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Zusammenfassung

Seit dem kürzlichen Aufkommen von kolloidalen Blei-Halogenid Perowskit Nanokristallen
(LHP NCs) begeistern sie die Branche durch ihre faszinierenden optischen Eigenschaften.
Sie besitzen daher großes Potenzial optische Anwendungen wie Strahler, Solarenergiekol-
lektoren und Spintronik zu reformieren. CsPbI3, eine anorganische Verbindung unter LHPs,
zeigt besonders ausgeprägte Spin-Bahn-Kopplung, was zu signifikanter Feinstrukturspaltung
und folglich zu lediglich zweifach entarteten Valenz- (VB) und Leitungsbändern (CB) führt.
Hierdurch bestehen perfekte Bedingungen für maximal effiziente optische Spinausrichtung
(oS), wobei Ladungsträger durch zirkular polarisierte Strahlung in bekannte VB- und CB-
Zustände angeregt werden. Im Gegensatz dazu stehen konventionelle II-VI und III-V Halbleiter,
worin sich dieselben auf mehrere VB- und CB-Zustände aufteilen, was die erreichbare oS
um 50% gegenüber LHPs verringert. Das Potenzial der enormen Induktion von zirkularem
Dichroismus in CsPbI3 und dessen Vielzahl an faszinierenden optischen Eigenschaften macht
diese Verbindung zu einem Modellsystem für fundamentale Spinforschung. Das Wissen über
Spindynamiken von Ladungsträgern ist ausschlaggebend für ein grundlegendes Verständnis
elektronischer Prozesse in dieser Materialklasse.

In dieser Arbeit wird die Dynamik von Ladungsträger-Spinrelaxation (LSR) und dessen zugrun-
deliegenden theoretischen Mechanismen mittels zeitaufgelöster differenzieller Transmissions-
spektroskopie (DTS) beleuchtet. Dabei stellt sich heraus, dass die intrinsisch achiralen NCs be-
trächtlichen zirkularen Dichroismus kurz nach Anregung durch zirkular polarisierte Laserpul-
se aufweisen. Darauffolgende LSR gleicht das präparierte Spin-Ungleichgewicht aus. Energeti-
schere optische Anregung bewirkt ein Abkühlen der Ladungsträger zur Bandlücke durch Pho-
nonenemission. Dabei entsteht eine große Nicht-Gleichgewichts-Phononenpopulation, wel-
che den Wirkungsquerschnitt der Ladungsträger-Phononenstreuung vergrößert. Der Elliott-
Yafet- (EY) Mechanismus, den ich der maßgeblichen LSR in CsPbI3 zuordne, besagt, dass LSR
durch Ladungsträger-Phononenstreuung erfolgt. Die gemessene Ensemble-Spinpolarisation
veringert sich dementsprechend erheblich mit erhöhter LSR während des Abkühlvorgangs
der Ladungsträger. Temperaturabhängige DTS offenbart, dass die LSR-Geschwindigkeit bei
Raumtemperatur derer bei kryogenen Temperaturen um eine Größenordnung übersteigt.
Entsprechende Raten enthüllen einen klaren und adequaten Zusammenhang jeweils zur Pho-
nonenbesetzung und EY-Funktionalität. Der Entzug von Elektronen aus den CsPbI3 NCs durch
Beimischung eines Elektron-Absorbermoleküls erlaubt die fast ausschließliche Beobachtung
der Loch-Spinrelaxation, welche sich als langsamer, als die der Elektronen erweist.





Abstract

Recently, colloidal lead halide perovskite nanocrystals (LHP NCs) have emerged and impress
the community with their intriguing optical properties ever since. They demonstrate great
potential to reform optical applications such as light emitting devices, solar energy harvesting
and spintronics. Among LHPs, the all-inorganic compound CsPbI3 exhibits particularly strong
spin-orbit coupling, leading to significant fine structure splitting, which makes both, valence
(VB) and conduction band (CB) only two-fold degenerate. This renders perfect conditions for
maximally efficient optical orientation, whereupon charge carriers are excited into precisely
known VB and CB states by circularly polarized radiation. This is in contrast to conventional
II-VI and III-V semiconductors, where circularly photoexcited charge carriers are distributed
among multiple VB and CB states, dropping their maximally achievable optical orientation
by as much as 50% compared to LHPs. The potential of photoinducing tremendous circular
dichroism into CsPbI3 NCs through optical orientation, in combination with their multiplicity
of intriguing optical properties, make them a model system for fundamental spin studies. The
knowledge about the spin dynamics of charge carriers is crucial for a profound comprehension
of electronic processes in this material class.

In this thesis, charge carrier spin polarization dynamics and underlying theoretical mechanisms
are elucidated in colloidal CsPbI3 NCs by employing time-resolved differential transmission
spectroscopy (DTS). Thereby, the intrinsically achiral NCs are found to exhibit considerable
circular dichroism shortly after excitation with a circularly polarized laser pulse. Subsequent
charge carrier spin relaxation equilibrates the prepared spin imbalance. Elevated photoexcita-
tion energy causes charge carriers to cool down to the band gap via phonon emission. Thereby,
a large non-equilibrium phonon population develops, increasing the carrier-phonon scattering
cross-section. The Elliott-Yafet (EY) mechanism, which I assign to govern spin relaxation
in CsPbI3 NCs, predicts that spin relaxation is a consequence of carrier-phonon scattering.
Accordingly, the investigated ensemble spin polarization is measured to diminish significantly
in the process of carrier cooling at an increased spin relaxation rate. Temperature-dependent
DTS reveals that room temperature spin relaxation dynamics are one order of magnitude
faster than at cryogenic temperatures. The corresponding rates reveal a clear and adequate
correlation to phonon occupation and EY functionality, respectively. The removal of electrons
from the CsPbI3 NCs through admixture with an electron scavenger molecule permits the
almost exclusive investigation of hole spin relaxation, which is revealed to occur slower
compared to that of electrons.
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CHAPTER 1

Introduction

Conventional charge based semiconductor applications have been highly successful, as testified
by their impressive modern computing power and their omnipresence in our daily lives. Their
persistent development and growth in popularity, however, concomitantly introduces new
challenges. One challenge is that they have nearly reached their physical limits.1 An indication
for that is their continuously increasing lag behind Moore’s “law”, an empirical prediction that
the transistor density on a computer chip doubles every two years. The reason for this are
problems arising when downsizing transistors, such as large power dissipation due to enlarged
leakage currents.2,3 Another challenge is to conjointly target both, a rising global energy
consumption and intensifying environmental concerns. This could succeed for example
through the use of electronics with improved energy efficiencies.1,4–6 This naturally brings
the focus to spintronics, or spin-based electronics, which is the interconnection of information
technology with quantum mechanics. Fundamental research in this field is concerned with
spin generation, manipulation, and transport within applicable materials.7 In conventional
semiconductor electronics information is carried by an electron’s / hole’s charge,8 while their
spin properties have been mostly disregarded so far. Their spin properties, however, bear great
potential to revolutionize a wide field of information technology, as spintronic applications
target low power consumption, high-density and non-volatile memory and storage, as well as
fast data processing.7,9,10 Actualizing spintronics in semiconductors would have the unique
advantage of uniting the strengths of both, spintronics and the proven power of semiconductor
logic, while addressing today’s urgent challenges mentioned above. Moreover, semiconductor
spintronics provides an interface to convert spin quantum information to photons and vice
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versa. Charge-based and spin-based technology are thus compatible through spin-photon
interfaces, enabling mutual data communication.11–13 Therefore, semiconductor spintronics
bears the power of modernizing contemporary classical semiconductor information technology
through both, its substitution and enrichment. Spintronic systems find their application
furthermore in potentially ground-breaking fields, such as neuromorphic computing and
quantum computing. The former aims for innovative hardware that is inspired by the brain,
enabling energy efficient, fast, and sophisticated computation.14 The latter targets quantum
information processing by utilizing entanglement and superposition of spin states, properties,
which are not available to classical charge states.

Research in the field of spintronics finds its origin in 1988, when the Nobel Prize winners
Albert Fert and Peter Grünberg15 discovered giant magnetoresistance (GMR).2 Briefly, GMR
describes the strong influence of parallel or antiparallel magnetization on the conductivity
across a layered ferromagnetic/ non-magnetic structure. This discovery enabled efficient
control of electric current with magnetization that revolutionized the technology of magnetic
storage devices.11 The work of Nobel Prize winner Alfred Kastler (1950) and Lampel (1968)
founded a technique of spin injection that was and is of great importance in the field of
spintronics: optical orientation.10,11,16 Optical orientation relates to the induction of a defined
spin distribution within a material through photons. An alternative approach is electrical
spin injection. The former, however, has demonstrated to be advantageous is some cases, as
evidenced by the following examples. The speed of magnetization reversal with circularly
polarized femtosecond light pulses, which is utilized for magneto-optical data storage, was
reported in 1996 to be much faster than magnetization switching through electrical spin
generation. In 2019, single pulse magnetization reversal has been demonstrated, paving the
way to a next level of speed and energy efficiency in magnetic storage.9

A semiconductor material that has gained increasing attention throughout the last decade
is lead halide perovskite (LHP). In particular, colloidal LHP nanocrystals (NCs) exhibit ad-
vantageous optical properties: a large absorption cross section,17,18 high photo- and electro-
luminescence emission quantum yields,19,20 as well as favourable charge carrier transport
properties, such as large diffusion lengths.21–24 The synthesis is facile and inexpensive, as
LHPs are solution and low-temperature processable.20,25–27 Their bandgap energies, and thus
absorption and emission wavelengths, are highly tunable over the entire visible spectrum
through compositional modulations of the halide ion, as well as through quantum confinement
by a reduction of the NC size.20,28–32 In particular, LHPs exhibit strong spin-orbit coupling
(SOC), which is a prerequisite for vigorous optical orientation.33–36 Furthermore, their in-
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verted band structure compared to conventional semiconductors36 allows for a theoretical
100% optical spin generation as opposed to 50% theoretical maximal optical orientation in the
widely-used II-VI and III-V semiconductors.37,38 The multiplicity of interesting properties of
LHPs make them appealing model systems for semiconductor spintronics36 and fundamental
spin studies.39,40 They are proposed to be extremely promising as spin-field effect transistor
devices,39 or spin photovoltaic applications1,40 and have been demonstrated as spin-light
emitting diodes.41 For the use of LHPs in the field of spintronics, a profound comprehension
about optical orientation and the spin dynamics obeyed by photoexcited charge carriers
within these materials is essential, as it enables one to adjust the physical framework, e.g.
temperature, pressure, material composition, and more, in order to achieve suiting material
properties for a desired spintronic application.42 Nonetheless, contemporary research about
spin phenomena in LHPs is still at an early stage.

In this work, charge carriers in CsPbI3 perovskite NCs are optically oriented through helical
ultra-short laser pulses and their subsequent spin dynamics are investigated. Chapter 2
covers the theoretical background of performed experiments and data evaluation. Polarization
dependent, time-resolved DTS allows a precise detection of photoinduced spin imbalance and
its decay. Chapter 3 describes the corresponding experimental setup and its working principle,
alongside with that of linear (polarization dependent) spectroscopy and the procedure of
sample preparation. Chapter 4 reveals emission and absorption properties of the CsPbI3 NCs
via PL- and (temperature dependent) linear absorption spectra, respectively. Moreover, the
circular dichroism spectrummanifests the NC’s achirality and DTS clarifies that recombination
dynamics are independent of laser helicity and thus of intrinsic spin polarization. Chapter 5
displays and discusses the results of diverse DTS measurements, e.g. with excitation energy or
temperature dependency. Furthermore, the reader is guided through their careful evaluation,
which comprises of the use of rate equations and theoretical spin relaxation models. As the
latter are based on distinct microscopic origins for spin relaxation, as outlined in Chapter 2,
their assignment to the data leads to the discovery that spin relaxation of free charge carriers
occurs via longitudinal optical (LO) phonon scattering and manifests that the Elliott-Yafet
mechanism governs spin relaxation in CsPbI3 NCs. With the aim of investigating spin
dynamics of electrons and holes individually, Chapter 6 shows the spectral examination of
the admixture of CsPbI3 NCs with the electron scavenger molecule PCBM. The DTS spectra
precisely follow appropriate rate equations, which allows to draw the conclusion that hole
spin relaxation is slower than that of electrons. I finalize this thesis by summarizing all
findings and offering my conclusions in Chapter 7. At last, I finish with an outlook on further
interesting investigations and promising future applications.





CHAPTER 2

Fundamentals

2.1 Lead Halide based Perovskites

“Perovskite” identifies a crystal family with ABX3 stoichiometry.27 Already in 1839 Gustav
Rose discovered the naturally occurring oxide perovskite CaTiO3.43 The pioneering report
about synthetic, inorganic metal halide perovskites (including CsPbI3) was published in
1893 by Wells.44 The rich colours of these synthetic compounds inspired Møller to study
their electronic properties in 1958, unravelling that they exhibit photoconductivity.45 More
than half a century elapsed until the great potential of halide perovskites was recognized
for optoelectronic applications. It was their use as semiconducting photoactive layer for
photovoltaic cells in 2009,46 which sparked tremendous interest in these materials, leading to
a still ongoing cascade of publications.27,47 Today, synthetic metal halide based perovskites are
at the forefront of contemporary research and have been investigated for various technological
fields. The most prominent applications are solid-state light emitters (light-emitting diodes
(LEDs) and lasers),48 light absorber ((tandem) solar cells,49–51 photocatalysis,52 (flexible)
photodetectors53–55), light converters (visible light communication56), as well as transistors57

and gas sensors54 .
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2.1.1 Different Kinds and their Properties

The chemical stability of perovskites is subject to the ionic radii of its constituents.27 This
entails a constrained selection of A-,B- and X-site components. In metal trihalide perovskites
(MHPs), A and B are monovalent and divalent cations, respectively, while X is a monovalent
anion, i.e. A+, B2+, X−. The basic metal lead (Pb) fulfils the B-site requirements and institutes
the category lead-based MHPs, i.e. lead trihalide perovskites (LHPs), which I want to focus
on in this work. Within this category, hybrid organic-inorganic and all-inorganic LHPs
are differentiated. The former have an organic A-site molecule, such as methylammonium
(CH3NH3) or formamidinium (HC(NH2)2), while the latter have the inorganic alkali metal
caesium (Cs) at the A-site. Halides like chlorine (Cl), bromine (Br) or iodine (I) fit the X-site
criteria. Figure 2.1 a shows the spatial arrangement of the A (turquoise), Pb (gray), and X-site
(purple) ions in a cubic representation of the perovskite crystal lattice. The high symmetry
points Γ, M, X and R in its first Brillouin zone in reciprocal space is shown in Figure 2.1 b.58,59

Regarding the electronic properties, LHPs are semiconductors and contain a band gap defined
by the upper VB and the lower CB. A theoretical calculation of the electronic band structure
of CsPbI3 across the high symmetry points is displayed in Figure 2.1 c.58 The band gap is
located at the R point. Band gap energy, 𝐸𝑔, and spin-orbit splitting, Δ𝑆𝑂, are indicated.

Figure 2.1: Cubic APbX3. (a) Crystal structure. Turquoise, gray and purple spheres represent A-, Pb-
and X-site ions, respectively. X-site ions span gray shaded octahedra, each enclosing one Pb cation. Every
A-site cation is surrounded by 12 nearest halogen anions forming a cuboctahedral cage. (b) First Brillouin
zone corresponding to (a) and its high symmetry points Γ, M, X and R, located at the respective coordinates
(0,0,0), ( 1

2
, 1
2
,0), (0, 1

2
,0), and ( 1

2
, 1
2
, 1
2
). (c) Calculated band structure of cubic CsPbI3. Adopted58 and adjusted.
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Valence and conduction bands form due to hybridization of lead and halide outer atomic
orbitals. The upper VB arises from Pb 6s and X np orbitals (n = 3, 4, 5 for X = Cl, Br, I,
respectively), while the lower CB is predominantly generated by Pb 6p orbitals with a small
admixture of X np orbitals.20,34,60 The band gap energy, 𝐸𝑔, in LHPs is therefore determined by
the (PbX6)4− octahedra and thus by the choice of halide anion.61 It decreases with rising halide
atomic number, which is mainly a result of an energetic upshift of the VB. Thus, substitution
of the halide anion enables band gap tuning, covering the entire visible spectrum.20,25,28,29

LHP NCs, i.e. nanometer-sized monodisperse colloidal perovskite single-crystals, are achieved
through colloidal synthesis, where organic ligands are used to control their size and mor-
phology.62 LHPs in form of colloidal NCs exhibit some unique properties in contrast to their
bulk and film counterparts: their photoluminescence quantum yield (PLQY) is intensely im-
proved, making them interesting for light emitting applications.63,64 Moreover, NCs may be
self-assembled into helical structures65 or equipped with chiral ligands66 to exhibit circular
dichroism (CD) and circular photoluminescence (CPL) at the perovskite’s band gap, which
might be interesting for chiral optoelectronic and spintronic applications. LHP NCs exhibit
the same crystal structure as their bulk and film counterparts, but may be synthesized with
different morphologies, such as nanocubes, nanoplatelets, or nanowires,67,68 and tuned in
size with supreme precision25,30,69 . This tunability of shape and size entails modifications
in band gap, exciton binding energy and surface defects,28,30,32,69 which again affect various
optoelectronic properties, such as the cooling and recombination rate of photoexcited charge
carriers,70 as well as absorption and emission spectra30 . The dependence of the optical
properties on the NC size is a consequence of quantum confinement:71 Upon NC shrinkage,
the band gap increases and, synonymously, the spectra blue-shift.72 Thus, the NC dimensions
represent an additional parameter for precise colour tunability alongside with compositional
modulation of the halide anion as mentioned above. To be precise, it is the kinetic energy 𝐸𝑞𝑐
of an otherwise free particle, which is most notably increased by quantum confinement. In a
cube shaped NC with edge lengths L quantum confinement can be modelled by a 3D infinite
quantum well (QW) with widths L. Otherwise free, non-interacting electron and hole within
such a QW are described by the following Hamiltonian and ground state wave function,38,72,73

�̂�𝑄𝑊 =
̂⃖⃗𝑝
2
𝑒

2𝑚∗
𝑒
+

̂⃖⃗𝑝
2
ℎ

2𝑚∗
ℎ
, which in position space reads 𝐻𝑄𝑊 = − ℏ2

2𝑚∗
𝑒
⃖⃗∇2𝑒 −

ℏ2

2𝑚∗
ℎ
⃖⃗∇2ℎ

𝜓(𝑥, 𝑦 , 𝑧) = 𝜓𝑒(𝑥, 𝑦 , 𝑧) 𝜓ℎ(𝑥, 𝑦 , 𝑧) , where 𝜓𝑒/ℎ(𝑥, 𝑦 , 𝑧) = (2
𝐿
)
3
2 𝑐𝑜𝑠 (𝜋

𝐿
𝑥) 𝑐𝑜𝑠 (𝜋

𝐿
𝑦) 𝑐𝑜𝑠 (𝜋

𝐿
𝑧) ,

(2.1)
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with the QW centred around the origin.The ground state eigenenergy of this system is found
by solving the Schrödinger equation

𝐻𝑄𝑊 𝜓(𝑥, 𝑦 , 𝑧) = 𝐸𝑞𝑐 𝜓(𝑥, 𝑦 , 𝑧)

⇒ 𝐸𝑞𝑐 = 3𝜋2ℏ2

2𝑚∗
𝑒 𝐿2

+ 3𝜋2ℏ2

2𝑚∗
ℎ𝐿2

. (2.2)

From Equation 2.2 it can be seen, that a systematic reduction of NC size leads to an increase of
confinement energy (∝ 𝐿−2), which is responsible for the aforementioned band gap widening
and correlated spectral blue-shift.

Electrons and holes have so far been regarded as free, non-interacting particles in the QW.
However, it must be considered that they are oppositely charged and thus subject to an
attractive Coulomb force acting between them. A bound electron-hole pair can be therefore
described as a quasiparticle called exciton. Taking the Coulomb interaction between electron
and hole into account, the Hamiltonian in Equation 2.1 must be equipped with the potential
energy of the corresponding Coulomb field (third term in Equation 2.3).72,73

�̂�𝑋 =
̂⃖⃗𝑝
2
𝑒

2𝑚∗
𝑒
+

̂⃖⃗𝑝
2
ℎ

2𝑚∗
ℎ
− 𝑒2

4𝜋 𝜀r,eff 𝜀0 | ̂⃗𝑟𝑒 − ̂⃗𝑟ℎ|
(2.3)

As a result of the high relative dielectric permittivity, 𝜀r,eff (= relative dielectric function (real
part) 𝜀𝑟(𝜔) at specific frequency 𝜔 corresponding to the exciton), in LHPs, the associated
excitons are of Wannier-Mott type, i.e. they extend over many lattice constants and their
Coulombic binding energies are comparably small.60

It is this distance between the electron and hole in the third term of Equation 2.3, which gives
rise to the differentiation of two regimes: the weak and the strong confinement regime.72,73

The weak confinement regime classifies NCs with large enough dimensions such that the
electron-hole relative motion is “undisturbed” in a sense that it is not subject to size quantiza-
tion.72,73 That is the case when 𝐿 exceeds 𝑎𝑋, where 𝑎𝑋 is roughly the size of the exciton (see
the definition in Equation 2.5). The electron-hole relative motion can therefore be described in
terms of the hydrogen atom. Hence, their Coulomb interaction manifests itself in the exciton
binding energy, 𝐵𝑋, and likewise the exciton Rydberg, 𝑅𝑦𝑋,

𝐵𝑋 =
𝑅𝑦𝑋
𝑛2

, with 𝑅𝑦𝑋 =
𝜇

𝑚0 𝜀2r,eff
𝑅𝑦𝐻 = ℏ2

2𝜇𝑎2𝑋
, (2.4)
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where n is the exciton principle quantum number, 𝑅𝑦𝐻 the Hydrogen Rydberg, 1𝜇 = 1
𝑚∗
𝑒
+ 1

𝑚∗
ℎ

the reduced effective mass of the electron-hole system, 𝑚0 the free electron mass and 𝑎𝑋 the
exciton Bohr radius74

𝑎𝑋 =
𝑚0 𝜀r,eff

𝜇
𝑎𝐻 =

4𝜋𝜀0 𝜀r,eff ℏ2

𝜇 𝑒2
. (2.5)

𝑎𝐻 stands for hydrogenic Bohr radius and 𝑒 for elementary charge. Synonymous with 𝑅𝑦𝐻,
𝑅𝑦𝑋 is the ground state and ionization energy of the exciton. A general pattern among LHPs
can be noticed, namely that 𝑅𝑦𝑋 tends to increase with the inverse of the atomic mass of the
halide anion, i.e. 𝑅𝑦𝑋 tends to increase as the band gap increases.20,75 Incidentally, the same
trend is present in direct gap III–V and II–VI semiconductors.74

Unlike the electron-hole relative motion, the exciton center-of-mass motion is subject to
quantum confinement in the weak confinement regime. The exciton as a whole, with its mass
𝑀𝑋 = 𝑚∗

𝑒 + 𝑚∗
ℎ is thus the particle inside the above considered potential well. Analogous to

the above calculation, the exciton gains additional kinetic energy due to quantum confine-
ment. The total exciton energy relative to the band gap in the weak confinement regime, is
therefore72,73

𝐸𝑤𝑒𝑎𝑘𝑋 = 𝐸𝑔 +
3𝜋2ℏ2

2𝑀𝑋𝐿2
− 𝐵𝑋. (2.6)

On the contrary, the strong confinement regime classifies NCs with edge lengths 𝐿 under-
cutting 𝑎𝑋. In this regime, single carrier confinement effects are significant and the relative
motion of an electon-hole pair is not correlated any more.73 Therefore, these excitons cannot
be described in terms of the hydrogen atom. Spatial confinement forces electron and hole
within the NC dimensions and thus dictates their interspace. Consequently the attractive
Coulomb interaction between them is increased.76 The total exciton energy relative to the
band gap in the strong confinement regime can be calculated to be72,73

𝐸𝑠𝑡𝑟𝑜𝑛𝑔𝑋 = 𝐸𝑔 +
3𝜋2ℏ2

2𝜇𝐿2
− 3.05 𝑒2

𝜀r,eff 𝐿
. (2.7)

The NCs used in the scope of this thesis do not fall under the strong confinement regime,
which is why I leave out details about the derivation for this expression.

Quantum confinement is significant, if the additional kinetic energy due to quantum con-
finement (second term in Equation 2.6 and Equation 2.7), is comparable or larger than the
thermally induced kinetic energy, 𝐸𝑡ℎ = 3

2𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant and 𝑇
the temperature.71 Consequently, small temperature and/or small NC size promote quantum
confinement effects to become significant. Similarly, if the exciton binding energy or the
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attractive Coulomb interaction (third term in Equation 2.6 and Equation 2.7, respectively)
exceeds 𝐸𝑡ℎ, thermal dissociation of the electron-hole pair is suppressed and stable excitons
form.74 Otherwise, a bound state between electron and hole is energetically not favoured
and they remain as free charge carriers in the semiconducting LHP NC. Accordingly, small
temperature and/or small NC size additionally promote the existence of stable excitons.77

Having covered the effects of NC size and temperature on the charge carriers, let us now
consider the effects of temperature on the LHP band structure. With decreasing temperature
the majority of LHPs exhibit a red-shift in the band gap, i.e. a decrease in band gap energy,78–83

rather than a widening of the band gap as typical for most conventional semiconductors,
such as Si or GaAs.84 These opposites are proposed to have their origin in the inverted band
structure of LHPs compared to that of conventional semiconductors (see Figure 2.3 and descrip-
tion in Subsection 2.1.3).79 Hybrid organic-inorganic LHPs additionally undergo structural
phase transitions to lower symmetry crystal structures as the temperature decreases.85–87

These phase transitions occur at characteristic temperatures (e.g. with decreasing temper-
ature MAPbI3 transitions from cubic →tetragonal →orthorhombic at ∼330 K and ∼160 K,
respectively)87 and appear as discontinuities in the thermal evolution of their band structure,
band gap energy, dielectric permittivity and exciton binding energy. The tetragonal→or-
thorhombic transition is most profound, as it is accompanied with a sharp decrease/increase
in dielectric screening88/exciton binding energy, respectively,89 alongside with a cessation
of the rapidly re-orientating motion of the organic cations.86,87 Inorganic LHPs do not un-
dergo phase transitions up to room temperature and thus merely show the above described
typical continuous band gap shift with temperature.75,78 Their exciton binding energy and
dielectric permittivity are meanwhile largely temperature independent. Therefore, when
the rotational motion of the organic cations is frozen in the low-temperature orthorhombic
phase of hybrid LHPs, the dielectric screening mechanism is suggested to be essentially the
same as for hybrid and inorganic LHPs, i.e. governed by the (PbX6)4− octahedra.90,91 Indeed,
calculations reveal comparable relative permittivities in the low temperature orthorhombic
phase as long as the hybrid and inorganic LHPs are composed of identical halide atoms.75

LHPs with light/heavy halide cations exhibit a low/high relative permittivity, which manifests
the recognized large/small exciton binding energy, respectively.75,88,90

As established above, various kinds of LHPs exist. The rich assortment of composition,
morphology and size brings about individual properties, which opens the distinguished
possibility to design a suitable system for the intended study. For fundamental research on



2 Fundamentals 11

spin polarization dynamics, the topic of this thesis, the inorganic LHP NC CsPbI3 is a model
platform for the following reasons:

• Unlike hybrid LHPs, inorganic LHPs do not undergo phase transitions with temperature.
This is crucial, as temperature dependent spin dynamics are extractable more unam-
biguously from monotonically behaved background phenomena.86,87 Furthermore, the
inherent molecular dipole and asymmetric shape of organic cations90 (as opposed to the
spherically symmetric Cs atom) imposes a strong polarization and inversion asymmetry
on the crystal lattice.81 This affects the spin dynamics of photoinduced charge carriers
and thus adds a further, unwanted level of complexity.

• Among Cs-based LHPs, CsPbI3 exhibits the smallest band gap and exciton binding
energy.20,75 A small enough exciton binding energy, which falls below the thermal
energy, allows the study of free charge carriers, which is preferred with respect to
excitons for two reasons: First, this work aims to generate a profound depiction of spin
phenomena, which is most fundamental for free electrons and holes compared with the
more complex excitons, being a coalition of both. Second, free charge carriers are highly
relevant for optoelectronic applications, such as for example energy harvesting, because
only dissociated electrons and holes form harvestable current.89 Therefore, despite
almost always neglected, knowledge about the spin dynamics of photoexcited free
charge carriers is crucial for a more profound comprehension of the intrinsic electronic
processes and might inspire improved or even novel optoelectronic applications.

• For the same reasons, the NCs used in the scope of this thesis are prepared with a
size large enough to avoid considerable size quantization and thus without enhance-
ment of the exciton energy. Hence, nanocubes with relatively long edge lengths are
chosen. These can be described within the weak confinement regime and exhibit just
about bulk-like optical properties. As a side note, although bulk-like characteristics are
required, NCs were chosen over bulk or film CsPbI3, because the latter adopt the pho-
toinactive yellow non-perovskite crystal phase at ambient and low temperatures.92,93

Through post-synthetic heat treatment the desired photoactive black perovskite phase
can be achieved, however, it is rather unstable and reverts to the yellow phase within
∼ 1−48ℎ.92,94 CsPbI3 NCs on the other hand exhibit superior thermal and chemical sta-
bility, even under humid conditions,95 and remain photoactive for roughly two months,
when stored in ambient conditions.25 A long intactness is beneficial for experimental
measurements and crucial for commercial applications.
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On the basis of these considerations, colloidal CsPbI3 NCs emerge as a model platform to gain
fundamental knowledge about spin polarization dynamics of photoinduced charge carriers.
Hereinafter, the covered content will therefore refer to colloidal CsPbI3 NCs, unless specified
otherwise.

2.1.2 CsPbI3 Crystal Structure and Symmetry

Nanocrystals are crystalline nanoparticles, i.e. their atoms are arranged in a near-perfect
periodic manner.25,96 Consequently, a specific set of symmetry operations, like rotation,
inversion, reflection, translation, and combinations of these exist, which map the crystal
pattern onto itself and leave it invariant.97,98 This specific set is dictated by the crystal pattern
and forms a symmetry group, which is called space group in the three-dimensional case.
Hence, a crystal can be classified into one of 230 crystallographic space-group types with a
unique combination of symbol1 and number, as given in brackets below. All space groups
are again coarsely classified into seven crystal systems, whereof the cubic, tetragonal and
orthorhombic crystal systems will be encountered in this work. Depending on temperature
and composition, perovskites can embody those three crystal systems, which are designated as
𝛼-, 𝛽-, and 𝛾-/𝛿- phases, respectively.72 Although both, 𝛾- (Pbnm, No. 62) and 𝛿- (Pnma, No. 62)
phases, are orthorhombic, the latter is a yellow non-perovskite phase, which is photoinactive
and thus unwanted for my purposes or any optoelectronic applications. 𝛼-, 𝛽-, and 𝛾- phases
on the other hand are the desired black photoactive perovskite phases. The crystal structure
of cubic 𝛼-CsPbI3 (Pm3̄m, No. 221) has already been shown in Figure 2.1 a. Its analogue with
slightly rotated (PbX6)4− octahedra represents a distortion of the cubic phase and is described
by the lower symmetry tetragonal 𝛽-phase (P4/mbm, No. 127). An additional tilt perpendicular
to the rotation axis of the (PbX6)4− octahedra, further breaks the symmetry and results in the
orthorhombic 𝛾- perovskite phase (Pbnm, No. 62). All of the mentioned space groups have an
inversion center as one of their symmetry points and are thus typified as centrosymmetric.97,98

To illustrate, a crystal posesses an inversion center at position (0,0,0), if any crystal constituent
at position (x,y,z) is equivalently present at position (-x,-y,-z). Centrosymmetry excludes the
crystal from exhibiting enantiomorphism (chirality), as well as pyro- and piezoelectricity.
These effects involve serious impacts on the intrinsic charge carriers’ spin polarization.

Figure 4.1 in Chapter 4 shows an HAADF-STEM (high-angle annular dark-field scanning
transmission electron microscopy) image of the CsPbI3 NCs produced and investigated in the

1The space group symbol is composed of a capital letter representing the underlying lattice type (P=Primitive),
followed by a set of characters indicating the space group’s symmetry elements.98
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scope of this thesis. Precise analysis of HAADF-STEM images, alongside with patterns from
X-ray crystallography reveal that CsPbI3 NCs adopt orthorhomic crystal structure, i.e. the
photoactive black perovskite 𝛾-phase (Pbnm).72,95,99 It is retained from cryogenic temperatures
up to ≈ 473𝐾, where the crystal phase transitions to the 𝛿-phase (Pnma).95 Once in the 𝛿-phase,
this phase is irreversibly retained, even upon cooling back to room temperature. Remarkably,
this thermal behaviour is in stark contrast to that of bulk CsPbI3. The latter adopts the
orthorhombic 𝛿-phase (Pnma) as its equilibrium phase at ambient and low temperatures. It,
however, undergoes a phase transition to the cubic 𝛼-phase above ≈ 587𝐾 and successively
transitions to the tetragonal 𝛽-phase at ≈ 554𝐾 and to the orthorhombic 𝛾- perovskite phase
(Pbnm) at ≈ 457𝐾 upon cooling.100 Subsequently, it is subject to rapid reversion to the
equilibrium yellow non-perovskite 𝛿-phase, which is further reinforced through the exposure
to moisture.92–94 The exceptional stability of the black perovskite 𝛾-phase in NCs, in contrast
to bulk, is believed to result from their high surface-to-volume ratio, which causes enough
tensile surface strain to stabilize the crystal structure.72,101 Furthermore, their hydrophobic
capping ligands, stemming from the synthesis of these colloidal NCs, act as a protective layer
against humidity, preventing the NCs from fast degradation to the 𝛿-phase.95

2.1.3 Electronic Band Structure

In a solid, atoms are closely packed together with interatomic distances so small that their
outer orbitals overlap.102 As an example, the ionic radius of free Pb2+ is 119 𝑝𝑚, and that of
free I− is 220 𝑝𝑚.103 Both radii combined is their hypothetical interatomic distance in vacuum,
i.e. 119 𝑝𝑚 + 220 𝑝𝑚 = 339 𝑝𝑚. Comparing this value to the experimentally obtained Pb-I
distance in cubic CsPbI3, 311 𝑝𝑚 at 300 𝐾,72 affirms the conjecture that Pb and I orbitals overlap
and hybridize in the perovskite framework. This suggests the use of the tight-binding model
to explain the broadening of discrete atomic energy levels, as present in free atoms, into
energy bands as exhibited by solids. Consequently, the wavevector ⃖⃗𝑘 takes on continuous
values in solids, rather than discrete values in free atoms. Simultaneously, the electron wave
functions become delocalized over the separation of neighbouring atoms involved in the
hybridization.102,104 The dispersion of the electronic energy states can be calculated across
high symmetry points of the crystal, resulting in the so called band structure of the crystal.
CsPbI3 in its cubic representation exhibits a direct band gap located at the R point of the first
Brillouin zone, i.e. at the corner of the cube in reciprocal space (c.f. Figure 2.1 b,c).20,34 At
this point the gap between highest VB and lowest CB defines the band gap.102 The band gap
energy, as well as the properties of the band gap confining bands are highly relevant, as they
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determine the optical characteristics of a crystal, since optical transitions occur primarily at
the band gap.

As opposed to the outer atomic orbitals, the inner atomic orbitals remain discrete, as they do
not overlap with orbitals of neighbouring atoms.104 Consequently, the energy bands are char-
acterized by the outer atomic orbitals. In case of CsPbI3 the outer orbitals of 82Pb (electronic
configuration [Xe]4f145d106s26p2) and 53I ([Kr]4d105s25p5) are the main actors regarding its
electronic band structure,20,34,60 as already introduced in Subsection 2.1.1. Considering only
the nearest neighbours, five overlap matrix elements (disregarding SOC for now) describe
how the individual outer atomic orbitals of Pb and I overlap.59

𝑉𝑠𝑠 = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑆1⟩ = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑆2⟩ = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑆3⟩
𝑉𝑠0𝑝1,2,3 = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑋1⟩ = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑌2⟩ = ⟨𝑆0|�̂�𝑖𝑛𝑡|𝑍3⟩
𝑉𝑝0𝑠1,2,3 = ⟨𝑋0|�̂�𝑖𝑛𝑡|𝑆1⟩ = ⟨𝑌0|�̂�𝑖𝑛𝑡|𝑆2⟩ = ⟨𝑍0|�̂�𝑖𝑛𝑡|𝑆3⟩
𝑉𝑝𝑝𝜎 = ⟨𝑋0|�̂�𝑖𝑛𝑡|𝑋1⟩ = ⟨𝑌0|�̂�𝑖𝑛𝑡|𝑌2⟩ = ⟨𝑍0|�̂�𝑖𝑛𝑡|𝑍3⟩
𝑉𝑝𝑝𝜋 = ⟨𝑋0|�̂�𝑖𝑛𝑡|𝑋2⟩ = ⟨𝑋0|�̂�𝑖𝑛𝑡|𝑋3⟩ = ⟨𝑌0|�̂�𝑖𝑛𝑡|𝑌1⟩ = ⟨𝑌0|�̂�𝑖𝑛𝑡|𝑌3⟩ = ⟨𝑍0|�̂�𝑖𝑛𝑡|𝑍1⟩ = ⟨𝑍0|�̂�𝑖𝑛𝑡|𝑍2⟩.

�̂�𝑖𝑛𝑡 is an interaction Hamiltonian accounting for the interaction of overlapping orbitals. The
orbitals of nearest neighbour atoms involved in hybridization are visualized in Figure 2.2.
|𝑆𝑖⟩, |𝑋𝑖⟩, |𝑌𝑖⟩, and |𝑍𝑖⟩ denote the individual atomic s- and p- states, respectively, referring to
individual atomic orbitals. The subscripts, i, denote the positions, 1,2,3, of the three nearest
neighbour I atoms with respect to the Pb atom at position (0,0,0).

As already outlined above, it can be derived that the VB is predominantly composed of the
anti-bonding Pb 6s-orbitals stemming from the hybridizations of Pb 6s and I 5p atomic orbitals,
which correspond to the overlap matrix elements 𝑉𝑠0𝑝1,2,3 .

20,34,59,60 The main contribution to
the CB is found to originate from anti-bonding Pb 6p orbitals with only minor admixture from
I 5s orbitals, which correspond to the overlap matrix elements 𝑉𝑝0𝑠1,2,3 .

Immediately at the band gap, i.e. at ⃖⃗𝑘 = 0, energy bands of crystals are quite similar to discrete
energy states of single atoms. Based on this similarity, the electronic wave functions can
be classified analogously.104 To be precise, the electronic wave functions of single atoms
are classified as s, p, d, etc., corresponding to the orbital angular momenta 𝑙 = 0, 1, 2, etc.,
respectively. Accordingly, as established above, the VB wave function of CsPbI3 exhibits
overall s-character (𝑙 = 0), represented by the orbital wave function |𝑆⟩ .73,104 The CB wave
function, on the other hand, exhibits overall p-character (𝑙 = 1) in CsPbI3. The projection
of the orbital angular momentum operator �̂� along a given direction, commonly z, hence �̂�𝑧,
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Figure 2.2: Visualization of the outermost s- and p-orbitals of neighbouring Pb and I atoms in
CsPbI3. The spherical s-orbital and the dumbbell-like p-orbitals along the x-,y- and z-axis are shown in
gray for Pb and in purple for I atoms. Three exemplary atoms are accentuated in the illustrated perovskite
crystal structure for geometrical guidance. The figure is reproduced and adapted from59 .

has eigenvalues ℏ𝑚𝑙 (referred to as magnetic quantum numbers), i.e. �̂�𝑧 |𝑙 , 𝑚𝑙⟩ = ℏ𝑚𝑙 |𝑙 , 𝑚𝑙⟩ .105

With regard to the VB (𝑙 = 0) and the CB wave function (𝑙 = 1), the respective eigenvalues
are 𝑚𝑙 = 0 and 𝑚𝑙 = −1, 0, +1.104 It is customary to express the CB wave functions as |𝑋 ⟩ , |𝑌 ⟩ ,
and |𝑍 ⟩ , all real. This practice originates from the analogy to atomic physics, where the
angular function 𝑌𝑚𝑙

𝑙 (𝜃, 𝜑), known as spherical harmonics, relates the states |𝑙 , 𝑚𝑙⟩ to their
spatial orientations, 𝑥, 𝑦 and 𝑧. Accordingly,

|𝑙 , 𝑚𝑙⟩ =
⎧⎪
⎨⎪
⎩

|1, +1⟩ = − 1
√2

(|𝑋 ⟩ + 𝑖 |𝑌 ⟩)

|1, 0⟩ = |𝑍⟩
|1, −1⟩ = 1

√2
(|𝑋 ⟩ − 𝑖 |𝑌 ⟩)

(2.8)

Hence, the energy bands are characterized by their orbital angular momentum (as long as the
spin angular momentum is disregarded).

However, for a more accurate description of the energy bands SOC, a relativistic effect, must
be taken into account.59,81 Referring again to atomic physics as a guideline, generally a car-
rier’s spin angular momentum, 𝑆, and its orbital angular momentum, 𝐿, interact. This is
because the magnetic field arising from the orbital motion of the charge carrier interacts
with its intrinsic magnetic moment originating from its spin.104,105 The spin-orbit interaction
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Hamiltonian �̂�𝑆𝑂 = 2
3 ℏ2Δ𝑆𝑂

̂⃖⃗𝐿 ̂⃖⃗𝑆 accounts for this.73,104,105 The inherent spin-orbit splitting Δ𝑆𝑂

in an atom approximately scales with ∝ 𝑍 2, where Z is the atomic number.38,104 In CsPbI3
both, lead and iodine are heavy atoms, as can be seen from their large atomic numbers, Z=82
and Z=53, respectively. Therefore, these atoms have a large inherent spin-orbit splitting.
Typically, the spin-orbit splitting of a semiconductor is comparable to that of its constituent
atoms.104 Consequently, Δ𝑆𝑂 is expected to be large in CsPbI3. In fact, it is known to be sub-
stantial in LHPs in general and particularly strong in lead-iodine perovskites.106 It amounts to
Δ𝑆𝑂 ≈ 1.3 𝑒𝑉 in CsPbI3.34,59 As a comparison, SOC is considerably smaller in GaAs,
Δ𝐺𝑎𝐴𝑠
𝑆𝑂 = 0.34 𝑒𝑉, and Si, Δ𝑆𝑖

𝑆𝑂 = 0.044 𝑒𝑉.105

In order to include SOC in the expression of VB and CB states, the eigenstates of �̂�𝑆𝑂, and
therefore of ̂⃖⃗𝐿 ̂⃖⃗𝑆, have to be found.107 The eigenstates of the squared total angular momentum

operator, ( ̂⃗𝐽)
2
= ( ̂⃖⃗𝐿 + ̂⃖⃗𝑆)

2
⇒ ̂𝐽 2 = �̂�2 + ̂𝑆2 + 2 ̂⃖⃗𝐿 ̂⃖⃗𝑆 includes the required term ̂⃖⃗𝐿 ̂⃖⃗𝑆, and can be

expressed as ̂⃖⃗𝐿 ̂⃖⃗𝑆 = ( ̂𝐽 2 − �̂�2 − ̂𝑆2)/2. This means that the eigenstates of ̂⃖⃗𝐿 ̂⃖⃗𝑆 are also eigenstates
of ̂𝐽 2 − �̂�2 − ̂𝑆2. In fact, it can be shown that they are also eigenstates of ̂𝐽 2, �̂�2, and ̂𝑆2, as all
of these latter three operators commute. As ̂𝐽 2 also commutes with ̂𝐽𝑧, this qualifies to use
the eigenstates of both, ̂𝐽 2 and ̂𝐽𝑧, to express the eigenstates of �̂�𝑆𝑂 and thus the VB and CB
states. As a remark, this is only justified in semiconductors where SOC is significant (typically
in small or moderate band gap semiconductors).38 Otherwise, crystal-field interactions, i.e.
electric fields from adjacent atoms/ ions, have to be considered in addition to SOC.
Analogous to above, the respective eigenvalues of ̂𝑆𝑧, �̂�𝑧, ̂𝐽𝑧 are the magnetic quantum numbers
𝑚𝛼 = −𝛼, −𝛼 + 1, ..., 𝛼 − 1, 𝛼, where 𝛼 = 𝑠, 𝑙, 𝑗, respectively. Because VB holes and CB electrons
are fermions, 𝑠 = 1

2 and 𝑚𝑠 = −1
2 , +

1
2 . The VB and CB band gap states can now be expressed as

𝑙 𝑉𝐵 = 0, 𝑠 = 1
2

⟶ |𝑗, 𝑚𝑗⟩𝑉𝐵 = |12 , −
1
2⟩ , |

1
2 , +

1
2⟩ (2.9)

𝑙 𝐶𝐵 = 1, 𝑠 = 1
2

⟶
|𝑗, 𝑚𝑗⟩𝐶𝐵 = |12 , −

1
2⟩ , |

1
2 , +

1
2⟩

|𝑗, 𝑚𝑗⟩𝐶𝐵′ = |32 , −
3
2⟩ , |

3
2 , −

1
2⟩ , |

3
2 , +

1
2⟩ |32 , +

3
2⟩ .

(2.10)

From this it becomes clear that the three-fold degenerate CB (exclusively considering its orbital
angular momentum, c.f. Equation 2.8) splits into a double degenerate (𝑗𝐶𝐵 = 1

2 ) and a quadruple
degenerate (𝑗𝐶𝐵′ =

3
2 ) CB when SOC is taken into account.59 𝑗𝐶𝐵′ =

3
2 lies energetically above

𝑗𝐶𝐵 = 1
2 , distanced by Δ𝑆𝑂, as shown in Figure 2.3.34,59 The lower CB, 𝑗𝐶𝐵 = 1

2 , is commonly
referred to as split-off band. Its minimum defines the upper limit of the band gap. Therefore,
from here on, the focus will be put on CB, rather than CB’, as CB is primarily relevant for the
description of optical band gap transitions.
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The VB and CB eigenstates in Equation 2.9 and Equation 2.10 can be expressed as linear
combinations of the eigenstates of orbital (|𝑙 , 𝑚𝑙⟩ ) and spin (|𝑠, 𝑚𝑠⟩ ) angular momenta.104,105

All factors can be calculated or found as Clebsch-Gordan coefficients in tables for angular
momentum addition.108,109

|𝑗, 𝑚𝑗⟩ = ∑
𝑚𝑙

∑
𝑚𝑠

⟨𝑙, 𝑚𝑙, 𝑠, 𝑚𝑠|𝑗, 𝑚𝑗⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

|𝑙, 𝑚𝑙, 𝑠, 𝑚𝑠⟩

Clebsch-Gordan coefficients

|𝑗, 𝑚𝑗⟩𝑉𝐵 = {
|12 , +

1
2⟩ = |0, 0, 12 , +

1
2⟩

|12 , −
1
2⟩ = |0, 0, 12 , −

1
2⟩

|𝑗, 𝑚𝑗⟩𝐶𝐵 = {
|12 , +

1
2⟩ = − 1

√3
|1, 0, 12 , +

1
2⟩ + √

2
3 |1, +1,

1
2 , −

1
2⟩

|12 , −
1
2⟩ = 1

√3
|1, 0, 12 , −

1
2⟩ − √

2
3 |1, −1,

1
2 , +

1
2⟩

(2.11)

To be precise, |𝑙 , 𝑚𝑙, 𝑠, 𝑚𝑠⟩ signifies |𝑙 , 𝑚𝑙⟩ ⊗ |𝑠, 𝑚𝑠⟩ , because spin and orbital angular momentum
states live in different Hilbert spaces. Inserting Equation 2.8 into Equation 2.11 and defining
|𝑠, 𝑚𝑠⟩ = |12 , +

1
2⟩ ∶= |↑⟩ and |𝑠, 𝑚𝑠⟩ = |12 , −

1
2⟩ ∶= |↓⟩ , the total angular momentum states

corresponding to the VB and the split-off CB are73,104,105

|𝑗, 𝑚𝑗⟩𝑉𝐵 = {
|12 , +

1
2⟩𝑉𝐵 = |𝑆, ↑⟩

|12 , −
1
2⟩𝑉𝐵 = |𝑆, ↓⟩

(2.12)

|𝑗, 𝑚𝑗⟩𝐶𝐵 = {
|12 , +

1
2⟩𝐶𝐵 = − 1

√3
(|𝑋 + 𝑖𝑌 , ↓⟩ + |𝑍 , ↑⟩)

|12 , −
1
2⟩𝐶𝐵 = − 1

√3
(|𝑋 − 𝑖𝑌 , ↑⟩ − |𝑍 , ↓⟩) .

(2.13)

Note, that SOC is ineffective on S states, as the orbital angular momentum is zero (𝑙 = 0) and
therefore no magnetic field is present which could couple to the spin.59,105 Hence, in the VB
𝑗 = 𝑠, i.e. the spin polarization in |12 , +

1
2⟩𝑉𝐵 = |𝑆, ↑⟩ is 100% up, while in |12 , −

1
2⟩𝑉𝐵 = |𝑆, ↓⟩ it is

100% down. This is in stark contrast to the CB states, where SOC mixes the spin, i.e. 1
3 up

and 2
3 down in |12 , +

1
2⟩𝐶𝐵 and 1

3 down and 2
3 up in |12 , −

1
2⟩𝐶𝐵 , as given by the Clebsch-Gordan

coefficients (c.f. factors in Equation 2.11 and Equation 2.13).

It is worth stressing that in LHPs both, the VB and the CB are two-fold degenerate, whereas in
conventional II-VI and III-V compound semiconductors, the VB is four- and the CB two-fold
degenerate.105 In both materials, this is a consequence of SOC, which splits the two- and
four-fold degenerate bands such that the former lies energetically below the latter. Hence,
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because SOC influences the VB in II-VI and III-V compounds, the four-fold degenerate band
is energetically located at the band gap. Analogously, because SOC influences the CB in
LHPs, the two-fold degenerate band lies energetically at the band gap. The bands of both,
conventional and perovskite semiconductors, are sketched in Figure 2.3a, allowing for a direct
comparison between them.

Figure 2.3: Comparison of the band structures and optical transitions in II-VI or III-V semicon-
ductors and LHPs. (a) Band structures in the vicinity of the band gap of II-VI or III-V semiconductors
(left) with the band gap at the Γ point104 and LHPs (right) with the band gap at the R point in the 1st BZ.
HH = heavy hole band, LH = light hole band, HE = heavy electron band, LE = light electron band. (b)
Allowed optical transitions at the respective band gap induced by 𝜎+ polarized radiation with suitable
wavelength. The fractions represent the magnetic quantum numbers (𝑚𝑗). In II-VI and III-V compounds
(left) two transitions are induced, which involve two VB and two CB states. On the contrary, in LHPs
(right) solely one optical transition is induced, which involves only one VB and one CB state.

The four-fold degenerate VB in II-VI and III-V semiconductors, consisting of a so called light
(LH) and heavy hole (HH) band, directly impact the optically allowed transitions. During
absorption of circularly polarized photons two, rather than individual VB and CB states
are addressed. This is sketched in Figure 2.3b. In LHPs on the other hand it is possible
to address individual band gap states through circularly polarized photons. This manifests
the tremendous advantage of executing spin studies in LHPs compared to in II-VI and III-V
compound semiconductors. The reason for the different situations at the band gap lies in
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the “inverted” band structure, i.e. a p-like VB and s-like CB in II-VI and III-V compound
semiconductors, which is opposite to that in LHPs. Under consideration of SOC the VB is split
into a quadruple and a double degenerate band, analogous to the CB in LHPs, as worked out
above. However, 𝑗 𝐼 𝐼−𝑉 𝐼 ,𝐼 𝐼 𝐼−𝑉𝑉𝐵 = 3

2 lies energetically above 𝑗 𝐼 𝐼−𝑉 𝐼 ,𝐼 𝐼 𝐼−𝑉𝑉𝐵 = 1
2 and thus defines

the lower limit of the band gap. Therefore, in II-VI and III-V compounds, four, rather than two
degenerate VB states define the lower limit of the band gap.

2.2 Light-Matter Interaction

2.2.1 Optical Absorption

When light hits a semiconducting material, such as LHPs, it is subject to several optical
effects.38,104 Figure 2.4 sketches this scenario, showing a collection of linear optical processes.

Figure 2.4: Surface and interior optical effects occurring upon light-matter interaction. Here,
linear optical processes are considered exclusively.

Briefly mentioning those processes one by one, light-matter interaction begins at the surface of
the material, where a fraction of the incident light is reflected. The rest is transmitted into the
material, where it may be scattered, absorbed, or simply propagates to the back surface of the
material, where it is again reflected or transmitted.38,104 Reflection, scattering and absorption
are all processes which attenuate the light ray during propagation. Scattering may occur on
static, as well as on dynamic inhomogeneities and causes photons to be re-directed in diffuse
directions. Dynamic inhomogeneities may be for example density fluctuations associated with
acoustic waves (Brillouin scattering) or optical phonons (Raman scattering). Photons with
sufficient energy to overcome the band gap of a semiconducting material may be absorbed.
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Subsequently, the excitation energy is dissipated as heat before possibly re-emitting non-
directional radiation in form of spontaneous photoluminescence (PL). In general, reflection and
absorption processes are strongest, as they involve the lowest order of light-matter interactions.
For the sake of completeness, besides the mentioned processes, the electromagnetic (EM)
wave is furthermore subject to refraction. Refraction becomes apparent as bending of the
light ray at material interfaces. This is a consequence of the reduced travelling velocity of an
EM wave inside a medium compared to its velocity in vacuum, 𝑐.
If the intensity of the light beam is high, several additional phenomena must be taken into
account. Examples are sum and difference harmonics generation. Such non-linear optical
processes involve higher-order optical interactions and are suppressed for low laser intensities
and non-coherent light sources.

Based on the variety of introduced processes, optical spectroscopy represents a rich source of
information on intrinsic semiconductor properties. From here on, the focus will be put on
absorption spectroscopy, as this technique is well suited for detecting spin related phenomena
in LHPs and was therefore used intensively in the scope of this thesis. Below, the basic princi-
ples of absorption spectroscopy, in particular those fundamental to calculations performed in
this work, are established.

A plane EM wave propagating in z-direction, with wave vector 𝑘 and angular frequency 𝜔,
can be described by its spatial and time dependent electric field

̃ℰ(𝑧, 𝑡) = ℰ0 𝑒𝑖(𝑘𝑧−𝜔𝑡) . (2.14)

Although this equation is complex, which is often more practical during calculation, it is
important to remember to take the real part in the end, because a physical EM wave is real.
In a medium, the dispersion relation of light is 𝜔 = 𝑐

�̃�(𝜔)𝑘, with the complex refractive index
�̃�(𝜔) = 𝑛𝑟(𝜔)+ 𝑖 𝑛𝑖(𝜔), composed of real, 𝑛𝑟(𝜔), and imaginary, 𝑛𝑖(𝜔), refractive indices.38 Using
this to express 𝑘 in Equation 2.14 gives

̃ℰ(𝑧, 𝑡) = ℰ0 𝑒
𝑖( �̃�(𝜔)𝑐 𝜔 𝑧−𝜔𝑡) = ℰ0 𝑒

− 𝑛𝑖(𝜔)
𝑐 𝜔 𝑧

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑒𝑖 (
𝑛𝑟(𝜔)
𝑐 𝜔 𝑧−𝜔𝑡) .

≡ ℰ𝑎𝑚𝑝(𝜔) (2.15)
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The rightmost exponential function reveals that the wave’s phase inside the material is
determined by 𝑛𝑟(𝜔). Consequently, its travelling velocity within the material is

𝑣(𝜔) = 𝑐
𝑛𝑟(𝜔)

. (2.16)

The exponential function second to last in Equation 2.15 has a real exponent and acts directly
on the amplitude ℰ0. This causes the EM wave to decay exponentially with depth z inside a
medium, if 𝑛𝑖(𝜔), also referred to as extinction coefficient, is non-zero. From this, the intensity
of a light beam110

𝐼 (𝑧) =
𝑐 𝑛𝑟 𝜀0
2

ℰ2
𝑎𝑚𝑝(𝜔) (2.17)

can be deduced, which is experimentally easier accessible compared to its electric field.
Beer’s law, given in Equation 2.18, relates the decay of light intensity to its entering depth
z into a medium by assuming absorption to be the exclusive optical process responsible for
the intensity decay.38,104 Therefore, an absorption coefficient, 𝛼(𝜔), is introduced, which is a
strong function of 𝜔 and a material specific coefficient.

𝐼 (𝑧) = 𝐼0 𝑒−𝛼(𝜔) 𝑧 , (2.18)

with the incident light intensity at the material interface 𝐼0 = 𝐼 (𝑧 = 0). In absorption
spectroscopy, a material’s transmission spectrum is recorded through a wavelength scan
within the spectral area of interest. Assuming absorption to be responsible for the wavelength
specific decrease in transmitted light intensity, Beer’s law can be applied. Thus, 𝛼(𝜔) is an
experimentally accessible parameter through absorption spectroscopy.

The absorption process and hence 𝛼(𝜔) is also accessible through theoretical derivations.
Theoretical considerations of absorption are based on the underlying fundamental processes
and are thus essential to profoundly understand an experimentally recorded absorption
spectrum. To be precise, it is the imaginary part of the relative dielectric function, 𝜀𝑖(𝜔), which
will be derived below, as its expression, once known, permits to fully calculate 𝛼(𝜔). This
becomes evident from the expression of 𝛼(𝜔) in Equation 2.19, which is found as follows.
On comparison of Equation 2.17 and Equation 2.18, and by using that the complex relative
dielectric function, ̃𝜀𝑟𝑒𝑙(𝜔) = 𝜀𝑟(𝜔) + 𝑖𝜀𝑖(𝜔), is related to the complex refractive index via
�̃�(𝜔) = √ ̃𝜀𝑟𝑒𝑙(𝜔),110 the absorption coefficient can be expressed in terms of the imaginary part
of the relative dielectric function, 𝜀𝑖(𝜔) = 2 𝑛𝑟(𝜔) 𝑛𝑖(𝜔),38,104

𝛼(𝜔) = 2
𝑛𝑖(𝜔)
𝑐

𝜔 =
𝜀𝑖(𝜔)
𝑛𝑟(𝜔) 𝑐

𝜔 . (2.19)
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From this equation the absorption coefficient will be fully calculable, because 𝜀𝑖(𝜔) will be
derived from theoretical prospects below and

𝑛𝑟(𝜔) = 1
√2

√𝜀𝑟(𝜔) + √𝜀𝑟(𝜔)2 + 𝜀𝑖(𝜔)2 . (2.20)

Meanwhile, 𝜀𝑟(𝜔) is accessible through the respective Kramers–Kronig relation

𝜀𝑟(𝜔) − 1 = 2
𝜋
𝒫 ∫

∞

0

𝜔′𝜀𝑖(𝜔′)
𝜔′2 − 𝜔2 𝑑𝜔

′ , (2.21)

where 𝒫 stands for “principal part of the integral”, i.e. it insures that a singularity in the
denominator (𝜔′2 = 𝜔2) is avoided.

Thus, in order to calculate 𝛼(𝜔), 𝜀𝑖(𝜔) must be derived, which will be pursued from here on. A
photon with sufficient energy to overcome the band gap of a semiconducting material may be
absorbed by exciting an electron from an initial state 𝑖 in the VB, to a final state 𝑓 in the CB.38

Since for a given photon energy, transitions between many CB states are possible, the rate
for the absorption of one photon involves a summation over initial and final electron states.
The rate of absorption per unit volume of a cell of the material will therefore be denoted as 𝑅.
Absorption, thus, causes the EM field to loose energy (per unit volume of the incident beam)
of the amount

− 𝑑𝐸
𝑑𝑡 𝑑𝑉

= 𝑅 ℏ𝜔 . (2.22)

The above expression can be related to the intensity of the light beam, by multiplying the
energy density with the travel velocity of the photons in the medium, i. e. 𝑐

𝑛𝑟
. This leads to

− 𝑑𝐼
𝑑𝑡

= 𝑐
𝑛𝑟(𝜔)

𝑅 ℏ𝜔 . (2.23)

With the aim to find a relationship between 𝑅, which can be calculated using Fermi’s Golden
Rule, and 𝜀𝑖(𝜔), the power loss rate 𝑑𝐼

𝑑𝑡 is transformed as104

−𝑑𝐼
𝑑𝑡

= − 𝑑𝐼
𝑑𝑧

𝑑𝑧
𝑑𝑡

= − 𝑑
𝑑𝑧

(𝐼0𝑒−𝛼(𝜔)𝑧)
𝑐

𝑛𝑟(𝜔)
= 𝛼(𝜔)𝐼 (𝑧) 𝑐

𝑛𝑟(𝜔)
= 𝐼 (𝑧)

𝜔𝜀𝑖(𝜔)
𝑛𝑟(𝜔)2

=
𝜀0𝜀𝑖(𝜔) 𝑐 𝜔
2 𝑛𝑟(𝜔)

ℰ2
𝑎𝑚𝑝(𝜔) , (2.24)
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where Equation 2.16− Equation 2.19 were used. Finally, setting Equation 2.23 and Equation 2.24
equal gives

𝜀𝑖(𝜔) = 2ℏ
𝜀0 ℰ2

𝑎𝑚𝑝(𝜔)
𝑅 . (2.25)

According to Fermi’s Golden Rule104

𝑅 = 2𝜋
ℏ

∑
⃖⃗𝑘𝑐 ,⃖⃗𝑘𝑣

|⟨𝑐 | �̂�e−, Radiation | 𝑣⟩|
2
𝛿(𝐸𝑐(⃖𝑘𝑐) − 𝐸𝑣(⃖𝑘𝑣) − ℏ𝜔) , (2.26)

where the summation is to be understood per unit volume of the crystal. It is instructive to
consider the individual components of this equation in more detail, which is done now.
As an electron moves inside a crystal, it moves in a periodic potential originating from the
lattice constituents. Its wave functions are therefore expressed in form of Bloch functions,
which include the lattice periodicity in the periodic functions 𝑢𝑐/𝑣(𝑟).104

|𝑐⟩ = 𝑢𝑐,⃖⃗𝑘𝑐(𝑟) 𝑒
𝑖⃖⃗𝑘𝑐 𝑟 for an electron in the CB,

|𝑣⟩ = 𝑢𝑣 ,⃖⃗𝑘𝑣(𝑟) 𝑒
𝑖⃖⃗𝑘𝑣 𝑟 for an electron in the VB. (2.27)

Those multiplied by 𝑒−𝑖 𝜔𝑐/𝑣 𝑡 are plane waves with an amplitude modulated by 𝑢𝑐/𝑣(𝑟), respec-
tively. �̂�e−, Radiation in Equation 2.26 represents the electron, radiation interaction Hamiltonian,
which introduces a weak perturbation to the otherwise unperturbed electrons inside the crys-
tal.

�̂�e−, Radiation = 𝑒
𝑚
⃖⃖𝐴 ̂⃖⃗𝑝, (2.28)

where ̂⃖⃗𝑝 is the electron momentum operator and ⃖⃖𝐴 = 1
2 | ⃖⃖𝐴0| (𝑒 𝑖(⃖𝑘𝑟−𝜔𝑡) + 𝑒−𝑖(⃖𝑘𝑟−𝜔𝑡)) ̂𝑒 is the

vector potential of the EM field, with ̂𝑒 a unit vector parallel to ⃖⃖𝐴.104 Accordingly, the transition
matrix element in Equation 2.26 can be calculated as

|⟨𝑐 | �̂�e−, Radiation | 𝑣⟩|
2
= ( 𝑒

𝑚
)
2 | ⃖⃖𝐴0|

2

4
|⟨𝑐 | 𝑒𝑖𝑘𝑟 ̂𝑒 ̂⃖⃗𝑝 | 𝑣⟩|

2

= ( 𝑒
𝑚
)
2 ℰ2

𝑎𝑚𝑝(𝜔)

4𝜔2 |𝑃 |2 , (2.29)

where the electric dipole approximation, i.e. ℰ𝑎𝑚𝑝(𝜔) = |⃖⃖𝐴0 𝜔|, was used to obtain the second

row of Equation 2.29. The momentummatrix element |⟨𝑐 | 𝑒𝑖𝑘𝑟 ̂𝑒 ̂⃖⃗𝑝 | 𝑣⟩|
2
is only weakly dependent

on ⃖⃗𝑘 and can therefore be treated as a constant |𝑃 |2. To be precise, this is true within electric

dipole approximation:104 Wavevector conservation dictates that ⃖⃗𝑘𝑐 −⃖⃗𝑘𝑣 = ⃖⃗𝑘. However, for visible
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and IR light, the radiation wavevector ⃖⃗𝑘 is small in comparison to typical Brillouin zone sizes and
⃖⃗𝑘𝑐/𝑣.105,111 Therefore, ⃖⃖𝐴 can be expanded in a Taylor series ⃖⃖𝐴 ∝ 𝑒𝑖𝑘𝑟 = ∑∞

𝑛=0
(𝑖𝑘𝑟)𝑛
𝑛! = 1+𝑖𝑘𝑟 +𝒪(⃖𝑘2).

Within electric dipole approximation, all ⃖⃗𝑘-dependent terms are neglected. In other words ⃖⃗𝑘 = 0
and ⃖⃗𝑘𝑐 = ⃖⃗𝑘𝑣.

The delta function in Equation 2.26 ensures that the energy is conserved in the absorption
process. Summing over ⃖⃗𝑘𝑐 and ⃖⃗𝑘𝑣, and assuming parabolic bands, i.e. ℏ𝜔 = 𝐸𝑔+

ℏ2𝑘2
2 ( 1

𝑚∗
𝑒
+ 1

𝑚∗
ℎ
),

the delta function can be converted into a joint density of doubly spin degenerate VB and CB
states (JDOS).38,104,105

JDOS = {
√2𝜇3

𝜋2ℏ3 √ℏ𝜔 − 𝐸𝑔 for ℏ𝜔 > 𝐸𝑔
0 for ℏ𝜔 < 𝐸𝑔

(2.30)

Inserting both, the equation found for JDOS (Equation 2.30) and for |⟨𝑐 | 𝐻e−-Radiation | 𝑣⟩|
2

(Equation 2.29) into Equation 2.26 and subsequently into Equation 2.25, the expression for the
imaginary part of the dielectric function is obtained and reads

𝜀𝑖(𝜔) = 1
8𝜋𝜀0

𝑒2(2𝜇)
3
2

𝑚2ℏ3𝜔2 |𝑃 |
2
√ℏ𝜔 − 𝐸𝑔. (2.31)

This equation describes direct interband transitions of free charge carriers near 𝐸𝑔 within
electric dipole approximation.

In a similar way, the conversion of a photon into an exciton can be derived. In this case, |0⟩
describes the initial ground state without an exciton and |𝑓 ⟩ the final state, where an exciton
with energy 𝐸𝑓 ≡ 𝐸𝑛 = 𝐸𝑔 −

𝑅𝑦𝑋
𝑛2 and wavevector ⃖⃗𝐾 = ⃖⃗𝑘𝑒 +⃖⃗𝑘ℎ = ⃖⃗𝑘𝑒 −⃖⃗𝑘𝑣 has been created.104

These wave functions only couple to each other, i.e. photon absorption only becomes possible,
if the matrix element |⟨𝑓 | �̂�X, Radiation | 0⟩|

2
is non-zero. Again, Fermi’s Golden Rule can be

formulated as
𝑅0→𝑓 = 2𝜋

ℏ
∑
𝑓
|⟨𝑓 | �̂�X, Radiation | 0⟩|

2
𝛿(𝐸𝑓( ⃖⃗𝐾) − ℏ𝜔). (2.32)

The exciton envelope wave function is Φ𝑛𝑙𝑚𝑙(⃖⃗𝑅, 𝑟) = Ψ ⃖⃗𝐾 𝜙𝑛𝑙𝑚𝑙(𝑟) ∝ 𝑒𝑖 ⃖⃗𝐾 ⃖⃗𝑅 𝜙𝑛𝑙𝑚𝑙(𝑟), with the

center-of-mass coordinate ⃖⃗𝑅 = 𝑚∗
𝑒 𝑟𝑒+𝑚∗

ℎ𝑟ℎ
𝑚∗
𝑒+𝑚∗

ℎ
, the relative coordinate 𝑟 = 𝑟𝑒 − 𝑟ℎ and the Hydrogen

wave functions 𝜙𝑛𝑙𝑚𝑙(𝑟) = 𝑌𝑙𝑚(𝜃, 𝜑)𝑅𝑛𝑙(𝑟).104 Due to wavevector conservation, the photon
wavevector equals the exciton wavevector, i.e. absorption occurs at the point, where photon
and exciton dispersion curves intersect. As the photon dispersion curve is very steep, ⃖⃗𝐾 is
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small and can be approximated to be zero. Consequently, 0 ≈ ⃖⃗𝐾 = ⃖⃗𝑘𝑒 −⃖⃗𝑘𝑣 ⇒ ⃖⃗𝑘𝑒 ≈ ⃖⃗𝑘𝑣. Thus,
from now on, ⃖⃗𝑘𝑒 and ⃖⃗𝑘𝑣 will be collectively denoted as ⃖⃖ ⃗𝑘𝑒. With this, the matrix element can be
rewritten as104

|⟨𝑓 | �̂�X, Radiation | 0⟩|
2
∝ |𝜙𝑛𝑙𝑚𝑙(0)|

2
|⟨Ψ𝑐

⃖⃗𝑘𝑒
| �̂�e−, Radiation | Ψ𝑣

⃖⃗𝑘𝑒
⟩|
2
. (2.33)

|𝜙𝑛𝑙𝑚𝑙(0)|
2
gives the probability for electron and hole to be located within the same primitive

cell, because 𝑟 = 0 is equivalent to 𝑟𝑒 = 𝑟ℎ. Thus, the probability of optically creating an exciton,
given by the matrix element in Equation 2.33, is proportional to the wave function overlap of
electron and hole. As a side note, |𝜙𝑛𝑙𝑚𝑙(0)|

2
is non-zero only if the orbital angular momentum

is zero, i.e. 𝑙 = 0 and consequently 𝑚𝑙 = 0, which reveals that optically excited excitons only
exist with s symmetry. Solving the Hydrogen wave functions107 for 𝑟 = 0, 𝑙 = 0, 𝑚𝑙 = 0, while
referring to electron and hole of an exciton (𝑎𝑋) instead of electron and proton in a Hydrogen
atom (𝑎0), gives

|𝜙𝑛00(0)|
2 = |𝑌00(𝜃, 𝜑) 𝑅𝑛0(0)|

2 = | 1
2√𝜋

2

𝑎
3
2
𝑋 𝑛

3
2

|

2

= 1

|√𝜋 𝑎
3
2
𝑋 𝑛

3
2 |
2 = 1

𝜋 𝑎3𝑋 𝑛3
. (2.34)

|⟨Ψ𝑐
⃖⃗𝑘𝑒
| �̂�e−, Radiation | Ψ𝑣

⃖⃗𝑘𝑒
⟩|
2
, rightmost term in Equation 2.33, is treated analogously to Equa-

tion 2.29 above.104

Finally, the imaginary part of the dielectric function for the exciton bound states results in104

𝜀𝑖(𝜔) = 1
2

𝑒2

𝜀0𝜔2𝑚2𝑎3𝑋
|𝑃 |2

∞
∑
𝑛=1

1
𝑛3

𝛿 (ℏ𝜔 − (𝐸𝑔 −
𝑅𝑦𝑋
𝑛2

)) for ℏ𝜔 < 𝐸𝑔 , (2.35)

where a factor of 1/2 was included, which takes care of the spin degeneracy. It is intrigu-
ing that the oscillator strength of bound exciton states decreases with 𝑛3, while their bind-
ing energy decreases with 𝑛2. As 𝑛 → ∞, the discrete exciton bound states merge into a
quasi continuum, while the corresponding exciton energies approach the band gap energy,
i.e. 𝐸𝑛 = 𝐸𝑔 −

𝑅𝑦𝑋
𝑛2 → 𝐸𝑔.

Absorption of photons with energies ℏ𝜔 > 𝐸𝑔 is expressed analogously to the above derived
continuum absorption for free carriers (Equation 2.31), multiplied by a term referred to as
Coulomb enhancement factor (CEF), which accounts for the exciton effect that enhances
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photon absorption in the continuum. Correspondingly,

𝜀𝑖(𝜔) = 1
8𝜋𝜀0

𝜉
1 − 𝑒−𝜉⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑒2(2𝜇)
3
2

𝑚2ℏ3𝜔2 |𝑃 |
2
√ℏ𝜔 − 𝐸𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for ℏ𝜔 > 𝐸𝑔 ,

CEF free carrier transition (2.36)

where 𝜉 = 2𝜋
√

𝑅𝑦𝑋
ℏ𝜔−𝐸𝑔

.104,112 Both, Equation 2.35 and Equation 2.36 approach the same finite,
non-zero value as ℏ𝜔 → 𝐸𝑔, i.e.

lim
ℏ𝜔→𝐸𝑔

𝜀𝑖(ℏ𝜔) =
𝑒2𝜇

2 𝜀0𝑚2𝐸2𝑔 𝑎𝑋
|𝑃 |2. (2.37)

This demonstrates a smooth transition of discrete exciton bound state absorption (Equa-
tion 2.35) into continuum absorption (Equation 2.36). Experimentally obtained absorption
spectra of perovskites, as well as conventional semiconductors confirm this theoretically
derived prediction.80,113–115

2.2.2 Polarization of EMWaves and Photons

Classically, a light wave propagating in z-direction is characterized by its spatial- and time-
dependent electric field vector, ⃖⃖ ⃗̃ℰ(𝑧, 𝑡) (Equation 2.14), which points perpendicular to the
direction of propagation. Although it is real, it is often more practical to use a complex
notation, remembering to take the real part in the end. Expressed in cartesian coordinates it
is38,107

⃖⃖ ⃗̃ℰ(𝑧, 𝑡) =
⎛
⎜
⎜
⎝

ℰ𝑥
0 𝑒𝑖(𝑘𝑧−𝜔𝑡)

ℰ𝑦
0 𝑒𝑖(𝑘𝑧−𝜔𝑡+𝜙)

0

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

ℰ𝑥
0

ℰ𝑦
0 𝑒𝑖𝜙

0

⎞
⎟
⎟
⎠

𝑒𝑖(𝑘𝑧−𝜔𝑡) = ⃖⃖ ⃖⃗ℰ0 𝑒𝑖(𝑘𝑧−𝜔𝑡). (2.38)

The polarization of the EM wave manifests itself in the direction of motion of ⃖⃖ ⃖⃗ℰ0 in an x-y-
plane at a fixed, arbitrary z-coordinate. In the commonly used “detector view convention”
⃖⃖ ⃖⃗ℰ0 is viewed from the point of the detector towards the light source. In case of circular
polarization, counter-clockwise rotation of ⃖⃖ ⃖⃗ℰ0 is thus left-handed and clockwise rotation
right-handed. (This definition is opposite to the “source view convention”.)
Figure 3.2 b and c in Subsection 3.2.2 illustrate the temporal evolution of ⃖⃖ ⃖⃗ℰ0 for linearly and
circularly polarized light, respectively.
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Table 2.1 summarizes different types of polarization including the corresponding relative
amplitudes, ℰ𝑥

0 and ℰ𝑦
0 , as well as the relative phase, 𝜙.38

Table 2.1: Various types of polarization and corresponding relative amplitudes and phases.

Polarization Relative Amplitudes Relative Phase 𝜙

Linear, 𝜋 ℰ𝑥
0 , ℰ

𝑦
0 arbitrary 0, 𝜋

Left-handed circular, 𝜎+ ℰ𝑥
0 = ℰ𝑦

0 +𝜋
2

Right-handed circular, 𝜎− ℰ𝑥
0 = ℰ𝑦

0 −𝜋
2

Elliptical
ℰ𝑥
0 ≠ ℰ𝑦

0 ±𝜋
2

ℰ𝑥
0 = ℰ𝑦

0 ≠ 0, ≠ ±𝜋
2 , ≠ 𝜋

Unpolarized ℰ𝑥
0 , ℰ

𝑦
0 random random

It becomes clear from Figure 3.2 b and Table 2.1 that the x- and y-components of a linearly
polarized electric field vector oscillate in phase with respect to one another. In contrast,
the oscillations of x- and y-components of circularly polarized light are not in phase: the
x-component (y-component) lags behind the y-component (x-component) by 𝜙 = 90°, or,
equivalently a quarter wavelength, for right- (left-) handed circularly polarized light.

Bridging the gap between the classical and quantum mechanical description of light, any
beam of light can be considered as a superposition of many beams consisting of a single
photon each.107 This leads to interesting consequences. For example, if a certain fraction of
energy of a classical light beam is transmitted through a polarization selective prism, quantum
mechanically, that fraction is interpreted as the probability that one photon passes the prism.
In order to acquire a deeper understanding of photon polarization, from here on, it is specified
via its quantum mechanical description. To begin with, a single photons’ “state vector of
polarization” is defined as107

|Ψ⟩ = (
𝜓𝑥
𝜓𝑦
) . (2.39)

In contrast to the classical electric field, which is three dimensional and real, the photon
polarization state is a vector in complex, two-dimensional space.107

Pairs of photon polarization states can be found, which form a complete orthonormal basis.
Those are for example |𝑥⟩ and |𝑦⟩, as well as |𝜎+⟩ and |𝜎−⟩.

|𝑥⟩ = (
1
0
) , |𝑦⟩ = (

0
1
) , and |𝜎+⟩ = 1

√2
(
1
𝑖
) , |𝜎−⟩ = 1

√2
(
1
−𝑖
) (2.40)
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Note, that their components are equivalent to the classical x- and y- components of ⃖⃖ ⃖⃗ℰ0 (c.f.
Equation 2.38 and Table 2.1). An arbitrary photon polarization state |Ψ⟩ can be written as a
coherent superposition of the chosen basis, e.g.

|Ψ⟩ = |𝑥⟩⟨𝑥|Ψ⟩ + |𝑦⟩⟨𝑦 |Ψ⟩ = |𝜎+⟩⟨𝜎+|Ψ⟩ + |𝜎−⟩⟨𝜎−|Ψ⟩. (2.41)

Generalizing the above, |Ψ⟩ can be expressed in any basis, |𝑎⟩, |𝑏⟩.107 To do so, all vector
components expressed in the old basis (e.g. |𝑥⟩, |𝑦⟩) must be transformed to the new basis.

⟨𝑎|Ψ⟩ = ⟨𝑎|𝑥⟩⟨𝑥|Ψ⟩ + ⟨𝑎|𝑦⟩⟨𝑦 |Ψ⟩

⟨𝑏|Ψ⟩ = ⟨𝑏|𝑥⟩⟨𝑥|Ψ⟩ + ⟨𝑏|𝑦⟩⟨𝑦 |Ψ⟩

⇒ |Ψ⟩ = (
⟨𝑎|Ψ⟩
⟨𝑏|Ψ⟩

) = [
⟨𝑎|𝑥⟩ ⟨𝑎|𝑦⟩
⟨𝑏|𝑥⟩ ⟨𝑏|𝑦⟩

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(
⟨𝑥|Ψ⟩
⟨𝑦 |Ψ⟩

) .

transformation matrix ℛ (2.42)

The derivation of the transformation matrix is most illustrative by regarding |𝑎⟩ and |𝑏⟩ as
basis vectors, which are rotated by an angle 𝜃 with respect to the original |𝑥⟩ and |𝑦⟩ basis
vectors. An equivalent interpretation is that |Ψ⟩ is rotated in the opposite direction, i.e. by
−𝜃.107 In any case, the transformation matrix describing the rotation is easily derived and
reads

ℛ(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] = 𝑐𝑜𝑠𝜃 [
1 0
0 1

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

+ 𝑖 𝑠𝑖𝑛𝜃 [
0 −𝑖
𝑖 0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝟙 ̂𝑆 (2.43)

The knowledge of the eigenvalues and eigenstates of ℛ(𝜃) contains important information
about intrinsic quantum mechanical properties of photon polarization. They are found by
solving the Schrödinger equation ℛ(𝜃) |Ψ⟩ = 𝑟 |Ψ⟩. As an intermediate step, ̂𝑆 |Ψ⟩ = 𝜆 |Ψ⟩ has
to be solved first. It is straight forward to find

̂𝑆 |𝜎+⟩ = +1|𝜎+⟩ and ̂𝑆 |𝜎−⟩ = −1|𝜎−⟩. (2.44)

In fact, ̂𝑆 is the spin operator of the photon!107 A photon in its spin eigenstate |𝜎+⟩ (|𝜎−⟩) has
spin +1 (−1). Any other arbitrary polarization state of the photon is a superposition of a spin
+1 and a spin −1 photon.
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This is now written out for a general case and an explicit example of linear polarization in
x-direction.

Arbitrary polarization: |Ψ⟩ = 1
√2

(𝜓𝑥 − 𝑖𝜓𝑦)|𝜎+⟩ + 1
√2

(𝜓𝑥 + 𝑖𝜓𝑦)|𝜎−⟩

x-polarization: |𝑥⟩ = (
1
0
) = 1

√2
1
√2

(
1
𝑖
) + 1

√2
1
√2

(
1
−𝑖
) = 1

√2
|𝜎+⟩ + 1

√2
|𝜎−⟩.

(2.45)

Notice, that linear polarization is a superposition of equal amounts of +1 and −1 photon
spin.107

̂𝑆𝑧 is the projection of the photon spin operator ̂𝑆 onto the z-axis. Its eigenvalues 𝑚𝑠 = ±ℏ
have a direct physical meaning, namely the spin angular momentum in z-direction.107

̂𝑆𝑧 |𝜎+⟩ = +ℏ|𝜎+⟩ and ̂𝑆𝑧 |𝜎−⟩ = −ℏ|𝜎−⟩ (2.46)

Quantum mechanically, a particle’s helicity describes the projection of its spin onto its mo-
mentum. Thus, if a photon is moving in z-direction and it is in a state |𝜎+⟩ (|𝜎−⟩), then its spin
and momentum are parallel (anti-parallel) and its helicity is +ℏ (−ℏ).

I will complete this subsection about photon polarization by returning once more to ℛ(𝜃).
From Equation 2.43, Equation 2.44 and Equation 2.46 it is clear, that |𝜎+⟩ and |𝜎+⟩ are not
only eigenstates of ̂𝑆 and ̂𝑆𝑧, but also of ℛ(𝜃). In fact, |𝜎+⟩ and |𝜎+⟩ are the only eigenstates
of ℛ(𝜃). They are found by solving the respective Schrödinger equation

ℛ(𝜃) |Ψ⟩ = (𝑐𝑜𝑠𝜃 𝟙 + 𝑖 𝑠𝑖𝑛𝜃 ̂𝑆) |Ψ⟩ = 𝑟 |Ψ⟩ ⇒ {
ℛ(𝜃) |𝜎+⟩ = (𝑐𝑜𝑠𝜃 + 1 ⋅ 𝑖 𝑠𝑖𝑛𝜃) |𝜎+⟩ = 𝑒+𝑖𝜃 |𝜎+⟩
ℛ(𝜃) |𝜎−⟩ = (𝑐𝑜𝑠𝜃 − 1 ⋅ 𝑖 𝑠𝑖𝑛𝜃) |𝜎−⟩ = 𝑒−𝑖𝜃 |𝜎−⟩

The eigenvalues 𝑒+𝑖𝜃 and 𝑒−𝑖𝜃 of ℛ(𝜃) corresponding to its eigenvectors |𝜎+⟩ and |𝜎−⟩, respec-
tively, indicate that the components of the eigenvectors merely change by a complex phase
under rotation of the basis.
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2.2.3 Selection Rules and Optical Orientation

In electric dipole approximation, optical transitions within atoms obey selection rules, which
result from restrictions imposed on the matrix element by symmetry considerations.104 Explic-
itly, a transition is dipole allowed if Δ𝑙 = ±1.105 Taking SOC into account and differentiating
between linearly and circularly polarized irradiation, transitions obey Δ𝑚𝐽 = 0 and Δ𝑚𝐽 = ±1,
respectively. Indeed, this can be also applied to optical transitions in crystals, which are
governed by synonymous selection rules. Figure 2.5 shows the involved energetic levels at
the CsPbI3 band gap (at ⃖⃗𝑘 = 0), it is essentially a close up view of Figure 2.3 right. It visualizes
the discussed optical transitions induced by absorption of linearly (𝜋, purple) or circularly
(𝜎+, red and 𝜎−, blue) polarized light. Each arrow implicates the creation of one VB hole at
the foot, and one CB electron at the head of the respective arrow.

Figure 2.5: Optical transitions at the CsPbI3 band gap. The arrows indicate interband transitions
induced by linearly (𝜋), as well as circularly polarized irradiation (𝜎+, 𝜎−).

In the following, the matrix elements for interband transitions in CsPbI3 from |12 , ±
1
2⟩𝑉𝐵 (c.f.

Equation 2.12) to |12 , ±
1
2⟩𝐶𝐵 (c.f. Equation 2.13) are calculated. Hereby, the interconnection

between selection rules and light polarization is nicely perceivable.

The transition probability for an interband transition from initial state |𝑣⟩ to |𝑐⟩ is propor-
tional to the transition matrix element ⟨𝑐 | �̂�e−, Radiation | 𝑣⟩ (Equation 2.26). According to
Equation 2.29 ⟨𝑐 | �̂�e−, Radiation | 𝑣⟩ ∝ ⟨𝑐 | ⃖⃖𝐴 ̂⃖⃗𝑝 | 𝑣⟩, where ⃖⃖𝐴 describes the incoming EM field and
̂⃖⃗𝑝 is the momentum operator of an electron inside a crystal. With ⃖⃖𝐴 ∝ ⃖⃖⃗ℰ0, the transition

matrix element for an optical transition from |12 , −
1
2⟩𝑉𝐵 to |12 , +

1
2⟩𝐶𝐵 (red arrow labled 𝜎+ in

Figure 2.5) is proportional to
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𝐶𝐵
⟨1
2
, +1

2
| ⃖⃖ ⃗ℰ0

̂⃖⃗𝑝 |1
2
, −1

2
⟩𝑉𝐵 = ⃖⃖⃗ℰ0 𝐶𝐵

⟨1
2
, +1

2
|
⎛
⎜
⎜
⎝

̂𝑝𝑥
̂𝑝𝑦
̂𝑝𝑧

⎞
⎟
⎟
⎠

|1
2
, −1

2
⟩𝑉𝐵

∝ ⃖⃖⃗ℰ0 [⟨𝑋 − 𝑖𝑌 , ↓ | + ⟨𝑍 , ↑ |]
⎛
⎜
⎜
⎝

̂𝑝𝑥
̂𝑝𝑦
̂𝑝𝑧

⎞
⎟
⎟
⎠

|𝑆, ↓⟩ = ⃖⃖⃗ℰ0 [⟨𝑋 − 𝑖𝑌 |
⎛
⎜
⎜
⎝

̂𝑝𝑥
̂𝑝𝑦
̂𝑝𝑧

⎞
⎟
⎟
⎠

|𝑆⟩ ⟨↓ | ↓⟩ + ⟨𝑍 |
⎛
⎜
⎜
⎝

̂𝑝𝑥
̂𝑝𝑦
̂𝑝𝑧

⎞
⎟
⎟
⎠

|𝑆⟩ ⟨↑ | ↓⟩] .

(2.47)

By using the matrix-element theorem and that ⟨↓ | ↓⟩ = 1 and ⟨↑ | ↓⟩ = 0, the last term
can be recognized to be zero. The matrix-element theorem is based on group theoretical
considerations and assigns irreducible representations to the energy bands of a semiconductor
crystal.104 It excludes for example transitions between bands of the same symmetry, i.e. both
exhibit s symmetry, or both containing p symmetry, because of parity violation. (Bands of the
same symmetry have the same parity, while ̂⃖⃗𝑝 has odd parity, thus reverting the parity of one
band when building a direct product with it). The matrix-element theorem, hence, enables
one to find the non-zero matrix elements responsible for interband transitions.104,105 Those
are comparable for LHPs59 and III-V compounds,104,105,116 because VB and CB are merely
reversely ordered.

⟨𝑐| ̂𝑝|𝑣⟩ = ⟨𝑋 | ̂𝑝𝑥|𝑆⟩ = ⟨𝑌 | ̂𝑝𝑦|𝑆⟩ = ⟨𝑍 | ̂𝑝𝑧|𝑆⟩ = 𝑖𝑃 , (2.48)

where P is a real constant, which has already been introduced in Subsection 2.2.1. Thus,
Equation 2.47 reduces to

𝐶𝐵
⟨1
2
, +1

2
| ⃖⃖ ⃗ℰ0

̂⃖⃗𝑝 |1
2
, −1

2
⟩𝑉𝐵 ∝ ⃖⃖⃗ℰ0

⎛
⎜
⎜
⎝

⟨𝑋 | ̂𝑝𝑥|𝑆⟩
−𝑖⟨𝑌 | ̂𝑝𝑦|𝑆⟩

0

⎞
⎟
⎟
⎠

= ⃖⃖⃗ℰ0𝑃
⎛
⎜
⎜
⎝

𝑖
1
0

⎞
⎟
⎟
⎠

(2.49)

At this point it is enlightening to ask which light polarization causes this matrix element and
therefore the transition probability to maximize or to vanish. For this purpose, ⃖⃖ ⃗ℰ0, having
arbitrary polarization for now, is expressed in components of left- and right-handed circular
polarization according to Equation 2.45 top
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⃖⃖ ⃗ℰ0 ∝ 𝛼 ⃖⃖⃗ℰ𝜎+ + 𝛽 ⃖⃖⃗ℰ𝜎− ∝ 𝛼
⎛
⎜
⎜
⎝

1
𝑖
0

⎞
⎟
⎟
⎠

+ 𝛽
⎛
⎜
⎜
⎝

1
−𝑖
0

⎞
⎟
⎟
⎠

. (2.50)

Inserting this into Equation 2.49 gives

𝐶𝐵
⟨1
2
, +1

2
| ⃖⃖ ⃗ℰ0

̂⃖⃗𝑝 |1
2
, −1

2
⟩𝑉𝐵 ∝ 𝑃[𝛼 (𝑖 + 𝑖)⏟+𝛽 (𝑖 − 𝑖)⏟] ∝ 𝛼 .

2i 0 (2.51)

Equation 2.51 demonstrates that exclusively the left-handed (𝜎+) circular polarization compo-
nents in the EM radiation induce the considered transition from |12 , −

1
2⟩𝑉𝐵 to |12 , +

1
2⟩𝐶𝐵 (red

arrow labled 𝜎+ in Figure 2.5).

Analogously it can be shown that an optical transition from |12 , +
1
2⟩𝑉𝐵 to |12 , −

1
2⟩𝐶𝐵 is exclu-

sively induced by components corresponding to right-handed circular polarization in the
EM radiation (blue arrow labled 𝜎− in Figure 2.5). Meanwhile, transitions from |12 , +

1
2⟩𝑉𝐵

to |12 , +
1
2⟩𝐶𝐵 and |12 , −

1
2⟩𝑉𝐵 to |12 , −

1
2⟩𝐶𝐵 (purple arrows labled 𝜋 in Figure 2.5) are induced by

linearly polarized EM radiation, i.e. equivalent amounts of left- and right-circular polarization
(𝛼 = 𝛽) as derived above for linearly x-polarized photons (Equation 2.45 bottom).

The described phenomenon, that individual states are addressable with circular polarization,
is utilized as an experimental technique called optical orientation. Optical orientation, or
optical spin injection describes the creation of a net spin polarization in a semiconductor
via absorption of circularly polarized light.38 In other words, a temporary non-equilibrium
population of spin polarized charge carriers is induced, which subsequently decays via spin
depolarizing processes, such as one or a combination of the EY, DP and BAP spin relaxation
mechanisms, which will be covered below, in Section 2.4. For now, let us consider the effect of
optical orientation at the instant in time of its occurrence. As established in Subsection 2.1.3,
in LHPs, both, the VB and CB are two-fold spin degenerate. Optical orientation through
resonant absorption of 𝜎+ (𝜎−) polarized radiation generates electron-hole pairs with spin
orientations +1

2ℎ, +
1
2𝑒 (−

1
2ℎ, −

1
2𝑒), where the 𝑚𝑗 spin orientation is expressed in hole (h) and

electron (e) representation.38 Note, that the unoccupied VB state has the opposite sign as the
hole spin polarization, i.e. it is |𝑚𝑗 = −1

2⟩𝑉𝐵 (|𝑚𝑗 = +1
2⟩𝑉𝐵).

Because of this two-fold spin degeneracy of both, VB and CB, in LHPs, the theoretically maxi-
mal achievable electron and hole spin polarization, Π𝑒 and Πℎ is 100%. This is a consequence
of SOC, which introduces the splitting of the two-fold (𝑗 = 1

2 ) and four-fold (𝑗 = 3
2 ) spin
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degenerate CBs, shifting the latter away from the band gap (c.f. Subsection 2.1.3). Hence,
strong SOC creates perfect conditions for optimal optical orientation„117 which is a property
particularly valuable for quantum information science and spintronics.

In contrast, Π𝑒 = Πℎ = 50% in conventional II-VI and III-V semiconductors.37,38 The reason
for the spin polarization being halved compared to that in LHPs lies in the four-fold spin
degenerate VB in II-VI and III-V compounds, as shown in Figure 2.3 left. In order to explicitly
calculate Π𝑒, to see that it amounts to 50%, the electron spin polarization is defined37,38

Π𝑒 =
𝑛↑ − 𝑛↓
𝑛↑ + 𝑛↓

. (2.52)

𝑛 is the relative number of spin up (↑) and spin down (↓) electrons, induced by circularly
polarized irradiation of desired handedness. The heavy-hole transitions are three times
more likely than those from light-hole states.37,38 This results from the evaluation of the
respective matrix elements, as qualitatively shown above for transitions in LHPs. Thus, for
e.g. left-handed circularly polarized irradiation

Π𝜎+
𝑒 = 3 − 1

3 + 1
= 50%. (2.53)

The calculation of Πℎ is analogous and results in 50% as well. The same is of course true for
right-handed circularly polarized irradiation.

The fact that the LHP band structure offers perfect conditions for optimal optical orientation
reaching up to a theoretical spin polarization of 100% makes LHPs appealing model systems
for semiconductor spintronics36 and fundamental spin studies.39,40

2.3 Carrier-Phonon Coupling

The mechanical softness and ionicity of the LHP crystal lattice substantially impacts key
electronic properties such as the exciton binding energy, charge carrier mobility and recom-
bination, as well as charge carrier spin dynamics.89,106,113,117 To be precise, one, the charge
carriers are embedded and influenced by the lattice-induced dielectric environment and two,
they interact with the lattice in a direct way through carrier - phonon coupling.89 Both will
be discussed in this section. I will start with elaborating the origin of a material’s dielectric
permittivity.
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The dynamical response of a material to an electric field with frequency 𝜈 is assessed by its
relative permittivity (real part), 𝜀𝑟(𝜈), also referred to as dielectric permittivity. Importantly, it
is a function of frequency, which is particularly pronounced in perovskites.89 Sketching its
shape from high to low frequency, the dielectric function 𝜀𝑟(𝜈) increases with every intrin-
sic resonance, because processes with high resonance frequencies can dynamically follow
lower frequencies and thus contribute to 𝜀𝑟(𝜈), but not vice versa. At the high-frequency
end, the dielectric function of perovskites is dictated by electronic interband transitions,
𝜈 ∼ 1014𝐻𝑧, and amplified by the contribution of polar lattice vibrations (LO phonons),
𝜈 ∼ 1012𝐻𝑧, predominantly originating from Pb−X stretching and Pb−X−Pb rocking modes
within the (PbX6)4− octahedra.89,118 Collective re-orientations of organic A cations commence
at 𝜈 ∼ 1011𝐻𝑧, but are absent for inorganic LHPs, which have an atom (Cs) at the A site.89 The
final increment in 𝜀𝑟(𝜈) is associated with slow ion migration through the lattice, 𝜈 ≲ 102𝐻𝑧,
in particular of I− ions. In the low-frequency vicinity of every resonance, 𝜀𝑟(𝜈) transitions into
a plateau, i.e. a quasi-static dielectric permittivity, 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐(𝜈), turning the dielectric function
(𝜀𝑟(𝜈) plotted against 𝜈) roughly into a step-like function.

In semiconductors, 𝜀𝑟(𝜈) is especially relevant at the frequency corresponding to the electron-
hole motion in excitons, denoted by 𝜀r,eff, as it determines the strength of screening of the
Coulomb interaction between electron and hole. This is manifested in the exciton binding
energy according to Equation 2.4, i.e. 𝐵𝑋 ∝ 1

𝜀2r,eff
. Polarization responses of processes with

resonance energies of the order of 𝐵𝑋 and above contribute to dielectric screening, whereas
those significantly below 𝐵𝑋 do not contribute, because they are too inert to follow the
electron-hole motion effectively. Thus, in LHPs, the leading contribution to exciton screening
stems from processes at the above sketched high-frequency end of the dielectric function:
explicitly, these processes are electronic interband transitions and LO phonons.89,118 On this
basis, the mean value of several theoretical and experimental examinations converges to
𝜀r,eff ≈ 8 for orthorhombic CsPbI3.75,78,89,91 The high and low frequency plateaus surrounding
𝜀r,eff are dictated by the resonances of electronic interband transitions, 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑝𝑡𝑖𝑐𝑎𝑙 = 5.4,
and LO phonons, 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐,𝐿𝑂𝑝ℎ𝑜𝑛𝑜𝑛𝑠 = 30.4, respectively.89 It is noteworthy, that the latter two
values were determined for MAPbI3. However, it is justified to adopt them for CsPbI3, as the
resonance frequency of the organic MA molecule is one order of magnitude smaller than that
of LO lattice vibrations and thus only commences to contribute to dielectric screening for
frequencies significantly below 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐,𝐿𝑂𝑝ℎ𝑜𝑛𝑜𝑛𝑠.75,89

Let us now draw the attention to direct carrier-lattice interaction, i.e. scattering. Generally,
scattering in a crystal only occurs due to a deficiency of real space periodicity.111 The reason



2 Fundamentals 35

behind this is that the wave function of a charge carrier in a perfectly periodic crystal, i.e.
without any perturbations, persists forever. Distortions of the lattice periodicity may be caused
by crystal boundaries, impurities, defects, other carriers, phonons, etc. and this way limit the
lifetime of the carrier’s wave function. In other words, scattering occurs as a consequence of
crystal lattice imperfections.
Particularly relevant to LHPs is carrier-phonon scattering. Hence, it is instructive to firstly
specify what a phonon is. Lattice vibrations, i.e. collective atomic modes, are customarily
quantised in form of massless, bosonic quasiparticles called phonons, which, depending on
their type, couple to charge carriers through different mechanisms.111 Symmetry analysis
reveals that in LHPs, carriers predominantly couple to polar LO phonons through Fröhlich
interaction and to non-polar acoustic phonons through deformation potential scattering
(ADP).119 In LHPs, and ionic crystals in general, LO phonons are accompanied by amacroscopic
electric field, which arises from the relative displacements of metal cations (Pb2+) against
halide anions (X−).89 Through Coulomb interaction, charge carriers interact strongly with this
field, making Fröhlich interaction the dominant carrier-phonon scattering mechanism, while
causing contributions from other mechanisms to be practically irrelevant at room temperature
as expected for ionic materials.104,119,120 Charge carrier - acoustic phonon coupling through
deformation potential scattering, on the other hand, has a different underlying mechanism:
acoustic phonon modes involve temporary lattice perturbations, that cause modulations
of the band structure, i.e. of the “landscape” of charge carriers, and this way interact with
them.89 Acoustic phonon scattering only becomes important at cryogenic temperatures, where
optical phonons become scarce, because generally, when both, acoustic and optical phonons
modes are thermally excited, the optical phonon scattering rate is considerably higher than
that of acoustic phonons.82,112,120 Quantitatively, in CsPbI3 NCs, the phonon energies were
experimentally determined to be 𝐸𝐿𝑂 ≈ 26.3 ± 7.0𝑚𝑒𝑉 and 𝐸𝐴𝐷𝑃 ≈ 7.2𝑚𝑒𝑉.82

Carrier-phonon interactions mediate the exchange of energy and momentum between charge
carriers and the lattice.112 It has therefore major impact on the cooling behaviour of photoex-
cited charge carriers. In the so called phonon-cascade model, hot2 charge carriers cool down
towards the band edge via a cascade of emission of LO phonons until their energy falls below
the threshold energy for LO phonon emission (𝐸 < 𝐸𝑝ℎ𝑜𝑛𝑜𝑛). Cooling via the phonon-cascade
model is the dominant way hot charge carriers cool down in LHPs and conventional semi-

2Within the first ps after photoexcitation, the non-thermal carrier distribution thermalizes via carrier-carrier
scattering to a Maxwell-Boltzmann distribution.33,112 The latter allows for the assignment of a carrier temperature
𝑇𝐶. Charge carriers, which are photoexcited into the VB/CB with excess energy have a carrier temperature,
which is larger than the lattice temperature 𝑇𝐿. This justifies to refer to them as “hot” carriers. During the
cooling process, 𝑇𝐶 converges towards 𝑇𝐿.
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conductors, as long as the density of photoexcited carriers is small,33,112 which is the case
for all experiments conducted in the scope of this thesis. Otherwise, reabsorption of emitted
LO phonons by carriers, as well as carrier-carrier interactions like Auger recombination are
present, which perturb the cascade process.

Momentum and energy conservation impose limitations on the wavevectors of LO phonons,
which are absorbable and emittable by charge carriers. That is, ⃖⃖ ⃗𝑘′ = ⃖⃗𝑘±⃖⃗𝑞 and 𝐸′ = 𝐸±𝐸𝑝ℎ𝑜𝑛𝑜𝑛 ,
respectively.105 The LO phonon wavevector, denoted by ⃖⃗𝑞, has an interjacent angle 𝜃 with
the initial wavevector of the carrier, ⃖⃗𝑘. After the carrier-LO phonon scattering event, the
final carrier wavevector ⃖⃖ ⃗𝑘′ encloses an angle 𝜃𝑘 with ⃖⃗𝑘. Table 2.2 summarizes the restrictions
momentum and energy conservation impose on the magnitude of the carrier’s wavevector
and energy in a carrier - LO phonon scattering event.

Table 2.2: Momentum and energy conservation in a carrier - LO phonon scattering event.105

Phonon Absorption Phonon Emission

Momentum Conserv. 𝑘′2 = 𝑘2 + 𝑞2 + 2𝑘𝑞 𝑐𝑜𝑠𝜃 𝑘′2 = 𝑘2 + 𝑞2 − 2𝑘𝑞 𝑐𝑜𝑠𝜃

Energy Conserv. ℏ2𝑘′2
2𝑚∗ = ℏ2𝑘2

2𝑚∗ + ℏ𝜔𝐿𝑂
ℏ2𝑘′2
2𝑚∗ = ℏ2𝑘2

2𝑚∗ − ℏ𝜔𝐿𝑂

Mom. & E. Conserv. 𝑐𝑜𝑠𝜃 = 𝑚∗𝜔𝐿𝑂
ℏ𝑘𝑞 − 𝑞

2𝑘 ≡ 𝑓 (𝑞) 𝑐𝑜𝑠𝜃 = 𝑚∗𝜔𝐿𝑂
ℏ𝑘𝑞 + 𝑞

2𝑘 ≡ 𝑓 (𝑞)

qmin = 𝑘 (
√
1 + ℏ𝜔𝐿𝑂

𝐸 − 1), 𝜃𝑘 = 𝜃 = 0 𝑘 (1 −
√
1 − ℏ𝜔𝐿𝑂

𝐸 ), 𝜃𝑘 = 𝜃 = 0

qmax = 𝑘 (
√
1 + ℏ𝜔𝐿𝑂

𝐸 + 1), 𝜃𝑘 = 𝜃 = 𝜋 𝑘 (1 +
√
1 − ℏ𝜔𝐿𝑂

𝐸 ), 𝜃𝑘 = 𝜋, 𝜃 = 0

Inserting the respective expression of 𝑘′ (1st row in Table 2.2) into the equation resulting from
energy conservation (2nd row in Table 2.2) leads to a function 𝑓 (𝑞) (3rd row in Table 2.2). As
the cosine is defined between −1 and 1, the equivalent must be true for 𝑓 (𝑞), i.e. −1 ≤ 𝑓 (𝑞) ≤ 1.
Solving this equation for 𝑞 gives all absorbable or emittable phonon wavevectors 𝑞, where
𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥 (4th row in Table 2.2). As an example, the process of phonon emission within
a parabolic CB is illustrated in Figure 2.6.

The theoretical description of carrier-LO phonon scattering via Fröhlich interaction (�̂�Fröhlich)
can give further insight into this process. The corresponding matrix element is105,121,122

𝑀⃖⃗𝑘 →⃖⃗𝑘±⃖⃗𝑞 =
|⟨⃖𝑘 ± ⃖⃗𝑞 | �̂�Fröhlich |⃖⃗𝑘⟩|

2

(𝑛𝐿𝑂 + 1/2 ∓ 1/2)
=

𝑒ℏ2ℰ𝐿𝑂
2𝑉 𝑞2𝑚∗

𝑒
𝛿𝑘,⃖𝑘±⃖⃗𝑞 =

𝑒2ℏ𝜔𝐿𝑂
2𝑉 𝑞2

( 1
𝜀∞

− 1
𝜀0
) 𝛿𝑘,⃖𝑘±⃖⃗𝑞 , (2.54)
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Figure 2.6: The process of carrier cooling according to the phonon-cascade model represented
by one phonon emission event in a parabolic CB.105,112 (a) Shown are energies (red), maximum and
minimum wave vectors (green) and the angle 𝜃𝑘 (blue) enclosed by initial (⃖𝑘) and final (⃖⃖ ⃗𝑘′) wave vectors
(black). The effective phonon-cascade process is governed by the emission of LO phonons with the smaller
wavevector, 𝑞𝑚𝑖𝑛, justifying to sketch the phonon cascade process as shown in (b). The CB electron emitting
an LO phonon yields ⃖⃗𝑘 ∥ ⃖⃖ ⃗𝑘′, i.e. 𝜃𝑘 = 0.

where 𝑉 is the crystal volume. The longitudinal electric field associated with the LO phonon
is given by ℰ𝐿𝑂 = 𝑚∗

𝑒 𝑒𝜔𝐿𝑂
ℏ ( 1

𝜀∞
− 1

𝜀0
), with 𝜀∞ and 𝜀0 the high- and low-frequency dielectric

permittivities of the material. In lead-iodide perovskites, the latter two variables can be
assigned to 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑝𝑡𝑖𝑐𝑎𝑙 and 𝜀𝑟 ,𝑠𝑡𝑎𝑡𝑖𝑐,𝐿𝑂𝑝ℎ𝑜𝑛𝑜𝑛𝑠, respectively, as resonance corresponding to the
electron-hole motion of an exciton lies in between these plateau values, as established above.89

𝑀⃖⃗𝑘 →⃖⃗𝑘±⃖⃗𝑞 ∝
1
𝑞2 expresses the probability for the carrier-LO phonon scattering process, which

maximizes for 𝑞 = 𝑞𝑚𝑖𝑛. Therefore, in the cascade process preferentially phonons with the
wavevector 𝑞𝑚𝑖𝑛 are produced, resulting in a phonon distribution, which is strongly peaked
near 𝑞𝑚𝑖𝑛.104,105,112 This justifies to sketch carrier cooling via the cascade process as shown in
Figure 2.6 b.

The characteristic rate for carrier-LO phonon scattering via Fröhlich interaction is derived by
using Fermi’s golden rule and integrating over all final carrier states 𝑆𝑓, i.e. those with ⃖⃖ ⃗𝑘′.105

𝑊 (⃖𝑘) = 2𝜋
ℏ ∫ |⟨𝑓 | �̂�Fröhlich | 𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖) 𝑑𝑆𝑓

𝑊 (⃖𝑘) = 2𝜋
ℏ ∫

𝑉
(2𝜋)3

[𝑀⃖⃗𝑘 →⃖⃗𝑘+⃖⃗𝑞 𝑛𝐿𝑂 𝛿(𝐸⃖⃗𝑘 − 𝐸⃖⃗𝑘+⃖⃗𝑞 + ℏ𝜔𝐿𝑂)

+ Θ(𝐸 − ℏ𝜔𝐿𝑂)𝑀⃖⃗𝑘 →⃖⃗𝑘−⃖⃗𝑞 (𝑛𝐿𝑂 + 1) 𝛿(𝐸⃖⃗𝑘 − 𝐸⃖⃗𝑘−⃖⃗𝑞 − ℏ𝜔𝐿𝑂)] 𝑑⃖⃖ ⃗𝑘′ (2.55)
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The LO phonon occupation number, 𝑛𝐿𝑂, gives the number of thermally excited LO phonon
modes with angular frequency 𝜔𝐿𝑂 at temperature T.38 This function is highly temperature
dependent and dictated by Bose-Einstein statistics, as given by Equation 2.56 and plotted in
Figure 2.7.

𝑛𝐿𝑂 ∝ 1

𝑒𝑥𝑝(ℏ𝜔𝐿𝑂𝑘𝐵𝑇
) − 1

(2.56)

0 100 200 300
0

0.2

0.4

0.6

0.8

Temperature [K]

Bo
se

-E
in

st
ei

n 
D

is
tr

ib
ut

io
n 

Fu
nc

tio
n

Figure 2.7: Bose-Einstein distribution function plotted against temperature. The plot was gener-
ated using the LO phonon energy of CsPbI3, ℏ𝜔𝐿𝑂 = 26.3 𝑚𝑒𝑉 82 .

The absorption of an LO phonon by a charge carrier is only possible if LO phonon modes are
thermally excited and becomes likelier the more modes are excited.38,112 Effectively, the LO
phonon absorption rate is proportional to 𝑛𝐿𝑂. LO phonon emission on the other hand can
occur in two ways: spontaneously or stimulated. The former is independent of 𝑛𝐿𝑂 and is
essentially possible at all temperatures as long as the carrier has sufficient energy to emit an
LO phonon, i.e. 𝐸 ≥ ℏ𝜔𝐿𝑂. The latter, on the other hand, is again reliant on the presence of
excited LO phonon modes and thus also proportional to 𝑛𝐿𝑂.

The contributions of LO phonon absorption and emission to the Fröhlich scattering rate
can be identified as the first and second term, respectively, in Equation 2.55, as well as in
Equation 2.58:105 ⃖⃗𝑘 → ⃖⃗𝑘 + ⃖⃗𝑞 in the first term indicates the transition of a carrier from state
⃖⃗𝑘 to ⃖⃗𝑘 + ⃖⃗𝑞 and respective energy 𝐸⃖⃗𝑘 to 𝐸⃖⃗𝑘+⃖⃗𝑞 through LO phonon absorption. This term is

proportional to 𝑛𝐿𝑂. LO phonon emission (⃖𝑘 → ⃖⃗𝑘 − ⃖⃗𝑞, 𝐸⃖⃗𝑘 → 𝐸⃖⃗𝑘−⃖⃗𝑞) is expressed in the
second term, where 𝑛𝐿𝑂 + 1 accounts for stimulated and spontaneous emission, respectively.
Importantly, the emission term has to be omitted for carrier energies below the threshold for
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LO phonon emission (𝐸 < ℏ𝜔𝐿𝑂), because in this case, stimulated, as well as spontaneous LO
phonon emission are prohibited by energy conservation. This is accounted for by the step
function Θ(𝐸 − ℏ𝜔𝐿𝑂). It is zero if 𝐸 < ℏ𝜔𝐿𝑂 and one otherwise. Consequently, for carrier
energies smaller than LO phonon energies,

𝑊𝐸<ℏ𝜔𝐿𝑂 ∝ 𝑛𝐿𝑂, (2.57)

which states that the Fröhlich scattering rate is linearly dependent on the LO phonon occupa-
tion number and therefore has a temperature dependence as dictated by the Bose-Einstein
distribution function (c.f. Equation 2.56 and Figure 2.7).

The solution to Equation 2.55 can be found by inserting the matrix element (Equation 2.54),
substituting 𝑑⃖⃗𝑞 for 𝑑𝑘 and solving the integral over ⃖⃗𝑞. Omitting screening effects, the final
equation of the carrier-LO phonon scattering rate is105

𝑊(𝐸(⃖𝑘)) =

=
𝑒2𝜔𝐿𝑂
2𝜋ℏ √

𝑚∗

2𝐸
( 1
𝜀∞

− 1
𝜀0
) [𝑛𝐿𝑂 𝑠𝑖𝑛ℎ−1 (

𝐸
ℏ𝜔𝐿𝑂

)
1
2
+ Θ(𝐸 − ℏ𝜔𝐿𝑂) (𝑛𝐿𝑂 + 1) 𝑠𝑖𝑛ℎ−1 ( 𝐸

ℏ𝜔𝐿𝑂
− 1)

1
2
]

= 𝑊0√
ℏ𝜔𝐿𝑂
𝐸

[𝑛𝐿𝑂 𝑠𝑖𝑛ℎ−1 (
𝐸

ℏ𝜔𝐿𝑂
)
1
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
+Θ(𝐸 − ℏ𝜔𝐿𝑂) (𝑛𝐿𝑂 + 1) 𝑠𝑖𝑛ℎ−1 ( 𝐸

ℏ𝜔𝐿𝑂
− 1)

1
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
]

absorption emission (2.58)

In the last row of Equation 2.58 energy independent parameters are collected in 𝑊0, which is
defined as

𝑊0 =
𝑒2√2𝑚∗ℏ𝜔𝐿𝑂

4𝜋ℏ2
( 1
𝜀∞

− 1
𝜀0
) . (2.59)

Considering how the carrier-LO phonon scattering rate via Fröhlich interaction (Equation 2.58)
depends on the energy of the charge carrier, Figure 2.8 shows 𝑊

𝑊0
versus 𝐸

ℏ𝜔𝐿𝑂
(dark green

line denoted by “Total”) and the individual contributions from the LO phonon absorption,
spontaneous and stimulated emission terms (remaining green lines). Figure 2.8 demonstrates
nicely, that for carrier energies below the threshold for LO phonon emission, i.e. 𝐸

ℏ𝜔𝐿𝑂
< 1, the

total scattering rate (dark green curve) follows the course of the LO phonon absorption curve.
The adjacent steep increase in the scattering rate begins at 𝐸

ℏ𝜔𝐿𝑂
= 1, when both, spontaneous

and stimmulated LO phonon emission commence.
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Figure 2.8: LO phonon scattering rate versus carrier energy. Rate for carrier-LO phonon scattering
in CsPbI3 at 300K. Equation 2.58 is plotted for an LO phonon energy of CsPbI3, ℏ𝜔𝐿𝑂 = 26.3 𝑚𝑒𝑉 82 and 𝑇 =
300𝐾. Displayed are the total scattering rate (darkest green, thick) along with all individual contributions
stemming from the absorption (bright green), spontaneous (intermediate green) and stimulated emission
(dark green) terms.

Returning to Equation 2.59, it is informative to note, that a slight transformation of the
equation has a physical interpretation. Namely, 𝛼 = 𝑊0

2𝜔𝐿𝑂
is the Fröhlich coupling strength,

also referred to as polaron coefficient.105,112 Evaluating it for an electron (hole) in CsPbI3,
using the effective electron (hole) mass 𝑚∗

𝑒 = 0.22𝑚0
123,124 (𝑚∗

ℎ = 0.14𝑚0
123,124) and the LO

phonon energy ℏ𝜔𝐿𝑂 = 26.3 𝑚𝑒𝑉 82 , yields 𝛼 𝑒
−

𝐶𝑠𝑃𝑏𝐼3 = 1.62 (𝛼ℎ𝐶𝑠𝑃𝑏𝐼3 = 1.30). These values are
comparable to that computed for MAPbI3, 𝛼𝑀𝐴𝑃𝑏𝐼3 = 2.3489 , but significantly larger than of
GaAs, 𝛼𝐺𝑎𝐴𝑠 = 0.088112 . This discrepancy is expected, because LHPs are ionic semiconductors,
whereas III-V compounds, such as GaAs, are an intermediate type between covalent and ionic
semiconductors and thus weakly polar.105,112 Furthermore, the carrier mobility, which is
antiproportional to 𝛼, is much higher in GaAs (∼ 10000𝑐𝑚2𝑉−1𝑠−1112 ), compared to lead-
iodide perovskites (∼ 100𝑐𝑚2𝑉−1𝑠−1 in MAPbI389). The significantly larger Fröhlich coupling
strength in LHPs compared to that of GaAs, once again confirms that charge carrier-phonon
coupling via Fröhlich interaction is substantial in ionic semiconductors, such as LHPs.82,89

Coming back to Equation 2.55, it not only allows for the derivation of the LO phonon scattering
rate (Equation 2.58), but also for that of the momentum relaxation rate. The latter is of
particular importance in the context of this work, as the EY spin relaxation mechanism is
based upon it. However, its derivation is somewhat more complicated, because the amount of
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momentum transfer between phonon and charge carrier in the process of scattering depends
on their relative travelling directions. Hence, a fractional increase/ decrease of momentum
of ±𝑞

𝑘 𝑐𝑜𝑠𝜃 is transferred from phonon (⃖⃗𝑞) to electron (⃖𝑘), in the electron’s direction of motion
upon absorption (+)/ emission (-) of a phonon, where 𝜃 is the angle enclosed by ⃖⃗𝑘 and ⃖⃗𝑞. The
term 𝑐𝑜𝑠𝜃 results from momentum and energy conservation and is given in Table 2.2. With
this, the momentum relaxation rate can be derived and results in105

1
𝜏𝑚

= 𝑊0√
ℏ𝜔𝐿𝑂
4𝐸
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emission (2.60)

How this momentum relaxation rate is commonly used to express the Elliot-Yafet spin relax-
ation rate, will be elaborated in Section 2.5.

2.4 Carrier Spin Relaxation in Semiconductors

Phonon mediated charge carrier dynamics, as discussed above, have been so far consid-
ered independently from the charge carrier spin. However, investigation of charge carrier
spin dynamics provide important complementary information about internal processes of
photoexcited semiconductor systems.112 A profound understanding of spin phenomena in
semiconductors is essential for their application in the promising field of spintronics, as
introduced in Chapter 1.

The successful execution of the technique “optical orientation” in semiconductors in 1968 paved
the way for exploring carrier spin dynamics with a time resolution of up to picoseconds, which
was inaccessible to the traditional electron spin resonance (ESR) technique at the time.125 This
stimulated a number of studies on spin relaxation processes in III-V semiconductors, which
brought forth theoretical spin relaxation models explaining the new experimental data. A
collection of the most important of these is shown here.
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• In the Elliott-Yafet (EY) mechanism (Elliott, 1954126 and Yafet, 1963127), spin relax-
ation of free charge carriers occurs during momentum scattering as a result of lattice-
induced SOC.38,125 As SOC mixes spin up and spin down wave functions, disorientation
of the carrier spin becomes possible in the process of momentum scattering, even if the
involved scattering potential does not act directly on the carrier spin. The EY theory
takes account of scattering by acoustic and optical phonons, as well as by impurities.

• The D’yakonov-Perel’ (DP) mechanism (D’yakonov and Perel’, 1971128,129) occurs in
crystals without inversion center.125,130 In such crystals, a spin splitting of the energy
band for all ⃖⃗𝑘 ≠ 0 is present, implying that opposite spin states exhibit different energies
at the same wave vector ⃖⃗𝑘. This is equivalent to an effective crystal-internal magnetic
field with magnitude and orientation dependent on ⃖⃗𝑘. As a result, the spin axis of a free
charge carrier precesses around the effective magnetic field. Meanwhile, its optically
induced ensemble spin polarization diminishes. The DP mechanism is therefore also
referred to as precession spin relaxation mechanism of free charge carriers.

• The Bir-Aronov-Pikus (BAP) mechanism (Bir, Aronov and Pikus, 1975131,132) ac-
counts for spin flip transitions due to Coulomb mediated exchange interaction between
electrons and holes.125 The exchange interaction is the binding force between an electron
and hole in an exciton. It is furthermore particularly strong in heavily p-doped semi-
conductors, exhibiting a high number of free holes. Spin relaxation in these examples is
therefore primarily driven by the BAP mechanism.

• Hyperfine interaction is a purely magnetic phenomenon and describes the mutual
interaction between electron and nuclei magnetic momentum.105 It can be the main
cause of spin relaxation for electrons localized in quantumwells and quantum dots, or for
those bound to donors.125,133 However, free electrons in metals or bulk semiconductors
are hardly affected by this interaction, as it is short ranged and thus too weak to cause
effective spin relaxation.

Those long-standing models successfully describe the underlying processes of spin-related
optoelectronic characteristics of conventional III-V semiconductors. Naturally, the overarching
question arises, whether those models are also applicable to LHPs. Intense research on LHPs
in recent years brought forth that their optoelectronic properties in many aspects compare to
those of III-V compounds.27 Therefore, LHPs may be regarded as close cousins to conventional
III-V semiconductors, thus allowing for a tentative and conscious application of those models
to LHPs.27
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Today, the study of spin-related phenomena in LHPs is at the forefront of current research. In
the following paragraph, a collection of these studies is given, summarizing major results and
open questions on spin dynamics in LHPs.

By now, a broad consensus about spin relaxation times, 𝜏𝑠, in LHPs appears to have been
approached. They are manifold reported to be of the order of a few picoseconds for thin-
films and NCs, all measured through circularly polarized DTS at room temperature.134–137

Nevertheless, 𝜏𝑠 is influenced by LHP composition. Comparing ABX3 thin films incorporating
A = MA, Cs, B=Pb and X = Br, I, spin relaxation times increase from 1.3𝑝𝑠 to 4.3𝑝𝑠 in the order
𝜏CsPbI3𝑠 < 𝜏MAPbI3𝑠 < 𝜏CsPbBr3𝑠 < 𝜏MAPbBr3𝑠 .135 Exchanging the heavy metal lead (Pb) by the
lighter tin (Sn), both elements belonging to the same periodic group (IV), increases the spin
relaxation time significantly.137 CsSnBr3 NCs for example yield 𝜏CsSnBr3𝑠 = 18±2𝑝𝑠. According
to these studies, the strongest effect on the spin relaxation time is ascribed to the choice of metal
cation, followed by the choice of halide anion. A-site cations influence spin relaxation time
only weakly. This indicates that spin relaxation dynamics are predominantly impacted by the
LHP band structure, which is determined by the (BX6)4− octahedra. Furthermore, the strong
dependence of 𝜏𝑠 on the molar mass of B- and X-site constituents evidences the dominant role
SOC plays in spin relaxation in LHPs. This is because a semiconductor’s intrinsic spin-orbit
splitting correlates with its constituent’s mass, as established in Subsection 2.1.3. To give an
example, the spin-orbit splitting of CsSnBr3 (ΔCsSnBr3

𝑆𝑂 ≈ 0.43 𝑒𝑉 137) is roughly 3.7-fold smaller
compared to that of CsPbBr3 (ΔCsPbBr3

𝑆𝑂 ≈ 1.61 𝑒𝑉 34).138 Spin relaxation processes, which rely
on SOC, can thus be influenced by the choice of crystal constituents, i.e. lighter elements
induce smaller spin-orbit splitting in LHPs, leading to a prolongation of spin relaxation time.

Regarding crystal dimension, it has been found that strong quantum confinement accelerates
spin relaxation.136,139 Spin relaxation times were systematically studied for CsPbBr3 and
CsPbI3 QDs of various sizes. It was found that a reduction in edge length from ≈ 8 𝑛𝑚 to
≈ 4 𝑛𝑚 reduces the spin relaxation time from 𝜏𝑠 ≈ 1.9 𝑝𝑠 to ≈ 1.2 𝑝𝑠 in CsPbBr3 QDs, and
from 𝜏𝑠 ≈ 3.2 𝑝𝑠 to ≈ 1.9 𝑝𝑠 in CsPbI3 QDs.136 The same trend is found in the single crystalline
Ruddlesden−Popper perovskite PEA2PbI4(MAPbI3)𝑛−1 as the number of layers, n, is reduced.139

While 𝜏𝑠 ≈ 7 𝑝𝑠 for 𝑛 ≈ 4, spin relaxation becomes faster and yields 𝜏𝑠 ≈ 0.3 𝑝𝑠 for 𝑛 ≈ 1. The
latter spin relaxation time is consistent with a study on 2D layered (C6H5C2H4NH3)2PbI4 thin
films, where 𝜏𝑠 = 0.24±0.01 𝑝𝑠 has been deduced.140 These studies consistently show that spin
relaxation times reduce upon size reduction of small NCs/ QDs. In summary, enhancement of
quantum confinement accelerates spin relaxation in LHPs. The authors of these studies name
the following possible reasons to explain the described phenomenon: scattering with QD
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surfaces,136,139 spin-spin interactions with surface dangling bonds, and Coulomb exchange
interaction (BAP mechanism).139,140 The latter becomes evident when considering that the
exciton energy increases upon size reduction of the respective particle (c.f. Equation 2.7).
Indeed, in the mentioned 2D layered (C6H5C2H4NH3)2PbI4 thin films, the exciton binding
energy reaches values as large as 180𝑚𝑒𝑉.140 As a reference, this enormous exciton binding
energy exceeds that in bulk CsPbI3 ten-fold. Hence, strong quantization and entailed large
exciton energies might be a key parameter in determining the dominating spin relaxation
mechanism in a material.

The described effect of strong quantization on spin relaxation must not be confused with that
of small to moderate quantization: For spin relaxation being predominantly phonon assisted,
moderate quantum confinement is generally an effective way to prolong spin relaxation. This
is because moderate confinement initiates discrete (versus continuous), atom-like energy
levels.141 As a result carrier-phonon scattering is suppressed, because it becomes less likely
that phonon energies match intralevel transition energies − a phenomenon called “phonon
bottleneck” and well known from III-V semiconductors. This way the EY mechanism can
be suppressed. Indeed, CsPbI3 NCs show a prolonged spin relax time compared with their
bulk counterpart, speaking for EY to be the dominant spin relax mechanism in this material
under moderate or absent quantization.136 In contrast, spin relaxation times in CsPbBr3 are
shorter in NCs compared to in bulk, indicating spin relaxation due to phonon scattering in
form of the EY mechanism to be rather negligible. Further evidence for lead-iodide and lead-
bromide LHPs (APbI3 and APbBr3, A = MA, Cs) being dominated by different spin relaxation
mechanisms is that the former show prolonged spin relaxation as the phonon occupation is
reduced by lowering the temperature, while spin relaxation times in the latter are not affected
by temperature.135 This again supports the evidence that the EY mechanism is dominant and
negligible in APbI3 and APbBr3, respectively.

It has been shown that spin relaxation times in LHPs stay constant for small photoexcitation
fluences,137 but shorten as the fluence increases to high levels.134 This indicates that at high
laser intensities carrier-carrier scattering additionally contributes to carrier spin relaxation,
while being negligible at small laser intensities.

In the helicity dependent pump-probe experiments of the above discussed studies no external
magnetic fields were incorporated. If, however, the sample under investigation is wished
for being subjected to a homogeneous magnetic field, two options arise: The magnetic field
is applied along (Faraday geometry), or perpendicular (Voigt geometry) to the observation
direction. If the pump-probe experiment is in Faraday geometry, the photoexcited ensemble
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of charge carriers comprises of a highly non-equilibrium spin distribution, whose relaxation
involves energy transfer to the lattice via phonon scattering.142 The associated time constant
𝑇1 is referred to as longitudinal, or spin-lattice relaxation time. For a pump-probe experiment
in Voigt geometry, the pump-induced charge carrier spins are in a superposition of spin up and
spin down state.142 Initially, these states precess in phase about the field vector of the externally
applied magnetic field in a plane normal to it. All these spins add constructively, which yields
an optically induced net magnetization, that temporally evolves at Larmor frequency. The
decay of the net magnetization reflects the spin decoherence of individual charge carriers and
the associated lifetime 𝑇2 is referred to as transverse spin relaxation time, or phase relaxation
time. It is caused mostly by spin-spin interactions and is thus a much faster process compared
to phonon induced longitudinal spin relaxation, i.e. 𝑇1 ≫ 𝑇2.
In polarization dependent pump-probe experiments without any external magnetic field,
the spin ensemble does not Larmor precess as described above. Measuring spin relaxation
due to dephasing, 𝑇2, is thus not available. Rather, spin relaxation times deduced from such
experiments corresponds to 𝑇1.134 Therefore, in the following studies, which incorporate a
magnetic field in their pump-probe experiments, the focus is put on the results of 𝑇1, rather
than 𝑇2.

Spin relaxation in CsPbBr3 single crystals was measured through polarization sensitive pump-
probe spectroscopy, while exposing the sample to magnetic files of up to 4 𝑇.36 The measured
long-lasting spin relaxation time lies in the range of 32 to 53 𝑛𝑠 at cryogenic temperature, i.e.
𝑇 ≤ 5𝐾. The group attributes it to hyperfine interaction between localized charge carriers
and nuclei spins. For localized electrons in bulk GaAs, InP and CdTe, it has been shown that
an external magnetic field may suppress spin relaxation via hyperfine interaction.143 Spin
relaxation in the latter studies lasts even longer and reaches values of the order of milliseconds.
It is clear, that spin relaxation governed by hyperfine interaction is prolonged by an exter-
nal magnetic field, as it interferes with the purely magnetic hyperfine interaction between
electron and nuclei magnetic momentum. Hyperfine interaction is a strong, but short ranged
interaction and thus the main cause of spin relaxation for localized electrons, while being
negligible for free electrons.125,133

Notably, spin relaxation times can significantly exceed the lifetime of the photoinduced
electron-hole pairs.36 This is a further evidence, that the detected long-lasting spin relaxation
times do not arise directly from optical orientation. Instead, the spin polarization of photoin-
duced carriers measured in these experiments is transferred to localized carriers, which far
outlive the incident photoexcited electron-hole pairs. Therefore, spin polarization can remain
in the system even after carrier recombination, explaining the long-lasting spin relaxation
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times reported in these studies. To date, the initial spin relaxation processes, which arise
directly from photocreated electron-hole pairs require further research, as they have not
been fully understood yet, nor have they been unambiguously assigned a dominating spin
relaxation mechanism.

From the given collection of exemplary studies it can be deduced that efforts have been made
to unravel the laws of spin relaxation in LHPs, but at the time it remains only partially under-
stood. Summarizing and converging the results of the above studies leads to what is commonly
accepted as of today: One, the choice of metal cation and halide anion determine the intrinsic
spin-orbit splitting and strongly affect spin relaxation dynamics. Two, spin relaxation is
influenced by quantum confinement in two ways: strong quantum confinement drastically
enlarges the exciton energy in LHPs and accelerates spin relaxation, while small to moderate
quantum confinement suppresses and thus prolongs phonon assisted spin relaxation. Three,
it is understood that large carrier densities contribute to spin relaxation via carrier-carrier
scattering.
The governing spin relaxation mechanism, thus, predominantly depends on LHP constituents,
crystal size, temperature, and photoexcitation intensity. A fundamental and quantitative un-
derstanding of how these conditions impact spin relaxation and the unambiguous assignment
to the dominating spin relaxation mechanism is, however, still missing. Therefore, from here
on, the target is to investigate and contribute exactly that in CsPbI3 NCs.

Out of the above listed spin-relaxation mechanisms only the EY and DP mechanism are
concerned with free charge carriers125 and thus applicable to describe spin dynamics in un-
and slightly confined CsPbI3 NCs (low cryogenic temperatures excepted). However, in prin-
ciple, the DY theory can be excluded, as it acts in crystals exhibiting inversion symmetry
breaking, which is not the case for the centrosymmetric CsPbI3 NCs (c.f. Subsection 2.1.2). It
is nevertheless instructive to elucidate the key differences between those two spin relaxation
mechanisms, as it is still under debate, if Rashba-type effects are present in LHPs, which
would involve inversion symmetry breaking.144 Thus, an immediate comparison of EY and
DP theory helps to assign the suitable one to my experimental data. In Chapter 5 this then
allows for the exclusion of the DY mechanism not only through theoretical arguments, but
also through experimental evidence.
Comparing the mathematical expressions describing EY and DP spin relaxation reveals their
principally opposite dependency on momentum scattering.125 While the EY spin relaxation
rate increases with a higher carrier scattering rate, 1

𝜏𝐸𝑌
∝ 1

𝜏𝑚
, it decreases in the DP model,
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1
𝜏𝐷𝑃

∝ 𝜏𝑚. The microscopic origin for this is that DP spin relaxation takes place between, rather
than during scattering events. Consequently, with an increasing momentum scattering rate,
e.g. as a result of a high phonon concentration, the efficiency of the EY mechanism increases
and that of the DP mechanism decreases. On rising temperature, both mechanisms predict a
rapid increase in spin relaxation, however, with different dependencies, i.e. 1

𝜏𝐸𝑌
∝ 1

𝜏𝑚
𝑇 2 and

1
𝜏𝐷𝑃

∝ 𝜏𝑚𝑇 3.
For the sake of completeness, I want to briefly address under which conditions the BAP
mechanism and/ or hyperfine interaction may control spin relaxation even in CsPbI3. These
conditions may be significant quantum confinement, or low cryogenic temperatures, as in
both cases charge carriers tend to increasingly coalesce and form excitons. It is for exam-
ple known that at cryogenic temperatures, in III-V compounds the BAP mechanism gains
importance even in bulk structures.125 This means that in increasingly cold ambience spin
relaxation due to exchange interaction between electron and hole commences to compete
with phonon-assisted spin relaxation. Additionally, it has been reported, that at 𝑇 < 30 − 40𝐾,
the detected increasing spin relaxation rate is a consequence of electron localization at low
temperatures.125 This way, spin relaxation may be governed by hyperfine interaction between
the localized electron spin with magnetic momenta of lattice nuclei.

From here on, the focus will be returned to the investigation of free charge carrier spin
relaxation, as justified above and motivated in Subsection 2.1.1.

2.5 Elliott-Yafet Spin Relaxation Theory

In order to predict the rate of charge carrier spin relaxation in a certain material, it is essential
to firstly identify the dominating mechanism behind it by comparing experimental data to
spin relaxation theory. In my first-author publication on “spin polarization dynamics of free
charge carriers in CsPbI3 NCs”113 we present that the EYmechanism dominates spin relaxation.
Therefore this theory is elucidated in detail in this section.

The EY theory was derived to describe spin relaxation in III-V semiconductors.105,122,125 The
VB in this group of materials has p-symmetry and is thus influenced significantly by SOC,
splitting it into heavy hole, light hole and split-off band (c.f. Figure 2.3). In the latter two, spin
up and spin down states are mixed, even at ⃖⃗𝑘 = 0.105 As a result, holes are subject to ultra
fast spin randomization.38,145 By contrast, there is no mixing of CB spin states at ⃖⃗𝑘 = 0, i.e.
𝑗 = 𝑠, because the CB has s-symmetry. Deviating from the zone center, i.e. at ⃖⃗𝑘 ≠ 0, spin up
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and spin down states mix as a consequence of SOC.105 Spin relaxation in the CB, thus, occurs
on a significantly slower time scale and is described by mechanisms, such as those listed in
Section 2.4.38,145

Due to the similarity of the band structures of III-V semiconductors and perovskites, which is
merely reversed (c.f. Figure 2.3), the above argumentation can be adopted for CB electrons
and VB holes in LHPs. In LHPs, it is the CB, which exhibits p-symmetry. The lowest CB is the
split-off band, distanced from the light and heavy electron bands by Δ𝑆𝑂. Within the lowest
CB, spins are mixed, even at ⃖⃗𝑘 = 0 (c.f. Equation 2.13), analogous to the split-off VB in III-V
compounds. Accordingly, CB electrons in LHPs are subject to ultra fast spin randomization.
By contrast, there is no mixing of VB spin states in LHPs at ⃖⃗𝑘 = 0, i.e. 𝑗 = 𝑠 (c.f. Equation 2.12),
analogous to the CB in III-V compounds. Again, spin up and spin down states are mixed
only for ⃖⃗𝑘 ≠ 0. Consequently, hole spin relaxation is expected to occur on a significantly
slower time scale than electron spin relaxation. Tentatively, spin relaxation in the LHP VB
can therefore also be described by the spin relaxation mechanisms derived for CB electrons in
III-V semiconductors.

The EY mechanism predicts that carrier - phonon scattering impacts charge carrier spin.
Consequently, the Ansatz for the EY spin scattering rate is equivalent to that of carrier -
phonon scattering in Equation 2.55.105,122

𝑊𝐸𝑌(⃖𝑘) =2𝜋
ℏ ∫ |⟨𝑓 | �̂�Fröhlich | 𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖) 𝑑𝑁𝑓 (2.61)

𝑁𝑓 denotes the number of final electron (hole) states in the CB (VB) in III-V compounds (LHPs).
As opposed to carrier-phonon scattering, spin scattering requires initial (𝑖) and final (𝑓) states
to be considered spin sensitive. As the Fröhlich scattering potential is assumed to not directly
act on the spin state, the matrix element in Equation 2.61 can be divided into a spin insensitive
and a spin sensitive component105,122

⟨𝑓 | �̂�Fröhlich | 𝑖⟩ = ⟨𝐹 ⃖⃖ ⃗𝑘′ | �̂�Fröhlich | 𝐹⃖⃗𝑘⟩ ( 𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↑) | 𝑢𝑘 (↑)⟩𝐶𝐵 +

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 ) . (2.62)

𝐹⃖⃗𝑘 are spin insensitive envelope functions multiplying the respective spin sensitive eigen-
functions 𝑢𝑘. The CB (VB in LHPs) eigenfunctions 𝑢𝑘 are mixed in spin only if ⃖⃗𝑘 ≠ 0. (At the
zone center they are pure in spin as given by Equation 2.12.) 𝑢𝑘 are eigenfunctions of the
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Hamiltonian �̂� total and satisfy the Schrödinger equation105,146

�̂� total =
𝑝2

2𝑚0
+ 𝑉 (𝑟)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
+ ℏ

𝑚0
⃖⃗𝑘 ⃖⃗𝑝 + ℏ2𝑘2

2𝑚0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
+ ℏ

4𝑚2
0𝑐2

∇𝑉 (𝑟) × ⃖⃗𝑝 ⃖⃗𝜎
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̂�0 �̂�𝑘 �̂�𝑆𝑂 .

�̂� total | ⃖⃗𝑢𝑘 ⟩ = 𝐸𝑘 | ⃖⃗𝑢𝑘 ⟩ (2.63)

𝑚0 is the free electron (hole) mass, 𝑉 (𝑟) a periodical crystal potential, and ⃖⃗𝜎 are the Pauli
matrices. The total Hamiltonian is comprised of three constituents: the unperturbed Hamilto-
nian (�̂�0), a perturbation Hamiltonian (�̂�𝑘) including one term of linear and one of quadratic
dependence on ⃖⃗𝑘 following Kane’s ⃖⃗𝑘 ⋅ ⃖⃗𝑝 theory, and finally a perturbation Hamiltonian taking
into account spin-orbit coupling effects (�̂�𝑆𝑂).146,147 The solution of the Schrödinger equation

�̂�0 | ⃖⃗𝑢𝑛 ⟩ = 𝐸𝑛 | ⃖⃗𝑢𝑛 ⟩ (2.64)

is assumed to be known, enabling one to use the complete set of | ⃖⃗𝑢𝑛 ⟩ as a basis. The eight
basis vectors are

|𝑢𝑐1⟩ = 𝑖 | 𝑆, ↑ ⟩ , |𝑢𝑣1⟩ = − 1
√2

| 𝑋 + 𝑖𝑌 , ↑ ⟩ , |𝑢𝑣2⟩ = 1
√2

| 𝑋 − 𝑖𝑌 , ↑ ⟩ , |𝑢𝑣3⟩ = | 𝑍 , ↑ ⟩ ,

|𝑢𝑐2⟩ = 𝑖 | 𝑆, ↓ ⟩ , |𝑢𝑣4⟩ = 1
√2

| 𝑋 − 𝑖𝑌 , ↓ ⟩ , |𝑢𝑣5⟩ = − 1
√2

| 𝑋 + 𝑖𝑌 , ↓ ⟩ , |𝑢𝑣6⟩ = | 𝑍 , ↓ ⟩ .

(2.65)

The eigenvalues of the first four basis states are respectively degenerate with the last four
basis states. With this basis the total Hamiltonian for cubic crystals reads105

�̂� total
8×8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸𝑐 −𝑘+𝑃
√2

𝑘−𝑃
√2

𝑘𝑧𝑃 0 0 0 0

−𝑘−𝑃
√2

𝐸𝑣 +
Δ𝑆𝑂
3 0 0 0 0 0 0

𝑘+𝑃
√2

0 𝐸𝑣 −
Δ𝑆𝑂
3 0 0 0 0 √2Δ𝑆𝑂

3
𝑘𝑧𝑃 0 0 𝐸𝑣 0 0 √2Δ𝑆𝑂

3 0
0 0 0 0 𝐸𝑐

𝑘−𝑃
√2

−𝑘+𝑃
√2

𝑘𝑧𝑃

0 0 0 0 𝑘+𝑃
√2

𝐸𝑣 +
Δ𝑆𝑂
3 0 0

0 0 0 √2Δ𝑆𝑂
3 −𝑘−𝑃

√2
0 𝐸𝑣 −

Δ𝑆𝑂
3 0

0 0 √2Δ𝑆𝑂
3 0 𝑘𝑧𝑃 0 0 𝐸𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



50 2.5 Elliott-Yafet Spin Relaxation Theory

Its eigenvalues 𝐸𝑘 are deduced by solving 𝑑𝑒𝑡 ( �̂� total
8×8 − 𝐸𝑘𝟙8×8 ) = 0. As the goal is to describe

how CB electrons (VB holes in LHPs) are affected by the EY mechanism (Equation 2.61), the
eigenvalues and eigenvectors of �̂� total

8×8 will be explicitly formulated. The former is calculated
to be105

𝐸𝑘,𝐶𝐵 = 𝐸𝑐 +
ℏ2𝑘2

2𝑚0
+

𝑃2 (𝐸𝑔 + 2Δ𝑆𝑂
3 ) 𝑘2

(𝐸𝑔 + 2Δ𝑆𝑂
3 ) (𝐸𝑔 +

Δ𝑆𝑂
3 ) − 2 (Δ𝑆𝑂

3 )
2 . (2.66)

When factoring out 𝑘2, Equation 2.66 takes on a more compressed form

𝐸𝑘,𝐶𝐵 = 𝐸𝑐 +
ℏ2𝑘2

2𝑚∗
, (2.67)

with

1
𝑚∗

= 1
𝑚0

+
(𝐸𝑔 + 2Δ𝑆𝑂

3 ) 2𝑃2

[(𝐸𝑔 + 2Δ𝑆𝑂
3 ) (𝐸𝑔 +

Δ𝑆𝑂
3 ) − 2 (Δ𝑆𝑂

3 )
2
] ℏ2

. (2.68)

This allows to find an expression for 𝑃2, namely

𝑃2 = ( 1
𝑚∗

− 1
𝑚0

)
[(𝐸𝑔 + 2Δ𝑆𝑂

3 ) (𝐸𝑔 +
Δ𝑆𝑂
3 ) − 2 (Δ𝑆𝑂

3 )
2
] ℏ2

2 (𝐸𝑔 + 2Δ𝑆𝑂
3 )

. (2.69)

This expression will be needed in the proceeding calculation.

Subsequently, the corresponding eigenstates | ⃖⃗𝑢𝑘 ⟩
105 can be deduced by inserting the found

eigenvalue (Equation 2.66) into the equation ( �̂� total
8×8 − 𝐸𝑘,𝐶𝐵𝟙8×8 ) | ⃖⃗𝑢𝑘 ⟩𝐶𝐵 = 0. It is notewor-

thy, that the following eigenstates are both energy eigenstates of the same energy eigenvalue
found in Equation 2.66. This contains an important message, namely that although differing
in spin, the energy of both eigenstates is the same, i.e. degenerate.

| 𝑢𝑘 (↑)⟩𝐶𝐵 = 𝑎|𝑢𝑐1⟩ + 𝑏|𝑢𝑣1⟩ + 𝑐|𝑢𝑣2⟩ + 𝑑|𝑢𝑣3⟩ + 𝑒|𝑢𝑣5⟩ + 𝑓 |𝑢𝑣6⟩

| 𝑢𝑘 (↓)⟩𝐶𝐵 = 𝑎|𝑢𝑐2⟩ − 𝑏∗|𝑢𝑣4⟩ − 𝑐∗|𝑢𝑣5⟩ + 𝑑|𝑢𝑣6⟩ + 𝑒|𝑢𝑣2⟩ − 𝑓 ∗|𝑢𝑣3⟩, (2.70)

with

𝑎 =
(𝐸𝑔 +

Δ𝑆𝑂
3 ) (𝐸𝑔 + 2Δ𝑆𝑂

3 ) − 2 (Δ𝑆𝑂
3 )

2

𝐷
, 𝑏 = −

𝑘−𝑃

√2𝐸𝑔
𝑎 , 𝑐 =

𝑘+𝑃

√2𝐷
(𝐸𝑔 +

Δ𝑆𝑂
3

) ,

𝑑 =
𝑘𝑧𝑃
𝐷

(𝐸𝑔 + 2
Δ𝑆𝑂
3

) , 𝑒 = √2
𝑘𝑧𝑃
𝐷

Δ𝑆𝑂
3

, 𝑓 =
𝑘+𝑃
𝐷

Δ𝑆𝑂
3

(2.71)
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and

𝐷2 = [(𝐸𝑔 +
Δ𝑆𝑂
3

) (𝐸𝑔 + 2
Δ𝑆𝑂
3

) − 2 (
Δ𝑆𝑂
3

)
2
]
2

(1 +
𝑘2⟂𝑃2

2𝐸2𝑔
)

+ [(𝐸𝑔 +
Δ𝑆𝑂
3

)
2
+ 2 (

Δ𝑆𝑂
3

)
2
]
𝑘2⟂𝑃2

2
+ [(𝐸𝑔 + 2

Δ𝑆𝑂
3

)
2
+ 2 (

Δ𝑆𝑂
3

)
2
] 𝑘2𝑧𝑃2. (2.72)

Here, it was used that 𝑘2⟂ = 𝑘2𝑥 + 𝑘2𝑦 . Note, that the denotation of the spin (↑) in | 𝑢𝑘 (↑)⟩𝐶𝐵
(Equation 2.70) may be somewhat misleading. It does not imply that the state is a pure spin
up state! Rather, it implies that | 𝑢𝑘 (↑)⟩𝐶𝐵 contains all spin up basis vectors (|𝑢𝑐1⟩, |𝑢𝑣1⟩, |𝑢𝑣2⟩,
|𝑢𝑣3⟩) and furthermore two out of four spin down basis vectors (|𝑢𝑣5⟩, |𝑢𝑣6⟩). Analogously, (↓)
in | 𝑢𝑘 (↓)⟩𝐶𝐵 (Equation 2.70) does not refer to a pure spin down state, but to one containing all
spin down basis vectors (|𝑢𝑐2⟩, |𝑢𝑣4⟩, |𝑢𝑣5⟩, |𝑢𝑣6⟩) expanded by two spin up basis vectors (|𝑢𝑣2⟩,
|𝑢𝑣3⟩). Importantly, these spin sensitive CB (VB in LHPs) states (Equation 2.70) are ⃖⃗𝑘-dependent
and valid not only at ⃖⃗𝑘 = 0, as those in Equation 2.12, but also for finite ⃖⃗𝑘. At ⃖⃗𝑘 = 0, the states
reduce to | 𝑢𝑘=0 (↑)⟩𝐶𝐵 = |𝑢𝑐1⟩ and | 𝑢𝑘=0 (↓)⟩𝐶𝐵 = |𝑢𝑐2⟩, consistent with Equation 2.12.

As my goal is to describe how CB electrons (VB holes in LHPs) are affected by the EY
mechanism (Equation 2.61), the products of spin-insensitive

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↑) | 𝑢𝑘 (↑)⟩𝐶𝐵 and spin-

sensitive
𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 parts of the EY matrix element in Equation 2.62 must be built.105

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↑) | 𝑢𝑘 (↑)⟩𝐶𝐵 = 𝑎′𝑎 + 𝑏′∗𝑏 + 𝑐′∗𝑐 + 𝑑′𝑑 + 𝑒′𝑒 + 𝑓 ′∗𝑓 (2.73)

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 = −𝑐′𝑒 + 𝑑′𝑓 + 𝑒′𝑐 − 𝑓 ′𝑑, (2.74)

where ⟨𝑢𝑖|𝑢𝑗⟩ = 𝛿𝑖𝑗 was applied, which holds for all basis vectors (Equation 2.65).
It is legitimate to assume kinetic energies of the CB electron (VB hole in LHPs), that are small
compared with the band gap energy. In that case 𝐷2 (Equation 2.72) reduces to

𝐷2 ≈ [(𝐸𝑔 +
Δ𝑆𝑂
3

) (𝐸𝑔 + 2
Δ𝑆𝑂
3

) − 2 (
Δ𝑆𝑂
3

)
2
]
2

. (2.75)

With that, the spin conserving matrix element (first term in brackets in Equation 2.73) ap-
proaches unity, i.e.

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↑) | 𝑢𝑘 (↑)⟩𝐶𝐵 ≈ 1,105 and I am left with solving the matrix element

describing spin-flip processes, i.e.
𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 . Inserting 𝑐(

′), 𝑑(
′), 𝑒(

′), 𝑓 (
′) from Equa-

tion 2.71 into Equation 2.74 gives

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 = 𝑃2

𝐷2
Δ𝑆𝑂
3

(2𝐸𝑔 + Δ𝑆𝑂)(𝑘′𝑧𝑘+ − 𝑘′+𝑘𝑧) . (2.76)
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Inserting 𝑃2 and 𝐷2 from Equation 2.69 and Equation 2.75, respectively, leads to

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 = ( 1

𝑚∗
− 1
𝑚0

) ℏ2

2

(2𝐸𝑔 + Δ𝑆𝑂)
Δ𝑆𝑂
3

𝐸𝑔 (𝐸𝑔 + 2Δ𝑆𝑂
3 ) (𝐸𝑔 + Δ𝑆𝑂)

(𝑘′𝑧𝑘+ − 𝑘′+𝑘𝑧)

= (1 − 𝑚∗
𝑚0

) 1
𝑚∗

ℏ2

2
𝜂(2 − 𝜂)
𝐸𝑔(3 − 𝜂)

𝑘𝑘′𝑒𝑖𝜙𝑠𝑖𝑛𝜃. (2.77)

In the second line, 𝜂 substitutes Δ𝑆𝑂
𝐸𝑔+Δ𝑆𝑂

and the k-dependent term has been expressed as an

angular relationship of 𝑘′ with 𝑘, where 𝜃 is the angle between ⃖⃖ ⃗𝑘′ and ⃖⃗𝑘, and 𝜙 is the angle
between ⃖⃗𝑘𝑥 and ⃖⃗𝑘𝑦. Expressing the initial kinetic energy as 𝐸 = ℏ2𝑘2

2𝑚∗ , Equation 2.77 transforms
to105

𝐶𝐵
⟨𝑢⃖⃖ ⃗𝑘′ (↓) | 𝑢𝑘 (↑)⟩𝐶𝐵 = (1 − 𝑚∗

𝑚0
) 𝐸
𝐸𝑔

𝜂(2 − 𝜂)
(3 − 𝜂)

𝑘′

𝑘
𝑒𝑖𝜙𝑠𝑖𝑛𝜃. (2.78)

The EY spin relaxation rate 1
𝜏𝐸𝑌

can now be obtained by replacing the spin sensitive term of
Equation 2.62 with the just derived matrix element (Equation 2.78) and subsequently inserting
Equation 2.62 into the Ansatz (Equation 2.61). As the Ansatz is equivalent to that of carrier-
phonon scattering, it is clear that spin relaxation due to carrier-phonon scattering is closely
related to carrier-phonon scattering disregarding spin. Indeed, the spin insensitive part of
the matrix element (the factor term in Equation 2.62) is equivalent to that of momentum
scattering in carrier-phonon interactions (Equation 2.54),105,122 i.e.

|⟨𝐹 ⃖⃖ ⃗𝑘′ | �̂�Fröhlich | 𝐹⃖⃗𝑘⟩|
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ = 𝑀⃖⃗𝑘 →⃖⃗𝑘±⃖⃗𝑞 (𝑛𝐿𝑂 + 1/2 ∓ 1/2) = |⟨⃖𝑘 ± ⃖⃗𝑞 | �̂�Fröhlich |⃖⃗𝑘⟩|
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
.

Equation 2.62 Equation 2.54 (2.79)

It is thus customary to express spin relaxation in terms of the momentum relaxation rate 1
𝜏𝑚

(Equation 2.60). With that, the rate of spin relaxation due to carrier-phonon scattering as
predicted by the EY mechanism in the approximation of cubic crystals results in

1
𝜏𝐸𝑌

= 𝛾 1
𝜏𝑚

(1 − 𝑚∗
𝑚0

)
2
( 𝐸
𝐸𝑔

)
2 2𝜂2(2 − 𝜂)2

(3 − 𝜂)2
. (2.80)

Here, 𝛾 is a dimensionless constant of the order of one, which arises from the integration over
𝜃. It takes different values depending on the kind of momentum scattering (electron scattering
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by acoustic or optical phonons, or by impurities). In the case of momentum scattering by
polar optical phonons (including LO phonons), 𝛾 ≈ 2.125

In order to work out the ex- and implicit temperature dependency of the EY spin relaxation
rate, the electron kinetic energy 𝐸 = 𝑘𝐵𝑇 is inserted into Equation 2.80.125 Keeping only
temperature dependent terms, Equation 2.80 reduces to

1
𝜏𝐸𝑌

∝ 1
𝜏𝑚

𝑇 2 . (2.81)

It needs to be pointed out, that a simple term for the spin relaxation rate as the one in
Equation 2.80 can only be obtained if the involved scattering processes are presumed to be
elastic, i.e. 𝑘′ = 𝑘.105 Otherwise, the rate has to be found numerically.105,122 Nevertheless,
Equation 2.80 has been used extensively in the literature to describe spin relaxation, which is
also caused by highly non-elastic processes, such as polar optical phonon scattering.10,125,148

As an example, LO phonon scattering is distinctly inelastic because of the considerable
magnitude of 𝐸𝐿𝑂 = ℏ𝜔𝐿𝑂, which takes on values of typically several tens of millielectronvolts
in conventional semiconductor materials,105 as well as in LHPs (in CsPbI3, 𝐸𝐿𝑂 ≈ 26.3 ±
7.0 𝑚𝑒𝑉)82 . The use of Equation 2.80 to describe spin relaxation, which is predominantly
driven by polar phonon scattering may therefore be done only with great caution.

The numeric solution of the EY spin relaxation rate, taking into account inelastic momentum
scattering, has been reported in 2004 by A. Dyson and B. K. Ridley − almost three decades after
the initial description of the EYmechanism.122 The authors begin with the same considerations
and Ansatz as presented in this section. The final expression for the EY spin relaxation rate,
however, is not expressed in terms of the momentum relaxation rate, 1

𝜏𝑚
, as this would

again require to assume elastic scattering. Instead, their final expression strongly reminds of
the equation found for the momentum scattering rate (Equation 2.60), including additional
parameters stemming from the spin sensitive matrix element.

1
𝜏 ′𝐸𝑌

= 𝑊0
ℏ2𝜔2

𝐿𝑂

𝐸2𝑔√𝜋 (𝑘𝐵𝑇)
3/2

𝜂2(2 − 𝜂)2

(3 − 𝜂)2 ∫ 𝑒
− 𝐸

𝑘𝐵𝑇 [𝑛𝐿𝑂𝐴(𝐸) + (𝑛𝐿𝑂 + 1) 𝐵(𝐸)] √𝐸 𝑑𝐸. (2.82)

𝑊0 has already been defined during the derivation of the momentum scattering rate (Equa-
tion 2.59 in Section 2.3), and
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𝐴(𝐸) = ( 𝐸
ℏ𝜔𝐿𝑂

)
3/2

[(1 + ℏ𝜔𝐿𝑂
2𝐸 ) (1 + ℏ𝜔𝐿𝑂

𝐸 )
1/2

− 1
2 (

ℏ𝜔𝐿𝑂
𝐸 )

2
𝑠𝑖𝑛ℎ−1 ( 𝐸

ℏ𝜔𝐿𝑂
)
1/2

] ,

𝐵(𝐸) = Θ(𝐸 − ℏ𝜔𝐿𝑂) ( 𝐸
ℏ𝜔𝐿𝑂

)
3/2

[(1 − ℏ𝜔𝐿𝑂
2𝐸 ) (1 − ℏ𝜔𝐿𝑂

𝐸 )
1/2

− 1
2 (

ℏ𝜔𝐿𝑂
𝐸 )

2
𝑠𝑖𝑛ℎ−1 ( 𝐸

ℏ𝜔𝐿𝑂
− 1)

1/2
] .

(2.83)

Note, that in Equation 2.82 𝑛𝐿𝑂𝐴(𝐸) is the term referring to phonon absorption, and
(𝑛𝐿𝑂 + 1) 𝐵(𝐸) to stimmulated and spontaneous phonon emission, respectively, analogous to
Equation 2.58 describing the LO phonon scattering rate.



CHAPTER 3

Materials and Experimental Methods

3.1 Sample Preparation

In the scope of this thesis both, CsPbI3 NCs and CsPbI3 NC:PCBM were examined. These
were self-made in the in-house chemistry lab. Sample preparation involved the synthesis of
CsPbI3 NCs, followed by admixture of PCBM in case of CsPbI3 NC:PCBM. In a final step, the
obtained solutions were either investigated in solution (in a quartz glass cuvette), or in form
of a spin coated film on a sapphire substrate.

3.1.1 Synthesis of CsPbI3 Nanocubes

Colloidal CsPbI3 NCs are synthesized from CsPbBr3 NCs by a post-synthetic anion exchange
reaction using PbI2 as a precursor.25,99 First, CsPbBr3 NCs are synthesized by an ultrasonication
approach developed at the chair (Chair for Photonics and Optoelectronics, LMU).25 This
method has the great advantage to not require high temperatures, or inert atmospheres as, by
contrast, required in the hot-injection approach and other synthesis techniques.20,149 During
the ultrasonication process direct tip-sonication (SONOPULS HD 3100, BANDELIN, 30W, 10
min) is applied to a mixture of precursor salts (0.1 mmol Cs2CO3 and 0.3 mmol PbBr2) in
combination with capping ligands (0.5 ml oleic acid and 0.5 ml oleylamine) in 10 ml of the
non-polar solvent octadecene under ambient atmospheric conditions. The transition from an
initial colourless solution to a yellow solution during tip-sonication indicates that CsPbBr3
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NCs have formed. The next step is centrifugation (10000 rpm, 10 min) and re-dispersion of the
sediment in hexane by mild sonication. Subsequently, this step is repeated in order to finally
attain homogeneously sized, well-dispersed CsPbBr3 nanocubes.

The as prepared CsPbBr3 NC colloidal solution is now treated post-synthetically to convert to
CsPbI3 NCs. First, a PbI2-ligand solution is prepared by dissolving 0.2 mmol PbI2 precursor in
a mixture of 50 ml toluene, 2 ml oleylamine, and 2 ml oleic acid at 100 ℃ under continuous
stirring. To initiate the halide exchange reaction, 10 ml of the precursor solution is added
to 1 ml of the CsPbBr3 NC solution and set aside for two hours under continuous stirring at
ambient conditions. The halide exchange reaction is completed if the colour has shifted from
yellow (CsPbBr3 NC) to red (CsPbI3 NC). This can be checked by eye to get a first impression,
and by analysing the PL spectrum of this solution. In the next step, the obtained dispersion of
colloidal CsPbI3 NC are purified. For this, the sediment resulting form centrifugation (14500
rpm, 30 min) is re-dispersed in 2 ml hexane. Thus, a concentrated dispersion of homogeneously
sized CsPbI3 NC is obtained, ready to be diluted to a desired concentration and/or spin coated
onto glass substrates for optical measurements.

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
allows for precise imaging and structural characterization of nanoparticles. The HAADF-
STEM image in Figure 4.1 in Chapter 4 is recorded by an FEI Titan microscope operating at
300 kV and shows the self-made colloidal CsPbI3 NC resulting from the procedure described
above.

3.1.2 Mixing of CsPbI3 Nanocubes with PCBM

[6,6]-Phenyl C61 butyric acid methyl ester with the formula C72H14O2 is commonly referred
to as PCBM.150 It is a suitable acceptor material for CB electrons of CsPbI3, as these two
materials form a type II heterojunction.151 To be precise, the lowest unoccupied molecular
orbital (LUMO) of PCBM (−4.3 𝑒𝑉 152) lies energetically about 750𝑚𝑒𝑉 below the CsPbI3 CB
minimum (−3.55 𝑒𝑉 151). Meanwhile, VB holes remain in CsPbI3, because its VB maximum
(−5.25 𝑒𝑉 151) lies about 750𝑚𝑒𝑉 above the highest occupied molecular orbital (HOMO) of
PCBM (−6.0 𝑒𝑉 152). This is visualized in the energy level diagram in Figure 3.1 a. The energy
level diagram suggests that bringing together PCBM and the CsPbI3 NCs should strongly affect
photoexcited CB electrons in CsPbI3. Namely, they may quickly be scavenged by PCBM and
leave the CsPbI3 NCs. Meanwhile, photoexcited VB holes are expected to remain in CsPbI3.
A blent system of this form, i.e. CsPbBr3 NC:PCBM, has previously shown efficient electron
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Figure 3.1: Combination of CsPbI3 and PCBM. (a) Energy level diagram and visualization of the
energetically favourable process of a CsPbI3 CB electron (⊝) transferring onto PCBM. Meanwhile, VB holes
(⊕) remain in CsPbI3 due to the insuperable energetic barrier towards PCBM. (b) Sketch of the CsPbI3
NC:PCBM blend showing PCBM molecules (orange) lying on top of the NC surfaces. The scaling of NCs
and molecules does not reflect their real sizes.

transfer.153 Furthermore, it is reported that the electron transfer properties are superior in case
of the blend compared a CsPbBr3 NC:PCBM layer-by-layer structure. It is thus favourable to
also use a blend, rather then a layer-by-layer system in the investigation of CsPbI3 NC:PCBM
as was done in the scope of this thesis. Efficient electron transfer from CsPbI3 to PCBM
enables one to not only locally, but also optically separate electrons from holes, because CB
electrons, which are located on PCBM are invisible in the CsPbI3 spectrum. This way, spin
relaxation rates of electrons and holes can be analysed individually by fitting the data with
respective rate equations (Section 6.2).

For this reason, a blent solution of the colloidal CsPbI3 NCs and PCBM has been prepared as
follows. First, PCBM is dissolved in chlorobenzenewith a concentration of 15 mg/ml and stirred
at 70 ℃ for 3-4 hours in order for PCBM to dissolve completely. The obtained PCBM solution
is subsequently mixed with the purified colloidal CsPbI3 NC dispersion (Subsection 3.1.1) in a
1 ∶ 1 volumetric ratio resulting in the desired blent solution. Just like in the case of the pure
CsPbI3 NCs solution, the blent solution may be diluted to a desired concentration and/or spin
coated onto glass substrates for optical measurements.
SEM and TEM images of pure and blent solution reveal that their morphologies are much the
same. This is a strong indication that PCBM molecules settle on the surface of CsPbI3 NCs
without altering the NC morphology.154 This is sketched in Figure 3.1 b.
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3.2 Linear Optical Spectroscopy

3.2.1 Absorption and Photoluminescence Spectroscopy

In order to record linear absorption and PL spectra of a prepared sample solution, the latter is
drop-deposited onto a sapphire substrate and spread into a thin layer through spin coating.
The coated substrates, once dry, are measured in a Cary 5000 UV-Vis-NIR spectrophotometer
and a Varian Cary Eclipse fluorescence spectrophotometer (Agilent Technologies), respectively,
at ambient conditions.

The PL spectra provide information about whether the halide exchange reaction during the
above described synthesis of CsPbI3 NCs is completed. It is the case, if the PL emission has
shifted from ≈ 2.39 𝑒𝑉 green (CsPbBr3 NCs) to ≈ 1.85 𝑒𝑉 red (CsPbI3 NCs). Furthermore, the
magnitude of PL emission is an indicator of sample degradation, as the photoactive colloidal
NCs become photoinactive (no emission) over time (months), which is a consequence of phase
transition to the yellow non-perovskite 𝛿-phase.

Regarding absorption spectroscopy, it is important to bear in mind that experimentally,
absorption cannot be measured directly, as it is superimposed by other optical processes. Those
are outlined in the beginning of Subsection 2.2.1. Instead, absorbance, the total attenuation of
transmitted radiant power (∝ intensity 𝐼 ) across the entire material thickness, 𝑙, is measured
and quantified in terms of optical density (𝑂𝐷) or transmittance (𝑇).

𝐼 (𝑧 = 𝑙)
𝐼0

= 𝑇 = 10−𝑂𝐷 = 𝑒−𝛼𝑙 (3.1)

By neglecting any attenuating optical processes other than absorption, Beer’s law, given
in Equation 2.18, relates 𝛼 to 𝑂𝐷 and 𝑇. It has been used for the last term in Equation 3.1.
Note, that 𝑇, 𝑂𝐷, 𝛼, and 𝐼 (𝑧) are all material-specific parameters and therefore dependent on
radiation frequency (𝜔).

Measurement data is only of use, if it can be interpreted through theoretical considerations.
Therefore, the measured 𝑂𝐷 data must be related to the imaginary part of the dielectric
function, 𝜀𝑖, which was derived to describe absorption from theoretical considerations (c.f.
Subsection 2.2.1). Equation 2.19 relates 𝛼 to 𝜀𝑖. Comparing 𝑂𝐷- and 𝛼-term in Equation 3.1
reveals that they merely differ by their bases, i.e. base 10 and base 𝑒, respectively. 𝑂𝐷 and 𝛼
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are therefore proportional.

𝑂𝐷 = −𝑙𝑜𝑔10 (𝑒−𝛼 𝑙) = 1
𝑙𝑛(10)

𝛼𝑙 ≈ 0.434 𝛼 𝑙

⇒ 𝑂𝐷 ∝ 𝛼 (3.2)

Equation 3.2 is true, as long as any attenuating optical processes other than absorption are
neglected. However, acknowledging that all attenuating optical processes contribute to the
signal recorded through absorption spectroscopy (“absorbance spectroscopy” would be the
more accurate term), the resulting 𝑂𝐷 data nevertheless allows for an estimation of 𝛼. Namely,
by approximating all attenuating optical processes other than absorption to be independent
of 𝜔. Those are then collectively accounted for by a global offset (𝑂𝐷offset).

𝑂𝐷(𝜔) + 𝑂𝐷offset = 1
𝑙𝑛(10)

𝛼(𝜔) 𝑙 (3.3)

Equation 3.2 and Equation 3.3 establish the relation between the measured 𝑂𝐷(𝜔) + 𝑂𝐷offset

data and 𝛼(𝜔). Combined with Equation 2.19, which relates 𝛼(𝜔) to 𝜀𝑖(𝜔), a direct comparison
between measurement and theory can be drawn. The respective function for data-fitting is
derived in Subsection 2.2.1 and Section A.2, and the result is given by Equation A.10.

3.2.2 Polarization Dependent Spectroscopy

The expression “dichroism” has its origin in the Greek language and means “two-coloured”. It
describes polarization dependent absorption, which is a material characteristic exhibited by
chiral substances and some crystals.38 To understand this phenomenon, one has to refer to
Equation 2.15 and Equation 2.19 in Subsection 2.2.1. These nicely show that the absorption
coefficient, 𝛼(𝜔), directly depends on the imaginary relative refractive index, 𝑛𝑖(𝜔). A material
exhibits linear dichroism, if its imaginary refractive indices for ordinary and extraordinary
crystal axes are dissimilar. Hence, after transmission, white light shows unequal spectra, i.e.
appears in different colours, when linearly polarized parallel to the ordinary, or extraordinary
crystal axis. “Two-coloredness” is thus an appropriate depiction. Analogously, a material
exhibits circular dichroism (CD) if it possesses different imaginary refractive indices for right
and left handed circularly polarized light, which again cause wavelength dependent absorption
to different extents and result in non-identical transmission spectra. Hence, after transmission
of right, or left handed circularly polarized radiation, these rays appear in different colours.
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Working Principle of CD Spectroscopy

CD spectroscopy is a form of absorption spectroscopy, which measures the degree of circular
dichroism exhibited by a substance. In the scope of this thesis, CD measurements were con-
ducted at the Chirascan Circular Dichroism Spectrometer (Applied Photophysics) at the Chair
of Professor Rädler (LMU). The built in light source (xenon arc lamp) emits unpolarized white
light with wavelengths covering the UV-Vis spectrum.155 Subsequently, it enters a monochro-
mator, which automatically scans a user-defined wavelength range once the measurement
is started. Linear polarization of the light beam is ensured by transmission through a linear
polarizer, e.g. a Glan-Thompson polarizing prism. The linearly polarized, monochromatic light
now enters a photo-elastic modulator (PEM), which essentially acts as a dynamic quarter wave
plate and modulates the polarization to be alternately left or right handed circularly polarized
at a known frequency. Subsequently, the beam is transmitted through the sample, its signal is
amplified by a photomultiplier and finally photodetected through an avalanche photodiode.
The photodetection signal is interpreted using a lock-in amplifier, which is synchronized to the
PEM frequency. By comparing the absorbance of left-handed circularly polarised light (L-CPL)
and right-handed circularly polarised light (R-CPL), i.e. Δ𝐴 ≡ 𝐴𝐿−𝐶𝑃𝐿(𝜆) − 𝐴𝑅−𝐶𝑃𝐿(𝜆), CD
spectroscopy gives information about the sample’s wavelength dependent degree of circular
dichroism.

Working Principle of a Retarder Wave Plate

Dichroism is related to birefrigence, where the real instead of the imaginary part of the
refractive indices of a material differ for extraordinary and ordinary crystal axes. The real part
of the refractive index, 𝑛𝑟(𝜔), determines the phase of the transmitted light wave (rightmost
term of Equation 2.15. In contrast, the imaginary refractive index, 𝑛𝑖(𝜔) determines the
absorption coefficient, 𝛼(𝜔), and thus attenuation, as elaborated in detail in Subsection 2.2.1.
During transmission of e.g. linearly polarized light through a birefrigent material, a phase
difference between the component polarized along ordinary and extraordinary crystal axis
accumulates. This phenomena is known as retardation.38 The magnitude of retardation is
determined by the phase difference, i.e. Δ𝜙 = 2𝜋|Δ𝑛(𝜔)|𝑑

𝜆 , with Δ𝑛(𝜔) = 𝑛𝑜(𝜔) − 𝑛𝑒(𝜔) (all real)
and 𝜆 the vacuum wavelength of the incident light. Consequently, linearly polarized radiation
can be transformed into elliptical or circular polarization and vice versa upon transmission
through a birefrigent material. The working principle of a wave plate, also known as a
retarder, is based on this effect.156 If linearly polarized radiation has an angle of 45 degree to
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the ordinary crystal axis of the wave plate and the thickness of the wave plate is such that
|Δ𝜙| = 𝜋

2 = 𝜆
4 , the radiation polarization is transformed from linear to circular and the wave

plate is referred to as a quarter wave plate.38

Figure 3.2: Effect of a quarter wave plate on the electric field vector of EM radiation. (a) Two
electric field vectors incident on a quarter wave plate, ⃖⃗𝐸 enclosing 45° and ⃖⃖ ⃖⃗𝐸′ enclosing 135° with the x-axis.
As defined by the quarter wave plates used in the experiments presented in this thesis, the y-axis is the
optical axis, which is in this case the slow axis, and the x-axis is the fast axis. The propagation direction of
the EM wave is along the z-axis, i.e. out of the paper plane, towards the reader. (b) The depicted temporal
evolution of ⃖⃗𝐸 and ⃖⃖ ⃖⃗𝐸′ illustrates two individual linearly polarized EM waves. This is the situation before
the rays enter the quarter wave plate. (c) Temporal evolution of ⃖⃗𝐸 and ⃖⃖ ⃖⃗𝐸′ after completed transmission
through the quarter wave plate. ⃖⃗𝐸 now rotates clockwise, while ⃖⃖ ⃖⃗𝐸′ rotates counter-clockwise. Hence, the
EM radiation polarization is now right-handed circular and left-handed circular, respectively.

For polarization dependent experiments conducted in the scope of this thesis the follow-
ing quarter wave plates were used: Thorlabs AQWP05M-600 (400 − 800 𝑛𝑚) and Thorlabs
SAQWP05M-700 (325 − 1100 𝑛𝑚).156 Both are composed of crystalline Quartz (at ℏ𝜔 = 1.92 𝑒𝑉:
𝑛𝑜 = 1.542, 𝑛𝑒𝑜 = 1.551)157,158 and Magnesium Fluoride (at ℏ𝜔 = 1.92 𝑒𝑉: 𝑛𝑜 = 1.377, 𝑛𝑒𝑜 =
1.389)159,160 . These materials both exhibit 𝑛𝑜 < 𝑛𝑒𝑜 at the given radiation energy. As a conse-
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quence, according to Equation 2.16, travel velocities inside the quarter wave plate are 𝑣𝑜 > 𝑣𝑎𝑜.
The ordinary axis (here x-axis) is therefore the so called “fast axis” and the extraordinary axis
(here y-axis) the “slow axis”. As the frequency of the EM wave, i.e. the oscillation frequency of
the electric field vector, is constant for all refractive indices, once fully transmitted through the
wave plate, its phases are 𝜙𝑜 < 𝜙𝑎𝑜, i.e. |Δ𝜙| =

𝜆
4 in case of a quarter wave plate. Consequently,

if the electric field vector was polarized linearly before entering the wave plate, it is circularly
polarized after transmission. This is illustrated in Figure 3.2.

Working Principle of a Glan-Thompson Polarizing Prism

A Glan-Thompson polarizing prism is another example of an application making use of
birefrigence. It consists of two calcite prisms connected at their interfaces through optical
cement. The angle 𝜃 of the prisms are chosen such that the ordinary components of the
unpolarized input light ray experiences total internal reflection at the prism interface, while
the extraordinary components pass through both prisms. This creates a linearly polarized
output ray of high quality from an unpolarized input ray.

3.3 Differential Transmission Spectroscopy

DTS is a pump-probe technique allowing for time-resolved identification of occupied and
unoccupied VB and CB states. It is based on the principle of Pauli exclusion, also referred
to as Pauli blocking, which refers to the quantum mechanical principle that two fermions
cannot occupy the same state. In other words, linear optical excitation is not possible if the
respective VB or CB state is already occupied by an electron or a hole, respectively.

The working principle of DTS becomes clear when taking a detailed look into the measurement
sequence. First, a pump pulse with user-defined power and wavelength is targeted onto the
sample under investigation. Within the sample material, optical transitions may be induced,
causing the filling of the respective phase space. Second, at variable time delay with respect
to the pump pulse, a spectrally broad probe pulse arrives at the identical sample area that was
previously illuminated by the pump pulse. The probe pulse of the DTS setup used in the scope
of this thesis covers the entire visible spectrum and appears as white light (WL). It is therefore
also referred to as WL pulse. Depending on the wavelength, i.e. energy, of an exemplary
probe pulse photon, two situations exist: If its energy coincides with a transition into a state,
which is already occupied through absorption of pump pulse photons, it is transmitted or
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even accompanied by a coherent photon of identical energy, which is created in the process
of stimulated emission (𝑒). Else, the exemplary photon may be absorbed by the sample. Note,
that at high laser powers additional cases must be taken into account as non-linear optical
phenomena, such as second- or third order harmonic generation, gain importance.38 The
experiments presented in this thesis were conducted at low laser powers. This justifies to
interpret phase space filling and stimulated emission to be the dominant phenomena leading
to the recorded DTS signals evaluated and discussed in Chapter 5 and Chapter 6.
The fraction of the WL pulse, which is transmitted through the sample is dispersed into
its spectral components through a spectrometer. This spectrum is compared to a spectrum
recorded in the second part of the DTS measurement sequence: The pump pulse is blocked
and is thus inhibited to optically interact with the sample. Therefore, solely the probe pulse
arrives at the sample and may induce material specific optical transitions. The complete
experimental sequence of DTS can therefore be expressed in the following condensed manner:
[Pump, delay 𝑡1, Probe], denoted as P,WL, followed by [Probe], denoted as WL. Subsequently,
this sequence is repeated at changed time delay, i.e. [Pump, delay 𝑡2, Probe] (P,WL), followed
by [Probe] (WL). And so on. This sequence is depicted in Figure 3.3.

Figure 3.3: Laser pulse sequence in DTS. At time 𝑡0, a pump and probe pulse reach the sample (at a
user defined, variable time delay between them). At time 𝑡′ > 𝑡0, only a probe pulse reaches the sample.
Subsequently, the pulse sequence repeats at 𝑡0 and so forth. Note, that pulse length (100 𝑓 𝑠) and the
intermediate interval between two probe pulses (1𝑚𝑠) are drawn disproportionate, as they differ by the
order of 1010. Also note, that in DTS, pump and probe pulses spatially overlap on the sample. This is
omitted here for the purpose of clarity. Therefore, exclusively the z-axis, the propagation direction of the
laser pulses, is included.

Hence, in DTS, a sample’s change in optical density (𝑂𝐷) is measured, which is induced by the
pump pulse. Through the use of Equation 3.1, this change in 𝑂𝐷, Δ𝑂𝐷, can be expressed as
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Δ𝑂𝐷 = 𝑂𝐷𝑃,𝑊𝐿 − 𝑂𝐷𝑊𝐿

⇒ Δ𝑂𝐷 = −𝑙𝑜𝑔10 (
𝐼𝑃,𝑊𝐿

𝐼0
) + 𝑙𝑜𝑔10 (

𝐼𝑊𝐿
𝐼0

) = −𝑙𝑜𝑔10 (

𝐼𝑃,𝑊𝐿
𝐼0
𝐼𝑊𝐿
𝐼0

) = −𝑙𝑜𝑔10 (
𝐼𝑃,𝑊𝐿

𝐼𝑊𝐿
) . (3.4)

The proportionality between 𝑂𝐷 and 𝛼 (Equation 3.2) also holds for Δ𝑂𝐷 and Δ𝛼. Hence,

Δ𝑂𝐷 = −𝑙𝑜𝑔10 (

𝐼𝑃,𝑊𝐿
𝐼0
𝐼𝑊𝐿
𝐼0

) = −𝑙𝑜𝑔10 (
𝑒−(𝛼𝑃,𝑊𝐿−𝑒𝑃,𝑊𝐿) 𝑙

𝑒−𝛼𝑊𝐿𝑙
) = −𝑙𝑜𝑔10 (𝑒−(𝛼𝑃,𝑊𝐿−𝑒𝑃,𝑊𝐿−𝛼𝑊𝐿) 𝑙)

⇒ Δ𝑂𝐷 = 1
𝑙𝑛(10)

Δ𝛼 𝑙, (3.5)

where it is assumed that exclusively phase space filling and stimulated emission are responsible
for the change in absorption coefficient Δ𝛼 (as was pointed out above), i.e.

Δ𝛼 = [𝛼𝑃,𝑊𝐿 − 𝑒𝑃,𝑊𝐿] − 𝛼𝑊𝐿

⇒ Δ𝛼 = [(1 − 𝑓𝑒)(1 − 𝑓ℎ) 𝛼𝑊𝐿 − 𝑓𝑒𝑓ℎ 𝛼𝑊𝐿] − 𝛼𝑊𝐿 = −(𝑓𝑒 + 𝑓ℎ) 𝛼𝑊𝐿 . (3.6)

𝑓𝑒 and 𝑓ℎ are the photoexcited electron and hole distribution functions, respectively. Hence,
the pump pulse-induced change in the sample’s absorption coefficient, Δ𝛼, discloses informa-
tion about electron and hole occupancies in the CB and VB, respectively, as manifested in
Equation 3.6. 𝛼𝑃,𝑊𝐿 and 𝛼𝑊𝐿 denote the absorption coefficients resulting from probe pulse
arrival at the sample with and without prior pumping, respectively, and are shown in Fig-
ure 3.3 (gray description below sample). This sketch, thus, also visualizes the chosen Ansatz
in Equation 3.6 top.

It is customary to express experimental pump-probe data in terms of differential transmission,
Δ𝑇
𝑇 , which is related to the measured laser intensities through

Δ𝑇
𝑇

=

𝐼𝑃,𝑊𝐿−𝐼𝑊𝐿
𝐼0
𝐼𝑊𝐿
𝐼0

=
𝐼𝑃,𝑊𝐿 − 𝐼𝑊𝐿

𝐼𝑊𝐿
=

𝐼𝑃,𝑊𝐿

𝐼𝑊𝐿
− 1 . (3.7)

Here, it was used that Δ𝑇 = 𝑇𝑃,𝑊𝐿 − 𝑇𝑊𝐿 = 𝐼𝑃,𝑊𝐿−𝐼𝑊𝐿
𝐼0

, according to Equation 3.1.
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By combining Equation 3.4, Equation 3.5, Equation 3.6 and Equation 3.7, a relation between
Δ𝑇
𝑇 , Δ𝑂𝐷 and Δ𝛼 is obtained.

Δ𝑇
𝑇

= 10−Δ𝑂𝐷 − 1 = 𝑒−Δ𝛼𝑙 − 1
𝑇𝑎𝑦 𝑙𝑜𝑟
= (1 − Δ𝛼𝑙 + 𝒪((Δ𝛼𝑙)2)) − 1 ≈ (𝑓𝑒 + 𝑓ℎ)𝛼𝑊𝐿𝑙 (3.8)

This manifests that time-resolved pump-probe spectroscopy is a distinct information source
of temporal state occupancies of CB electrons and VB holes.

The DTS Setup

Coherent, monochromatic light is provided to the DTS setup by the Libra-HE+ laser system
by Coherent. It is an ultrafast Titanium:Sapphire based amplifier system, which outputs
800 𝑛𝑚 laser pulses of 100 𝑓 𝑠 pulse length at a repetition rate of 1 𝑘𝐻𝑧. The inconceivable
short duration of the pulse length can be made somewhat more graspable by comparing
the following ratios: 1𝑠

100 𝑓 𝑠 ≈
300 000 𝑦𝑒𝑎𝑟𝑠

1𝑠 . Femtosecond laser pulses allow for cutting-edge
experiments at the forefront of current research, as the pulse length defines the temporal
resolution of the experiment.

The output power of the Libra-HE+ laser system is ≈ 5𝑊, which, at first glance, appears like a
dim light bulb. However, considering that only every one millisecond a pulse emerges, which
is as short as 100 𝑓 𝑠, the output power of ≈ 5𝑊 is quite a lot and amounts to 50 𝐺𝑊 during
one pulse. A large laser power is important for pump-probe experiments, as the laser beam
has to be divided into a pump and probe beam, both requiring sufficient power to provoke
second harmonic processes and account for losses at various optical components, such as
mirrors, lenses, irises and so forth, on its way to the sample. Moreover, pump and probe beam
must emerge from the same laser source, as their pulses need to be temporally correlated.
Only then, pump and probe pulses can be simultaneously incident at the sample and the probe
pulse precisely delayed with respect to the pump pulse. This time delay is achieved through a
delay stage, enlarging the beam path of the probe beam, which correlates to a prolongation
in propagation of up to 3 𝑛𝑠. (The incremental step size of the delay stage is 100-fold smaller
than the resolution of the experiment, which is determined by the pulse length.)

After passing the delay stage, the 800 nm probe beam is focussed into a CaF2 crystal, thereby
activating internal non-linear optical processes enabling white light generation. Subsequently,
this spectrally broad probe beam is focussed through the use of a parabolic mirror onto the
sample and its transmission is detected by a spectrometer.
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Simultaneously, wavelength, focus and direction of the pump beam is prepared before locally
coinciding with the probe beam at the sample position. Thereby, the journey of the pump
beam differs quite substantially from that of the probe beam. The 800 𝑛𝑚 output from the
Libra-HE+ laser system is split by a beam splitter, designating one part of it as the pump beam.
It passes an optical parametric amplifier (OPA), which is a complex system comprised from
diverse optical components, again involving multiple non-linear optical processes. It offers
continuous wavelength tuning from ≈ 300 𝑛𝑚 − 11000 𝑛𝑚. This is crucial to experiments,
which rely on resonant pumping, i.e. of the same energy as transitions at the optical band gap
of the sample material. Most experiments presented in this thesis were conducted at precise
resonant pumping energy. Because only every second pump pulse must arrive at the sample
in order to produce a differential signal (c.f. Figure 3.3), a chopper, operating at 500 𝑘𝐻𝑧, i.e.
half of the 1 𝑘𝐻𝑧 laser repetition rate, is located in the pump beam path. Finally, a neutral
density (ND) filter wheel allows to attenuate its power as desired by the user. At the position
of the sample, the diameter of the pump beam is measured to be 𝑑 𝑃𝑢𝑚𝑝 = 1.05𝑚𝑚. Thus, an
area on the sample of 𝐴 = (𝑑 𝑃𝑢𝑚𝑝/2)2 𝜋 = 8.66 ⋅ 10−3 𝑐𝑚2 is illuminated.

Finally, a MS260i spectrometer by Newport receives the probe pulses after transmission
through the sample. The recorded spectra from probe pulses with and without prior pumping
allows for the computation of a DT signal, which is visualized by Newport software on a com-
puter. Ultimately, time-resolution of the DT spectra becomes possible through the combined
analysis of delay stage position and the respective transmission spectrum.

The described DTS setup only allows for unpolarized measurements. During my time as a
PhD student, I modified the setup for the purpose of conducting polarization dependent DTS.
This included the selection and order of suiting components and their installation, alignment,
testing and use.

Thereby, the pump beam path was equipped with an achromatic quarter wave plate, converting
linear into circular polarization for wavelengths within 400 − 800 𝑛𝑚 (Thorlabs AQWP05M-
600). In the probe beam path, a Glan-Thompson polarizing prism (GT), which ensures broad
band linearly polarized radiation, was installed after the CaF2 WL crystal. The reason for
this is, that the initially linearly polarized output from the Libra-HE+ laser system becomes
rather unpolarized during theWL generation process. In order to generate circularly polarized
radiation through the use of a quarter wave plate, however, the incident radiation must be
linearly polarized (c.f. Figure 3.2). After the GT, a superachromatic quarter waveplate (Thorlabs
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SAQWP05M-700) was installed to ensure broad band (325-1100 nm) circular polarization of
the WL probe pulse.

As described in Subsection 3.2.2, circular polarization is achieved at an angle of 45° between the
fast axis of a quarter-wave plate and the linear polarization of the entering beam. Consequently,
left-handed circular polarization (𝜎+) can be inverted into right-handed circular polarization
(𝜎−), and vice versa, through a 90° rotation of the quarter wave plate.

The implementation of the described alterations of the DTS setup now allow for polarization
sensitive experiments. A sketch, showing the most relevant optical components, is displayed
in Figure 3.4. It is this setup, that I used to conduct the majority of measurements presented
in this thesis.

Figure 3.4: DTS setup including alterations allowing for polarization dependent experiments.
The shown optical components are described in the text. Green and blue arrows pointing in random
(unpolarized), up-down (linear polarization) and circular (circular polarization) direction indicate the
polarization of pump and probe pulses, respectively.





CHAPTER 4

Optical Characterization of
CsPbI3 Nanocubes

Before presenting their optical characterization, first I want to show an HAADF-STEM image
of the CsPbI3 nanocubes produced and investigated in the scope of this thesis (Figure 4.1).

Figure 4.1: HAADF-STEM images of the CsPbI3 NCs prepared and investigated in the scope of
this thesis. Individual atoms are accentuated in the top right image with the colour code matching that of
the illustrated crystal structure.

The HAADF-STEM image reveals the NC’s cubic morphology and single-crystalline nature.
Individual atoms, which build the crystal lattice, are accentuated in the magnified picture
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(top right).25 Edge lengths of the nanocubes are evaluated from the image and result on
average in 𝐿 = 13 ± 3 𝑛𝑚. This length exceeds the reported exciton Bohr radius in CsPbI3 NCs
of 𝑎𝑋 = 3.3 𝑛𝑚,72 classifying these particles to fall under the weak confinement regime (c.f.
Subsection 2.1.1). Size quantization is therefore expected to be insignificant in these CsPbI3
NCs. This is addressed and confirmed via precise spectroscopic analysis presented in the next
section.

4.1 Static Absorption and Photoluminescence Spectra

Figure 4.2 shows RT measurements of static absorption and PL spectra of CsPbI3 NCs de-
posited on a glass substrate. Under UV illumination, the CsPbI3 NCs exhibit red PL with a
maximum photon energy of 1.85 𝑒𝑉. In the absorption data, a steep continuum absorption
onset is present, which is overlaid by its fit function in the inset. The fit function was generated
using Equation A.10. One of the fitting parameters is the band gap energy, which results in
𝐸𝑔 = 1.8572 ± 0.0008 𝑒𝑉 for the shown fit function. The value just about coincides with the
PL peak energy, indicating that radiatively recombining charge carriers originate primar-
ily from the band gap. Both, absorption and PL spectra are in accordance with previous
reports.20,25,72,82
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Figure 4.2: Static absorption and PL spectra of CsPbI3 NCs. Measured data points of OD (black) and
PL intensity (red) correspond to left and right y-axis, respectively. The inset shows the OD data for energies
around the band gap overlaid by a fitting curve (gray).
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Significant excitonic features are absent in the absorption spectrum, indicating that homoge-
neous broadening due to thermally induced exciton dissociation, i.e. LO phonon scattering,
exceeds the exciton binding energy. Explicitly, 𝑅𝑦𝑋 = 23.3 𝑚𝑒𝑉 < 𝐸𝑡ℎ = 37.9 𝑚𝑒𝑉. The value
for 𝑅𝑦𝑋 is extracted from my experimental data as described below and is consistent with
previous reports on CsPbI3 NCs (21.2 𝑚𝑒𝑉 72 , 20𝑚𝑒𝑉 20). Therefore, it can be inferred that e-h
pairs are mostly ionized yielding free charge carriers rather than excitons. Another evidence
of this is that the evaluated average NC edge length 𝐿 (Subsection 3.1.1) exceeds the exciton
Bohr radius, 𝑎𝑋 = 3.3 𝑛𝑚72 . Thus, the NCs can be classified to lie in the weak confinement
regime (c.f. Subsection 2.1.1) and therefore exhibit bulk-like optical properties. This is in line
with the shape of the measured continuum absorption onset in Figure 4.2.

Figure 4.3 shows absorption spectra of CsPbI3 NCs measured from cryogenic temperatures,
4 𝐾, to RT, 293 𝐾. With decreasing temperature, a bulge becomes increasingly identifiable as it
grows into an independent peak and shifts away from the continuum towards smaller photon
energies. It is interpreted as the 1s resonance of excitonic absorption. Increased excitonic
contribution at cryogenic temperatures has been reported for various LHPs.80,83,86,114
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Figure 4.3: Temperature dependent static absorption spectra of CsPbI3 NCs. OD is recorded for a
wide range of temperatures, from 4 𝐾 (dark blue), to RT, 293 𝐾 (red). In the bottom right inset the 100 𝐾
and 150 𝐾 spectra are compared to witness the emergence of the 1s excitonic resonance peak. The top left
inset shows fitted spectra for the temperature range from 4 𝐾 to 100 𝐾 using Equation A.10.

In order to extract the exciton Rydberg, spectra from 4 𝐾 to 100 𝐾 are fitted with Equation A.10.
This is shown in the top left inset in Figure 4.3. The best fit to the data is obtained for
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𝑅𝑦𝑋 = 23.3 𝑚𝑒𝑉. This is a reasonable result as it only slightly exceeds the values given in the
literature, which are in the range of 16.3 𝑚𝑒𝑉 − 21.2 𝑚𝑒𝑉.20,72,75

The increasing conspicuity of the 1s exciton peak towards lower temperatures clearly supports
that bound e-h pairs, i.e. excitons, gain an increasing dominance over free e-h pairs at these
temperatures. Explicitly, stable excitons may form at cryogenic temperatures, if 𝐸𝑡ℎ < 𝑅𝑦𝑋.
Based on the exciton Rydberg extracted from the presented absorption data and the range of
literature values, this condition is fulfilled for 𝑇 < 180𝐾 and 𝑇 < 126𝐾 − 164𝐾, respectively.
In line with this upper temperature bound predicting stable exciton formation, the data
presented in Figure 4.3 shows the emergence of an exciton resonance from the steep continuum
absorption onset for temperatures 𝑇 < 150𝐾. This is visually well resolved by comparing
the 100 𝐾- with the 150 𝐾-spectra in the bottom right inset of Figure 4.3. While the 100 𝐾
spectrum (bright blue) clearly allows the assignment of a bulge-like feature, no bulge is
observable in the 150 𝐾 absorption spectrum (bright rose). Towards higher temperatures
excitonic features have fully disappeared, affirming that the probability of thermally induced
exciton dissociation increases, resulting in a plasma of free but Coulomb-correlated e-h pairs,
rather than excitons.82 These give rise to continuum band to band transitions,89 as elaborated
above in the context of Figure 4.2.

4.2 Circularly Polarized Optical Spectra

From their achiral constituents and symmetric crystal structure, CsPbI3 NCs are not expected
to exhibit chirality. As this work is concerned with spin phenomena in these NCs, it is
nevertheless important to exclude intrinsic chirality. Therefore, the CsPbI3 NCs used in the
scope of this thesis (dispersed in solution (hexane)) were examined via CD spectroscopy. The
recorded CD spectrum is shown in Figure 4.4. It reveals a signal comparable to the baseline,
confirming the achiral nature of these CsPbI3 NCs. To exclude that the measurement was
faulty, a knowingly chiral sample was measured with the same device settings, showing a
strong chiral signal at the same y-scale.
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Figure 4.4: CD spectrum of CsPbI3 NCs. The recorded data points (black dots) lie on the baseline (gray
zero-line) for the shown spectral range. This indicates that the examined CsPbI3 NCs are achiral by nature
and do not exhibit any intrinsic CD.

4.3 Recombination Dynamics

Charge carrier recombination dynamics in CsPbI3 NCs are examined by DTS. Figure 4.5 shows
the DTS signal decay over a time delay as long as 1000 ps. Both signals, resulting from a
different combination of pump and probe polarizations (𝜎+𝜎+ and 𝜎+𝜎−) decay synchronous.
Only at small delay time the signals are markedly different. This reveals, that consequences
due to different polarizations are only significant within the first few picoseconds, but are
absent for longer delay times. Charge carrier recombination is thus attested to be considerably
slower than spin relaxation. In numbers, 𝑘𝑟𝑒𝑐 = 0.0041 𝑝𝑠−1 is two orders of magnitude smaller
than the spin relaxation rate at RT, which will be elaborated in Section 5.1. 𝑘𝑟𝑒𝑐 is an extracted
fitting parameter from the fit function (black curve in Figure 4.5) after its normalization. The
decay dynamic based on charge carrier recombination is consistent with previous reports on
LHPs.70,161

Moreover, it is important to note that the charge carrier recombination dynamics in Figure 4.5
are of bimolecular nature. There are two indications of this: one, the decay follows Equation 4.2,
which describes bimolecular recombination and will be introduced just below. And two, the
recombination is non-exponential as is particularly obvious on the logarithmic y-scale in the
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inset, which reveals a non-linear decay, rather than a linear one, where the latter would be
expected if the recombination was monomolecular. Both indicates bimolecular recombination
of free electrons and holes, rather than monomolecular recombination of excitons (exponential
decay).70,161 It , i.e. if the recombining species were excitons.
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Figure 4.5: Charge carrier recombination dynamics in CsPbI3 NCs at RT. DT transients reveal the
temporal evolution of occupied VB/CB states. The data is fitted with Equation 4.2. In the inset, the
equivalent graph is plotted on a logarithmic y-axis, uncovering that the decay is non-exponential.

Bimolecular recombination is derived from the following rate equations

holes: �̇�𝑉𝐵(𝑡) = −𝑘𝑟𝑒𝑐 𝑁𝑉𝐵(𝑡) 𝑁𝐶𝐵(𝑡)

electrons: �̇�𝐶𝐵(𝑡) = −𝑘𝑟𝑒𝑐 𝑁𝑉𝐵(𝑡) 𝑁𝐶𝐵(𝑡)

⇒�̇� (𝑡) = −𝑘𝑟𝑒𝑐 𝑁 2(𝑡), where𝑁𝑉𝐵 = 𝑁𝐶𝐵 ≡ 𝑁 . (4.1)

During photoexcitation, an equal number of CB electrons and VB holes are generated, justify-
ing the last line in Equation 4.1. The solution to this rate equation is

𝑁(𝑡) = 1
1/𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 𝑘𝑟𝑒𝑐𝑡

, (4.2)

whereupon the fit is created in Figure 4.5. The fitting parameter 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ≡ 𝑁(𝑡 = 0) defines
the starting magnitude from where on 𝑁(𝑡) reduces as 𝑡 increases and converges zero due to
charge carrier recombination.



CHAPTER 5

Spin Relaxation in CsPbI3 Nanocubes

Spin-dependent charge carrier dynamics in CsPbI3 NCs were investigated through polarization
dependent DTS. As described in Section 3.3, circular polarizations of pump and probe rays
can be individually regulated in the DTS setup. While the pump is kept 𝜎+ polarized for
all experiments conducted in the scope of this thesis, the probe, which follows the pump
excitation at a variable time delay, is either co- (𝜎+) or counter-polarized (𝜎−) with respect
to the pump pulse polarization. With the inversion of circular probe polarization being the
only parameter changed between otherwise equivalent experiments, their comparison allows
to draw conclusions about optical orientation in CsPbI3 and intrinsic spin dynamics. This
procedure represents the heart of polarization dependent DTS as used here.

The pump pulse excitation density of 5.8 𝜇𝐽/𝑐𝑚2 undercuts the optical gain condition, i.e.
population inversion, and thus amplified stimulated emission (ASE) is avoided.162,163 At such
low excitation density also other unwanted non-linear optical effects are strongly suppressed
and therefore disregarded during DTS data interpretation (c.f. Section 3.3).

5.1 Spin Relaxation Dynamics of Free Charge Carriers

Spectra and transients recorded at RT via polarization dependent DTS are displayed in Fig-
ure 5.1 a and b, respectively. The spectra are shown at 1 𝑝𝑠 delay time. Both, (Δ𝑇/𝑇 )𝜎+𝜎+

(red) and (Δ𝑇/𝑇 )𝜎+𝜎− (blue) spectra exhibit a dominant positive feature peaking at 1.89 𝑒𝑉.
This feature is commonly referred to as ground state bleach (GSB). It results from phase space
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Figure 5.1: Polarization dependent DT spectra and corresponding transients of CsPbI3 NCs at
RT. Pump pulse excitation only slightly exceeds the GSB maximum in energy and can thus be regarded as
quasi-resonant. Measurement data recorded with co-polarized pump and probe pulses (𝜎+𝜎+) is displayed
as red squares, while that recorded with counter-polarized pump and probe pulses (𝜎+𝜎−) is shown as
blue squares. The corresponding induced optical interband transitions are represented in the upper and
lower inset in (b). (a) DT spectra at 1 𝑝𝑠 delay time. (b) Temporal evolution of both GSB magnitudes. The
spacing between red and blue curve is denoted as time-dependent spin polarization SP(t).

filling (i.e. Pauli blocking) and stimulated emission at the band gap as discussed in Section 3.3
and justifies Equation 3.6. The pump energy is 1.92 𝑒𝑉 and indicated by a vertical black line,
visualizing that it is only slightly exceeding the energy of the GSB maximum and therefore
nearly resonant with it.

At the low-energy side of the GSB the (Δ𝑇/𝑇 )𝜎+𝜎− spectrum shows a little dip at ≈ 1.85 𝑒𝑉.
In fact, the time trace at this energy (not shown here) reveals a hesitation for the first ≈ 2 𝑝𝑠
before the spectrum rises into a symmetric GSB feature. This is in contrast to the (Δ𝑇/𝑇 )𝜎+𝜎+

spectrum, which instantaneously rises at the low-energy side of the GSB. The spectrally broad
features at the high-energy side of the GSB (negative Δ𝑇/𝑇) manifest photoinduced absorption.
These are present for both, (Δ𝑇/𝑇 )𝜎+𝜎+ and (Δ𝑇/𝑇 )𝜎+𝜎−. Both features, those at the low-
and high-energy side of the GSB, are not subject of investigation here, as the focus is put on
those phenomena causing the dominant GSB. However, for the sake of curiosity, I will briefly
outline interpretations of the said features based on literature in a bit.

The striking difference between the magnitudes of (Δ𝑇/𝑇 )𝜎+𝜎+ and (Δ𝑇/𝑇 )𝜎+𝜎− at the GSB
maximum indicates that significant circular dichroism has been photoinduced into the CsPbI3
NCs by the 𝜎+ polarized pump pulse. The corresponding DT transients in Figure 5.1 b
show the temporal evolution of the respective GSB magnitude. During an initial steep
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slope within the first 0.3 𝑝𝑠, (Δ𝑇/𝑇 )𝜎+𝜎+ rises vastly more than (Δ𝑇/𝑇 )𝜎+𝜎−, consistent
with the massively different GSB magnitudes in Figure 5.1 a. At this instant in time a maxi-
mum spin polarization of 𝑆𝑃𝑚𝑎𝑥 ≈ 0.043 𝑎.𝑢. is reached, where I define spin polarization as
𝑆𝑃 ≡ (Δ𝑇/𝑇 )𝜎+𝜎+ − (Δ𝑇/𝑇 )𝜎+𝜎−. From then on it decreases, because (Δ𝑇/𝑇 )𝜎+𝜎+ and
(Δ𝑇/𝑇 )𝜎+𝜎− behave inversely, i.e. the former (latter) exponentially decreases (increases) until
both have fully merged at ≈ 10 𝑝𝑠. Hence, the intrinsically achiral CsPbI3 NCs show CD at the
band gap after photoexcitation through the 𝜎+ pump pulse, which is retained for as long as
𝑆𝑃 ≠ 0, that is until (Δ𝑇/𝑇 )𝜎+𝜎+ and (Δ𝑇/𝑇 )𝜎+𝜎− have merged. Note, that pumping with 𝜎−

polarization would equally result in photoinduced CD at the band gap. I have experimentally
verified, that the (Δ𝑇/𝑇 )𝜎−𝜎− ((Δ𝑇/𝑇 )𝜎+𝜎−) signal is essentially indistinguishable from the
displayed (Δ𝑇/𝑇 )𝜎+𝜎+ ((Δ𝑇/𝑇 )𝜎−𝜎+) curve. This is a consequence of the CsPbI3 NC’s intrinsic
achirality, which is responsible for their indifference towards circular polarization handedness
(c.f. Figure 4.4).

Despite not subject of investigation in this work, I want to briefly comment on what causes
the features at the low- and high-energy side of the GSB. The former hesitates to rise into a
symmetric GSB feature for the first ≈ 2 𝑝𝑠. This hesitation is possibly caused by the formation
of short lived, i.e. rapidly ionized, bi-excitons, lying energetically within the band gap, i.e.
below the CB by the amount of their attractive binding energy.140 Bonding bi-excitons can
only be present for the case 𝜎 + 𝜎−, as all four band gap states are occupied (c.f. Figure 5.3),
allowing for the formation of a bound pair of excitons, containing two electrons with opposing
spins and two holes with opposing spins. This is not possible in the 𝜎 + 𝜎+ measurement as
all electrons (holes) have the same spin.
The photoinduced absorption at the high-energy side of the GSBmay be predominantly caused
by the Moss-Burstein effect.164 It causes a blue-shift of the band gap due to charge carriers
occupying the VB and CB edges. This causes the band gap to blue-shift and gives rise to the
observed negative DT signals at the high energy side of the GSB.
The origin of both, high- and low-energy features, is, however, currently still under debate.27

So far, the spectra and corresponding GSB transients in Figure 5.1 are visually analysed and
described above. From here on, they shall be quantitatively evaluated and interpreted at the
GSB maximum.

Intrinsically, at the CsPbI3 band gap, 𝜎+ (𝜎−) polarized excitation promotes an electron from
|12 , −

1
2⟩𝑉𝐵 (|12 , +

1
2⟩𝑉𝐵 ) into |12 , +

1
2⟩𝐶𝐵 (|12 , −

1
2⟩𝐶𝐵 ), as required by the conservation of angular

momentum during photon absorption (c.f. Subsection 2.2.3). Thus, upon 𝜎+-excitation through
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the pump pulse, |12 , −
1
2⟩𝑉𝐵 states are occupied by holes, and simultaneously |12 , +

1
2⟩𝐶𝐵 states

are occupied by electrons. This is visualized in Figure 5.2.

Figure 5.2: Photoinduced optical transitions at the LHP band gap in polarization dependent DTS.
To begin with, the semiconductor is optically oriented by a 𝜎+ polarized pump pulse (red-black dotted).
The WL probe pulses are either 𝜎+ (red), or 𝜎− (blue) polarized and target optical transitions between the
same or the degenerate energy bands. (a) Pump and probe pulses are co-polarized. (b) Pump and probe
pulses are counter-polarized.

Subsequently, these photoinduced occupations decrease in the process of intraband spin-
flipping. To be precise, VB holes undergo intraband 𝑚𝑗-flipping from |12 , −

1
2⟩𝑉𝐵 to |12 , +

1
2⟩𝑉𝐵

at a rate 𝑘ℎ, and analogously, CB electrons undergo intraband 𝑚𝑗-flipping from |12 , +
1
2⟩𝐶𝐵 to

|12 , −
1
2⟩𝐶𝐵 at a rate 𝑘𝑒. The process of intraband spin-flipping is indicated by yellow arrows in

Figure 5.3.

Figure 5.3: Induced optical transitions at the band gap during polarization dependent DTS in-
cluding intraband spin-flip transition rates. Optical transitions are induced by a 𝜎+ polarized pump
pulse (red-black dotted) and 𝜎+ (red) or 𝜎− (blue) polarized probe pulse. Intraband 𝑚𝑗-flipping dynamics
are indicated by yellow arrows. VB holes apin flip at a rate 𝑘ℎ and CB electrons at a rate 𝑘𝑒.

From here on, I will mainly focus on population dynamics from the moment on, when
the respective states have been populated by the pump pulse. To begin with, I will treat
the transient of (Δ𝑇/𝑇 )𝜎

+𝜎+ . It witnesses the depopulation of the pump-induced holes and
electrons populating |12 , −

1
2⟩𝑉𝐵 (in the following abbreviated as |−1

2⟩𝑉𝐵 ) and |12 , +
1
2⟩𝐶𝐵 (in the
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following abbreviated as |+1
2⟩𝐶𝐵 ), respectively. These dynamics can be described by the

following rate equations.

holes: �̇�|− 1
2 ⟩𝑉𝐵

= −𝑘ℎ (𝑁|− 1
2 ⟩𝑉𝐵

− 𝑁|+ 1
2 ⟩𝑉𝐵

) (5.1)

electrons: �̇�|+ 1
2 ⟩𝐶𝐵

= −𝑘𝑒 (𝑁|+ 1
2 ⟩𝐶𝐵

− 𝑁|− 1
2 ⟩𝐶𝐵

), (5.2)

where 𝑁 denotes the time-dependent number density of holes or electrons occupying the
given state. These rate equations account for an ongoing intraband spin-flipping process for
as long as there exists a population imbalance between |−1

2⟩𝑉𝐵 and |+1
2⟩𝑉𝐵 , or equivalently

between |−1
2⟩𝐶𝐵 and |+1

2⟩𝐶𝐵 , which is insured by the terms in brackets in Equation 5.1 and
Equation 5.2, respectively.

The solutions to these rate equations are

holes: 𝑁|− 1
2 ⟩𝑉𝐵

=
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
𝑒−2𝑘ℎ𝑡 +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

(5.3)

electrons: 𝑁|+ 1
2 ⟩𝐶𝐵

=
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
𝑒−2𝑘𝑒𝑡 +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

. (5.4)

𝑁𝑚𝑎𝑥 defines the initial number density of holes and electrons occupying |−1
2⟩𝑉𝐵 and |+1

2⟩𝐶𝐵 ,
respectively. Also see 𝑁𝑚𝑎𝑥 denoted in Figure 5.4 below.

Furthermore, the total number of holes, 𝑁ℎ = 𝑁|− 1
2 ⟩𝑉𝐵

(𝑡) + 𝑁|+ 1
2 ⟩𝑉𝐵

(𝑡) = 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and the total
number of electrons, 𝑁𝑒 = 𝑁|− 1

2 ⟩𝐶𝐵
(𝑡) + 𝑁|+ 1

2 ⟩𝐶𝐵
(𝑡) = 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒, is identical, as equal numbers

of holes and electrons are created in an absorption process of a photon. Moreover, they
are constant at all times, as charge carrier recombination can be disregarded. This has been
justified in Section 4.3, where 𝑘𝑟𝑒𝑐 was calculated to be 100-fold smaller than what will be found
for the spin relaxation rate. Signs of recombination are also practically absent in Figure 5.1:
within the first 10 − 20 𝑝𝑠, when spin relaxation takes place, a decrease in DT amplitude due
to recombination is not perceivable. Recombination dynamics can therefore be neglected in
the examination and evaluation of spin relaxation in the CsPbI3 NCs.

Since DTS is an additive measurement of hole and electron occupations (c.f. Section 3.3), I
define 𝑁 𝜎+𝜎+ = 𝑁|− 1

2 ⟩𝑉𝐵
+ 𝑁|+ 1

2 ⟩𝐶𝐵
, which traces the depopulation of the pump-induced hole

and electron populations. Hence, the addition of Equation 5.3 and Equation 5.4 gives

𝑁 𝜎+𝜎+(𝑡) =
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
(𝑒−2𝑘ℎ𝑡 + 𝑒−2𝑘𝑒𝑡) + 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒. (5.5)
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At the same time, the transient signal (Δ𝑇/𝑇 )𝜎
+𝜎− witnesses the population of the initially un-

occupied states |+1
2⟩𝑉𝐵 and |−1

2⟩𝐶𝐵 . The corresponding rate equations can be found analogously
to the ones above.

holes: �̇�|+ 1
2 ⟩𝑉𝐵

= +𝑘ℎ (𝑁|− 1
2 ⟩𝑉𝐵

− 𝑁|+ 1
2 ⟩𝑉𝐵

) (5.6)

electrons: �̇�|− 1
2 ⟩𝐶𝐵

= +𝑘𝑒 (𝑁|+ 1
2 ⟩𝐶𝐵

− 𝑁|− 1
2 ⟩𝐶𝐵

), (5.7)

Except for𝑁𝑚𝑖𝑛 = 𝑁 𝜎+𝜎−(𝑡 = 0) replacing𝑁𝑚𝑎𝑥 = 𝑁 𝜎+𝜎+(𝑡 = 0) (both are denoted in Figure 5.4
below), the solutions to these rate equations are the same as in Equation 5.3 and Equation 5.4.
I will therefore continue directly with the equation describing their joint occupation, which is

𝑁 𝜎+𝜎−(𝑡) =
𝑁𝑚𝑖𝑛 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
(𝑒−2𝑘ℎ𝑡 + 𝑒−2𝑘𝑒𝑡) + 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒. (5.8)

Up to this point, hole and electron spin relaxation rates are treated separately, as they generally
differ. However, in DTS, the occupation of electrons and holes cannot be distinguished, because
it is always the sum of electrons and holes that is measured in terms of 𝑁 𝜎+𝜎+ and 𝑁 𝜎+𝜎− .
Therefore, at this point it is not possible to distinguish between the spin relaxation rates of
holes, 𝑘ℎ, and electrons, 𝑘𝑒. Instead, a global spin relaxation rate 𝑘𝑒&ℎ is defined, assuming
similar individual rates. Inserting 𝑘𝑒&ℎ in Equation 5.5 results in an equivalent equation
(Equation 5.10) as beginning once again with a rate equation

�̇� 𝜎+𝜎+(𝑡) = −𝑘𝑒&ℎ (𝑁|− 1
2 ⟩𝑉𝐵

− 𝑁|+ 1
2 ⟩𝑉𝐵

+ 𝑁|+ 1
2 ⟩𝐶𝐵

− 𝑁|− 1
2 ⟩𝐶𝐵

)

= −2𝑘𝑒&ℎ (𝑁|− 1
2 ⟩𝑉𝐵

+ 𝑁|+ 1
2 ⟩𝐶𝐵

− 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

= −2𝑘𝑒&ℎ (𝑁 𝜎+𝜎+(𝑡) − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒), (5.9)

The solution to this rate equation is

𝑁 𝜎+𝜎+(𝑡) = (𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒) 𝑒−2𝑘𝑒&ℎ𝑡 + 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 . (5.10)

Analogous to this derivation, it is straight forward to find

𝑁 𝜎+𝜎−(𝑡) = (𝑁𝑚𝑖𝑛 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒) 𝑒−2𝑘𝑒&ℎ𝑡 + 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 . (5.11)
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Equation 5.10 and Equation 5.11 are used to fit all transients in this chapter. As an illustra-
tion, Figure 5.4 shows the data presented in Figure 5.1 b fitted with Equation 5.10 (red) and
Equation 5.11 (blue).

Figure 5.4: Polarization dependent DT transients fitted. The temporal evolution of (Δ𝑇/𝑇 )𝜎+𝜎+ (red)
and (Δ𝑇/𝑇 )𝜎+𝜎− (blue), as already shown in Figure 5.1 b, are here additionally fitted with Equation 5.10 (red
curve) and Equation 5.11 (blue curve), respectively. The parameters 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛, and 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 are indicated.

At this point, it is natural to ask what causes the (Δ𝑇/𝑇 )𝜎
+𝜎+ (red) and (Δ𝑇/𝑇 )𝜎

+𝜎− (blue)
curves to merge. In other words, what causes the non-equilibrium spin polarization of the
pump-induced charge carrier population to relax into spin-balance?

To begin with, the role of carrier-carrier interaction on spin relaxation is examined via
excitation intensity dependent DTS. This will be described in the following section.

5.2 The Role of Excitation Intensity

Carrier-carrier interaction, in particular electron-hole Coulomb exchange interaction, has
been identified to provide an efficient channel for spin-relaxation in doped III-V direct gap
compounds,125,132 e.g. in n- and p- modulation doped GaAs quantum wells,112 as well as in
perovskites,36,117,165 e.g. in high-quality CsPbBr3 single-crystalline films117 . Spin relaxation
through Coulomb exchange interaction is described by the BAPmechanism (c.f. Section 2.4).132

Whether spin relaxation is governed by electron-hole exchange interaction may be tested
by varying the concentration of charge carriers in the semiconductor. This is for example
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achievable through diverse doping concentrations, or different photoexcitation intensities. The
latter method is used here to investigate, whether Coulomb exchange interaction dominates
spin relaxation in CsPbI3 NCs.

This experiment is conducted with quasi-resonant photoexcitation of 1.92 𝑒𝑉 pump pulse
energy (c.f. Figure 5.1 a). The excitation intensity of one pump pulse, i.e. its radiative flux,
ranges from 2.3 𝜇𝐽/𝑐𝑚2 to 11.5 𝜇𝐽/𝑐𝑚2 and induces carrier concentrations (number of photons
or electron-hole pairs per 𝑐𝑚2) of radiative flux

photon energy = 7.5 ⋅ 1012 𝑐𝑚−2 to 3.7 ⋅ 1013 𝑐𝑚−2, respectively,
within the illuminated area on the CsPbI3 sample. The experiment is conducted at RT, as well
as at 50 𝐾. The spin relaxation rates resulting from this experiment are shown in Figure 5.5.
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Figure 5.5: Spin relaxation rates obtained from DTS with various photoexcitation intensities.
Upper (lower) data points result from DTS at RT (50 𝐾). The dashed vertical line indicates the pump
intensity used for all other DTS experiments presented in this thesis.

For both temperatures, the spin relaxation rates shown in Figure 5.5 are largely unaffected by
the excitation intensity and do not follow any trend within the investigated intensity range.
For all other DTS experiments presented in this thesis, an intermediate excitation intensity of
5.8 𝜇𝐽/𝑐𝑚2 was chosen (dashed vertical line). This experiment demonstrates, that 5.8 𝜇𝐽/𝑐𝑚2

induces a small enough charge carrier density within the investigated CsPbI3 NCs, rendering
many-body effects, such as Coulomb exchange interaction, Auger recombination and ASE
insignificant, as already predicted and commented on in the beginning of Section 5.1.

This result is in contrast to the examples given above, where spin relaxation has been found to
exhibit a significant dependency on excitation density. To be precise, in n- and p- modulation
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doped GaAs quantum wells, the spin relaxation time increased three-fold as the excitation
density is increased from 2 ⋅ 109 𝑐𝑚−2 to 1 ⋅ 1010 𝑐𝑚−2.112 Note, that these densities are three
orders of magnitude smaller, than those in my experiment, suggesting that an effect on the
spin relaxation time in CsPbI3 NCs would be detectable provided there is one. The authors
qualitatively explain their finding with increased screening, i.e. increased relative permittivity,
𝜀𝑟(𝜈), as a result of increased carrier density (c.f. Section 2.3). This causes the exciton binding
energy to decrease and simultaneously the exciton radius to increase. Consequently, the
overlap between the electron and hole wavefunctions reduces, which leads to a reduction in
the exchange interaction. Thus, spin relaxation occurs slower at high excitation density.
Moreover, in CsPbBr3 high-quality single-crystalline films spin relaxation has been found to
exhibit a large dependency on excitation density.117 However, the spin decay time behaves
inversely and decreased drastically from ≈ 10 𝑝𝑠 to ≈ 1 𝑝𝑠 at pump fluences of 0.2 𝜇𝐽/𝑐𝑚2

and 90 𝜇𝐽/𝑐𝑚2, respectively. In this study, spin relaxation is not exclusively attributed to
exchange interaction within one exciton, but also to inter-excitonic couplings. These provide
an additional spin relaxation channel, primarily through the e-e and h–h spin–spin interaction
among neighbouring excitons. This way, the authors claim, spin relaxation is accelerated at
high densities.

In the here presented study on CsPbI3 NCs, spin relaxation dynamics are identified to be
independent of the excitation density (Figure 5.5). It can thus be concluded, that within the
investigated density range Coulomb exchange interaction between electron and hole of the
same exciton, as well as e-e and h-h spin-spin inter-excitonic interactions are insignificant
in CsPbI3 NCs. In attempt to explain the seeming discrepancy, between this and the above
described studies, I want to draw attention to the fact that in CsPbI3 NCs free (Coulomb-
correlated) e-h pairs dominate at RT,82 as opposed to excitons. Excitons are, however, dominant
in strongly quantum confined structures or large band gap LHPs, such as CsPbCl3 (𝐵𝑋 ≈ 75𝑚𝑒𝑉
in NCs)20 and CsPbBr3 (𝐵𝑋 ≈ 40𝑚𝑒𝑉 in NCs)20 . In comparison, the exciton binding energy
in CsPbI3 NCs is 𝐵𝑋 ≈ 20 − 23.3 𝑚𝑒𝑉 as discussed in Section 4.1. Consequently, exchange
interaction between electron and hole in CsPbI3 NCs, which, besides, show no signs of
relevant size quantization (Section 4.1), is minor to begin with. Exchange interaction, i.e. the
BAP mechanism, as the principal channel for spin relaxation is thus unlikely in CsPbI3 NCs.
This may provide an explanation of the contrasting experimental results discussed above.
Moreover, the presented insensitivity towards excitation flux in CsPbI3 NCs is in line with the
prediction of only weak exchange interaction in polycrystalline films of the hybrid perovskite
CH3NH3PbCl𝑥I3−𝑥, which exhibits an exciton binding energy of 𝐵𝑋 ≈ 16𝑚𝑒𝑉.165
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5.3 How LO Phonon Absorption and Emission

Contributes to Spin Relaxation

The experiment and discussion in the previous section brought forward evidences against
Coulomb exchange interaction, and thus the BAP mechanism, to be the primary channel for
spin relaxation in CsPbI3 NCs. This section is concerned with the role of carrier - LO phonon
scattering on spin relaxation, as this interaction is a fundamental part of the two remaining
most important spin relaxation theories: the EY and DP mechanism.

5.3.1 The Role of Excess Energy

Electrons (holes) may be photoexcited resonantly, as done in the experiments presented so
far, or they can be excited higher up (lower down) into the CB (VB) with respect to the CB
minimum (VB maximum) through excess photon energy. The question then arises: what are

Figure 5.6: Photoexcitation energy and polarization dependent DTS. (a) Indication of the excitation
(pump) energies used in this experiment. The black line is the static absorption spectrum (c.f. Figure 4.2).
(b) Corresponding DTS transients of the excitation energies indicated in (a). The experiment is conducted
at RT. Pump and probe polarizations are 𝜎+𝜎+ (upper curves) or 𝜎+𝜎− (lower curves), as indicated by the
black ovals. In order to establish comparability, all curves are normalized to a time delay of 10 𝑝𝑠.

the consequences of excess energy on charge carrier spin relaxation dynamics? This question
is addressed by studying the dependence of (Δ𝑇/𝑇 )𝜎

+𝜎+ and (Δ𝑇/𝑇 )𝜎
+𝜎− on the pump pulse

energy at RT. As indicated in Figure 5.6 a, the pump pulse energy is gradually increased from
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1.92 𝑒𝑉 to 2.32 𝑒𝑉. The corresponding DT transients, all tracing the temporal evolution of the
GSB maximum (1.89 𝑒𝑉), are shown in Figure 5.6 b.

Although similar in decay time, the DT transients exhibit major differences. Most intriguingly,
𝑆𝑃𝑚𝑎𝑥, i.e. themaximally reached gap reached between (Δ𝑇/𝑇 )𝜎

+𝜎+ and (Δ𝑇/𝑇 )𝜎
+𝜎− , decreases

dramatically with increasing excitation energy. This correlation is qualitatively well visible
in Figure 5.6 b and its quantitative evaluation is plotted in Figure 5.7 a. What it reveals is
that a decreasing number of carriers arrive at the respective band edge with their initial
pump-induced spin polarization as the excitation energy is increased. In other words, the
initial photoinduced spin imbalance of the charge carrier ensemble diminishes drastically in
the process of cooling towards the band edge.

Figure 5.7: Evaluation and interpretation of photoexcitation energy dependent DT transients.
(a) 𝑆𝑃𝑚𝑎𝑥 values (black squares) are extracted from Figure 5.6 b and plotted against the corresponding pho-
toexcitation energy. These data points are fitted with an exponential decay curve exhibiting a characteristic
decay energy of 158.3 ± 6.8 𝑚𝑒𝑉. Vertical lines (red, dotted) are distanced from the band gap 𝐸𝑔 = 1.89 𝑒𝑉
(vertical black line) by integer multiples of 26𝑚𝑒𝑉 (CsPbI3 LO phonon energy)82 . (b) Schematic of the
cooling process of an electron (black sphere), which was 𝜎+ photoexcited into the CB corresponding to
| 1
2
, + 1

2
⟩
𝐶𝐵
. Red arrows indicate the emission of LO phonons. The cooling electrons statistically undergo an

𝑚𝑗-flip (yellow arrow) into | 1
2
, − 1

2
⟩
𝐶𝐵

after every fourth to eighth phonon emission. Both conduction bands
are degenerate in energy and lie at the same position in k-space.

Carrier cooling in LHPs occurs predominantly through the emission of LO phonons. To be
precise, in LHPs, charge carrier - LO phonon scattering via Fröhlich interaction has been
identified to dominate over other scattering processes, with acoustic phonon scattering even
negligible at RT.70,85,120 Therefore, the strong dependence of 𝑆𝑃𝑚𝑎𝑥 on the carrier excess energy,
as perceivable in Figure 5.6 b and Figure 5.7 a, unambiguously shows that carrier cooling via
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LO phonon emission contributes significantly to spin depolarization.113 Furthermore, the JDOS
is larger at higher energy, as it obeys a square-root dependence on energy (c.f. Equation 2.30).
Consequently, energetically high excited charge carriers scatter with LO phonons at an
increased rate. The ratio of LO phonon scattering type, i.e. spontanous emission, stimmulated
emission or even absorption, with respect to energy in CsPbI3 at RT is shown in Figure 2.8. It
clarifies that already from 𝐸/ℏ𝜔𝐿𝑂 ≥ 1.2 on towards higher carrier energies phonon emission
(spontaneous plus stimulated) markedly exceeds phonon absorption.

A schematic visualizing the process of spin depolarization during phonon emission, i.e. cooling,
is depicted exemplarily for CB electrons (black spheres) in Figure 5.7 b and can be respectively
understood for VB holes. This schematic aids to describe the step-by-step process of charge
carrier spin-flipping during cooling: the 𝜎+ polarized pump pulse photoexcites electrons into
|12 , +

1
2⟩𝐶𝐵

1, with the hight depending on the excess pulse energy with respect to the band gap
energy. Subsequent cooling via LO phonon emission is indicated in Figure 5.7 a by dotted
red lines with a spacing of the LO phonon energy of 𝐸𝐿𝑂 ≈ 26.3 ± 7.0𝑚𝑒𝑉 (as characteristic
for CsPbI3 NCs82) and in Figure 5.7 b by red arrows. With every LO phonon emission the
magnitudes of the electron’s energy and wave vector reduce according to that of the emitted
LO phonon. In other words, the cooling electron distributes its excess energy to the crystal in
form of LO lattice vibrations and thus successively approaches the band edge. This successive
arrival of both, electrons and holes, at the respective band edges is traced by the initial rise of
the (Δ𝑇/𝑇 )𝜎

+𝜎+ transients in Figure 5.6 b. The fast rise at low excitation energy signifies almost
immediate occupation of the |12 , +

1
2⟩𝐶𝐵 and |12 , −

1
2⟩𝑉𝐵 band edges. Toward higher excitation

energies, the initial fast rise of (Δ𝑇/𝑇 )𝜎
+𝜎+ flattens, indicating only gradual occupation of the

band edge states, which is determined by the speed of cooling.70

During the cooling process, an electron transitions from the |12 , +
1
2⟩𝐶𝐵 to the degenerate

|12 , −
1
2⟩𝐶𝐵 band after a statistical amount of 𝑛 LO phonon emissions. This spin flip, i.e. to be

precise, 𝑚𝑗-flip, is represented by a yellow arrow in Figure 5.7 b. In order to evaluate 𝑛, first
the total number of LO phonon emissions necessary to reach the band edge is calculated for
lowest and highest excitation energy, respectively.

1.92 𝑒𝑉 − 1.89 𝑒𝑉
0.0263 ± 0.007 𝑒𝑉

= 1.1 ± 0.5 cumulative LO phonon emissions from e and h.

This corresponds to 0.6 ± 0.3 LO phonon emissions individually from e and h. (5.12)

1This state is strictly speaking only exact at the CB band edge, i.e. at ⃖⃗𝑘 = 0. For wave vectors deviating from
the zone center (⃖𝑘 ≠ 0) spin up and spin down states begin to mix as a consequence of SOC.105 (c.f. Section 2.5.)
However, for the purpose of clarity, here, the entire band will be referred to by its band edge state.
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2.32 𝑒𝑉 − 1.89 𝑒𝑉
0.0263 ± 0.007 𝑒𝑉

= 16.3 ± 6 cumulative LO phonon emissions from e and h.

This corresponds to 8.2 ± 3 LO phonon emissions individually from e and h. (5.13)

Figure 5.6 b shows that 𝑆𝑃𝑚𝑎𝑥 ≠ 0 for all excitation energies, i.e. a gap exists between
(Δ𝑇/𝑇 )𝜎

+𝜎+ and (Δ𝑇/𝑇 )𝜎
+𝜎− transients for all excitation energies and most notably even for

the highest one of 2.32 𝑒𝑉. This implies that not every carrier - LO phonon scattering event
inevitably involves spin-flipping. Rather, multiple emissions are statistically necessary for a
carrier’s spin to flip.
At this point it is important to specify the term “spin-flip”. Recall, that the CB electron’s
degree of spin polarization is −1/3 of its degree of total angular momentum orientation
(Subsection 2.1.3). Therefore, the term “spin-flip” refers to 𝑚𝑗-flip, rather than 𝑚𝑠-flip. In the
case of holes 𝑚𝑗 = 𝑚𝑠, which implies no differentiation between 𝑚𝑗- and 𝑚𝑠-flip is necessary.
The correlation between 𝑆𝑃𝑚𝑎𝑥 and photoexcitation energy is of exponential nature as evident
by the exponential decay curve fitted to the data in Figure 5.7 a. Its characteristic decay energy
resulting from the best fit is 0.158 ± 0.007 𝑒𝑉. This energy corresponds to 6 ± 2 cumulative LO
phonon emissions from CB electrons and VB holes. Hence, the exponential 𝑆𝑃𝑚𝑎𝑥 decay in the
CsPbI3 NCs is characterized by four to eight LO phonon emissions in the process of carrier
cooling. Ultimately, this implies that the exponential decay of photoinduced spin polarization
is characterized by four to eight LO phonon emissions.

The majority of charge carriers have cooled down to the band edges at the instant when
(Δ𝑇/𝑇 )𝜎

+𝜎+ in Figure 5.6 b finishes growing and reaches its peak magnitude. From this
instant on, spin relaxation as seen in Figure 5.1 b commences until the photoinduced non-
equilibrium spin polarization is balanced, i.e. until the (Δ𝑇/𝑇 )𝜎

+𝜎+ and (Δ𝑇/𝑇 )𝜎
+𝜎− transients

have merged. The corresponding spin relaxation rates have been extracted through curve
fitting (as described in Section 5.1 and shown in Figure 5.4). These are plotted against the
photoexcitation energy in Figure 5.8. Spin relaxation rates for all excitation energies excluding
the highest (which will be addressed later) exhibit similar magnitudes, i.e. within a narrow
interval 0.35 𝑝𝑠−1 ≤ 𝑘𝑒&ℎ ≤ 0.45 𝑝𝑠−1 (shaded area). However, at magnified scale, as shown
in the inset, a trend towards higher spin relaxation rates with increasing excitation energy
is unambiguously observable. If spin relaxation is driven by phonon scattering via the EY
mechanism, this trend is not surprising: as a consequence of carrier cooling, a large non-
equilibrium phonon population enlarges the carrier - phonon scattering cross-section and
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Figure 5.8: Influence of excess photoexcitation energy on spin relaxation rate. Charge carrier spin
relaxation rate is extracted from Figure 5.6 b and plotted against the respective photoexcitation energy.
The inset shows an enlargement of the shaded area.

thus accelerates EY spin relaxation.112 Explicitly, the scattering cross-section increases with
increasing phonon density, because then phonon absorption (as opposed to emission during
carrier cooling) becomes more likely. It is much smaller for a phonon occupation number
solely determined by the lattice temperature. Therefore, spin relaxation rates increase for
those charge carriers, which were originally excited with large photon energies.
Moreover, optical phonons created near the zone center have low dispersion and therefore
small group velocities, such that the vast majority remains within the photoexcited volume.
This provokes re-absorption of emitted LO phonons by carriers, a phenomena well known as
the “hot-phonon effect”. Another evidence, that this effect is indeed present in the examined
CsPbI3 NCs, can be deduced from fact that the slopes of the initial rise of (Δ𝑇/𝑇 )𝜎

+𝜎+ decrease
with increasing excitation energies. It suggests that charge carrier cooling slows down for high
excitation energies, which can be explained through re-absorption of emitted LO phonons, i.e.
the hot-phonon effect. In fact, this effect is long known to be present in GaAs and has also
been observed previously in LHPs.70,164,166

The here detected hot-phonon effect in CsPbI3 NCs, in combination with the determination of
increasing spin relaxation rates resulting from elevated excitation energies (Figure 5.8) shows
once more, that LO phonon scattering contributes significantly to spin relaxation in these
NCs. The EY spin relaxation rate increases with a higher carrier scattering rate according
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to 1
𝜏𝐸𝑌

∝ 1
𝜏𝑚

(Equation 2.80), while it decreases in the DP model as 1
𝜏𝐷𝑃

∝ 𝜏𝑚 (c.f. Section 2.4).
This suggests that spin relaxation in CsPbI3 NCs is driven by the EY, rather than the DP
mechanism.

A short remark on the somewhat remote data point in Figure 5.8 at highest excitation energy.
The following considerations are an attempt to speculatively reason why it does not follow
the trend of all remaining data points in the same graph. As visible in the static absorption
spectrum in Figure 5.6 a, at the largest photon energy of 2.32 𝑒𝑉 the OD curve no longer
exhibits square root dependence. Consequently, parabolic band approximation is no longer
justified. Moreover, valleys of the electronic band structure at other crystal symmetry points
may be populated by such hot charge carriers (c.f. Figure 2.1).167 All this affects spin relaxation
dynamics and might explain why the discussed data point does not follow the trend of the
data points at lower energies.

To summarize the findings of the experiments shown and evaluated in this section, the EY
mechanism appears suitable once more to explain spin relaxation in CsPbI3 NCs. To even
further test this hypothesis, the effect of carrier-LO phonon scattering on spin dynamics was
further investigated through temperature dependent DTS and is presented in the next section.

5.3.2 Freezing Out Phonon Scattering and Spin Relaxation

In this section, spin relaxation dynamics are studied through temperature dependent DTS
for temperatures in the range 4 𝐾 ≤ 𝑇 ≤ 300𝐾. Upon temperature reduction, a red-shift
of the band gap energy 𝐸𝑔 is observed in the CsPbI3 NCs as common in LHPs (c.f. Subsec-
tion 2.1.1).78–83 The shift in my experiment amounts to 𝐸𝑔(300 𝐾) − 𝐸𝑔(4 𝐾) = 77𝑚𝑒𝑉, similar
to what has been reported previously.82 Meanwhile, the black-phase 𝛾-CsPbI3 is maintained,
as no crystal phase transitions occur within this temperature range.75,93 Due to the band gap
red-shift upon temperature reduction the absolute values of the pump laser energies were
adjusted accordingly for all temperatures in order to precisely retain the resonant pumping
condition. All transients are evaluated at their temperature-specific GSB maximum.

Spin-related effects due to carrier cooling, as examined in the last section, are eliminated in
the resonant pumping condition. Consequently, if carrier cooling is absent, no accompanied
LO phonon emission takes place and the LO phonon occupation is determined by lattice
temperature. To be precise, the LO phonon occupation number, 𝑛𝐿𝑂 (𝑇 ), is determined by
Bose-Einstein statistics (c.f. Equation 2.56 and Figure 2.7) and is thus accessible and adjustable
by varying the temperature. As opposed to LO phonon emission, which requires the charge
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carrier to have excess energy with respect to the band edge, LO phonon absorption is in
principle always possible, i.e. as long as LO phonon modes are thermally excited in the
material. Because 𝑛𝐿𝑂 (𝑇 ) is reduced at low temperatures, the probability of LO phonon
absorption by a charge carrier is reduced accordingly. If spin relaxation is governed by carrier
- LO phonon scattering via the EY mechanism, then a reduction of scattering events through
a drop of the LO phonon occupation number is expected to prolong spin relaxation. Note,
that scattering refers to both, LO phonon emission and absorption, where the effect of the
former on spin relaxation was examined in the last section, while the effect of the latter on
spin relaxation will be elaborated in this section’s experiment.

Figure 5.9 a shows 𝑆𝑃(𝑡) for two representative temperatures, 50 𝐾 and 250 𝐾, on a logarithmic
scale. The decay of 𝑆𝑃250 𝐾 (𝑡) is monoexponential. In contrast, that of 𝑆𝑃50 𝐾 (𝑡) shows an
initial fast decay promptly converting into a slow decay after approximately 3 𝑝𝑠. Detailed
data analysis reveals a linear plus exponential decay, i.e.

𝑆𝑃(𝑡) = 𝑆𝑃𝑙 𝑖𝑛 ⋅ (−
𝑡
𝜏𝑙 𝑖𝑛

) |
𝑡 ≲ 3 𝑝𝑠

+ 𝑆𝑃𝑒𝑥𝑝 ⋅ 𝑒𝑥𝑝 (− 𝑡
𝜏𝑒𝑥𝑝

) |
𝑡 ≳ 3 𝑝𝑠

. (5.14)

Because 𝑆𝑃(𝑡) is a measure of merging dynamics of the (Δ𝑇/𝑇 )𝜎
+𝜎+ and (Δ𝑇/𝑇 )𝜎

+𝜎− transients,
1/𝜏 in Equation 5.14 connotes the decay rate of the photoinduced spin imbalance and therefore
the rate of spin relaxation. This motivates to attest the different decay functions different
underlying spin relaxation mechanisms: one, which dominates for the first ≈ 3 𝑝𝑠 and another
one which dominates thereafter.

From here on the focus will be put on the exponential spin polarization decay, i.e. that occur-
ring in the regime 𝑡 ≳ 3 𝑝𝑠 and its dependence on temperature will be elaborated.
Figure 5.9 a shows that for 𝑡 ≳ 3 𝑝𝑠 a striking gap opens between 𝑆𝑃50 𝐾 (𝑡) and 𝑆𝑃250 𝐾 (𝑡). At
50 𝐾, the corresponding DTS transients do not merge for several tens of picoseconds, whereas
at 250 𝐾 they merge within ≈ 11 𝑝𝑠. In fact, the spin relaxation time, 𝜏𝑒𝑥𝑝, is more than one
order of magnitude larger at 50 𝐾 (𝜏𝑒𝑥𝑝 = 32 𝑝𝑠) than at 250 𝐾 (𝜏𝑒𝑥𝑝 = 3 𝑝𝑠). Quantitatively, this
is also well resolved in Figure 5.9 b, which shows that the slopes of 𝑆𝑃50 𝐾 (𝑡) and 𝑆𝑃250 𝐾 (𝑡)
differ substantially, with the former significantly smaller than the latter in absolute magnitude.

The spin relaxation rates 1/𝜏𝑒𝑥𝑝 at all measured temperatures are plotted in Figure 5.10
and are comparable to those of other publications on LHPs.134–136,165 The graph reveals that
1/𝜏𝑒𝑥𝑝 diminishes upon temperature reduction. In other words, spin relaxation is prolonged
as the phonon occupation, 𝑛𝐿𝑂 (𝑇 ), is diminished. The above stated expectation has thus been
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Figure 5.9: Spin polarization decay at 50 K and 250 K. (a) 𝑆𝑃(𝑡) is plotted on a logarithmic scale against
time. The data corresponding to 50 𝐾 (open squares) is fitted logarithmically for 𝑡 ≲ 3 𝑝𝑠 and linearly for
𝑡 ≳ 3 𝑝𝑠 (dark green lines). The dotted vertical line at 𝑡 = 3 𝑝𝑠 is a guide to the eye for differentiating
between the two distinct spin relaxation regimes. Data corresponding to 250 𝐾 (filled squares) is fitted
linearly throughout both regimes (bright green line). (b) Normalized DTS transients at 50 𝐾 (open squares)
and 250 𝐾 (filled squares). 𝜎+𝜎+ polarized transients are represented in red, those with 𝜎+𝜎− polarization
are represented in blue.

fulfilled and it can be inferred that spin relaxation in CsPbI3 NCs is strongly influenced by LO
phonon absorption − in addition to LO phonon emission (c.f. Subsection 5.3.1). To consider
this qualitative statement more quantitatively, the spin relaxation rates shown in Figure 5.10
are compared to theoretical predictions. Clearly, the lattice temperature of the CsPbI3 NCs
strongly affects intrinsic spin relaxation, because the data points follow the functionality of
LO phonon occupation, 𝑛𝐿𝑂 (𝑇 ), as dictated by Bose-Einstein statistics (light gray dotted line).
As derived in Section 2.5, spin relaxation as a consequence of carrier - LO phonon scattering
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may be described by the EY theory. The corresponding EY spin relaxation rate is

1
𝜏𝐸𝑌

= 𝛾 1
𝜏𝑚

(1 − 𝑚∗
𝑚0

)
2
( 𝐸
𝐸𝑔

)
2 2𝜂2(2 − 𝜂)2

(3 − 𝜂)2
. (5.15)

Concentrating on those terms depending on temperature, Equation 5.15 reduces to

1
𝜏𝐸𝑌

∝ 1
𝜏𝑚

𝑇 2 . (5.16)

The momentum scattering rate 1/𝜏𝑚, which is given in Equation 2.60, contains one term
describing LO phonon absorption and the other term describing LO phonon emission. For
resonant photoexcitation, the emission term can be omitted, as the charge carriers are induced
at the band edge, below the threshold for LO phonon emission, i.e. 𝐸

ℏ𝜔𝐿𝑂
< 1. In this case it
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Figure 5.10: Spin relaxation rates versus temperature including theoretical model predictions.
Spin relaxation rates (black data points) were determined from the decay of 𝑆𝑃𝑒𝑥𝑝(𝑡). The following
functions are fitted to the data: LO phonon occupation number, 𝑛𝐿𝑂 (𝑇 ), Equation 2.56 (light gray dotted
line), the prediction of EY spin relaxation taking into account exclusively phonon absorption, while
disregarding phonon emission, 1/𝜏𝐸𝑌 ∝ 𝑛𝐿𝑂 𝑇 2, Equation 2.80 and Equation 2.81 (dark gray dashed line), and
the numerically calculated EY spin relaxation rate, 1/𝜏 ′𝐸𝑌, Figure 5.11 (linked red open circles) corresponding
to the y-scale on the right.

is easily observable from Figure 2.8 that only LO phonon absorption contributes to carrier -
LO phonon scattering. From the underlying function given in Equation 2.58, as well as from
Equation 2.60 it can be deduced that 1/𝜏𝑚(𝑇 ) ∝ 𝑛𝐿𝑂(𝑇 ) for

𝐸
ℏ𝜔𝐿𝑂

< 1, as already discussed in
Section 2.3. With this, the temperature dependency of the EY spin relaxation rate for resonant
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photoexcitation becomes

1
𝜏𝐸𝑌

(𝑇 ) ∝ 𝑛𝐿𝑂(𝑇 ) 𝑇 2 , for 𝐸
ℏ𝜔𝐿𝑂

< 1. (5.17)

This functionality is fitted to the measured spin relaxation rates and shown as a dark gray
dashed line in Figure 5.10.

Strictly speaking, Equation 5.15 is valid only for elastic scattering processes, as discussed in
Section 2.5. Nevertheless, this equation has been used extensively in the literature to describe
also highly non-elastic processes, such as polar optical phonon scattering.10,125,148 The use
of this equation to describe spin relaxation, which is predominantly driven by polar phonon
scattering, as in the present case, may therefore be done only with great caution. It is therefore
interesting to furthermore consider the numeric solution of the EY spin relaxation rate, which
takes inelastic momentum scattering into account here. The derivation in Section 2.5 leads to

1
𝜏 ′𝐸𝑌

= 𝑊0
ℏ2𝜔2

𝐿𝑂

𝐸2𝑔√𝜋 (𝑘𝐵𝑇)
3/2

𝜂2(2 − 𝜂)2

(3 − 𝜂)2 ∫ 𝑒
− 𝐸

𝑘𝐵𝑇 [𝑛𝐿𝑂𝐴(𝐸) + (𝑛𝐿𝑂 + 1) 𝐵(𝐸)] √𝐸 𝑑𝐸 . (5.18)

For description of the variables please refer to Equation 2.82 ff. in Section 2.5. Equation 5.18
still includes an integral, which cannot be treated analytically and thus requires a numerical
procedure to be solved. The numerical solution for the EY spin relaxation rate in GaAs,
which I have found is shown in Figure 5.11 (squares) and is in close accordance with the
originally published graph122 . In addition, I have repeated the same numerical procedure for
CsPbI3 by exchanging all values specific for the GaAs CB with those specific for the CsPbI3
VB. All intermediate results needed for the numerical calculations are given in Section A.1.
The numerically obtained EY spin relaxation rates for CsPbI3 (circles) are plotted against
temperature in Figure 5.11, together with those obtained for GaAs.

Although the generated graph for CsPbI3 is in accordance with that of GaAs, 𝜏 ′𝐸𝑌 , 𝐶𝑠𝑃𝑏𝐼3
must nevertheless be used with caution to predict EY spin relaxation in CsPbI3, because the
derivations resulting in Equation 5.15 and Equation 5.18 were done for GaAs and not for
LHPs. Simply assuming an inverted band structure of both materials, while disregarding all
other differences, such as for example the larger ionicity in the LHP lattice, might be too
unmindful. However, the tentative usage of 𝜏 ′𝐸𝑌 , 𝐶𝑠𝑃𝑏𝐼3 might be still of value, in the same
way as Equation 5.15 has been used extensively to describe polar phonon mediated EY spin
relaxation.
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Figure 5.11: Numerically generated EY spin relaxation rate. The cause for spin relaxation includes
inelastic momentum scattering. Data points are numerically generated solutions of Equation 5.18.

Finally, the numerically determined EY spin relaxation rates, 1/𝜏 ′𝐸𝑌 (𝑇 ), calculated for absent
LO phonon emission, i.e. 𝐵(𝐸) = 0, are included in Figure 5.10 (red open circles). A separate
y-scale (red axis on the right) is necessary, because the numerically determined rates deviate
roughly three orders of magnitude from the ones measured in CsPbI3 NCs. This major
deviation reveals that spin relaxation occurs roughly 1000-times faster in LHPs than predicted
from Equation 5.18, which was derived for GaAs. Speculatively, I assign it to the orthorhombic
(or quasi-cubic) crystal structure of CsPbI3, compared to the zinc blende crystal structure
of GaAs, as well as to the significant mechanical softness and ionicity of the LHP crystal
lattice. A precise examination of the underlying reason for the large deviation is, however,
unfortunately, beyond the scope of this thesis and requires further comparative experiments
between the two material classes. It is, however, still worthwhile, to include this numerical
prediction into Figure 5.10, because it opens the opportunity of comparing the functionalities
of measured and calculated spin relaxation rates.

Further analyzing Figure 5.10, it is apparent, that the measured spin relaxation rates converge
to an offset value greater than zero, i.e. ≈ 0.03 𝑝𝑠−1 as 𝑇 → 0. The fit functions ∝ 𝑛𝐿𝑂(𝑇 ) and
∝ 1/𝜏𝐸𝑌, as well as the y-scale corresponding to 1/𝜏 ′𝐸𝑌 (red axis on the right) are therefore given
an offset of the same magnitude. This offset suggests that small but measurable temperature-
independent spin relaxation is present, which could be caused by defects in the CsPbI3 crystal



5 Spin Relaxation in CsPbI3 Nanocubes 95

lattice.130 Impurities are reported to be almost negligible with regard to optical properties in
inorganic LHPs.82 This could explain the small magnitude of the offset, or render impurities,
as opposed to crystal defects of other kind, insignificant.

The measured spin relaxation rates clearly follow the functionality of LO phonon occupation
(light gray line). A reduction of the phonon occupation by lowering the temperature comes
along with prolonged band edge spin relaxation. Therefore, it can be concluded that the
number of LO phonon modes available for absorption by charge carriers directly relates to the
rate of charge carrier spin relaxation in CsPbI3 NCs. This is consistent with the effect of the
quantity of LO phonon emissions on the magnitude of residual band edge spin polarization (c.f.
Subsection 5.3.1). Both, analytically (dark gray dashed line) and numerically (red open joint
circles) determined EY spin relaxation is predicted to accelerate with increasing temperature
alike the measured rates and fit them adequately.

Besides the EY mechanism, also the DP spin relaxation mechanism contains a dependency on
the LO phonon scattering, as it is inversely proportional to the momentum scattering rate,
i.e. 1

𝜏𝐷𝑃
(𝑇 ) ∝ 1

𝑛𝐿𝑂(𝑇 )
𝑇 3 (c.f. Section 2.4). It is thus instructive to compare also its functionality

to the data, which is shown in Figure 5.12 (turquoise dash-dotted line). Evidently, the spin
relaxation rates measured in CsPbI3 NCs cannot be described through the prediction of the DP
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Figure 5.12: Incapability of the DP mechanism to describe the measured spin relaxation rates.
This is the equivalent graph as already shown in Figure 5.10. However, here, the functionality of the DP
spin relaxation is included, i.e. 1

𝜏𝐷𝑃
(𝑇 ) ∝ 1

𝑛𝐿𝑂(𝑇 )
⋅ 𝑇 3 (turquoise dash-dotted line). Clearly, it is incapable of

describing the measured spin relaxation rates (solid black squares) in CsPbI3 NCs.
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model. Especially those spin relaxation rates at 𝑇 ≲ 75𝐾, which converge towards a constant
offset of ≈ 0.03 𝑝𝑠−1, are worst represented by the DP functionality. At these low temperatures
the dominant term in the DP functionality is 1

𝑛𝐿𝑂(𝑇 )
, which causes the steep rise as 𝑇 → 0. In

contrast, towards higher temperature, it is the 𝑇 3-term, which dominates and, without fitting
the data well, at least shows the same upwards trend as the data. Nevertheless, it is clear, that
the DP theory is incapable of describing spin relaxation in CsPbI3 NCs. With this, not only
theoretical arguments as given in Section 2.4 render the DP mechanism unsuitable, but also
experimental evidence, as has been shown now.

Despite beyond the scope of this thesis, I want to briefly consider the origin of the linear spin
polarization decay, i.e. that occurring for low temperatures, 𝑇 < 100𝐾, within the first few
picoseconds, 𝑡 ≲ 3 𝑝𝑠 (Figure 5.9). Figure 5.13 a shows the decay of 𝑆𝑃(𝑡) at 𝑇 = 4𝐾, 25 𝐾 and
50 𝐾 on a logarithmic scale. Linear fits are depicted as solid lines and appear logarithmically
on a logarithmic scale. The individual spin relaxation rates were extracted from these fits and
are plotted in Figure 5.13 b. They increase drastically with decreasing temperature, i.e. as
𝑇 = 50𝐾 → 4𝐾. In other words, spin relaxation accelerates drastically and its rate increases
by ≈ 35%. This behaviour cannot be explained by carrier - LO phonon scattering via the EY
mechanism, because LO phonons are scarce at these low temperatures (c.f. Figure 2.7).38,82

Figure 5.13: Linear spin polarization decay occurring in the temporal regime t ≲ 3 ps and for
temperatures T=4 K, 25 K and 50 K. (a) Normalized 𝑆𝑃(𝑡) is plotted on a logarithmic scale against time.
Linear fits (solid lines) appear logarithmically on logarithmic scale. (b) Corresponding spin relaxation rates
reveal a vast acceleration of spin relaxation dynamics as 𝑇 = 50𝐾 → 4𝐾. Note that the y-scale begins at
0.4 𝑝𝑠−1.
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Hence, I infer that the underlying process must be governed by a different spin relaxation
mechanism within this regime.

It may be interpreted as an excitonic response, as the ratio of excitons to free carriers increases
with decreasing temperature, because thermally assisted exciton dissociation ceases. In
the case of excitons, spin relaxation is caused by other mechanisms, for example through
Coulomb-mediated exchange interaction between the Coulomb-bound electron and hole via
the BAP mechanism.131,132 Alternatively, the described increase in spin relaxation rate could
be explained through hyperfine interaction between the charge carrier spin and the spin
of the nucleus. It was shown that in CsPbBr3 NCs hyperfine interaction is the main cause
for spin dephasing at temperatures 𝑇 < 50𝐾.42 Moreover, hyperfine interaction between
predominantly hole and nucleus spins is found to dominate low temperature (𝑇 < 100𝐾) spin
dephasing in CsPbBr3 single crystals.36 Nevertheless, the described spin dynamics have not
been analysed and reported to the same precision as I have observed them in CsPbI3 NCs and
are thus still subject of current research.

Summarizing this section, spin polarization dynamics were quantitatively studied with excita-
tion energy and temperature. Thereby, the EY mechanism was identified to dominate spin
relaxation in CsPbI3 NCs (except for 𝑇 ≤ 50𝐾 at 𝑡 ≲ 3 𝑝𝑠). Meanwhile DP spin relaxation was
shown to be incapable of reproducing the measurement data.

The results of this chapter are shown in my first-author publication, which was released
in 2020.113 Since then it was cited several times, indicating that the community builds on it.
Notably, two review publications explicitly re-published Figure 5.9 b, including the above elab-
orated interpretation and conclusion on spin relaxation in CsPbI3 NCs.39,168 With the aim of
understanding the big picture of intrinsic charge carrier spin dynamics, the mentioned reviews
and several further publications use the knowledge gained from my results and compare it to
their results in other investigated materials, such as CsPbBr3169 , CsPb(Cl0.56Br0.44)3170 , or
magnetic manganese hybrid organic–inorganic crystals171 . All in all, the current knowledge
about spin dynamics in LHPs and related materials is that there is not one mechanism explain-
ing spin relaxation in all. Rather, different mechanisms are dominant in different materials - a
wonderful situation for phrasing the question: “what is the reason for the diverse behaviour
of charge carrier spin in different materials?” and to learn about the interplay between spin
and material properties.





CHAPTER 6

Distinction between Electron and Hole
Spin Relaxation

In the previous chapter, spin relaxation dynamics were evaluated jointly for electrons and
holes. Recognizing that spin relaxation dynamics in general differ for different (quasi-)
particles, i.e. electron, hole, exciton, and others, is a prerequisite for obtaining an in depth
comprehension of the intrinsic properties of LHPs. However, DTS, by its nature, does not
allow the distinction between CB electrons and VB holes, as it is an additive measurement
technique of the respective occupancies, 𝑓𝑒 and 𝑓ℎ. To be precise, (Δ𝑇/𝑇 ) ≈ (𝑓𝑒 + 𝑓ℎ) 𝛼𝑊𝐿𝑙
(Equation 3.8).

Therefore, in this chapter, the acceptor material PCBM is employed, which acts as an electron
scavenger in combination with CsPbI3 NCs. This is a consequence of the type II heterojunction
between PCBM and CsPbI3 (c.f. Figure 3.1).151 Thus, photoexcited electrons are scavenged
by PCBM and physically leave CsPbI3, while holes remain on CsPbI3, as described in detail
in Subsection 3.1.2. My co-authors and I were the first ones to employ this material system
for the study of spin relaxation dynamics in CsPbI3 NCs.154 It enabled us to unambiguously
separate electron and hole spin relaxation rates. This chapter shows the results obtained from
examination and comparison of pure CsPbI3 NCs and the CsPbI3 NC : PCBM blend through
polarization dependent DTS at RT.
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6.1 Spin-IndependentCharacterization ofCsPbI3NCs ver-

sus CsPbI3 NC : PCBM

DTS experiments in this chapter were again executed meeting the resonant pumping condition
in order to eliminate spin-related effects of carrier cooling (c.f. Subsection 5.3.1). The recorded
spectra were evaluated at the GSB maximum.

Figure 6.1: Static absorption and DT spectra of pure CsPbI3 NCs and the CsPbI3 NC:PCBM blend.
(a) Static absorption spectra (unpolarized) of pure CsPbI3 (black squares) and CsPbI3:PCBM blend (orange
circles) are nearly identical. The spectra are base-line corrected and normalized for best comparability. (b)
Linearly polarized DT spectra at 1 𝑝𝑠 time delay. These are also nearly identical for both samples. The GSB
maximum at 1.85 𝑒𝑉 is indicated by a vertical black dotted line, which extends into graph (a).
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Figure 6.1 shows that static absorption spectra (a) and DT spectra (b) are nearly identical for
both, pure CsPbI3 NCs (black squares) and the CsPbI3 NC : PCBM blend (orange circles). This
is to be expected, because PCBM, by its nature, barely absorbs at energies relevant for CsPbI3
band gap absorption.172,173 Importantly, the extraordinary similarity between the spectra of
both samples is a strong indication that PCBM does not chemically affect the CsPbI3 NCs.
Rather, it suggests that PCBM simply settles on the surface of the CsPbI3 NCs without altering
the NCs themselves (c.f. Figure 3.1 b and Subsection 3.1.2). As depicted in Figure 6.1 b, the
GSB maximum of both, pure and blent sample, is located at the same energy of 1.85 𝑒𝑉 1.

In contrast to the just discussed static spectra, the temporal evolution of the spectral GSB max-
imum, shown in Figure 6.2 a, differs substantially for CsPbI3 (black squares) and CsPbI3:PCBM
(orange circles). The linearly polarized DT transient of the blend decays significantly faster
compared to that of pure CsPbI3 NCs. The pronounced differences in decay dynamics are of
no surprise and even intended. The decay of CsPbI3 NCs originates solely from charge carrier
recombination, while that of CsPbI3:PCBM results from both, charge carrier recombination
in CsPbI3 NCs and electron transfer to PCBM. Clearly, the latter process occurs on a much
faster time scale than the former, as it dominates the steep decay within the first 100 𝑝𝑠. The
electron transfer process is even better resolved in Figure 6.2 b, where the difference between
the CsPbI3 and CsPbI3:PCBM curves in a, i.e. (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3 − (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀, is plotted.
From this, it can be inferred that the fast electron transfer process dominates the slower
recombination dynamics initially and becomes insignificant at larger time delays: The initial
steep rise occurs within ≈ 25 𝑝𝑠 (best visible in the inset) and manifests that 𝑘𝑒→𝑃𝐶𝐵𝑀 > 𝑘𝑟𝑒𝑐.
Thereafter, data points lie horizontally, implying that electron transfer dynamics and charge
carrier recombination dynamics are on par. As time progresses the magnitude of the data
points declines, implying that charge carrier recombination dominates over electron transfer
dynamics, rendering the latter insignificant at large time delays.

𝑘𝑟𝑒𝑐 is determined from fitting (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3 with Equation 4.2, which yields 𝑘𝑟𝑒𝑐 = 0.0040 𝑝𝑠−1.
(This value is in good accordance with 𝑘𝑟𝑒𝑐 = 0.0041 𝑝𝑠−1, extracted for the CsPbI3 NCs sample
evaluated in Chapter 4.) To determine the magnitude of 𝑘𝑒→𝑃𝐶𝐵𝑀, an equation has to be found,
which explains the data in Figure 6.2 b for 𝑡 ≤ 100 𝑝𝑠. Therefore, the spin-independent rate
equations for electron and hole occupations in CsPbI3 are formulated.

1 The GSB maximum is slightly shifted (Δ𝐺𝑆𝐵𝑚𝑎𝑥 = 0.04 𝑒𝑉) with respect to that of the CsPbI3 sample used
for the experiments shown in Chapter 4 and Chapter 5. The reason for this is that the synthesis procedure, in
particular the substitution process of Br with I, can lead to slightly different band gap energies. However, this is
of no concern for this experiment, because both samples, CsPbI3 and CsPbI3:PCBM, are produced from the same
batch of synthesized CsPbI3 NCs and thus allow precise comparison between them.
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Figure 6.2: Linear polarization DT transients of pure CsPbI3 NCs and CsPbI3 NC:PCBM. (a) The
signal decay of CsPbI3 NCs (black squares) is significantly slower and appears to differ in functionality
compared to that of CsPbI3:PCBM (orange circles). (b) Difference between the CsPbI3 and CsPbI3:PCBM
curves in (a), i.e. (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3 − (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀. The steep increase within the first ≈ 25 𝑝𝑠 is a conse-
quence of 𝑘𝑒→𝑃𝐶𝐵𝑀 > 𝑘𝑟𝑒𝑐. The data in this temporal region is shown enlarged in the inset and fitted with
Equation 6.4.

holes: �̇�𝑉𝐵(𝑡) = −𝑘𝑟𝑒𝑐 𝑁𝐶𝐵(𝑡) 𝑁𝑉𝐵(𝑡)

electrons: �̇�𝐶𝐵(𝑡) = −𝑘𝑟𝑒𝑐 𝑁𝐶𝐵(𝑡) 𝑁𝑉𝐵(𝑡) − 𝑘𝑒→𝑃𝐶𝐵𝑀 𝑁𝐶𝐵(𝑡) (6.1)

The attempt to solve these equations leads to a second-order non-linear differential equa-
tion. I therefore make use of an approximation. Based on the above made assessment that
𝑘𝑒→𝑃𝐶𝐵𝑀 > 𝑘𝑟𝑒𝑐, it is justified to take 𝑘𝑟𝑒𝑐 ≈ 0 within the first 100 𝑝𝑠 when electron transfer
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dynamics from CsPbI3 to PCBM dominates. With that, Equation 6.1 simplifies to

holes: �̇�𝑉𝐵 ≈ 0

electrons: �̇�𝐶𝐵(𝑡) ≈ −𝑘𝑒→𝑃𝐶𝐵𝑀𝑁𝐶𝐵(𝑡). (6.2)

From this, the linearly polarized DT decays of CsPbI3 and CsPbI3 : PCBM (Figure 6.2 a) can
be derived.

𝑁 𝜋𝑝𝑜𝑙𝑎𝑟 𝑖𝑧𝑒𝑑
𝐶𝑠𝑃𝑏𝐼3 ≈ 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

𝑁 𝜋𝑝𝑜𝑙𝑎𝑟 𝑖𝑧𝑒𝑑
𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀 (𝑡) ≈ 𝑁𝐶𝐵(𝑡) + 𝑁𝑉𝐵(𝑡) =

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

(1 + 𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀 𝑡) (6.3)

Their subtraction results in

𝑁 𝜋𝑝𝑜𝑙𝑎𝑟 𝑖𝑧𝑒𝑑
𝐶𝑠𝑃𝑏𝐼3 − 𝑁 𝜋𝑝𝑜𝑙𝑎𝑟 𝑖𝑧𝑒𝑑

𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀 (𝑡) ≈
𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
(1 − 𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀 𝑡) , (6.4)

which is used to fit the data in Figure 6.2 b (inset). It fits the data well and yields 𝑘𝑒→𝑃𝐶𝐵𝑀 ≈
0.079 ± 0.004 𝑝𝑠−1. Indeed, as predicted, this rate is much larger, i.e. ≈ 20 times, than that of
charge carrier recombination, 𝑘𝑟𝑒𝑐 = 0.0040 𝑝𝑠−1. In fact, the determined value of 𝑘𝑒→𝑃𝐶𝐵𝑀 is
a lower bound of the electron transfer rate and might actually be even larger. The reason for
this is a slower charge carrier recombination rate in CsPbI3:PCBM compared with that in pure
CsPbI3, which is well resolved by the descending data in Figure 6.2 b from 100 𝑝𝑠 onwards.
This is a direct consequence of the scavenged electrons by PCBM, which are then missing
for recombination at the band gap of CsPbI3. Another important implication of the relatively
large value of 𝑘𝑒→𝑃𝐶𝐵𝑀 is that it manifests efficient electron transfer dynamics from CsPbI3
NCs to PCBM − a prerequisite for this section’s experiment. This is also supported by strong
PL quenching of CsPbI3:PCBM compared to pure CsPbI3.154 In comparison to the determined
RT spin relaxation rate, 𝑘𝑒&ℎ ≈ 0.35 𝑝𝑠−1, the electron transfer rate, 𝑘𝑒→𝑃𝐶𝐵𝑀 ≈ 0.079 𝑝𝑠−1

(lower bound value) is similar, as these values differ only by a factor of ≈ 4. This renders the
CsPbI3:PCBM material system suitable for examining electron and hole spin relaxation rates
separately, which will be pursued in the following section.
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6.2 Extraction of Individual SpinRelaxationRates for Elec-

trons and Holes

Polarization dependent DT transientswere recorded for both, CsPbI3 NCs andCsPbI3 NC:PCBM
and are shown in Figure 6.3. As before, the transients (Δ𝑇/𝑇 )𝜎+𝜎+ and (Δ𝑇/𝑇 )𝜎+𝜎− are respec-
tively coloured red and blue. Data of CsPbI3 is displayed as squares and is in accordance with
that presented in Figure 5.12. Data of CsPbI3:PCBM is displayed as circles incorporating an
orange core. Visually it clearly deviates from that of pure CsPbI3 NCs. Evaluating both, I found
that the merging dynamics of (Δ𝑇/𝑇 )𝜎+𝜎+𝐶𝑠𝑃𝑏𝐼3 and (Δ𝑇/𝑇 )

𝜎+𝜎−
𝐶𝑠𝑃𝑏𝐼3 , as well as of (Δ𝑇/𝑇 )𝜎+𝜎+𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀

and (Δ𝑇/𝑇 )𝜎+𝜎−𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀 with themselves are independent of whether PCBM is present or not
and complete within ≈ 10 𝑝𝑠.
Within the displayed 25 𝑝𝑠, not only (Δ𝑇/𝑇 )𝜎+𝜎+ and (Δ𝑇/𝑇 )𝜎+𝜎− of both samples fully merge,
but in fact, also most of the electron transfer process from CsPbI3 NCs to PCBM takes place.
There are two evidences for this:

• One, at 25 𝑝𝑠 the decay curves (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3∶𝑃𝐶𝐵𝑀 (independent of polarization) reach
one forth of the originally photoinduced spin polarization (𝑆𝑃𝑚𝑎𝑥). This indicates that
the majority of CB electrons have transferred to PCBM, leaving only VB holes behind in
CsPbI3. Hence, because hole polarization has already equilibrated at that time (merging
dynamics are completed), the only carriers detectable at the CsPbI3 band gap are half of
the photoexcited holes, i.e. one forth of all initially 𝜎+-polarized pump-induced charge
carriers. In contrary, at 25 𝑝𝑠 the decay curves of pure CsPbI3, (Δ𝑇/𝑇 )𝐶𝑠𝑃𝑏𝐼3 , reach one
half of the originally photoinduced spin polarization, because spin equilibrated holes
(half of all initial 𝜎+-induced VB holes), as well as spin equilibrated electrons (half of
all initial 𝜎+-induced CB electrons) are measured.

• And two, the steep increase in Figure 6.2 b saturates after ≈ 25 𝑝𝑠 (best visible in the
inset). This implies that the majority of electron transfer from CsPbI3 NCs to PCBM
takes place within this time period (c.f. discussion of Figure 6.2 b in Section 6.1).

For quantitative assessment of the transients presented in Figure 6.3, population and depopu-
lation dynamics of the four CsPbI3 band gap states (Figure 5.3) have to be evaluated. Upon
𝜎+-excitation by the pump pulse, holes and electrons respectively populate |12 , −

1
2⟩𝑉𝐵 (in the

2 Throughout this thesis, the presented absolute Δ𝑇/𝑇 magnitudes vary to some extent for different experi-
ments. This originates from small variabilities in optical density of the freshly prepared samples. Within one
experimental study, however, it is ensured that all examined samples have consistent optical characteristics.
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Figure 6.3: Polarization dependent DT transients of CsPbI3 and CsPbI3:PCBM. For both, CsPbI3
(squares) and CsPbI3:PCBM (circles with orange core), (Δ𝑇/𝑇 )𝜎+𝜎+ (red) and (Δ𝑇/𝑇 )𝜎+𝜎− (blue) merge at
≈ 10 𝑝𝑠. Towards 25 𝑝𝑠 the transients approach Δ𝑇/𝑇 = (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)/2 = 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑆𝑃𝑚𝑎𝑥/2 for CsPbI3
and Δ𝑇/𝑇 = (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)/4 = 𝑆𝑃𝑚𝑎𝑥/4 for CsPbI3:PCBM, as indicated in gray.

following abbreviated as |−1
2⟩𝑉𝐵 ) and |12 , +

1
2⟩𝐶𝐵 (in the following abbreviated as |+1

2⟩𝐶𝐵 ). Sub-
sequently, in both samples, CsPbI3 and CsPbI3:PCBM, hole and electron populations decrease
in the process of intraband spin-flipping at rates 𝑘ℎ and 𝑘𝑒, respectively, as investigated in
Chapter 5. Additionally, in CsPbI3:PCBM, CB electrons transfer to PCBM at rate 𝑘𝑒→𝑃𝐶𝐵𝑀.
(Recombination and any higher order relaxation mechanisms are disregarded, for the same
reasons outlined in the previous chapter.) The spin-flipping processes at the band gap of pure
CsPbI3 NCs have been elaborated in Chapter 5. In contrast, in CsPbI3:PCBM spin-flipping
and transferring dynamics occur simultaneously and appropriate rate equations still need to
be elaborated. I propose

holes: �̇�|− 1
2 ⟩𝑉𝐵

= −𝑘ℎ (𝑁|− 1
2 ⟩𝑉𝐵

− 𝑁|+ 1
2 ⟩𝑉𝐵

) (6.5)

electrons: �̇�|+ 1
2 ⟩𝐶𝐵

= −𝑘𝑒 (𝑁|+ 1
2 ⟩𝐶𝐵

− 𝑁|− 1
2 ⟩𝐶𝐵

) − 𝑘𝑒→𝑃𝐶𝐵𝑀 𝑁|+ 1
2 ⟩𝐶𝐵

, (6.6)

where 𝑁 denotes the time-dependent number density of holes or electrons occupying a given
state. To be precise, 𝑁 = 𝑁(𝑡), however, the indication of time-dependency was dropped for
the purpose of clarity. Here, I have presupposed that 𝑘𝑒→𝑃𝐶𝐵𝑀 is insensitive to electron spin
orientation and that PCBM molecules, which merely physically attach to the CsPbI3 NCs, do
not introduce additional spin relaxation channels for photoexcited charge carriers, as there is
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no evidence for this. The rate equations formulated in Equation 6.5 and Equation 6.6 describe
the emptying of |−1

2⟩𝑉𝐵 and |+1
2⟩𝐶𝐵 states, which were initially populated by 𝜎+-polarized

pump excitation. They account for an ongoing spin-flipping process for as long as there
exists a population imbalance between the states belonging to the same band (insured by
the terms in brackets in Equation 6.5 and Equation 6.6), synonymous to Equation 5.1 and
Equation 5.2. Electron transfer to the energetically favourable LUMO level of PCBM, on the
other hand, continues until the total electron population is depleted (last term in Equation 6.6).
Importantly, these two rate equations (Equation 6.5 and Equation 6.6) are now different for
holes and electrons due to the term specifying electron transfer dynamics to PCBM. This way,
hole and electron spin relaxation rates are now distinguishable. The solutions to the above
formulated rate equations are

holes: 𝑁|− 1
2 ⟩𝑉𝐵

=
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
𝑒−2𝑘ℎ𝑡 +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

(6.7)

electrons: 𝑁|+ 1
2 ⟩𝐶𝐵

=
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
𝑒−(2𝑘𝑒+𝑘𝑒→𝑃𝐶𝐵𝑀)𝑡 +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀𝑡, (6.8)

where it was used that the total number of holes, 𝑁ℎ = 𝑁|− 1
2 ⟩𝑉𝐵

+𝑁|+ 1
2 ⟩𝑉𝐵

= 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒, is constant
at all times. The total number of electrons in CsPbI3, however, decreases due to electron
transfer to PCBM and is given by

�̇�𝑒(𝑡) = −𝑘𝑒→𝑃𝐶𝐵𝑀𝑁𝑒(𝑡)

⇒ 𝑁𝑒(𝑡) = 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀𝑡. (6.9)

Constants in Equation 6.7 and Equation 6.8 are fixed by demanding that
𝑁|− 1

2 ⟩𝑉𝐵
(𝑡 = 0) = 𝑁|+ 1

2 ⟩𝐶𝐵
(𝑡 = 0) != 𝑁𝑚𝑎𝑥

2 , which comes from the fact that photon absorption
produces a pair comprising of VB hole and CB electron and thus an equal amount of both
charge carrier species.

Analogous to the calculation procedure carried out in Section 5.1, the depopulation of pump-
induced hole and electron populations are jointly defined as 𝑁 𝜎+𝜎+ = 𝑁|− 1

2 ⟩𝑉𝐵
+ 𝑁|+ 1

2 ⟩𝐶𝐵
,

because DTS only allows for an additive measurement of hole and electron occupations (c.f.
Section 3.3).

𝑁 𝜎+𝜎+(𝑡) =
𝑁𝑚𝑎𝑥 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
(𝑒−2𝑘ℎ𝑡 + 𝑒−(2𝑘𝑒+𝑘𝑒→𝑃𝐶𝐵𝑀)𝑡) +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

(1 + 𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀𝑡) (6.10)

Simultaneously to the depopulation of initially occupied states, the initially empty states
|+1

2⟩𝑉𝐵 and |−1
2⟩𝐶𝐵 , as well as the LUMO of PCBM become occupied. Equations describing
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these filling dynamics are found analogously as described in Chapter 5, i.e. essentially by
replacing 𝑁𝑚𝑎𝑥 by 𝑁𝑚𝑖𝑛. Other than that the solutions to the respective rate equations are
the same as in Equation 6.7 and Equation 6.8. This again allows for the calculation of their
combined occupation, 𝑁 𝜎+𝜎− = 𝑁|+ 1

2 ⟩𝑉𝐵
+ 𝑁|− 1

2 ⟩𝐶𝐵
, which results in

𝑁 𝜎+𝜎−(𝑡) =
𝑁𝑚𝑖𝑛 − 𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒

2
(𝑒−2𝑘ℎ𝑡 + 𝑒−(2𝑘𝑒+𝑘𝑒→𝑃𝐶𝐵𝑀)𝑡) +

𝑁𝑏𝑎𝑙𝑎𝑛𝑐𝑒
2

(1 + 𝑒−𝑘𝑒→𝑃𝐶𝐵𝑀𝑡) . (6.11)

Note, that for 𝑘𝑒→𝑃𝐶𝐵𝑀 = 0 Equation 6.10 and Equation 6.11 respectively reduce to Equation 5.5
and Equation 5.8 calculated for pure CsPbI3, testifying logical consistency.

Equation 6.10 and Equation 6.11 are now used to globally fit all four DT transients presented
in Figure 6.3. Data and best fits (black curves) are collectively shown in Figure 6.4.
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Figure 6.4: Polarization dependent DT transients of CsPbI3 and CsPbI3:PCBM including fitting
curves. The data shown is equivalent to that already presented in Figure 6.3. It is fitted with Equation 6.10
and Equation 6.11. A global fit of all four DT transients allows for the extraction of precise 𝑘𝑒 and 𝑘ℎ values.

The best global fit returns 𝑘𝑒 = 0.409 ± 0.030 𝑝𝑠−1 and 𝑘ℎ = 0.116 ± 0.004 𝑝𝑠−1. These results
suggest, that the spin flip rate of CB electrons is faster by a factor of ≈ 3.5 compared to that
of VB holes. With this, electron and hole spin relaxation rates were successfully separated
and assigned individual spin relaxation rates. Despite an important achievement for me and
the research community, it must be pointed out, that these results are preliminary, as they
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serve for proving the concept only. Dr. Amrita Dey continued to pursue this project and
executed further precise measurements and data evaluation in the same manner as presented
above. She obtained 𝑘𝑒 = 2.5 ± 0.2 𝑝𝑠−1 and 𝑘ℎ = 0.200 ± 0.003 𝑝𝑠−1, which suggests the rate
of electron spin relaxation to exceed that of holes by a factor of ≈ 12.5. These results are
shared with the community in our follow-up publication, which was previously released (end
of 2022).154

Although different in magnitude, the results of both studies testify fast electron and slow hole
spin relaxation. In the following I want to comment on this and provide reasons evidencing
its validity.
Considering that the CB in LHPs has p-symmetry and is strongly influenced by SOC, electrons
at the band gap (R-point) occupymixed spin states (Equation 2.13). As a consequence, electrons
are expected to obey ultra fast spin randomization. This is derived from the analogy between
CB states in LHPs and VB states in III-V compounds, as has been elucidated in detail in
Section 2.5.38,105,145 Meanwhile, VB states have s-symmetry in LHPs and are thus pure in spin
at the band gap (Equation 2.12). Deviating from the zone center, i.e. at ⃖⃗𝑘 ≠ 0, spin up and
spin down states commence to mix as a consequence of SOC. Holes in CsPbI3 NCs are thus
presumed to be subject to slow EY spin relaxation (c.f. Section 2.5). For this reason, I expect
𝑘𝑒 to significantly exceed 𝑘ℎ in magnitude. To some extent, this is the case for the preliminary
results, while well reflecting those published, strengthening the credibility of the latter.
An electron spin relaxation rate as fast as 𝑘𝑒 = 2.5±0.2 𝑝𝑠−1 would imply that the measurement
curves presented in Figure 5.1 and Figure 6.4 mainly show the spin equilibration dynamics
of CsPbI3 holes with only minor influence of that of electrons. The determined global spin
relaxation rate, 𝑘𝑒&ℎ, would thus take a value, which is predominantly influenced by hole spin
relaxation. The only slightly larger magnitude of 𝑘𝑒&ℎ ≈ 0.35 𝑝𝑠−1 with respect to 𝑘ℎ = 0.200±
0.003 𝑝𝑠−1 supports this hypothesis. In my first-author publication,113 𝑘𝑒&ℎ was attributed
to EY spin relaxation. This is consistent with the presented theoretical considerations on
CsPbI3 VB holes (c.f. Section 2.5), suggesting hole spin relaxation to be governed by the EY
mechanism. Hence, this is one more indication that the presented polarization dependent DT
transients predominantly show spin equilibration dynamics of holes, which is governed by
the EY mechanism.



CHAPTER 7

Summary and Conclusion

This thesis provides fundamental insights into charge carrier spin dynamics in colloidal CsPbI3
perovskite nanocrystals (NCs) and the theory they are based upon. Understanding the laws of
spin relaxation in lead halide perovskites (LHPs) is pivotal for their use in the future-oriented
and promising field Spintronics.1,39 Great effort has been put in unravelling spin phenomena
in LHPs by various groups contributing to forefront contemporary research.39,47 Nonetheless,
the gained insights are still at an early stage. In particular, precise experimental investigation
of spin relaxation dynamics of free, as opposed to bound charge carriers, examined in a rather
undisturbed crystal environment, i.e. without the exposure to an external magnetic field, and
subsequent identification of their underlying mechanisms are essential puzzle pieces urgently
required but still missing. This challenge has been tackled in the scope of this thesis resulting
to two major findings: One, I revealed that free charge carrier spin relaxation in CsPbI3 NCs
is governed by carrier - LO phonon scattering via the Elliott-Yafet (EY) mechanism. And two,
I was able to separate electron and hole spin relaxation rates and found that electrons flip
their spin polarization considerably faster than holes.
Precise measurements though Polarization Dependent Differential Transmission Spectroscopy
and careful analyses of these results have been presented in two consecutive parts in this
thesis.

• In the first part, I showed that an ensemble of photoexcited, free charge carriers in
CsPbI3 NCs fully equilibrate their predefined spin polarization at room temperature in
≈ 10 𝑝𝑠, which corresponds to a spin relaxation rate of ≈ 0.4 𝑝𝑠−1. Towards cryogenic



110

temperatures, spin relaxation rates were found to vastly decrease, reaching ≈ 0.03 𝑝𝑠−1

at 𝑇 ≤ 50𝐾. These were fitted with diverse model calculations, revealing a clear and
adequate correlation to LO phonon occupation and the EY functionality, respectively,
while ruling out spin relaxation via the D’yakonov-Perel’ mechanism. Moreover, spin
relaxation was found to be insensitive to photoexcitation flux in the range of 2.3 𝜇𝐽/𝑐𝑚2

to 11.5 𝜇𝐽/𝑐𝑚2. Thus, Coulomb exchange interaction between electron and hole as
described by the Bir-Aronov-Pikus mechanism was found unlikely to be the principal
channel for spin relaxation in CsPbI3 NCs. I found that charge carrier spin polarization
decreases in the process of carrier cooling towards the band edge due to the involved
enhanced LO phonon emission. In addition, I identified that increasing photoexcitation
energy accelerates band edge spin relaxation, which is caused by the presence of an
increased non-equilibrium LO phonon population in the crystal stemming from carrier
cooling and enlarging the carrier - LO phonon scattering cross-section.
In conclusion, all results obtained in the scope of this first part of my thesis concordantly
suggest that free charge carrier spin relaxation in colloidal CsPbI3 NCs is governed by
carrier - LO phonon scattering via the EY mechanism.

• With the motivation to assign individual spin relaxation rates to electrons and holes,
in the second part of this thesis, I studied the physical blend CsPbI3 NCs:PCBM. In
combination, CsPbI3 and PCBM form a type II heterojunction, such that PCBM scavenges
electrons from CsPbI3 NCs, while holes remain in the NCs. It was a novel idea and
the first time to study CsPbI3 NCs:PCBM for the mentioned purpose. Through the
derivation of suitable rate equations the measured spin relaxation and electron transfer
rates were fitted and evaluated. Thus, it was possible to assign individual spin relaxation
rates to electrons and holes. I revealed that spin relaxation of electrons is faster than
that of holes, which is in line with theoretical predictions elaborated in detail in this
thesis.

All in all, these results advance the fundamental understanding of spin relaxation dynamics
in CsPbI3 perovskite NCs and provide a basis for potential strategies to engineer desired spin
properties. For example, modifying phonon energies through ion exchange, pressure, or shape
control of the NCs may allow the prolongation of spin relaxation time.42 This would enable
LHPs to bring spin-based applications to the next level.
I hope that my work presented in this thesis and the corresponding publications are inspiring
to the community and trigger further research in this promising and future-oriented field of
research.
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Appendix

A.1 Appendix A

The following values specific for GaAs and CsPbI3 are needed for the numerical treatment of
Equation 2.82 resulting in Figure 5.11. I have calculated the bottom two values, respectively,
based on material specific constants known from literature.34,82,105,122–124,174

ℏ𝜔𝐿𝑂,𝐺𝑎𝐴𝑠 = 36.13𝑚𝑒𝑉 ,
𝑊0,𝐺𝑎𝐴𝑠 = 7.526 1012𝑠−1,

(1 −
𝑚∗𝐺𝑎𝐴𝑠
𝑚0

)
𝜂𝐺𝑎𝐴𝑠(2 − 𝜂𝐺𝑎𝐴𝑠)
𝐸𝑔,𝐺𝑎𝐴𝑠(3 − 𝜂𝐺𝑎𝐴𝑠)

= 3.037 𝑒𝑉 .

ℏ𝜔𝐿𝑂,𝐶𝑠𝑃𝑏𝐼3 = 26.3 𝑚𝑒𝑉 ,
𝑊0,𝐶𝑠𝑃𝑏𝐼3 = 1.297 1014𝑠−1,

(1 −
𝑚∗𝐶𝑠𝑃𝑏𝐼3

𝑚0
)

𝜂𝐶𝑠𝑃𝑏𝐼3(2 − 𝜂𝐶𝑠𝑃𝑏𝐼3)
𝐸𝑔,𝐶𝑠𝑃𝑏𝐼3(3 − 𝜂𝐶𝑠𝑃𝑏𝐼3)

= 9.680 𝑒𝑉 . (A.1)

A.2 Appendix B

The imaginary part of the dielectric function, a measure of a semiconductor’s optical absorp-
tion, is derived in Subsection 2.2.1 and given by Equation 2.35 and Equation 2.36. For compari-
son to the experiment, those equations can be transformed to 𝑂𝐷(𝜔) by using Equation 3.2,
and Equation 2.19-Equation 2.21. With that, the absorption spectra of ideal semiconductors
may principally be plotted. However, in order to bridge the gap between theoretical prediction
and modelling of experimental data, the formulas have to be slightly adjusted.

To begin with, an empirically found Urbach rule accounts for an exponential decrease in
absorption below the band gap, as seen in many direct-gap semiconductors.38 LHPs are no
exception to this rule as evident in this and other studies on LHPs.33,47,83,113 The so called
Urbach tail is in contrast to an abrupt absorption edge as expected from the JDOS square
root dependence (Equation 2.31), as well as to the non-zero asymptotic point in absorption
(Equation 2.37), which Coulomb enhanced continuum absorption converges in the limit
ℏ𝜔 → 𝐸𝑔. The reason for below bandgap absorption lies in impurity transitions, which smear
out the theoretical predictions made for continuum absorption of an ideal semiconductor.

Urbach’s rule is given by38

𝛼Urbach(𝜔) ∝ 𝑒
(
𝜎(ℏ𝜔−𝐸𝑔)

𝑘𝐵𝑇
)
, (A.2)
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where 𝜎 represents a phenomenological fitting constant.

In order to attach the Urbach tail to the contribution of continuum absorption (Equation 2.31)
two equations, adjacent to one another in energy, can be formulated

𝛼Urbach(ℏ𝜔) = 𝐴𝑢 𝑒
(
𝜎(ℏ𝜔−𝐸𝑔)

𝑘𝐵𝑇
)

for ℏ𝜔 < 𝐸𝑚,

𝛼 continuum(ℏ𝜔) = 𝐴𝑐√ℏ𝜔 − 𝐸𝑔 + offset𝑚 for ℏ𝜔 > 𝐸𝑚. (A.3)

𝐴𝑐, 𝐴𝑢 and offset𝑚 are parameters, whereof the latter two will be fixed in the next steps
through appropriate boundary conditions. The energy at which the two equations merge
continuously and continuously differentiable is denoted as 𝐸𝑚, with 𝐸𝑚 ≥ 𝐸𝑔.

A continuous curve is assured by demanding

𝛼Urbach(ℏ𝜔 = 𝐸𝑚)
!= 𝛼 continuum(ℏ𝜔 = 𝐸𝑚) . (A.4)

With this the parameter offset𝑚 is fixed

offset𝑚 = 𝐴𝑐 (
𝑘𝐵𝑇

2𝜎√𝐸𝑚 − 𝐸𝑔
− √𝐸𝑚 − 𝐸𝑔) . (A.5)

A smooth transition between the two functions is assured by demanding continuous differen-
tiability, i.e.

𝑑𝛼Urbach(ℏ𝜔)
𝑑(ℏ𝜔)

|
ℏ𝜔=𝐸𝑚

!=
𝑑𝛼 continuum(ℏ𝜔)

𝑑(ℏ𝜔)
|
ℏ𝜔=𝐸𝑚

(A.6)

Thus, an expression for 𝐴𝑢 is obtained and reads

𝐴𝑢 = 𝐴𝑐
𝑘𝐵𝑇

2𝜎√𝐸𝑚 − 𝐸𝑔
𝑒
−(

𝜎(𝐸𝑚−𝐸𝑔)
𝑘𝐵𝑇

)
(A.7)

The expression for excitonic bound state absorption (Equation 2.35) is

𝛼(𝜔) = 𝑔𝑜 + 𝐴𝑋
𝑅𝑦3/2𝑋
𝜔2

∞
∑
𝑛=1

1
𝑛3

𝛿 (ℏ𝜔 − 𝐸𝑔 +
𝑅𝑦𝑋
𝑛2

) , (A.8)

where 𝑔𝑜 is a global offset, caused by surface reflection and scattering processes in the semi-
conductor layer during the measurement and 𝐴𝑋 is a proportionality factor, which comprises
of the pre-factor of Equation 2.35, including the conversion of 1/𝑎3𝑋 to 𝑅𝑦3/2𝑋 .
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The 𝛿-function in Equation A.8, representing the exciton bound states, is approximated through

𝛿(𝑥) = lim
Γ→∞

1
2Γ 𝑐𝑜𝑠ℎ2( 𝑥Γ)

, (A.9)

where Γ is a broadening parameter, allowing excitonic states to have a finite width in energy.

By combining the expressions for the Urbach tail, continuum absorption and excitionic
bound state absorption I find the final expression for modelling my experimental absorption
data

𝛼(𝜔) = 𝑔𝑜 + 𝐴𝑋
𝑅𝑦3/2𝑋
𝜔2

∞
∑
𝑛=1

1
𝑛3

1

2Γ 𝑐𝑜𝑠ℎ2(
ℏ𝜔−𝐸𝑔+𝑅𝑦𝑋/𝑛2

Γ )
+ { 𝐴𝑢 𝑒

(
𝜎(ℏ𝜔−𝐸𝑔)

𝑘𝐵𝑇
)

for ℏ𝜔 < 𝐸𝑚
𝐴𝑐√ℏ𝜔 − 𝐸𝑔 + offset𝑚 for ℏ𝜔 > 𝐸𝑚

(A.10)

The parameters offset𝑚 and𝐴𝑢 have been found above through the aid of appropriate boundary
conditions and are given in Equation A.5 and Equation A.7, respectively.
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