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Abstract

On Reducing Underutilization of Security Standards by Deriving Actionable Rules: An

Application to IoT

Md Wasiuddin Pathan Shuvo

Even though there exist a number of security guidelines and recommendations from various

worldwide standardization authorities (e.g., NIST, ISO, ENISA), it is evident from many of the

recent attacks that these standards are not strictly followed in the implementation of real-world

products. Furthermore, most security applications (e.g., monitoring and auditing) do not consider

those standards as the basis of their security check. Therefore, regardless of continuous efforts in

publishing security standards, they are still under-utilized in practice. Such under-utilization might

be caused by the fact that existing security standards are intended more for high-level recommen-

dations than for being readily adopted to automated security applications on the system-level data.

Bridging this gap between high-level recommendations and low-level system implementations be-

comes extremely difficult, as a fully automated solution might suffer from high inaccuracy, whereas

a fully manual approach might require tedious efforts. Therefore, in this thesis, we aim for a more

practical solution by proposing a partially automated approach, where it automates the tedious tasks

(e.g., summarizing long standard documents, and extracting device specifications) and relies on

manual efforts from security experts to avoid mistakes in finalizing security rules. We apply our

solution to IoT by implementing it with IoT-specific standards (NISTIR 8228) and smart home net-

works. We further demonstrate the actionability of our derived rules in three major applications:

security auditing, Intrusion Detection systems (IDS), and secure application development.
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Chapter 1

Introduction

1.1 Context

Recent cyberattacks are typically caused by various safety and security threats that result from

implementation flaws and insecure default configurations [2±8]. For instance, the Mirai botnet

infecting millions of devices and conducting massive Distributed Denial of Service (DDoS) attacks

on major services, e.g., Amazon, GitHub, and Netflix, mainly resulted from not following the best

practices (e.g., latest versions of libraries and protocols, no weak passwords, etc.) [9]. Due to

similar issues in implementing the best practices, several other recent attacks also lead to severe

security and safety consequences, such as unauthorized access to smart homes [7], injecting fake

voice commands to smart home devices and hubs [10], and health hazards to infants in a smart

home [11]. As a result, the accountability and transparency of those devices and their operations

often become questionable. This might be due to the fact that most security solutions (e.g., [11±14])

are not using standards as a basis for their security evaluation.

Several works (e.g., [11±20]) are addressing different security issues such as intrusion detection,

device fingerprinting, application monitoring, and access control. However, none of those works fo-

cus on developing a generic approach to automatically define actionable security rules for verifying

different system and device security. Moreover, none of them choose existing security standards as

the basis of their security evaluation, which as a result endangers billions of devices and systems

against many severe security threats (e.g., Mirai [9]).
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High-Level IoT Security Standards

Auditor

Challenges while Performing Security Auditing Steps

∀cp ∈ {<<MISSING>>}, ∀s ∈ SensitiveData, ∀n ∈ {<<MISSING>>}, ∀d_id ∈ <<MISSING>>
CryptographicProtection(d_id, s, cp) ∧

Transmission(s, n) → DataProtected(d_id, s)

Step 1: Formalizing Security Standards

Step 3: Identifying Related Security Controls

Security Controls  

AC-18, SC-8, SC-23

Security Controls 

CM-10, AC-4, AC-19, AC-20, CA-3,

IA-2, IA-3, IA-8, MA-4

Security Controls 

 IA-3, IR-4, PL-2, PT-7, RA-3, SA-

9, SC-7, SI-12 

Security Controls 

 AC-20, CA-3, CP-2, IR-7, PL-10,

PS-7, SA-2, SR-3

 
 
"device_id" :"RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs", 
"software_version" :"1.01",
"name" :"Hallway (upstairs)",
"last_connection" :"2016-10-31T23:59:59.000Z",
"is_online" :true,
"file_id" :"UNCBGUnN24...",
"protocol": "TLS",
"authorization_protocol: "OAuth_2.0",
"encryption": "AES_128bit",
"is_manual_test_active" :true, 
"network": 'WiFi"

Low-Level Configs of Nest Protect Smoke & CO Alarm

                NIST IR 8228 [15] Section 4.2 Expectation 21:       
... prevent unauthorized access to all sensitive data

transmitted from it over networks.

[FAILED] No formalized rules available

{Required data, Data source/location}
{"device_id" :"RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs", Config file}

{"authorization_protocol: "OAuth_2.0", Location: <<: MISSING>>}
{"network": 'WiFi", Technical specification} 
{"protocol": "TLS", Location: <<MISSING>>} 

 

Step 2: Locating IoT Audit Data

[FAILED] No mapping with low-level IoT data and
sources available

[FAILED] Difficulties in identifying related security 
controls due to dozens of cross-references

Problem

High Level Security Standards

Ready Rules for Nest Protect Smoke
& CO Alarm's Auditing

Fully  
Automatic

Fully  
Manual

Our Idea

Figure 1.1: Motivating example depicting major challenges in converting high-level security stan-

dards to actionable security rules for security auditing of low-level IoT system implementation

One of the main reasons behind this under-utilization might be due to the high-level nature of

most of those security standards (e.g., [1, 21, 22]) which renders additional overhead to adopt them

in different security applications that typically operate on system-level data. Interpreting high-level

recommendations and deriving actionable security rules for low-level system implementations be-

comes infeasible using any extreme solutions, i.e., a fully automated solution (which is less accurate)

and a fully manual approach (which is tedious and error-prone).

1.2 Motivating Example

A motivating example is shown in Figure 1.1 where an Internet of Things (IoT) security stan-

dard, known as the National Institute of Standards and Technology Internal Report 8228 (NIST IR

8228), is directly used to perform security auditing (but failed, as explained later) of a smart home

device (Nest Protect Smoke and CO Alarm [23]). Particularly, the left side of the figure shows

typical inputs to an auditing tool: a ªhigh-levelº recommendation from NIST IR 8228 (top) and

2



ªlow-levelº configurations from a Nest Protect Smoke and CO Alarm (middle). The right side de-

picts the challenges encountered while performing different security auditing steps (Steps 1-3). On

the bottom left, we briefly illustrate the problem and our idea to solve it.

Specifically, this example depicts a scenario where an auditor aims at auditing a Nest Protect

Smoke and CO Alarm device against the Expectation 21 in Section 4.2 of NIST IR 8228 [1].

The expectation states: ªa device can prevent unauthorized access to all sensitive data transmit-

ted from it over networksº. On the other hand, configurations from a Nest Protect Smoke and CO

Alarm include information about device id, software version, protocol, network,

etc. While performing auditing using these inputs, an auditor encounters several challenges, as fol-

lows. (i) During Step 1 (for formalizing security standards), the allowed list of cryptographic pro-

tection (cp) methods, networks (n), and device IDs (d id) are missing from the Expectation

21 description in NIST IR 8228. During Step 2 (for locating audit data), the auditor cannot easily

find the source of authorization protocol and protocol in a Nest Protect Smoke and CO

Alarm, even if she can locate others (e.g., device id, network) from its configuration files or

technical specifications. During Step 3 (for identifying related security controls), the auditor might

struggle to link between various controls, such as the AC-18 control refers to nine other controls:

CA-9, CM-7, IA-2, IA-3, etc. Therefore, very likely, most of those auditing steps might fail, if

not all.

The main problem is to address those challenges and allow interpreting high-level security stan-

dards and defining ready rules for auditing Nest Protect Smoke and CO Alarm. To that end, both

fully automated and fully manual solutions might also fail the auditing process because full au-

tomation might change the semantics of the original recommendations, and relying only on manual

effort would be time-consuming and error-prone. Therefore, our idea is to balance between those

two extreme approaches and find a practical solution to derive actionable rules for IoT devices by

proposing a semi-automated approach.

1.3 Problem Statement

There are several challenges in deriving actionable rules from security standards.

3



• Firstly, most existing security standards are provided at high-level without any clear mapping

between those recommendations with the actual design and implementation of IoT products

available in the market. Thus, it becomes almost infeasible to use them to conduct in security

applications (that require more low-level granular security rules).

• Secondly, those standards significantly differ from each other in terms of scope, objective,

and level of descriptions. Therefore, interpreting the security recommendations from each

standard for deriving rules becomes non-trivial.

• Thirdly, among those standards, there are conflicting recommendations. As a result, a system-

atic analysis of those high-level recommendations is required to interpret them and resolve

their conflicts, before deriving actionable rules.

• Fourthly, the knowledge and expertise required from a target audience of these security stan-

dards is not explicitly specified, and the guidelines are not crafted as actionable for the target

audience [24].

• Lastly, security standards contain too many different types of interrelated guidance on a single

subject [25], which are frequently cross-referenced to dozens of other security documents.

This can make the recommendations challenging to follow and fully utilize at times.

We will address these challenges in Chapter 4.

1.4 Thesis Contribution

In this thesis, we propose a partially automated approach (which appears to be more practical)

to derive actionable security rules from various security standards and show its application to IoT.

More specifically, first, we conduct a study on major security standards such as [1, 21, 22, 26±

28]. Second, we extract IoT device-specific information from product specifications, API docu-

mentation, and configuration files to build a knowledge base. Third, we leverage Natural Language

Processing (NLP) techniques for summarizing and a fine-tuned Named Entity Recognition (NER)

model to extract key recommendations from those security controls. Fourth, we instantiate each rec-

ommendation as a security rule, expressed in formal language, on various IoT systems by collecting

4



IoT log data, API, and configuration files. Due to the criticality of security applications, our derived

security rules are preferred to be examined by a security expert to assure their correctness. Finally,

our derived rules are applied to various security applications, such as security auditing, Intrusion

Detection Systems (IDS), and secure application development.

The main contributions of this thesis are as follows.

• This thesis work is the first effort to reduce the underutilization of security standards for

emerging technologies (e.g., IoT). Our effort can potentially help to safeguard those new

technologies in various aspects (e.g., enabling security mechanisms, allowing secure devel-

opment) as well as improve the existing security standards by identifying their inconsistencies

and discrepancies with the target technologies.

• As per our knowledge, this is the first effort to derive actionable security rules from IoT

security standards. This actionability of derived rules is demonstrated by integrating our

approach in a smart home ecosystem and applying those rules to various security applications,

i.e., security auditing, IDS, and secure application development.

• Our experimental results further show the effectiveness of our solution in reducing the manual

efforts (e.g., 50% effort reduction on average) and adaptability of our derived rules for security

auditing (where 5,000 smart home devices can be audited within ten seconds).

The thesis is organized as follows. Chapter 2 reviews related works and compares them with our

approach. Chapter 3 describes the preliminaries and challenges. Chapter 4 details our methodology.

Chapter 5 provides the application to different security mechanisms. Chapter 6 shows the imple-

mentation details, and Chapter 7 presents the experimental results. Chapter 8 discusses different

aspects of our approach. Chapter 9 concludes the thesis by providing future research directions.

5



Chapter 2

Related Works

In this chapter, we compare our work to existing IoT security approaches of varying scope and

objectives, concluding that it is complementary to those efforts.

2.1 Rule-based IoT Security Solution

Recent research has looked into various aspects of IoT security and safety. Fung et al. [29]

introduce a policy-sharing model for the IoT environment where users can define different policies

and share them with their friends through their social connections. They also track the reputation

of policies based on the feedback of different policies adopted by users without the need for central

facilities. PFIREWALL [14] automatically generates data minimization policies to control the data

flow by filtering communication between devices and platforms of IoT systems to protect users’ pri-

vacy. They implement their solution on IoT wireless communication protocols, and results show that

it reduces data leakage significantly without modifying home automation. IoTSafe [11] detects run-

time physical interactions of the IoT environment by performing static analysis and dynamic testing

to enforce security policies in real-time and prevent unsafe states with high accuracy. Soteria [18]

verifies the safety and security policies of IoT platforms by performing static code analysis of IoT

applications. On the other hand, IoTGuard [13] is a dynamic safety and security policy enforce-

ment system which prevents unsafe states in IoT systems by implementing code instrumentation to

6



extract the app’s run-time information and building a dynamic model. Both of them utilize user-

defined policies to detect violations in the IoT environment. Nespoli et al. [19] propose a system

that detects existing vulnerabilities in IoT systems as well as dynamically adapts to surrounding IoT

devices and services based on rules to protect against malicious network attacks. Dome et al. [20]

propose an IoT rules generation framework that collects IoT sensor data as training data to find

patterns and meaningful features. Then they utilized the Random-Forest model to convert those

patterns into rules, build a threat prediction model, and monitor rules violations. Majumdar et al.

[30], [31] conduct security auditing leveraging formal techniques in cloud platforms. Madi et al.

[32] also carried out security auditing on a cloud platform by proposing an auditing framework for

OpenStack. Instead of adopting rules and policies from security standards, most of these works

develop their own policies.

Another line of research focuses on access control, monitoring, and intrusion detection of IoT

systems. Jia et al. [17] perform a study on all the existing attacks on IoT platforms by reproduc-

ing them and categorizing them based on the lifecycle and adversary techniques. Following that,

ContexIoT is being created as a context-based permission system to ensure contextual integrity for

various IoT platforms. SmartAuth [33] performs static analysis to extract security-related informa-

tion from IoT applications to devise authorization mechanisms to mitigate over-privileged problems

in IoT systems. HoMonit [12] extracts Deterministic Finite Automaton (DFA) from the source code

of SmartApps and utilizes side-channel techniques to monitor encrypted traffic of IoT systems to

detect anomalies in the SmartThings platform. IoTArgos [15], is a multi-layer security monitoring

system aided by supervised and unsupervised machine learning algorithms utilizing the network

data collected from various IoT devices through programmable home routers to detect intrusions

and anomalies in IoT platforms. Anthi et al. [16] develop a multi-layer intrusion detection system

for IoT devices that can detect various network-based attacks. Their system profiles normal IoT

behaviour and classifies them, then detects attacks against the IoT network as well as classifies

attack types. In contrast, our work can complement their works by providing actionable security

rules which can be utilized in various security applications, particularly the ongoing research on

IoT security auditing.
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2.2 Association Rule Mining based Works

P. Lou et al. [34] propose a method for obtaining association rules on multi-source logs based

on the Adaptive Miner algorithm to provide critical information for cyber intrusion detection and

assist non-experts in conducting security problem investigations in cloud computing platforms. The

experiments with 12 million alerts from 34 intrusion detection systems in three organizations show

that their predictive blacklist minimizes the alerts of events (3%) of the raw data. Ozawa et al. [35]

use association rule mining to discover the regularities in darknet data. An experiment on the darknet

analysis of a large set of TCP SYN packets collected from 1 July 2016 to 31 July 2018 with the

NICT /16 darknet sensor shows that this analysis can be used to track the activities of the attacker.

They are able to convincingly demonstrate that Mirai and Hajime are in direct competition with

one another in timelines with generated or disappeared rules. Husak et al. [36] use sequential rule

mining to analyze intrusion detection alerts and to predict security events for creating a predictive

blacklist. Safara et al. [37] use an association rule mining algorithm to extract appropriate features

from the raw data and then use the features for classifying the data and detecting anomalies in

communication networks. They use the combination of artificial neural network and AdaBoost

classification algorithms to classify anomalous data in KDD Cup 99 dataset. They also compare

their result with existing models, and their models showed better performance than others.

Xu et al. [38] propose an Attribute-based access control (ABAC) policy mining algorithm which

improves the policy by merging and simplifying candidate rules, then selects the highest-quality

candidate rules for inclusion in the generated policy. They show the effectiveness of their proposed

algorithm by experimenting with both the sample policies and synthetic policies. Sanders et al. [39]

use the rule mining approach to analyze systems’ audit logs for automatically generating ABAC

policies that minimize both under-privilege and over-privilege and propose a policy scoring algo-

rithm for evaluating ABAC policies. They experiment with Amazon Web Service (AWS) audit log

events data and show the effectiveness of their algorithm.

8



Table 2.1: Comparing existing solutions with ours. ( ), ( ), (-), and (NA) mean supported, partially

supported, not supported, and not applicable, respectively.

Proposals Methods
Coverage Features
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ContextIoT [17] Custom Algorithm IoT Access Control NA ± ± NA ±

Soteria [18] Static Analysis IoT Intrusion Detection ± ± ± NA ± ±

IoTGuard [13] Dynamic Analysis IoT Intrusion Detection ± ± ± NA ±

Majumdar et al. [30] Formal Method Cloud Auditing ± ± ±

Madi et al. [32] Formal Method Cloud Auditing ± ± NA ±

Majumdar et al. [31] Formal Method Cloud Auditing ± ± NA

Homonit [12] Custom Algorithm IoT Monitoring System NA ± ± ± ± ± ±

IoTSafe [11] Static and Dynamic IoT Intrusion Detection NA ± ± ± ± ±

PFIREWALL [14] Custom Algorithm IoT Access Control NA ± ±

This Work Formal Method IoT Auditing, Secure development, etc.

2.3 Comparative Study

Table 2.1 summarizes a comparative study of existing works. The first two columns enlist

existing works and their methods, respectively. The next two columns compare the coverage, such

as the supported environment (IoT, cloud) and main objectives (auditing, intrusion detection). The

remaining columns compare these works based on different features, i.e., knowledge-base, first-

order logic, automatic rule derivation, expressiveness, automatic system, run-time enforcement, and

utilization of security standards. In our study, four different symbols are used to show the amount of

support for a particular feature or functionality. These symbols are a complete circle ( ), an empty

circle ( ), a hyphen (-), and (NA), which stands for supported, partially supported, not supported,

and not applicable. These symbols are used to classify the amount of support for various system

capabilities or functionalities. A ( ) symbol indicates that the work fully supports the feature, a

( ) symbol indicates that the work only partially supports our feature, a (-) symbol indicates that

the work does not support any specific feature, and a (NA) symbol indicates that the work is not
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applicable to that feature. In summary, our work mainly differs from other works as follows. Firstly,

we only propose an approach to derive actionable security rules from existing IoT security standards.

Secondly, we build a knowledge base for both IoT standards and IoT devices that can be utilized in

other related research. Finally, our derived security rules can directly be used for various security

applications.
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Chapter 3

Preliminaries

To keep our discussion more concrete, the rest of the thesis will be on the scope of IoT stan-

dards and smart home networks. In this chapter, we provide background information on security

standards, discuss how the IoT differs from traditional Information Technology (IT) devices and

what that means for security, and give an overview of the major security standards. Finally, we

present the preliminary results of our research that are later utilized to decide design choices.

3.1 Background

In this section, we provide an overview of security standards and explore how the IoT differs

from traditional IT devices.

3.1.1 Security Standards

Security Standards describe the best practices from several security documents, organizations,

and publications. A security standard is designed as a framework for an organization requiring strin-

gent security measures. These standards can be developed by a variety of organizations, including

governments, industry associations, and standards bodies. The procedure for developing security

standards is often a collaborative one that makes use of the knowledge of many different stakehold-

ers. These stakeholders may include security professionals, business executives, public servants,

and academic researchers. Each security standard contains several security controls, which describe
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the protection capabilities for particular security objectives of an organization and reflect the pro-

tection needs of organizational stakeholders. Security expectations are the expected outcomes from

a security control to ensure the secure operation of a system.

3.1.2 IoT Devices vs. Conventional IT Devices

In the realm of technology, the Internet of Things (IoT) and conventional IT/computer devices

represent two distinct paradigms. IoT is a very new concept that is quickly gaining popularity.

While conventional IT devices have been available for many years and are commonly utilized, IoT

is a relatively new phenomenon. As a result, managing risks for IoT devices as a whole, including

consumer, enterprise, and industrial IoT devices, differs from managing risks for traditional IT

devices [1].

The IoT is a network of interconnected physical objects, such as cars, appliances, and other

household things, that are equipped with electronics, software, sensors, and connectivity. IoT

aims to make it possible for these devices to connect with one another and carry out activities

autonomously. The objective is to build a network of intelligent devices that can track, assess, and

react to changes in the environment and user behavior. According to the NIST IR 8228 security stan-

dard [1], there are several distinctions between IoT and traditional IT devices in terms of security,

and we have listed the most significant ones below.

Cost Effective. The price of IoT devices compared to conventional IT devices is one of their main

disparities. IoT devices are made to be inexpensive, compact, and effective, as opposed to traditional

IT equipment, which is typically bigger, more complicated, and more expensive. The components

utilized in each device, the manufacturing method, and the volume of the production are only a few

of the reasons for this pricing disparity. It is crucial to take security considerations into account

when comparing the cost of IoT devices to traditional IT devices. IoT devices often cost less than

traditional IT equipment, but they could also be less secure because of their reduced cost and more

straightforward design. Manufacturers may choose generic hardware or open-source software to cut

costs while still including the necessary functionality in their products.

Lack of Administrative Capabilities and Interface. The absence of administration capabilities
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and interfaces is one of the biggest issues with IoT devices. Administrators may find it challenging

to properly control the operating system, apps, and firmware of IoT devices throughout their lifespan

as a result. With IoT devices, for instance, administrators might not be able to purchase, check

the integrity of, install, configure, save, retrieve, execute, stop, delete, swap out, update, and patch

software. Also, when a bad thing happens, like a power outage or a lack of network connectivity, the

software on IoT devices might be automatically modified. Moreover, it can be difficult for users to

connect with and manage some IoT devices because they lack application or human user interfaces

for device use and management. While such interfaces do exist, they cannot give the complete

capability offered by conventional IT equipment. This may lead to problems, including the inability

to inform users that their personally identifiable information is being processed by an IoT device,

making it challenging to get meaningful consent for this processing. The lack of widely agreed

standards for IoT application interfaces, which can obstruct interoperability across IoT devices, is

another issue.

IoT Device Management Challenges. The management of IoT devices poses several challenges

due to their large numbers and diverse software and hardware. Firstly, managing IoT devices at

scale is challenging since the majority lack standardized procedures for centralized management.

Administrators may not be able to fully manage the firmware, operating system, and apps of an IoT

device during its lifecycle due to the lack of management options. Secondly, the extensive range

of software utilized by IoT devices, such as firmware, common and real-time operating systems,

and applications, makes software management extremely difficult during their entire lifecycle. This

has an impact on things like patch management and configuration. Thirdly, the possibility that

IoT device hardware will not be repairable is a substantial additional management burden. The

inability of the hardware to be repaired, modified, or internally inspected makes it challenging to

troubleshoot or replace faulty components. Finally, the inventory, registration, and provisioning of

IoT devices introduced into an organization might not be done through the standard IT processes.

Administrators struggle to keep track of all the IoT devices on the network due to a lack of inventory

capabilities, which makes it impossible to adequately secure them.

Varied Expectation of Device Lifespan. A manufacturer might plan for a specific IoT device
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to be utilized for a short period of time before being discarded. An organization that buys such

an item might desire to utilize it for a longer period of time, but the manufacturer might decide

to stop providing support for it (such as by no longer issuing fixes for known vulnerabilities) or

supply chain constraints might prevent them from doing so (e.g., supplier no longer releases patches

for a particular IoT device component). Although the issue of varying lifespan expectancies is

neither new nor unique to the IoT, it may be particularly significant for some IoT devices due to

the possible dangers to safety, dependability, and other factors when operating devices past their

intended lifespans.

Multi-user and Heterogeneous Ownership Challenges. The existence of multi-user devices,

where numerous users can access and control the device without clearly recognizing their autho-

rization, further complicates the security of IoT devices. Family members, housemates, or cowork-

ers may share these gadgets, and each user may have varying degrees of access to and control over

them. This makes it difficult to establish unambiguous ownership and accountability for the security

of the device because different users may have varying degrees of responsibility. Another issue is

heterogeneous ownership which describes the wide range of stakeholders, including manufacturers,

independent sellers, service providers, and end users, who may own and manage IoT devices. This

makes it more difficult to manage the security of IoT devices, especially when data must be shared

with cloud-based services or when upkeep is necessary. Certain maintenance procedures are solely

authorized by manufacturers, and attempting to carry them out may void the device’s warranty.

Limitations of Cybersecurity and Privacy Capabilities. The wide variety of cybersecurity and

privacy features generally included in traditional IT devices are not or cannot be supported by many

IoT devices. For instance, a ªblack boxº IoT device could not be able to provide companies with

access to its logs or might not record cybersecurity and privacy events. Pre-market capabilities for

IoT devices might not be strong enough or work poorly; for instance, utilizing strong encryption and

mutual authentication to protect communications might result in unacceptably long delays. Many

IoT devices cannot be equipped with post-market features. Also, it is possible that current pre- and

post-market capabilities will not be able to scale to meet IoT requirements. For instance, a network-

based cybersecurity appliance for traditional IT devices might be unable to handle the volume of
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Table 3.1: Summary of different IoT security standards

Security Standard Purpose Targeted to Scope # of pages

NIST IR 8228 [1]
Security and privacy

risk management
Users

All kinds of

IoT Devices
44

NIST IR 8259 [26]
Building secure IoT de-

vice
Manufacturers

All kinds of

IoT Devices
36

ENISA [21]
Recommendation for

baseline security

Users and manu-

facturers

All kinds of

IoT Devices
103

ETSI EN 303 645 [27] Consumer IoT security Manufacturers
All kinds of

IoT Devices
34

OWASP [22]
Secure building and us-

age of IoT

Manufacturer, de-

velopers and con-

sumers

All kinds of

IoT Devices
12

UK Govt [28]
Improve the security of

consumer IoT

Manufacturers,

developers and

service providers

Smart homes

and smart

wearables

24

network traffic and generate significant data from many IoT devices.

3.2 Review of Major IoT Security Standards

To identify unique challenges in deriving actionable security rules, we review several major IoT

security standards (as summarized in Table 3.1).

NIST IR 8228 [1]. It is an internal report published by the National Institute of Standards and

Technology (NIST), a federal agency of the US government. The goal of this report is to assist users

in better understanding and managing the cybersecurity and privacy risks associated with individual

IoT devices across their life cycles. Particularly, this 44-page report outlines three high-level risk

mitigation goals for the security of IoT devices, and each risk mitigation goal is further divided

into several risk mitigation areas. Moreover, NIST IR 8228 has listed 25 expectations along with

49 challenges to achieve those expectations and their mapping with the NIST SP 800-53r5 [40] for

mitigating security and privacy risks in IoT systems.

NIST IR 8259 [26]. It is also an internal report from NIST, which is intended for IoT device manu-

facturers to assist them improve the security of their IoT products. This 36-page report describes six

cybersecurity activities which are broken down into 65 questions that a device manufacturer should
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consider to secure their IoT devices. During the pre-market phase, the manufacturer’s decisions and

actions are primarily influenced by the first four of those six activities, whereas the remaining two

activities are primarily for the post-market phase of an IoT device. Each activity’s questions are

open-ended and allow for speculation, which may cause the manufacturers to make a perplexing

choice that is unsuitable for use as actionable rules.

ENISA Baseline Security Recommendation for IoT [21]. The aim of this report, published by the

European Union Agency for Cybersecurity (ENISA), is to create baseline cybersecurity guidelines

for both consumers and IoT manufacturers, with a particular focus on critical infrastructures. This

report covers many domains of IoT (e.g., smart homes, smart cities, smart grids, etc.), and it is

intended for IoT software developers, manufacturers, information security experts, security solution

architects, etc. There are 83 security measures outlined, divided into 11 security domains that cover

every IoT ecosystem horizontally, in this 103-page report. However, all of these security measures

cannot be used as actionable security rules as they are insufficiently specific.

ETSI EN 303 645 - V2.1.1 [27]. The European Telecommunications Standards Institute European

Standard 303 645 (ETSI EN 303 645) establishes a security baseline while covering all consumer

IoT devices. Although the target audience of this article is primarily manufacturers of various IoT

devices, it also aims to assist IoT users. This 34-page document has 67 provisions with examples

divided into 13 high-level recommendations and refers to multiple external documents for further

technical details. With a focus on technical controls, the ETSI document has specific guidelines, but

technical details are insufficient to be used for actionable security rules [24].

OWASP IoT Security Guidance [22]. The Open Worldwide Application Security Project (OWASP)

Internet of Things Project has released the OWASP IoT top ten lists of IoT vulnerabilities in an ef-

fort to help manufacturers, developers, and consumers better understand IoT security risks and take

appropriate mitigation measures. The specialty of this project is its simplicity, where they avoid

separating guidelines for different stakeholders. That is why it is the shortest security guideline,

with only 12 pages, among the security standards that we reviewed. This report lists the top 10 rec-

ommendations to secure IoT devices without providing detailed or specific steps on how to follow

those recommendations in real-world product development.
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Code of Practice by the UK Government [28]. This security guideline is developed by the UK

Department for Digital, Culture, Media, and Sport in conjunction with the National Cyber Secu-

rity Centre and follows engagement with industry, consumer associations, and academia. Its goal

is to provide guidelines to all organizations involved in developing, manufacturing, and retailing

consumer IoT products on achieving a secure-by-design approach. It lists 13 high-level security

outcomes that are to be reached by following the recommendations in this 24-page report. In spite

of those outcomes, this guideline gives stakeholders the liberty to apply each guideline on their own

terms instead of providing concrete ways to do so [24].

3.3 Preliminary Studies

In this section, we will review the Natural Language Processing (NLP) techniques that we have

used in our work thus far. We first experiment with various popular topic modeling strategies. The

statistical technique known as ªtopic modelingº can be used to determine the subject of diverse

texts. NLP uses this unsupervised machine learning approach to recognize hidden semantic pat-

terns in text corpora [41]. There are various methods for extracting a topic from a text. Latent

Dirichlet Allocation (LDA) [42] and Non-negative Matrix Factorization (NMF) [43] are two of

them that are frequently used to extract topics from various texts, and we have employed both of

them in this research. In addition, we have used a variety of text embedding methods, such as Em-

beddings from Language Models (ELMo) [44] and Bidirectional Encoder Representations from

Transformers (BERT) [45], to summarize security standards.

3.3.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a topic modeling technique used to identify hidden topics

in a corpus of documents. The method makes the assumption that each document consists of a

variety of themes, each of which is distributed over a set of words. Each word in a document is

connected to a certain topic by the LDA algorithm, which represents each document as a mixture of

topics. The LDA model then calculates the probability distributions of the themes and words inside

each subject in the corpus. LDA is employed in our preliminary study to extract the most important
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recommendations from the security standards.

3.3.2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a matrix factorization approach used to find the un-

derlying structure in a dataset. The method makes the assumption that the data can be expressed as a

linearly non-negative combination of a number of basis vectors. NMF can recognize the underlying

topics in a corpus of documents, making it particularly helpful for text data. In our preliminary

investigation, NMF is used in a manner similar to LDA to draw out the most key recommendations

from the security standards.

3.3.3 ELMo

ELMo is a deep contextualized word embedding technique. In order to understand the context

in which words appear in a corpus of text, it employs a deep bidirectional language model. The

vectors or embeddings in ELMo are produced by a bidirectional long short-term memory (LSTM)

model that has been trained on a sizable text corpus using a coupled language model (LM) objective.

By feeding the whole input sentence into the two-layer biLMs with character convolutions, ELMo

representations are able to accurately reflect the context within the phrase. Many studies show

that ELMo is simple to integrate into a variety of language understanding tasks, including textual

entailment, question answering, summarising, and sentiment analysis, and may greatly advance

the state-of-the-art of diverse tasks by lowering 20% relative error [44]. In our early analysis, we

explored the effectiveness of using ELMo in a summarization task and compares its performance

with that of BERT.

3.3.4 BERT

BERT is another cutting-edge method for natural language processing developed by Google.

ELMo features an LSTM-based architecture, but BERT offers a deeply bidirectional transformer-

based pre-trained model. Two unsupervised tasks, Next Sentence Prediction and Masked Language

Model (MLM), are used to pre-train BERT (Next sentence prediction). BERT was pre-trained using

a sizable unlabeled text corpus, which allowed the model to comprehend language more deeply. For

18



the pre-training corpus, 800 million words from BooksCorpus [46] and 2,500 million words from

English Wikipedia were employed. With just one additional output layer, BERT may be fine-tuned

to produce state-of-the-art outcomes in a variety of NLP tasks. BERT has already achieved the best

results in eleven NLP tasks. As BERT has been pre-trained on a large amount of text, making it

proficient in understanding the nuances of language, making it a suitable choice for summarizing

security controls.

3.3.5 Key Findings

Based on initial experiments on different relevant NLP techniques, we find that topic modeling

techniques, such as LDA and NMF, can identify the topics of security controls, but they cannot

extract the security values necessary for constructing security rules. Therefore, we shifted our focus

to fine-tuning the pre-trained language model to extract security values from security controls, which

is essential for our proposed methodology. Moreover, we have conducted experiments to compare

the effectiveness of BERT and ELMo in summarizing security controls (as reported in Chapter

7). Our experimental results show that BERT outperformed ELMo in extracting the most crucial

information from security controls. However, ELMo needs more fine-tuning to be more effective in

summarizing security controls.
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Chapter 4

Methodology

This chapter first provides an overview of our proposed methodology and then elaborates on

each step.

4.1 Overview

The overview of the proposed methodology is shown in Figure 4.1. The inputs to our system

are originated from security standards (e.g., their description) and logs and configurations from a

target system (e.g., IoT, clouds, networks). Our approach is divided into two primary phases: (i)

building a knowledge base, and (ii) defining actionable security rules. More specifically, during

the first phase (elaborated in Section 4.2), we map various security standard recommendations with

their controls in NIST SP 800-53r5 [40] and annotate those mappings (Step 1.1). Then, we collect

various IoT device-specific information to construct structural knowledge base (e.g., their sensors

and actuators) and functional knowledge base (e.g., their network interfaces) (Step 1.2). During the

second phase (elaborated in Section 4.3), we summarize the security controls, extract values from

different summarized controls, and derive security rules for that control, which will be inspected

by an expert (Step 2.1). Afterwards, we instantiate the derived security rules with device-specific

information stored in the structural and functional knowledge bases and interpret them in a formal

language (Step 2.2). In the figure, for both phases, we indicate if a step is fully automated (A), semi-

automated (SA), or manual (M); their rationale is detailed in Section 4.5. Finally, we demonstrate

20



the applicability of our approach in security applications such as security auditing (in Section 5).

The details of each phase are described as follows.

Instantiating Security Rules (M)

Step 1.1 Building Standard Related Knowledge

Step 1.2 Building Device Specific Knowledge

Step 2.2 Rules Instantiation

Technical Specification 

API Documentation

Configuration 

Application to IoT Security Auditing

Annotating Data (M)

Step 2.1 Deriving Security Rules

Summarizing Security Controls (SA) Extracting Values (SA)

Expert Inspection

Deriving Security Rules (SA)

Elaborated Security Standard Extracting Security Controls (A)

Labelled Corpus

Interpreting in Formal Language (M)

 Building Structural Knowledge (SA)

Device  N

M
U

D
G

EE

Device 1
Device 2
Device 3

Building Functional Knowledge (A)

Identifying Policy
Specific Data

Sources

Generating Audit
Report

Converting into
Formal Language

Collecting &
Processing Data

Conducting Formal
Verification

2. Defining Actionable Security Rule

1. Knowledge Base Creation

NIST SP 800-53r5

Target System

Security Standards

Figure 4.1: An overview of our methodology (where (A): fully automated step, (SA): semi-

automated step, and (M): manual step)
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4.2 Knowledge Base Creation

The knowledge base is created for both security standards and devices as follows.

4.2.1 Building Standard Related Knowledge

The goal of creating a knowledge base of security standards is to centralize all IoT security

standards and their corresponding security controls (which provide preventive measures to mitigate

a particular security issue in a system) from NIST SP 800-53r5 [40] (which defines security controls

for IT in general) to be used for actionable rule derivation. There are application-specific recom-

mendations, such as those found in NIST IR 8228, which provide security advice for IoT devices,

and general security implementation guidelines in NIST 800-53r5, which are application agnos-

tic. In our knowledge base, we simply merge them to provide more insight on how to implement

an application-specific security recommendation using generic security implementation guidelines.

Note that security control contains multiple sub-controls, each with a name and discussion, which

either add functionality or specificity to a base control or increase the strength of a base control by

further clarifying the technicalities. Figure 4.2 demonstrates the development and arrangement of

our elaborated security standard from the referred security controls. To this end, we first extract

security expectations and their mappings to security controls specified in each expectation, and then

we extract corresponding security controls from NIST SP 800-53r5 to complete the mappings and

build the elaborated security standards organized by variables, expectations, controls, sub-controls,

and discussions. Afterwards, to further understand a control, we extract values and attributes from

each security control. To that end, we first manually annotate the security control values based on

the answers to the following three questions: (i) Do the values accomplish a particular task? (ii)

Are the procedures to complete this task known? (iii) Is it possible to implement a control techni-

cally? After value annotation, we consider security sub-controls as our attributes and accordingly

annotate them. Second, we train a Named Entity Recognition (NER) [47] model with annotated

security controls and extract both values and attributes by utilizing the learned model.

Example 1. The Expectation 21 from NIST IR 8228 refers to the security controls SC-8,

SC-23, and AC-18 in NIST SP 800-53r5. We first extract these three security controls and their

22



NIST IR 8228

AC-18, SC-8, SC-
23

Expectation 21: The device can
prevent unauthorized access to all

sensitive data transmitted from it over
networks.

Expectations Controls

NIST SP 800-53r5

Encryption protects
information from

unauthorized disclosure and
modification during

transmission...

SC-8
Transmission
Confidentiality
and Integrity

Controls Discussion

Data
Protection

Variables

System

Implemented By

Elaborated Security Standards

AC-18, SC-8,
SC-23

Expectation 21: The device can
prevent unauthorized access to

all sensitive data transmitted
from it over networks.

Expectations Controls

Data
Protection

Variables

AC-18 (1), AC-18
(2), SC-8(1), SC-

8(2), SC-23(3)

Sub-Controls

 
SC-8(1), SC-
8(3), SC-8(4)

Sub-Controls

Encryption protects information from unauthorized
disclosure and modification during transmission.

Cryptographic mechanisms that protect the
confidentiality and integrity of information during

transmission include TLS and IPSec.
Cryptographic.....

Discussion

System

Implemented By

Figure 4.2: Development and Arrangement of Elaborated Security Standards

sub-controls with their discussions from NIST SP 800-53r5. Then, we create our elaborated security

standards, which are arranged by variables, controls, sub-controls, and their discussions. In Figure

4.4, the first box contains the variable highlighted in red along with the Expectation 21. In

the second box, we annotate security sub-control (e.g., cryptographic protection) as an attribute.

Additionally, the third box contains the summarized security control, where the values in red are the

results of our annotation after meeting all the above-mentioned criteria.

4.2.2 Building Device Specific Knowledge

To instantiate derived security rules that are specific to IoT devices, it is essential to have the

knowledge of both their structural (e.g., their sensors and actuators) and functional (e.g., their net-

work behaviour) characteristics. The structural knowledge of an IoT device includes different capa-

bilities of its sensors and actuators, which are derived from the manufacture design specifications of

different IoT devices. For this purpose, we leverage the approach proposed by Dolan et al. [8] as fol-

lows. First, we gather all the technical information that provided on a device’s website. Second, we

extract those information from the device’s API documentation that describes API calls to change

system states. Third, we gather essential information from IoT device configuration files, which are

publicly accessible and include all essential device characteristics [8]. The functional knowledge

of an IoT device includes its network behaviors that can be captured through manufacturer usage

descriptor (MUD) (i.e., a framework by IETF for formally describing the network behaviour [48])
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NIST SP 800-53r5

Term: TLS

Performs specific
task?

Known sequence of
steps

Technically
Implementable?

Annotated as a Value

Yes

No

Yes

Yes

No

No

Continue with
another Term

Figure 4.3: Labeling Values

profiles using MUDGEE [49]. MUD provides the list of all the protocols and ports that are used by

IoT devices to communicate over the network.

Example 2. Given the Nest Protect Smoke and CO Alarm Sensor obtained from Nest Protect tech-

nical specs [23] and API documentation [50], obtained structural knowledge is: ªSoftware version:

4.0; Device Unique Identifier: peyiJNo0IldT2YlIVtYaGQ; is online: true; Read Per-

mission: Enabled/Disabled; last connection: 2016-10-31T23:59:59.000Z; is online:

true; battery health: ok; co alarm state: ok; smoke alarm state: ok; is manual test active:
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Security Control SC-8(1) Cryptographic Protection: Encryption protects

information from unauthorized disclosure and modification during
transmission. Cryptographic mechanisms that protect the confidentiality and

integrity of information during transmission include TLS and
IPSec. Cryptographic mechanisms used to protect information integrity include

cryptographic hash functions that have applications in digital signatures,
checksums, and message authentication codes.

2. Extracting Security Control from NIST SP 800-53r5

 
Cryptographic mechanisms that protect the confidentiality and integrity of

information during transmission include TLS and IPSec.

3. Summarizing Security Control using BERT-Extractive-Summarizer

TLS, IPSec

4. Extracting Security Values by Fine Tuning NER

 
Data Protection = Cryptographic Protection: {TLS, IPSec}

5. Deriving Security Rule

 
Data Protection- Expectation 21: The device can prevent unauthorized access to

all sensitive data transmitted from it over networks.

1. Extracting Security Expectations from NIST IR 8228

Figure 4.4: An illustration of automatically derived security rules. The Expectation 21 from

NIST IR 8228 is shown in the first box, then the security sub-control is displayed in the second

box, and the summarised form of it is presented in red. The red-underlined terms in the third box’s

summary of the security sub-control represent values that were retrieved using the NER model

displayed in the fourth box. The final box displays our automatically derived security rule.

trueº. The corresponding functional knowledge obtained by using MUDGEE is: ªIP Protocols:

TCP, UDP, HOPOPT, IPv6-ICMP; and Ports: 443, 11095, 53, 67º.

4.3 Defining Actionable Security Rules

We describe how we define actionable rules in the following.
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4.3.1 Summarizing Security Controls

As there are many security controls and sub-controls with detailed descriptions of their security

recommendations, we summarize them from the standard knowledge base (built in Section 4.2) uti-

lizing BERT-Extractive-Summarizer [51], which is a BERT-based summarizing package. BERT is

the state-of-the-art word embedding technique that is bi-directionally trained and can have a deeper

sense of language context. BERT’s extractive summarizing approach evaluates each sentence’s

comprehension and significance to the text and then delivers the most crucial segments. Thus, in

this work, we opt for the extractive summarization technique instead of abstractive summarization,

which changes the semantics of the recommendations due to newly generated words and phrases.

BERT is used by a python-based RESTful service for text embedding, and for summary selection,

KMeans clustering is used to identify sentences closest to the centroid [51]. Text summarization is

still an ongoing topic in NLP research to achieve a competitive accuracy to that of a human [52].

Due to this factor, our generated summaries need to be reviewed by experts to ensure their correct-

ness.

4.3.2 Extracting Values

Before deriving security rules, we extract attributes and values from the security controls. We

use Named Entity Recognition (NER), an NLP approach, to extract values from the security sub-

control’s discussion. As we only need to extract two types of entities from the security controls, we

annotate our values and attributes as described in Section 4.2.1 in order to use them as training data

to fine-tune a Hugging Face model (e.g., BERT-base-NER [47]). After fine-tuning the model, we

utilize it to extract values from the summarized security controls and sub-control’s discussion, and

for attributes, we extract the security sub-controls. In Example 3, we explain the value and attribute

extraction process.

4.3.3 Deriving Security Rules

After extracting security values and attributes from security controls, we generate our security

rules. Our security rules are initially generated automatically by utilizing the variables along with
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attributes and values, and then we express them in formal language. More specifically, we pull the

variable names which are stored in the elaborated security standards, then we acquire the attributes

and values from the previous step and put all these data into the format of our rule. The format of our

derived security rule is as follows: variable1 = {attribute1 : {values1, values2, ...., valuesn},

attribute2 : {values1, values2, ...., valuesn}, ...}. Below using an example, we show how we de-

fine our security rules with the obtained values and attributes.

Example 3. The summarization process for the Expectation 21 and security control SC-8(1)

is shown in Figure 4.4. The first two boxes contain Expectation 21 and its related secu-

rity sub-control, respectively, and the red highlighted texts indicate the summarized security sub-

control. We extract the low-level security values , which are TLS and IPSec and attribute (e.g.,

Cryptographic protection) highlighted in red. The last box shows our low-level security

rule: ªData Protection = {Cryptographic protection: {TLS, IPSec}}º.

4.4 Instantiating to Actionable Rules

This section instantiates our derived security rules for IoT device-specific information and for-

malizes them into first-order logic for security applications. Specifically, instantiation is the process

of making derived security rules specific to IoT devices so that a rule can be efficiently verified from

the available IoT device data (e.g., logs, console output, etc.). However, it is insufficient to rely only

on the automatically derived security rules because the security controls’ values and attributes do

not encompass all possible values in the context of IoT devices. To maintain accuracy, our system

requires expert intervention after automatically extracting values from security controls. A special-

ist will eliminate undesirable or irrelevant values and determine whether any missing values should

be added to our knowledge base, as illustrated at the beginning of Example 4. We then instantiate

security rules to customize them for a particular IoT device, since security rules produced from IoT

security standards are generally applicable to all sorts of IoT devices. We leverage our knowledge

base from Section 4.2 to instantiate our derived security rules. After instantiating the security rules,

we translate them into first-order logic because formal verification methods are more useful and

effective than manual inspection for automated reasoning [30, 32]. Table 4.1 shows an excerpt of
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our derived actionable rules.

Example 4. Device’s sensitive data during transmission over Network: {WiFi, BLE, LTE,

NFC, PLC, RFID, Z-Wave, Zigbee} should be cryptographically protected using Crypto-

graphic mechanism: {TLS, IPSec, AMQP, CoAP, DDS, MQTT}. Suppose an example of

an instantiated security rule for Nest Protect Smoke and CO Alarm Sensor is: ªNest Protect Smoke

and CO Alarm Sensor device’s (device id: peyiJNo0IldT2YlIVtYaGQ) smoke alarm state

during transmission over Network: WiFi should be cryptographically protected using Crypto-

graphic mechanism: TLS; should use protocol: TCP and port numbers: {443, 11095, 53,

67}º. Leveraging our proposed method, we formalize this rule as follows.

Rule 1:

∀cp ∈ {TLS, IPSec,AMQP,CoAP,DDS,MQTT},

∀s ∈ SensitiveData, ∀n ∈ {WiFi,BLE,LTE,NFC,

PLC,RFID,Z −Wave, Zigbee}, ∀d id ∈ DeviceID

CryptographicProtection(d id, s, cp)∧

transmission(s, n) =⇒ DataProtected(d id, s)

4.5 Rationale behind Our Semi-Automated Approach

Table 4.2 shows the objective of different steps of our approach, as well as our explanation as

to why each of the steps is either manual, semi-automated, or fully automated. Specifically, the first

column lists all the steps of our approach, second column indicates how those steps are performed

(i.e., automatic, semi-automatic, or manual), third column describes each step’s objective, and fourth

column states the rationale behind using the stated approach of those steps.
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Table 4.1: An excerpt of derived and instantiated security rules using our approach

Control Summary Derived Rule Instantiated Rule

SC-8(1)

Cryptographic mech-

anisms that protect

the confidentiality of

information during

transmission include

TLS and IPSec.

Data Protection1 =

Cryptographic protec-

tion: {TLS, IPSec}

Device’s sensitive data during

transmission over Network:

{WiFi, BLE, LTE,

NFC, PLC, RFID,

Z-Wave, Zigbee}
should be cryptographically

protected using Crypto-

graphic mechanism: {TLS,
IPSec, AMQP, CoAP,

DDS, MQTT}

SC-8(3)

Message externals in-

clude message headers

and routing information

should be cryptographi-

cally protected.

Data Protection2 =

Cryptographic pro-

tection for message

externals: {headers
information,

routing

information}

Device’s network packet’s

Message headers and routing

information: {Version,
Traffic Class,

Flow Label, Payload

Length, Next Header,

Hop Limit, Source

Address, Destination

Address} should be

protected using Crypto-

graphic mechanism: {TLS,
IPSec}.

SC-8(4)

Communication patterns

(e.g., frequency, periods,

predictability amount)

should be concealed

or randomized by en-

crypting the links and

transmitting in contin-

uous, fixed, or random

patterns.

Data Protection3 = Ran-

domized communication

pattern: {frequency,
periods,

predictability,

amount}

Device’s Commu-

nication patterns:

{frequency, periods,

predictability,

amount} should be ran-

domized or concealed by

Cryptographic mechanism:

{TLS, IPSec}.

SC-23(1)

Invalidate session iden-

tifiers upon user logout

or other session termina-

tion.

Data Protection4 =

Invalidating session

identifiers at logout:

Enabled

Device’s Session identifiers:

{"CD723LGeXlf-01:34"}
should be invali-

dated upon user state:

{logout or session

termination}.

AC-18(3)

Wireless networking

should be disabled when

not used.

Data Protection5 = Dis-

able wireless network-

ing: Enabled

Device’s Network: {WiFi,
BLE, LTE, NFC, PLC,

RFID, ZWave, Zigbee}
should be disabled when not

used.
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Table 4.2: Different steps of our approach, their objectives, and rationales

Step Approach Objective Rationale

Step 1.1.1

Extracting Security

Controls

Automatic

To centralize all IoT secu-

rity standards and their cor-

responding security con-

trols in a single document

so that it can be efficiently

used by our toolchain later.

Since it extracts security controls

based on the mappings and it is

error-free, extracting security con-

trols from NIST SP 800-53r5 does

not necessitate any expert review.

Step 1.1.2

Annotating Data
Manual

To fine-tune the NER

model so that it can ex-

tract security values from

security controls.

As there are no trained NER mod-

els available to extract security val-

ues, we had to annotate the secu-

rity values manually to fine-tune

the NER model.

Step 1.2.1

Building Structural

Knowledge

Semi-

automatic

To instantiate derived secu-

rity rules that are specific

to IoT devices by using the

structural knowledge of IoT

devices.

We leverage the approach of Dolan

et al. in [8] to automatically extract

device specifications, configs, and

API documentation, while all addi-

tional device-specific data is manu-

ally verified to assure its complete-

ness.

Step 1.2.2

Building Functional

Knowledge

Automatic

To instantiate derived secu-

rity rules using the func-

tional knowledge such as

the network behavior of

IoT devices.

We utilize MUDGEE [49], which

automatically delivers IoT network

port and protocol number without

manual inspection.

Continued on next page
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Table 4.2 ± Continued from previous page

Step Approach Objective Rationale

Step 2.1.1

Summarizing Secu-

rity Controls

Semi-

automatic

To extract the most crucial

information from lengthy

security controls, which are

otherwise tedious and time-

consuming tasks.

After automatically generating

the summary using the BERT-

Extractive-Summarizer, we need

expert assessment to ensure the

semantics and validity of the

summaries.

Step 2.1.2

Extracting Values

Semi-

automatic

To automatically extract se-

curity values from security

controls which can be used

in the security rules.

We have a fine-tuned NER model

to extract security values from se-

curity controls, but expert inspec-

tion is vital to ensure that the model

does not exclude any required val-

ues or extract extraneous informa-

tion.

Step 2.1.3

Deriving Security

Rules

Semi-

automatic

To help security experts to

utilize the actionable secu-

rity rules in different secu-

rity applications.

We derive actionable security rules

after extracting values and using

our knowledge base; however, ex-

pert evaluation is crucial to pre-

serve the accuracy of the gener-

ated rules because security controls

do not include all of the potential

security values or attributes in the

context of IoT.

Continued on next page
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Table 4.2 ± Continued from previous page

Step Approach Objective Rationale

Step 2.2.1

Instantiating Security

Rules

Manual

To make the derived secu-

rity rules specific to IoT de-

vices so that a rule can be

efficiently verified from the

available IoT device data.

Security rules are manually in-

stantiated with IoT device-specific

information stored in our knowl-

edge since there is no mapping

between security rules and IoT

device-specific data, ensuring that

only a particular device-specific in-

formation is included in the instan-

tiated rule.

Step 2.2.2

Interpreting in For-

mal Language

Manual

To enable formal verifica-

tion tools to carry out secu-

rity verification.

Instantiated security rules are con-

verted manually to formal lan-

guage as there are no readily avail-

able tools to convert the natural

language to mathematical expres-

sions.
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Chapter 5

Applications

This chapter shows how our actionable rules can be applied to different security mechanisms

(e.g., security auditing, Intrusion Detection Systems (IDS), and secure application development).

5.1 Application to IoT Security Auditing

Below we demonstrate the different steps of IoT security auditing utilizing our actionable secu-

rity rules.

5.1.1 Identifying, Collecting, and Processing Rule-Specific Audit Data

To validate security compliance for each security rule, it is essential to determine the relevant

IoT data sources, collect them, and prepare them for the specific audit tools (e.g., formal methods).

Logs, configuration files, and databases are the primary sources of audit data in IoT devices, and

IoT hub or IoT cloud server stores these data. Different data types and sources, such as device-

related data, connectivity-related data, user-related data, and application-related data, are identified

based on the security rules [53]. After identifying relevant data sources, we gather data and process

them in a structured manner so that they can be converted into formal language. It is crucial to

transform the data into a consistent format because different data sources store the data in different

formats. Finally, audit data and security rules are converted to formal language for verification. In

this work, we particularly use constraint satisfaction problem (CSP), which is also used in other
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auditing solutions (e.g., [30±32]). To that end, each data group is represented as tuples, and the

code is append with the relationships for security rules (discussed in Section 4.4). Listing 1 shows

the tuples in our Sugar [54] code.

5.1.2 Conducting Formal Verification

For verification, we utilize formal verification techniques, e.g., Boolean satisfiability problem

(SAT) solver. Specifically, we leverage an SAT-based tool, namely, Sugar [54], to perform the ver-

ification process and interpret the verification results. Afterward, Sugar verifies all the constraints,

and then we can interpret if any security rule is breached. Lastly, an audit report is generated after

getting results from a formal verification tool. The Sugar tool evaluates ªtrueº or ªfalseº based on

the result of a security rule breach. A security expert can investigate further to determine the root

cause of a breach only after discovering it in an auditing process, eliminating the need for them to

manually go through all the irrelevant information of IoT devices for security breaches.

1 // Declaration

2 (domain DeviceID 0 5000) (domain CryptoMech 1 6)

3 (domain NetType 11 20)(domain SensitiveData 21 40)

4 (int D DeviceID) (int CR CryptoMech)

5 (int N NetType) (int S SensitiveData) |\DNumber|

6

7 // Relations Declarations and Audit Data as their Support

8 (relation CryptProtection 3 (supports ((2471 13 4) (2798 29 2) (861 9 4) ))

9 (relation Transmission 2 (supports ((12 9) (29 10) (9 1) )) |\DNumber|

10

11 // Security property: DataProtectionTransmission

12 (predicate (DataProtectionTransmission D S CR N) (and (CryptProtection D S

CR)

13 (Transmission S N) (not (DataProtection D S)) ))

14 (DataProtectionTransmission D S CR N)

Listing 5.1: Sugar source code for verifying Rule 1
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Example 5. The CSP code to audit the data protection using the rule presented in Listing 1.1.

Each domain and variable is first declared (Lines 2-5). Then, the set of involved relations, namely,

CryptProtection and Transmission, are defined and populated with their supporting tuples (Lines 7-

8), where the support is generated from simulated data by utilizing the Amazon IoT simulator [55].

Then, the data protection at transmission is declared as a predicate, denoted by DataProtection-

Transmission, over these relations (Lines 10-11). Finally, the predicate should be instantiated (Line

19) to be able to be verified. The UNSAT result on Sugar means that all constraints are not satis-

fied, and hence, there is no violation of the rule. Note that the predicate will be unfolded internally

by Sugar for all possible values of the variables, which allows to verify each instance of the prob-

lem among possible values of device ID, cryptographic mechanism, and network

types. We evaluate this auditing step in Section 7.

5.2 Other Applications

This section describes other applications to our solution.

5.2.1 Snort IDS

Snort [56], a potent open-source intrusion detection system (IDS) and intrusion prevention sys-

tem (IPS), finds potentially malicious activities by employing a rule-based language that integrates

anomaly, protocol, and signature inspection techniques. Our low-level security rules obtained from

security standards can be easily translated into snort rules. To convert our low-level security rules

into Snort rules, first, we need to know the format of Snort rules and the required data for the

rules. Snort IDS/IPS rules consist of two parts, rule header and rule option. The rule header

contains the following fields: action, protocol, source address, source port,

direction, a destination address, and destination port. The rule option

of Snort is divided into a keyword and an argument, defined inside parentheses and separated by a

semicolon. In this work, we obtain protocol and port numbers from our low-level security rules. In

the same manner, our security rules can be utilized by other IDS systems, such as Suricata [57],

Zeek [58], OSSEC [59], etc.
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Example 6. Below is a low-level rule instantiated for Nest Protect Smoke and CO

Alarm device, which ensures encrypted data transmission, and then we convert it into a Snort

rule. Our derived security rule is: ªNest Protect Smoke and CO Alarm Sensor device’s (de-

vice id: peyiJNo0IldT2YlIVtYaGQ) smoke alarm state during transmission over Net-

work: WiFi should be cryptographically protected using Cryptographic mechanism: TLS;

should use protocol: TCP and port numbers: {443, 11095, 53, 67}º. The correspond-

ing Snort rule is: ªalert tcp any any <> $HOME NET ![443, 11095, 53, 67]

(msg: \Unencrypted Traffic"; sid:1000005)º. If this snort rule matches the net-

work traffic data - which actually means the fields of TCP packet (source address, source port,

destination address, and destination port) match with the rule (any, any, IP address of

$HOME NET, port numbers other than 443, 11095, 53, or 67), respectively, then an alert

is generated that outputs the message ªUnencrypted Trafficº with the signature ID 1000005.

5.2.2 Secure Application Development

As most IoT application developers are not security experts, they might need concrete guidelines

and recommendations to develop secure applications and interfaces following existing security stan-

dards and best practices. Our security rules provide IoT manufacturers and developers with action-

able guidelines which can be followed to implement them in actual IoT systems, as demonstrated

through the following example.

Example 7. We utilize the used port numbers (443, 11095, 53, and 67) from IoT device-

specific data (in Example 2) to communicate with servers, while the high-level security standard is

ambiguous about which port to use. A code snippet is presented in Listing 1.2 and shows the port

numbers (Line 4) used by SmartThings SmartApp [60] to listen to the server (Line 6).
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1 const SmartApp = require(’@smartthings/smartapp’);

2 const express = require(’express’);

3 const server = express();

4 const PORT = [443, 11095, 53, 67]; |\DNumber|

5

6 /* Start listening at your defined PORT */

7 server.listen(PORT, () => console.log(‘Server is up and running

8 on port ${PORT}‘));

Listing 5.2: Port numbers derived from our security rules used by SmartThings

SmartApp

Similar to these applications, our actionable security rules might further be applied to other

security mechanisms, such as access control, monitoring, risk assessment, etc. to cover various

security aspects in IoT.
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Chapter 6

Implementation

We describe the implementation of the automated steps of our approach as follows. To build

knowledge of security standards, we develop a Python script that extracts the security expectations

from NIST IR 8228 and the referenced NIST SP 800-53r5 security controls from control catalog

(provided by NIST), and store them in a CSV file with attributes such as variables, expectations,

controls, sub-controls and their discussions. To build device-specific knowledge, network data such

as port numbers and protocols are extracted by leveraging MUDGEE [49], which creates MUD

[48] profiles of IoT devices by monitoring network traces and technical specifications of different

IoT devices are extracted by leveraging the approach from [8]. For the summarization of security

controls, we use BERT-Extractive-Summarizer [51]. Then, annotation of security controls is per-

formed using NER Annotator [61]. To extract values from security controls, we fine-tune a Hugging

Face transformer-based named entity recognition model called Bert-base-uncased [47]. Lastly, for

verification, we use the Boolean satisfaction (SAT) solver tool, namely, Sugar V2.2.1 [54].

In the following, we provide the rest of the four (04) derived security rules and their sugar code

used for the verification of the data collected from the NEST Protect Smoke & CO device.
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Rule 2:

∀cr ∈ TLS, IPSec, ∀hr ∈ Header length, Total length, Identification,

F lags, Fragmented offset, T ime to live, Protocol,Header checksum,

Source IP address,Destination IP address,Options, ∀did ∈ Device ID,

∀s ∈ Sensitive Data

CryptographicProtection(did, hr, cr) =⇒ Data Protected(did, s)

1 // Declaration

2 (domain DeviceID 0 5000)

3 (domain Header 0 12)

4 (domain CryptMech 1 2)

5 (domain SensitiveData 21 40)

6

7 ( int D DeviceID)

8 ( int H Header)

9 ( int C CryptMech)

10 ( int S SensitiveData)

11

12 ;// Relations Declarations and Audit Data as their Support

13 ( relation CryptProtection 3 ( supports ((3760 0 8) (559 5 10) (4577 11 36)

));

14

15 // Security property: Cryptographic Protection for Message Externals

16 ( predicate (CryptForMsgExternals D H C S)

17 (and (CryptProtection D H C)

18 (not (DataProtection D S)) ))

19

20 (CryptForMsgExternals D H C S)

Listing 6.1: Sugar source code for verifying Rule 2
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Rule 3:

∀cp ∈ TLS, IPSec, ∀com ∈ {frequency, periods, predictability, amount},

∀did ∈ DeviceID, ∀s ∈ SensitiveData

CommunicationPatternEncrypted(cp, com, did) =⇒ DataProtected(did, s)

1 Declaration

2 (domain DeviceID 0 5000)

3 (domain Common 0 12)

4 (domain CryptMech 1 2)

5 (domain SensitiveData 21 40)

6

7 ( int D DeviceID)

8 ( int Cm Common)

9 ( int C CryptMech)

10 ( int S SensitiveData)

11

12 ;// Relations Declarations and Audit Data as their Support

13 ( relation ComPatEnc 3 ( supports ((2493 2 16) (57 7 40) (4865 7 8) ));

14

15

16 // Security property: Conceal or Randomize Communications

17 ( predicate (ConRanCom D Cm C S)

18 (and (ComPatEnc D Cm C)

19 (not (DataProtection D S)) ))

20

21 (ConRanCom D Cm C S)

Listing 6.2: Sugar source code for verifying Rule 3
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Rule 4:

∀sid ∈ Session identifier, ∀id ∈ Device ID,

∀u ∈ User, ∀l ∈ Logout, ∀s ∈ Sensitive Data :

InvalidateSessionIdentifiersUponLogout(did, sid, u, l)

=⇒ Data Protected(did, s)

1 //Declaration

2 (domain DeviceID 0 5000)

3 (domain Session 0 30000)

4 (domain User 0 100000)

5 (domain SensitiveData 21 40)

6 (domain LogVal 0 1)

7

8 ( int D DeviceID)

9 ( int Ses Session)

10 ( int U User)

11 ( int S SensitiveData)

12 ( int l LogVal)

13

14 ;// Relations Declarations and Audit Data as their Support

15 ( relation invalidateSessionLogout 4 ( supports ((4603 13 1 1) (1609 1 2 0)

(4849 4 1 0) ))

16

17 ;// Security property: INVALIDATE SESSION IDENTIFIERS AT LOGOUT

18 ( predicate (invalidateSessionAtLogout D Ses U S l)

19 (and (invalidateSessionLogout D Ses U l)

20 (not (DataProtection D S)) ))

21

22 (invalidateSessionAtLogout D Ses U S l)

Listing 6.3: Sugar source code for verifying Rule 4
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Rule 5:

∀n ∈ TLS, IPSec,AMQP,CoAP,DDS,MQTT ,

∀did ∈ DeviceID, ∀s ∈ SensitiveData

DisableWirelessNetworking(n, did) =⇒ DataProtected(did, s)

1 // Declaration

2 (domain DeviceID 0 5000)

3 (domain NetType 11 14)

4 (domain SensitiveData 21 25)

5

6 ( int D DeviceID)

7 ( int N NetType)

8 ( int S SensitiveData)

9

10 ;// Relations Declarations and Audit Data as their Support

11 ( relation DisableNet 2 ( supports ((22 14) (15 14) (11 10) ));

12

13 // Security property: DisableNetworking

14 ( predicate (DisableNetworking D S N)

15 (and (DisableNet D S CR)

16 (not (DataProtection D S)) ))

17

18 (DisableNetworking D S N)

Listing 6.4: Sugar source code for verifying Rule 5
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Chapter 7

Experiments

This chapter describes the details of our experiments and results.

7.1 Experimental Settings

We run our experiment on a workstation with an Intel(R) Core(TM) i7-10700 2.90GHz CPU

and 16 GB of physical memory. To generate our dataset, we utilize NIST IR 8228 [1] and NIST

SP 800-53r5 [40] and Amazon IoT device simulator platform [55] with 5,000 IoT devices and their

logs, configuration files, and network data. Figure 7.1 illustrates the count of technical and non-

technical security controls for each expectation of NIST IR 8228. We convert them into the input

format, Constraint Satisfaction Problem (CSP), of Sugar [54]. We iterate each experiment for 200

times and average measurements.

Table 7.1: Performance evaluation of value extraction

Precision Recall F1-Score

Values 0.82 0.98 0.89

Attributes 0.97 0.94 0.95

Average 0.87 0.97 0.91
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Figure 7.2: Time required for summarizing and value extraction by our approach

7.2 Evaluation of Summarization and Value Extraction

In the first set of experiments, we measure the time required for summarizing each security

control’s discussion and value extraction step as well as the accuracy of our value extraction using

precision, recall, and F1-score. Figure 7.2 shows that the time required for summarizing varies from

less than one second to just over four seconds, because some security sub-controls are rather lengthy

over the others, summarising them requires more time. However, since the summarization procedure
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is performed only once, overheads are tolerable for auditing such big settings. This figure also

demonstrates that extracting values from the discussion of summarized security sub-controls takes

only a fraction of a second, which is very time efficient compared to the summarization process. As

shown in Table 7.1, the precision scores for values and attributes are 82% and 97%, respectively.

For recall, scores of values and attributes are 98% and 94%, respectively. Values and attributes have

an F1-score of 89% and 95%, respectively.

7.3 Evaluation of Derived Security Rules

Our second set of experiments is to evaluate the effectiveness of our derived security rules by

examining their execution time, memory usage, and CPU usage, along with the measurement of the

reduction in manual effort.

Our approach aims at reducing the manual effort required by an expert for deriving actionable

security rules. Figures 7.3 and 7.4 demonstrate the amount of reduction in manual effort for sum-

marizing and deriving actionable security rules, where we compare a fully manual approach with

ours for this measurement using four similarity metrics (e.g., Cosine similarity [62], Jaro-Winkler

similarity [63], Sorensen similarity [64], and Jaccard similarity metrics [65]). Based on the sim-

ilarity between summarized sub-controls and derived security rules, we measure the reduction in

manual effort by security experts. In other words, a security expert needs to exert less work when

the summaries and derived security rules are more similar or closely resemble manually summa-

rized and derived security rules. Figure 7.3 shows how our summarization tool reduced the amount

of work required to summarise eight security sub-controls, with Cosine and Jaro-Winkler similarity

scores averaging the highest percentages of 57% and 65%, respectively, among these four. The

Sorensen similarity score is then anywhere between 50% and 37%, with Jaccard’s score being the

lowest. Next, Figure 7.4 shows the effort reduced in deriving a security rule, with Cosine and Jaro-

Winkler similarity scores again averaging the highest percentages of 50% and 52%, respectively,

among these four. The Sorensen similarity score is then anywhere between 45% and 30%, with

Jaccard’s score being the lowest again. Overall it reduces around 50% of manual effort and for
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Figure 7.3: Similarity score of summarized sub-control

security experts, this represents a significant decrease in manual work and time-consuming activi-

ties. The main purpose of this set of experiments is to show the resemblance of our derived rules

with manually summarized sub-controls. For this purpose, we use popular similarity metrics and

compare their results. We assume that those scores (i.e., calculating the resemblance between two

outputs) might give a hint on the reduced manual effort that these derived rules can bring. However,

we acknowledge that a user survey will be needed to more accurately evaluate the usability of our

approach (as further discussed in Chapter 8).

We then evaluate the efficiency of our derived security rules in terms of time, CPU, and memory

utilization. In Figure 7.5, we observe that overall it takes less than ten seconds for 5,000 IoT devices

to validate each of the five rules derived from Expectation 21. As the number of devices grows, the

required time to validate each rule also increases, but after 1,500 devices, a significant reduction in

increase is observed, which again increases after 4,000 devices. Given the number of devices, ten

seconds is a very realistic amount of time to perform auditing. Figure 7.6 shows the CPU usage by

varying the number of devices. With a range of between 20% and 25%, CPU utilization increases
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Figure 7.4: Similarity score of derived rules

almost linearly for all five security rules. Since there are 5,000 IoT devices, and each one generates

a unique set of data, the CPU usage for auditing is reasonable. Note that we only utilize a single

PC for our experiments; the cost would be significantly lower if we could run Sugar for verification

on multiple VMs. Our final experiment (Figure 7.7) measures the memory usage of our auditing

solution. All of the five rules show a similar trend as CPU consumption. At its peak, it requires

around 43 MB of memory, and overall, it requires less than 41 MB. It is noteworthy that Rule 1 uses

more resources because there are more tuples and, therefore, more data to validate.
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Chapter 8

Discussion

This chapter discusses different aspects of our work.

8.1 Guidelines for the Required Manual Effort

Our approach requires the involvement of security specialists in order to function to its maxi-

mum potential. An individual with in-depth knowledge and experience in protecting information

systems is referred to as a security specialist or expert. Firstly, a security specialist will review the

automatically generated summaries of security controls to ensure they are complete and not missing

any crucial information. Secondly, security experts will verify the accuracy of the retrieved values

from the summarized security controls. Following these actions, low-level security rules will be

created using the retrieved values and any additional potential values relevant to the IoT. Lastly, a

security expert must carefully consider each possible value of a security rule that will be applied

during security auditing. The formalization of the low-level security rule into first-order logic will

result in CSP code for the Sugar tool. Our derived actionable security rules can be converted into

any formal language based on the requirement of the security tools and can be used for various

security purposes.
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8.2 Covering Other Security Standards

In this thesis, we consider the IoT security standard from NIST IR 8228 and utilize its mapping

to NIST SP 800-53r5 to derive actionable security rules. However, there are many other security

standards from different federal and non-federal organizations available for IoT systems and cloud

platforms, which can be easily incorporated with our methodology by getting their mapping to NIST

SP 800-53r5. To that end, European Union Agency for Cybersecurity (ENISA) Baseline Security

Recommendations for IoT in the Context of Critical Information Infrastructures [21] provides a

mapping with NIST SP 800-53r5 in their security standard. Additionally, OWASP is working on

a project to provide a mapping of the OWASP IoT Top 10 2018 to various industry policies and

publications [66]. Once available, those mappings can be utilized to cover other security standards

using our approach.

8.3 Validating the Usability of Our Solution

To further validate the usability of our approach, we plan to carry out a user survey in the future.

This study might provide feedback on the effectiveness (e.g., possible increasing efforts due to any

incorrectness or mistake in our derived rules) and usability of our tool. The results and feedback

of this study can be considered in the following version of our proposed approach. Specifically,

to analyze the usability of our derived security rules, we will develop multiple scenarios where

participants can experience our tool in contrast to a fully manual approach as well as a semi-guided

approach to derive rules followed by a questionnaire with a variety of closed-ended (e.g., multiple

choice and Likert scale) and open-ended (e.g., strength, weakness, and suggestions) questions. Our

target group for this survey will be security researchers and industry practitioners (leveraging our

existing collaborations) as potential users of such tools.
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8.4 Feedback to Standardization Authorities

As our solution aims at mapping high-level security standard specifications to low-level system

implementations, it might be able to identify existing issues (e.g., missing concrete or related infor-

mation to realize a security recommendation) in a standard specification. Additionally, interpreting

the final and intermediate outcomes of our solution might provide insights into further clarifying the

recommendations in current security standards.

We intend to provide standardization bodies feedback that will help them build future standards

in a clearer and more useful manner. In doing so, we hope to reduce the underutilization of security

standards while also ensuring that emergent technologies and assaults are addressed effectively.

Overall, we believe that our method can increase the flexibility and efficacy of security standards in

solving security threats.
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Chapter 9

Conclusion

The chapter proposed a novel method for deriving actionable security rules for different security

applications from high-level security standards. This was accomplished by gathering device-specific

data, instantiation of derived security rules, and verifying the results using formal techniques. The

experiment’s findings showed how well the derived rules worked for security auditing and sug-

gested other security-related domains where they might be used. To achieve this, we collected

device-specific data to instantiate the derived security rules. Then formal verification techniques

were used to verify the rules’ effectiveness in identifying potential security vulnerabilities. The

findings demonstrated the viability of this approach for use in security audits by demonstrating the

effectiveness of the derived rules in identifying security issues. We also pointed out that our ap-

proach is applicable to security applications other than security audits, such as intrusion detection

systems and secure application developments.

Overall, the proposed approach presents a promising solution to the challenges associated with

IoT security. By deriving actionable security rules from high-level security standards and using

formal tools to verify their effectiveness, we have demonstrated the potential of this approach in

security auditing as well as application in intrusion detection systems and secure development. By

offering an automated and scalable solution for IoT device security, this strategy may eventually

have larger applications in the realm of cybersecurity.

There exist a few limitations to this thesis work.

• Device-specific data collection is currently done manually, which restricts its capacity to
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scale. We intend to automate this process in our future work to lessen the effort on secu-

rity experts. The methodology’s applicability will be increased beyond its current scope with

the addition of additional security standards in future work.

• In order to reduce the amount of effort needed by security experts, we aim to automate the

majority of the steps involved in the generation of actionable security rules.

• In order to further improve our approach, we intend to conduct a user study to evaluate its

usability and efficacy. The study will involve real-world security practitioners who have expe-

rience with security standards and best practices. These practitioners will be asked to use the

approach and provide feedback on their experience, potentially identifying areas for improve-

ment. We can better grasp the practical consequences and uses of our approach by including

real-world security practitioners in the evaluation process. The feedback from the study can

be used to refine and enhance the approach, making it more user-friendly and effective in

addressing real-world security concerns.

We believe that our approach has the potential to enhance the implementation and adoption

of security standards in emerging technologies, and hope to see it contribute to the wider security

community in the future.
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