second Best Name: Jimmy

115

Date/time: Wed May 10 00:44:18 GMT 2023

Outcome o (classifier-specific): 66.58248333611064

Distance threshold: 0.1

Computed raw P = 1/o: 0.015018965197677684

Warning to be reported: true

Computed normalized P: 0.015018965197677684

116

117

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Domain
	Intensional Programming Paradigm
	Lucid

	Motivation
	Motivational Scenarios

	Problem Statement and Gap Analysis
	Proposed Solution
	Thesis Objectives
	Summary
	Thesis Organisation

	Background
	The Lucid Programming Language Family
	Lucid Overview
	Fundamental Syntax and Semantics
	Lucid Syntax
	Operational Semantics of Lucid

	Eductive Model of Computation
	Lucid Dialects
	Lucx
	JLucid
	Objective Lucid
	JOOIP
	Forensic Lucid

	Modular A* Recognition Framework (MARF)
	MARF Overview
	MARF Architecture
	Pattern Recognition Pipeline
	MARFCAT

	The General Intensional Programming System
	General Intensional Program Compiler (GIPC)
	GICF Overview
	General Eduction Engine (GEE)
	Scalability

	Summary

	MARFL Specifications and Design
	MARFL Language Requirements and Design Considerations
	Core Language Properties, Features, and Requirements
	Higher Order Context
	Formal Syntax and Semantics Definitions
	Structural Operational Semantics
	Context Types.

	Concrete MARFL Syntax
	Core Operators
	Definitions of Core Operators
	Definition of Core Operators by Means of @ and #

	MARFL Context Operators

	Operational Semantics
	Summary

	Implementing MARFL in GIPSY
	MARFL Compiler
	MARFL Parser
	MARFL Semantic Analyzer

	Updates to GIPSY's Frameworks' Design
	General Design Overview
	Execution Engine Redesign
	MARFLDGT Components
	MARFL Interpreter Components

	Compiling and Executing MARFL on GIPSY
	Compilation Phase - GIPC
	Execution Phase - GEE

	Summary

	Evaluation and Results
	Evaluation Methodology
	Evaluation Environment
	Environment Specifications
	Environment Design

	Evaluation of MARFL-specific Engine to Execute MARFL Programs
	Vulnerable Code Classification in Common Vulnerabilities and Exposures (CVE)
	Speaker Identification
	Detection and Classification of Malware in Network Traffic

	Evaluation of MARFL Programs on a Distributed Architecture
	Results for Single Instance Execution
	Results for Multiple Instance Execution

	Summary

	Conclusion and Future Work
	Conclusion
	Limitations and Future Work
	Summary

	Bibliography
	Appendix
	Classification Results for Wireshark CVE Dataset
	Classification Results for Speaker Identification

