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Zusammenfassung (Deutsch): 

Zahlreiche Studien belegen, dass humane Papillomaviren (HPV) Krebs verursachen kön-

nen. Allerdings haben nur wenige Studien die Heterogenität von HPV-infizierten oder 

nicht-infizierten (HPV-pos. und HPV-neg.) Krebserkrankungen untersucht. Zudem wer-

den HPV-Infektionen mit niedrigem Risiko in der Regel mit gutartigen Läsionen in Ver-

bindung gebracht, wobei sich nur wenige Studien mit der Heterogenität von HPV-Infek-

tionen mit niedrigem und hohem Risiko befasst haben. Mit der Entwicklung von Next-

Generation-Sequenzierung ist es möglich, Genome auf Einzelzellebene zu amplifizieren 

und zu sequenzieren, so dass die Heterogenität der Zellen mithilfe der Einzelzellsequen-

zierungstechnologie beobachtet werden kann. Auf dieser Grundlage werden zukünftig 

eine genauere Diagnose und Behandlung von HPV-Patienten möglich sein. 

In dieser Studie wurde versucht, dieses Problem zu lösen, indem die Einzelzellsequen-

zierung mit der bulk-RNA-Sequenzierung kombiniert wurde, wobei die Einzelzellsequen-

zierungsdaten Veränderungen auf zellulärer Ebene lieferten und die bulk-RNA-Sequen-

zierungsdaten große Stichprobengrößen mit passenden klinischen Informationen ent-

hielten. Die beiden wurden kombiniert, um mit Hilfe mehrerer Methoden wie Seurat für 

Zellcluster, CIBERSORT für Variationen der Immuninfiltration, WGCNA für charakteristi-

sche assoziierte Gencluster usw. zu analysieren. 

Zunächst wurde die Hypothese aufgestellt, dass es eine Heterogenität zwischen HPV-

pos. und HPV-neg.-Karzinomen gibt, und zwar von der Transkriptionsebene bis hin zur 

Immuninfiltration. Durch die Untersuchung von Gebärmutterhalskrebs, die mit Hochri-

siko-HPV-Infektionen assoziiert ist, wurde bestätigt, dass CD8+ T-Zellen und B-Zellen her-

unterreguliert wurden, während T-Reg-Zellen, CD4+ T-Zellen und Epithelzellen in der 

HPV-pos.-Zervixkrebsgruppe hochreguliert waren. Die Analyse gutartiger Läsionen, die 

mit einer Niedrigrisiko-HPV-Infektion assoziiert sind, ergab Folgendes: Eine Niedrigri-

siko-HPV-Infektion weist ähnliche genetische Veränderungen auf wie eine Hochrisiko-

HPV-Infektion. Genetische Veränderungen, die durch eine Niedrigrisiko-HPV-Infektion 

verursacht werden, können auch die Prognose von Krebspatienten beeinflussen. Die 

Analyse von AIN3 und ASCC, CIN3 und CESC, präkanzerösen Läsionen und Tumoren, die 

in engem Zusammenhang mit Hochrisiko-HPV-Infektionen stehen, bestätigte auch, dass 

die Auswirkungen von Niedrigrisiko-HPV-Infektionen und Hochrisiko-HPV-Infektionen 

Ähnlichkeiten und Unterschiede aufweisen. Die Veränderungen in den Immunzellen wa-

ren bei den verschiedenen HPV-Infektionen teilweise gleich, während der Rest der Ver-

änderungen in den Immunzellen durch die Krankheit selbst verursacht werden kann. Die 

Induktion von oxidativem Stress ist bei den verschiedenen HPV-Infektionen gleich, was 

zu oxidativem Stress führt, der DNA-Schäden verursacht und das optimale Umfeld für 
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eine maligne Transformation schafft. Schließlich wurde diese Erkenntnis durch in-vitro-

Experimente bestätigt, bei denen sowohl normale als auch Krebszelllinien, die mit HPV 

transfiziert wurden, eine erhöhte Proliferation und eine hohe Expression von mit oxida-

tivem Stress verbundenen Genen aufwiesen, und die hoch exprimierten Gene waren in 

der Lage, die Empfindlichkeit von mit oxidativem Stress assoziierten Inhibitoren zu er-

höhen. 

Die Bedeutung dieser Studie liegt in der Erklärung der Heterogenität zwischen HPV-pos. 

und HPV-neg.-Karzinomen und in der Entdeckung, dass die Gemeinsamkeit zwischen 

Niedrigrisiko-HPV-Infektionen und Hochrisiko-HPV-Infektionen im oxidativen Stress 

liegt. Dies könnte eine wichtige Entdeckung für eine künftige Präzisionsmedizin sein, da-

mit Patienten mit HPV-assoziierten Krebserkrankungen präzise gezielte Behandlungen 

erhalten können. 
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Abstract (English): 

Numerous studies have established the causal relationship between Human Papilloma-

virus (HPV) and cancer development. Nevertheless, there exists a paucity of research 

efforts dedicated to investigating the heterogeneity observed in HPV-associated can-

cers, differentiating between HPV-positive (HPV-pos.) and HPV-negative (HPV-neg.) 

cases. Furthermore, while low-risk HPV infections have traditionally been linked to be-

nign lesions, investigations exploring the intricacies within both low-risk and high-risk 

HPV infections have been limited in scope. The advent of next-generation sequencing 

technologies, particularly single-cell sequencing, has revolutionized the field by facilitat-

ing genome amplification and sequencing at the single-cell level. This cutting-edge tech-

nology offers the unique capability to elucidate cellular heterogeneity, presenting a 

promising avenue for enhancing the precision of diagnostic and therapeutic approaches 

for HPV-infected patients, capitalizing on this newfound understanding of variability 

within the disease. 

This study aimed to address this issue by integrating single-cell sequencing with bulk-

RNA sequencing and DNA methylation sequencing. Single-cell sequencing data illumi-

nated cellular-level alterations, while bulk-RNA sequencing and DNA methylation se-

quencing data encompassed larger sample sizes with accompanying clinical information. 

The analytical toolbox included methods such as Seurat for cell clustering, CIBERSORT 

for assessing immune infiltration variations, and WGCNA for identifying clusters of genes 

with characteristic associations. 

Initially, we hypothesized that heterogeneity exists between HPV-pos. and HPV-neg. 

cancers, spanning from the transcriptional level to immune infiltration. In the context of 

the most well-established high-risk HPV infection-associated cancer, cervical cancer, 

CD8+ T cells and B cells were observed to be down-regulated, whereas T-reg cells, CD4+ T 

cells, and epithelial cells were up-regulated in the HPV-pos. cervical cancer group. Sub-

sequent analysis of benign lesions associated with low-risk HPV infection revealed 

shared genetic alterations with high-risk HPV infection, and these genetic alterations 

impacted the prognosis of cancer patients. Furthermore, the examination of AIN3 and 

ASCC, CIN3 and CESC, precancerous lesions, and tumors firmly linked to high-risk HPV 

infection reaffirmed that while low-risk HPV infection and high-risk HPV infection share 

similarities, differences also exist. Changes in immune cells were partially consistent 

across different HPV infections, while other immune cell alterations may be attributed 

to the disease itself. It was observed that oxidative stress, common to various HPV in-

fections, induced DNA damage, creating an environment conducive to malignant trans-

formation. This finding was further corroborated by in vitro experiments, where both 
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normal and cancer cell lines transfected with HPV exhibited increased proliferation and 

upregulated expression of oxidative stress-related genes. These highly expressed genes 

increased sensitivity to oxidative stress-associated inhibitors. 

The significance of this study lies in elucidating the heterogeneity between HPV-pos. and 

HPV-neg. cancers and identifying oxidative stress as a common factor in low-risk and 

high-risk HPV infections. Additionally, the altered sensitivity to genetic inhibitors result-

ing from HPV-induced genetic changes offers novel prospects for the treatment of HPV-

pos. cancers, potentially paving the way for precision medicine approaches tailored to 

patients with HPV-associated cancers. 
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1. Introduction 

1.1. Human Papillomavirus Infection 

1.1.1. Structure and classification of human papillomavirus 

Human papillomavirus (HPV) is an epitheliotropic, non-enveloped, double-stranded 

DNA virus with a diameter of approximately 52-55 nm [1]. Viral particles consist of a 

single double-stranded DNA molecule comprising approximately 8000 base pairs (bp), 

which is bound to cellular histones and enclosed within a protein capsid composed of 

72 pentameric capsomers. The circular double-stranded DNA genome encodes about 8 

open-reading frames (ORFs), categorized into six early ORFs (E1, E2, E4, E5, E6, and E7), 

two late ORFs (L1 and L2), and a non-coding long control region (LCR) [2]. 

Notably, 80% of the papillomavirus capsid consists of the L1 protein, which harbors a 

conserved ORF. A new papillomavirus variant is defined if the complete genome, when 

cloned, deviates by less than 2% in DNA sequence from the closest known type. Sub-

types are distinguished by homology differences ranging from 2% to 10%, while a novel 

isolate is recognized when differences exceed 10% [3]. This classification system has led 

to the identification of over 200 genotypes, with numerous variants coexisting within 

the same genotype [4]. High-risk HPV and low-risk HPV oncogenic types are categorized 

based on their oncogenic potential. High-risk HPV types, such as HPV 16, 18, 31, 33, 35, 

39, 45, 51, 52, 56, 58, 59, 68, 73, and 82, are associated with anogenital cancers, whereas 

low-risk types, including 6, 11, 40, 41, 42, 43, 44, 54, 61, 70, 72, 81, and 89, typically 

cause benign warts [5, 6]. 

E6 and E7 are the two primary oncoproteins of high-risk HPV and target several negative 

regulators of the cell cycle, primarily p105Rb and p53, respectively. Throughout the viral 

life cycle, E6 and E7 play essential roles in maintaining the stability of viral episomes and 

inducing differentiated cells to re-enter the S phase. This re-entry is crucial for sustaining 

the differentiated host keratinocyte in a state conducive to the amplification of viral ge-

nome replication and subsequent expression of late genes [3, 7]. E6 binds to host E6-

associated proteins, recruiting a protein ligase with ubiquitin ligase activity that acts on 

ubiquitinated p53, resulting in the inhibition of p53's transcriptional activity and the sup-

pression of p53-induced apoptosis. Additionally, E6 can impact transcriptional pathways, 

disrupt cell adhesion and structure, inhibit apoptosis, counteract DNA damage re-

sponses, induce genome instability, and immortalize cells by binding to numerous other 

cellular proteins [3, 8]. On the other hand, E7 competes with the tumor-suppressor pro-

tein p105Rb, releasing p105Rb's control over E2F and propelling the cell cycle forward. 
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Moreover, E7's ability to destabilize centrosomes allows it to interfere with transcrip-

tional and signal transduction pathways, as well as DNA repair processes [3]. 

1.1.2. Epidemiology and pathogenicity of HPV infection 

Human papillomavirus (HPV) infection stands as the most prevalent sexually transmitted 

infection, primarily transmitted through skin-to-skin contact. A study in 2014 under-

scored those individuals with at least one sexual partner have an average lifetime risk of 

HPV infection exceeding 80% [9]. Vaccination serves as a preventive measure against 

HPV infection, offering benefits not only to the vaccinated individual but also to their 

future sexual partners by curbing HPV transmission [10]. However, the COVID-19 pan-

demic has led to a loss of over 25% in HPV vaccine coverage achieved in 20[11]. 

The majority of HPV infections are asymptomatic, and approximately 90% of them re-

solve spontaneously within two years. Nevertheless, HPV infections can manifest as 

warts or precancerous lesions, elevating the risk of cancer, notably in the vulva, vagina, 

penis, and occasionally the anus [12]. 

According to the World Health Organization (WHO) report, in 2020, there were 604,127 

new cases of cervical cancer (CESC) and 341,831 related deaths. An alarming 70% of 

CESC patients and CESC-related fatalities were found to be positive for HPV16 and 

HPV18 [12]. While most HPV infections of the cervix are swiftly cleared by the immune 

system without causing carcinogenesis in normal cervical cells, in certain cases, HPV dis-

rupts host gene expression by deregulating DNA methylation, histone modification, and 

transcription factors to evade immune clearance [13]. Proteins E6 and E7, by binding to 

p53 and pRB, compel host cells to accumulate damaged DNA that cannot be repaired. 

Consequently, an accumulation of mutations occurs, leading to the transformation of 

cells into fully developed cancerous cells [14]. 

In addition to CESC, high-risk HPV strains are implicated in head and neck squamous cell 

carcinoma (HNSCC), anal squamous cell carcinoma (ASCC), and other genitourinary can-

cers [15, 16]. As per the American Cancer Society (ACS) report, HNSCC is expected to 

affect around 1.2% of both men and women at some point in their lives, with an annual 

incidence of 11.5 new cases per 100,000 individuals. HNSCC is projected to account for 

2.8% of all new cancer cases in 2022 [17]. Over 90% of ASCC cases are attributed to HPV 

infection, with HPV16 being the predominant type. Although ASCC comprises only about 

4% of lower gastrointestinal cancers [18], the incidence of anal cancer is on the rise, 

particularly in developed countries, where it is increasing by 1-3% annually [19]. 
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1.2. DNA methylation 

Pathophysiological investigations into HPV virus-induced carcinogenesis have revealed 

a pivotal process: the integration of HPV genomes into the host cell chromosomes dis-

rupts the genomic stability of vulnerable host cells, subsequently triggering a second-

ary epigenetic reprogramming [20]. This phenomenon is characterized by the overex-

pression of E6 and E7 genes, which, in turn, stimulate the expression and activity of 

DNA methyltransferase I (DNMTI). This stimulation results in consequential hyper-

methylation within the host cells [21, 22]. Building on these findings, it has been hy-

pothesized that in all HPV-related cancers, the maintenance of stemness-like differen-

tiation status in epithelial cells is contingent upon the ongoing hypermethylation in-

duced by E6 and E7, a process that plays a pivotal role in cancer progression [20]. 

Advancements in technology have significantly enhanced our capacity to explore DNA 

methylation on a global scale, thanks to profiling methods and computational ap-

proaches for processing extensive datasets. These capabilities transcend the limita-

tions of traditional experiment-based studies, enabling comprehensive examinations 

of DNA methylation across various disease progressions [23]. However, most existing 

studies focused solely on DNA methylation anomalies in HPV-related cancers, often 

overlooking downstream changes in the transcriptome. This limitation somewhat di-

minishes the significance of their findings. To gain a profound understanding of the bi-

ological implications of aberrantly methylated genes, it is essential to integrate tran-

scriptomic data analysis. Transcriptomic changes are not solely influenced by DNA 

methylation but are also impacted by other epigenetic modifications, including histone 

acetylation and microRNA alterations. Only through such integrated analyses can we 

unravel the intricate biological underpinnings of these epigenetic modifications. 

1.3. Genomic testing and precision medicines 

Precision oncology represents an evolving field with the goal of delivering personalized 

cancer treatments. It encompasses a broad spectrum of patient-specific data, including 

clinical information, lifestyle factors, genetic markers, and additional biomarker data. A 

notable success story in precision oncology revolves around the determination of the 

human epidermal growth factor receptor (HER)-2 status in breast cancer patients. Ini-

tially identified as a prognostic marker, HER-2 positivity was associated with a more ag-

gressive disease course. Subsequent clinical trials demonstrated the efficacy of the mon-

oclonal antibody trastuzumab against HER-2, which is now used to treat a specific sub-

group of HER-2-positive patients [24]. The core principle of precision oncology lies in the 

characterization of inter- and intra-tumoral heterogeneity, recognized as a key factor in 
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therapeutic success and preventing disease relapse. However, before the significant ad-

vancements in next-generation sequencing (NGS) technology and the proliferation of 

bioinformatic tools, these endeavors were constrained by the limitations of traditional 

research methods. 

Over the past decade, NGS techniques have been extensively employed to investigate 

gene expression patterns at the population level. Single-cell RNA sequencing (scRNA-

seq) is a specialized methodology utilizing next-generation sequencing to unveil the 

global gene expression profile of individual cells. This breakthrough enables the explo-

ration of previously undiscovered heterogeneity within cell populations. Computational 

analyses leveraging NGS and scRNA-seq data, coupled with functional enrichment anal-

ysis, enhance our understanding of various facets of tumor heterogeneity. This approach 

facilitates the identification of key genes driving tumor progression. With this data, prog-

nostic models can be developed, combining multiple predictors to estimate the likeli-

hood of survival or disease recurrence [12, 24]. Furthermore, the application of drug 

prioritization algorithms allows for the precise matching of potential anti-tumor medi-

cations to the genomic alterations and transcriptome characteristics of diverse cancer 

types. 

In this study, we conducted comprehensive bioinformatic analyses by integrating DNA 

methylation and RNA sequencing data, encompassing both single-cell RNA-seq and bulk 

RNA-seq data, in the context of HPV-related cancers. Our objective was to identify piv-

otal genes implicated in the progression of HPV-related cancers. Subsequently, we per-

formed survival analyses utilizing the TCGA database to validate the clinical significance 

of these identified genes. Drugs exhibiting a positive sensitivity correlation with these 

genes were further selected, and in vitro experiments were conducted to validate these 

findings. Through this research, we aspire to provide fresh insights into the disease 

mechanisms underlying HPV-related cancers. Our work lays the groundwork for the de-

velopment of precise molecular targeted therapies and offers valuable insights for clin-

ical decision-making. 
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2. Methods 

2.1. Data collection 

Single-cell RNA-seq data were acquired from the Gene Expression Omnibus (GEO) data-

base (http://www.ncbi.nlm.nih.gov/geo/), which included the following samples: 

2 HPV-positive cervical squamous cell carcinoma (CESC) samples (GSM5236544, 

GSM5236545) 

2 HPV-negative CESC samples (GSM5236546, GSM5236547) 

8 HPV-negative skin squamous cell carcinoma (SCC) samples (GSM4138147, 

GSM4138149, GSM4138151, GSM4138153, GSM4138155, GSM4138157, GSM4138159, 

GSM4138161) 

18 HPV-positive SCC samples (GSE4138111, GSM4138113, GSM4138115, GSM4138117, 

GSM4138119, GSM4138121, GSM4138123, GSM4138125, GSM4138127, GSM4138129, 

GSM4138131, GSM4138133, GSM4138135, GSM4138137, GSM4138139, GSM4138141, 

GSM4138143, GSM4138145) 

3 normal skin samples (GSM5364334, GSM5364335, GSM5364336) 

Transcriptome profiling data and corresponding clinical data were collected from the 

GEO database, which included: 

18 HPV-positive CESC samples (GSM155645, GSM155646, GSM155647, GSM155648, 

GSM155649, GSM155650, GSM155651, GSM155652, GSM155654, GSM155656, 

GSM155657, GSM155658, GSM155659, GSM155660, GSM155661, GSM155662, 

GSM155663, GSM155664) 

2 HPV-negative CESC samples (GSM155653, GSM155655) 

121 anal squamous cell carcinoma (ASCC) DNA methylation samples 

13 adjacent grade 3 anal intraepithelial neoplasia (AIN3) DNA methylation samples 

9 adjacent normal mucosae DNA methylation samples (GSE186858) 

9 CESC DNA methylation samples 

9 cervical intraepithelial neoplasia grade 3 (CIN3) DNA methylation samples 

10 adjacent normal cervical DNA methylation samples 

12 wart samples and paired normal skin samples (GSE136347) 
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Treeman syndrome sample and 3 paired control samples (GSM4136969, GSM4136984, 

GSM4136998, GSM4137012) 

5 condyloma acuminata samples and 3 normal skin samples (GSE140662) 

Additionally, TCGA-CESC samples and TCGA-skin cutaneous melanoma (SKCM) samples 

were obtained from the Cancer Genome Atlas (TCGA) project, with samples lacking clin-

ical information or having histological types other than cervical squamous cell carcinoma 

being excluded. A total of 237 CESC samples were selected for analysis. Data related to 

ferroptosis, oxidative stress, and necroptosis were collected from the FerrDb database 

[25] and GeneCards [26]. Skin cancer samples were downloaded from the International 

Cancer Genome Consortium (ICGC) [27]. 

2.2. Single cell RNA-seq Data processing 

2.2.1. Single cell RNA-seq data pre-processing 

To assess the proportions of mitochondrial and ribosomal genes expressed in each cell, 

we utilized the PercentageFeatureSet function within the Seurat package. An upper 

threshold of 5% for the percentage of mitochondrial count was established, leading to 

the exclusion of cells exceeding this threshold [28]. 

After the cells were filtered, the data were normalized using the LogNormalize method 

in the Global Scaling Normalization package. This process consists of dividing the feature 

count of each cell by the total count of that cell, multiplying by 10^4, and then perform-

ing a natural logarithmic transformation [29]. 

Subsequently, the individual samples were merged into a unified dataset through the 

merge function. To facilitate the integration of multiple datasets, we employed the Find-

IntegrationAnchors and IntegrateData functions [28]. 

 

2.2.2.  Highly Variable Features Identification 

Highly variable features, denoting characteristics with pronounced expression differ-

ences between cells, were computed from the scRNA-seq dataset. These highly variable 

genes serve to emphasize biological signals, playing a pivotal role in downstream single-

cell dataset analyses. To identify these highly variable features, we applied a variance 

stabilizing transformation (vst) model [30]. 
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2.2.3. Principal component analysis 

In the downstream analysis of high-dimensional data, linear dimensionality reduction is 

a pivotal step. It involves taking high-dimensional data as input and projecting it into an 

optimal low-dimensional space. Principal component analysis (PCA) is a commonly used 

technique that captures the covariance of features. In PCA, data are selected and ex-

tracted based on increasing variance, and the label "Principal Component" (PC) is as-

signed to those features exhibiting the highest variation. To identify the most informa-

tive components, we selected the top 20 PCs using visualization techniques such as the 

JackStraw plot (with 100 replicates) and the Elbow plot. 

 

2.2.4.  Cell-clustering 

During this phase, a community detection algorithm was employed to cluster the cells. 

We utilized the R tool FindCluster() with the parameter "resolution = 1" to control the 

number of clusters generated. It's important to note that one of the significant limita-

tions of PCA is its inability to capture non-linear variance. To address this limitation, we 

applied non-linear dimensionality reduction techniques, namely Uniform Manifold Ap-

proximation and Projection (UMAP) and t-distributed stochastic neighbor embedding (t-

SNE). These techniques were used to visualize the clustering of single cells in a lower-

dimensional space, providing a more comprehensive representation. 

 

2.2.5.  Biomarkers of clusters 

We identified cluster-specific marker genes by utilizing the FindMarkers() tool within the 

Seurat package. This involved employing the default non-parametric Wilcoxon rank sum 

test with Bonferroni correction. To annotate the cell groups based on the differentially 

expressed genes (DEGs) between clusters, we referred to a well-established cellular 

marker reference obtained from the R package Celldex [31]. Cell annotation was facili-

tated using the R package SingleR [31]. 

 

2.2.6.  Single-cell trajectories 

We employed the Monocle3 R package to analyze single-cell trajectories with default 

settings. This approach assumes that a one-dimensional 'time' parameter can effectively 

describe high-dimensional expression values, allowing us to discover transitions in cell 
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states [32]. The clusters obtained earlier were loaded into the analysis. The "differen-

tialGeneTest" function was used to identify genes that exhibited variations along with 

the pseudotime, and these genes were visualized using the plot pseudotime heatmap 

function. Subsequently, they were categorized into subgroups based on their expression 

patterns. 

To further investigate cell branching, we conducted Branch Expression Analysis Model-

ing (BEAM) analysis to identify genes that played a role in dividing cells into branches. 

The genes identified through BEAM analysis were grouped and presented using the plot 

genes branched heatmap() function. 

 

2.3. Bulk RNA-seq Data processing 

2.3.1. Bulk RNA-seq Data pre-processing 

Gene expression quantification is essential for a comprehensive analysis of differential 

gene expression across multiple conditions. To achieve this, we utilized transcripts per 

million (TPM) for bulk RNA-seq quantification. GFF3 annotation files were obtained from 

GENCODE (https://www.gencodegenes.org/human/). With the gene length data from 

GFF3 and the count data from bulk RNA-seq, TPM values were calculated for each gene 

using the formula TPMi = (Ni / Li) * 1,000,000 / sum(N0 / L0 + … + Nm / Lm), where Ni 

represents the read counts mapped to gene I, Li refers to the sum of exon lengths for 

gene I, and m represents the total number of genes. 

To address missing entries in the bulk RNA-seq matrix, we performed matrix completion. 

Rows with more than X% of unavailable (NA) values (genes) and columns with more than 

Y% of NA values (samples) were excluded. Subsequently, we used the impute.knn func-

tion from the R package impute [33] to fill in missing values by considering K neighbors. 

Furthermore, various data normalization techniques were applied, including quartile 

normalization, median normalization, log2 transformation, row z-score transformation, 

column z-score transformation, as well as row and column z-score transformations. 

These steps ensured a comprehensive and standardized analysis of gene expression 

across conditions. 
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2.3.2. Immune Estimate 

The estimation of immune scores was conducted using the ESTIMATE (Estimation of 

Stromal and Immune cells in Malignant Tumors using Expression data) method [34]. This 

approach specifically targets the stromal and immune cells that constitute the major 

non-tumor components within a tumor sample. It identifies distinct features associated 

with stromal and immune cell infiltration within the tumor tissue. By employing single-

sample gene set enrichment analysis (ssGSEA), the ESTIMATE package calculated stro-

mal and immune scores based on markers related to stromal tissue and immune cell 

infiltration. The combined score, referred to as the "ESTIMATE score," was derived from 

these two scores. This methodology enabled the determination of the proportions of 

stromal and immune cells in tumor samples using gene expression profiles. 

For the analysis of immune cell proportions within bulk RNA-seq samples, we employed 

the Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBER-

SORT) method [35]. We utilized the LM22 signature matrix, available for download at 

https://cibersortx.stanford.edu/download.php. LM22 comprises 547 genes that effec-

tively distinguish 22 distinct mature human hematopoietic populations isolated from 

peripheral blood or in vitro culture conditions. These populations encompass various T 

cell types, including naive and memory B cells, plasma cells, NK cells, as well as subsets 

of myeloid cells. Through the use of the support vector regression tool, we accurately 

estimated the immune composition of tumor samples [36]. 

 

2.3.3. DEGs analysis 

To perform the analysis of Differentially Expressed Genes (DEGs), we utilized the 

"limma" R package [37]. In the case of CESC samples, considering that the difference 

between HPV-positive and HPV-negative samples was not significant, we set the thresh-

old for DEGs as |log2fold-change (FC)| > 1.2 and p < 0.05. Similarly, for the DEGs be-

tween normal skin, AIN3, and ASCC samples, we applied a cutoff value of |log2FC| > 1.5 

and p < 0.05. When comparing other disease sample groups with the healthy group, we 

employed a threshold of |log2FC| > 2 and p < 0.05. 

These criteria ensured the identification of significant gene expression differences in the 

respective sample comparisons. 
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2.3.4.  Weighted correlation network analysis (WGCNA) 

The WGCNA package was employed for weighted correlation network analysis [38]. 

WGCNA is a systems biology approach that constructs a weighted gene co-expression 

network to describe patterns of gene associations across samples. This approach helps 

identify highly synergistic gene sets, potential biomarker genes, or therapeutic targets 

based on genomic endogeneity and associations with phenotypes. Unlike focusing solely 

on differentially expressed genes, WGCNA leverages information from thousands, or 

even nearly 10,000 of the most variable genes, or all genes, to identify sets of genes of 

interest and perform significant association analyses with phenotypes. WGCNA trans-

forms numerous gene-to-phenotype associations into a smaller number of gene-set-to-

phenotype associations, mitigating the need for multiple hypothesis testing corrections. 

In this study, WGCNA was used to link gene modules with immune features. The system 

selected genes for further investigation based on the top 25% of variance. Pearson's 

correlation matrices were computed using the samples. 

In the unsigned network, genes represent nodes, and the interactions between nodes 

represent edges. The edge properties were calculated as abs(cor(gene_x, 

gene_y))^power, where the appropriate power value was determined using the 

pickSoftThreshold function in the WGCNA package. This calculation strengthens strong 

correlations while weakening negative correlations, aligning the correlation values with 

the characteristics of a scale-free network, and making them more biologically mean-

ingful. Additionally, a topological overlap measure (TOM) matrix was created using the 

weighted adjacency matrix to quantify the quality of connectedness in the network. A 

clustering dendrogram of the TOM matrix was generated using average linkage hierar-

chical clustering. The threshold for merging comparable modules was set to 0.25, and 

the minimum gene module size was set to 30 to ensure appropriate modules. Co-ex-

pression modules consist of genes with a high degree of topological overlap, often indi-

cating stronger co-expression within the same module. 

Two different techniques were used to identify key modules related to immune features. 

The module eigengene (ME), representing the first principal component of a module, 

explains the module's expression pattern in each sample. Module membership (MM) 

measures the reliability of a gene belonging to a module, expressed as the correlation 

coefficient between genes and module eigengenes. Finally, modules were assessed for 

their correlation with immune scores and proportions to identify crucial immune mod-

ules. 
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2.3.5. Molecular Risk Model Construction 

The Least Absolute Shrinkage and Selection Operator (Lasso) is a linear regression 

method that incorporates L1-regularization, which encourages some of the learned fea-

tures to have a weight of 0, resulting in sparsity and feature selection. The fundamental 

concept behind Lasso is to minimize the sum of squared residuals while imposing a con-

straint that the sum of the absolute values of the regression coefficients is less than a 

constant. This constraint enables certain regression coefficients to be exactly 0, leading 

to a more interpretable model [39]. 

Given that the number of genes is much larger than the number of observations (i.e., 

patients), Lasso is used to address the issue of covariance. Cox risk regression was per-

formed using the `coxph()` function from the survival package. A p-value of 0.05 was 

considered significant for association with survival or relapse [40]. 

Lasso employs a penalty function to compress certain coefficients and set some of them 

to zero, resulting in a refined model with the advantage of subset shrinkage. To effec-

tively handle multicollinearity in regression analysis and simultaneously select variables 

while estimating parameters, a biased estimation for multicollinear data processing is 

employed. The analysis was conducted using the glmnet package, utilizing the 10-fold 

cross-validation method and Lasso Cox regression to construct the model [39]. 

 

2.3.6. Functional Enrichment Analysis 

Gene Ontology (GO) [41], Kyoto Encyclopedia of Genes and Genomes (KEGG) [42], and 

Metascape database [43] enrichment analyses were conducted to identify the biological 

processes and pathways that are most closely associated with hub genes, using a signif-

icance cutoff of p < 0.05. These analyses help reveal the functional context and pathways 

in which the identified hub genes are involved, providing insights into their roles in the 

biological system. 

 

2.3.7. Protein-protein interaction (PPI) 

The investigation of the biochemistry of individual proteins and the creation of a com-

prehensive picture of protein interactions on a proteomic scale rely on the ability to 

identify protein-protein interactions. In this study, the STRING database was used to 

identify co-expressed genes and to construct protein interaction networks [44]. Addi-

tionally, Cytoscape's molecular complex detection (MCODE) algorithm was employed to 
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identify key proteins within these large protein interaction networks [45]. Parameters 

such as degree cutoff, node score cutoff, K-core, and maximum depth were set to iden-

tify strongly interacting nodes in the clusters of interest. This approach helps identify 

important proteins and their interactions in complex biological networks. 

 

2.3.8. Cancer therapeutics response analysis 

The correlation between chemical sensitivity and gene expression levels was assessed 

using data from the Cancer Therapeutics Response Portal (CTRP) V2 [46]. The CTRP data 

matrix contains normalized AUC (Area Under the Curve) values for each chemical in each 

cell line. To ensure robust statistical analysis, compounds that were profiled in at least 

2/3 of the entire collection of solid cancer cell lines and cell lines that were profiled with 

at least 50% of the compounds were included in the lineage/histotype-specific studies. 

Primary cancer types with more than 5 cell lines profiled for chemical sensitivity were 

considered. 

To investigate the relationship between chemical sensitivity and gene expression, 

Mann-Whitney-Wilcoxon tests were conducted to compare cancer cell lines from each 

type of cancer with other solid cancer cell line collections. To account for multiple-test 

correction, the Benjamini-Hochberg correction approach was applied to adjust the sta-

tistical significances [47]. Furthermore, compound sensitivity-gene expression correla-

tion analysis was performed, and outliers were identified using an interquartile multi-

plier of 1.5 with the web tools available in CTRP. This analysis aims to uncover associa-

tions between gene expression and the sensitivity of cancer cell lines to specific com-

pounds. 

 

2.3.9. HPV-Associated Pan Cancer Analysis 

The Gene Expression Profiling Interactive Analysis 2021 (GEPIA2021) is a web-based pro-

gram that allows for the examination of the expression of hub genes and overall survival 

in cancers associated with HPV [48]. It addresses the limitations of bulk RNA-seq data, 

which lacks the resolution to provide information at the level of individual cell types and 

their proportions. GEPIA2021 integrates bulk expression data from The Cancer Genome 

Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Additionally, it employs 

deconvolution methods such as CIBERSORT, EPIC, and quanTIseq to estimate the abso-

lute percentage of different cell types in each sample. 
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2.4. DNA Methylation Data processing 

2.4.1. Methylation Profiling and Data Analysis 

The analysis of methylation raw data was conducted using the Chip Analysis Methylation 

Pipeline (champ) R package [49]. Champ is a comprehensive methylation analysis pack-

age that includes various features for quality control and the identification of differen-

tially methylated probes (DMPs), differentially methylated regions (DMRs), and differ-

entially methylated blocks (DMBs). 

Here's an overview of the specific steps taken in the methylation data analysis using 

champ: 

1. Quality Control: Probes that met certain criteria were filtered out. This included 

probes with a detection p-value greater than 0.01, probes with fewer than 3 beads in at 

least 5% of samples per probe, and probes located on the sex chromosome. 

2. Normalization: The differentially methylated probes were normalized using the 

champ.norm() function to account for potential biases in the methylation data. 

3. Identification of Differentially Methylated Probes (DMPs): The champ.DMP() function 

was used to calculate the methylation differences (β value) of probes. DMPs were se-

lected based on criteria such as a |logFC| (log-fold change) greater than 0.2 and a p-

value less than 0.05. 

 

2.4.2. Function annotation 

In the analysis of the differentially methylated probes (DMPs) identified in the previous 

step, several database resources were used for functional annotation and pathway anal-

ysis. Here's an overview of the methods used: 

 

1. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis: The DMPs were 

annotated with KEGG pathway information. KEGG is a valuable resource for understand-

ing the biological pathways and functions associated with genes and their epigenetic 

regulation. This analysis helped identify which KEGG pathways were enriched or af-

fected by the DMPs. 
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2. FerrDb and GeneCard Database: Additional annotations were obtained from the Fer-

rDb and GeneCard databases. FerrDb is a resource specifically focused on ferritin-re-

lated genes and their regulation. GeneCard provides comprehensive information on var-

ious genes, including their functions, interactions, and relevance to diseases. Data from 

GeneCard with a relevance score above the median value were selected for mapping. 

 

2.4.3. Immune analysis 

In this study, we conducted a comprehensive analysis of immune cell proportions and 

their relationship with gene expression [35]. We began by identifying genes associated 

with immune cell proportions, which were obtained from Differentially Methylated 

Probes (DMP), using the Cell type Identification by Estimating Relative Subsets Of known 

RNA Transcripts (CIBERSORT) method. Subsequently, we employed the Seurat R package 

for identification of genes related to the different immune infiltration patterns identified 

by CIBERSORT [28]. An upper bound threshold for the percentage of mitochondrial 

count (5%) was defined, and the cells above the upper bound were filtered out [28]. 

Data normalization was carried out after cell filtering, utilizing the global-scaling normal-

ization package LogNormalize, which divides the specific feature counts of each cell by 

the overall counts of that cell, divides it by 10^4, and then performs a natural log-trans-

formation [29]. The samples were then merged into a single data set using the merge 

function. The FindIntegrationAnchors function was used to find the anchors, and the 

IntegrateData function was used to integrate multiple data sets [30]. Community detec-

tion algorithm was applied for clustering the cells, R tool FindCluster() and the parame-

ter "resolution = 1" for controlling the number of clusters. Non-linear dimensional re-

duction technique Uniform Manifold Approximation and Projection (UMAP) and t-dis-

tributed stochastic neighbor embedding (t-SNE) were performed to visualize single cell 

clustering in low-dimension. The cluster-specific marker genes were obtained using the 

Findmarkers () tool in the Seurat package with default non-parametric Wilcoxon rank 

sum test as well as Bon-ferroni correction. The well-known cellular marker reference 

was obtained from R package Celldex, cells were automatically annotated with R pack-

age SingleR [31]. Plot1cell R package [50] was used to visualize and quantify the scRNA 

data.  

2.5. Molecular docking 

Autodock Vina, a computational tool for protein-ligand docking analysis, was utilized to 

assess the binding affinities and interaction mechanisms between drug candidates and 
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their respective targets [51, 52]. The molecular structure of afatinib (PubChem 

10184653) was obtained from PubChem Compound (https://pub-

chem.ncbi.nlm.nih.gov/) [53]. The 3D coordinates of CDC42 (PDB ID: 1AJE; Resolution: 

Not Applicable) [54] and EGFR (PDB ID: 6VH4; Resolution: 2.80 Å) [55] were sourced 

from the Protein Data Bank (PDB) (http://www.rcsb.org/). To prepare the protein and 

ligand data for docking analysis, all water molecules were removed, and polar hydrogen 

atoms were added, followed by conversion to the PDBQT format. The docking grid box 

was positioned at the center of the proteins to enable unrestricted molecular mobility 

and encompass the domains of each protein. 

In addition, rigid protein-protein docking using ZDOCK was carried out to explore the 

interactions between CDC42 and EGFR [56]. Protein structural domains in PDB format 

were obtained from the same database. The 3D coordinates of the CDC42-GTPase-ef-

fector interface (PDB ID: 5UPL; Resolution: 3.00 Å) [57] and the EGFR-afatinib complex 

(PDB ID: 4G5J; Resolution: 2.80 Å) [58] were retrieved from the PDB. The ZDOCK module 

was employed to identify potential docking sites and calculate ZDOCK scores, shedding 

light on the binding interactions between these two proteins. 

2.6. In vitro experiment  

2.6.1. Cell lines and culture conditions 

The A431 epidermoid carcinoma cell line and HaCaT keratinocytes cell line were pro-

cured from the American Type Culture Collection (ATCC, Wesel, Germany). These cell 

lines were maintained in DMEM (Sigma-Aldrich, Schnelldorf, Germany) media supple-

mented with 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich, Schnelldorf, Germany) and 

1% penicillin-streptomycin (Sigma-Aldrich, Schnelldorf, Germany) at a temperature of 

37 °C in a humidified incubator with 5% CO2. Subculturing was performed at regular 

intervals with a split ratio of 1:4, typically twice a week. Trypsin-EDTA solution (Sigma-

Aldrich, Schnelldorf, Germany) was employed for the subcultivation process. 

 

2.6.2. Cell transfection 

The HPV E6/E7 expressing plasmid (p1321 HPV16 E6/E7, Addgene #8641) was gener-

ously provided by Prof. Peter Howley [59]. LB agar was prepared by mixing 5.0 g yeast 

extract, 10.0 g peptone from casein, 10.0 g sodium chloride, and 12.0 g agar-agar in 1 

liter of distilled water, followed by autoclaving at 121°C for 15 minutes. Subsequently, 

100 µg/ml Ampicillin was added to the molten agar mixture. Bacterial stab containing 
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the plasmid was streaked onto an LB agar plate and grown overnight at 37°C in a humid-

ified incubator with 5% CO2. Single colonies were isolated, and Ampicillin-resistant col-

onies were selected on LB agar and cultured overnight in LB/ampicillin medium at 37°C 

in a humidified incubator with 5% CO2. 

Plasmid DNA was extracted from the bacterial culture using ethanol precipitation. To 

the bacterial culture transformed with plasmid, 2.5 volumes of 99% ethanol and 10% of 

a volume of 3M sodium acetate (pH 4.8) were added. The mixture was inverted to mix 

and placed at -80°C for 30 minutes. After centrifugation at 12,000 rpm for 30 minutes at 

4°C, the supernatant was discarded, and the pellet was air-dried for 20 minutes. The 

pellet was then washed with 500 µl of cold 70% ethanol and centrifuged at 12,000 rpm 

for 5 minutes at room temperature. After removing the washing supernatant, the tube 

was air-dried for 20 minutes, and the dry DNA was resuspended in TE solution (10 mM 

Tris-HCl pH 8.0 and 0.1 mM EDTA). 

Transfection of the plasmid DNA was carried out using X-tremeGENE 9 DNA transfection 

reagent (Roche, Mannheim, Germany). The plasmid DNA solution was diluted to a con-

centration of 1.0 μg/μl, and A431/HaCaT cells with a low passage number were selected. 

Cells were seeded in the logarithmic growth phase, and the cell concentration was ac-

curately quantified using a Countess 3 automated cell counter (Thermo Fisher Scientific, 

Planegg, Germany). Transfections were performed 24 hours after cell seeding. The X-

tremeGENE 9 DNA transfection reagent was diluted with serum-free DMEM to a con-

centration of 3 μl reagent/100 μl DMEM (3:1 ratio). Subsequently, 1 μg of DNA was 

mixed with 100 μl of the diluted X-tremeGENE 9 DNA transfection reagent, and the DNA 

transfection reagent complex was incubated for 20 minutes at room temperature. For 

96-well plates, 5 μl of the DNA transfection reagent complex was added to each well, 

and for 10-cm dishes, 500 μl of the complex was used. The cells were incubated for 24 

hours before further analysis. 

 

2.6.3. Cell viability assay 

Following the 24-hour transfection, HaCaT and A431 cells were subjected to treatment 

with various concentrations (0μM, 0.1μM, 1μM, 10μM) of afatinib (SML3109, Sigma-

Aldrich, Schnelldorf, Germany). Afatinib was identified as a compound exhibiting signif-

icant correlation with genes playing crucial roles in the carcinogenesis of keratinocytes 

subsequent to HPV infection, as detailed in section 2.3.8. Untransfected groups were 

seeded and treated under identical conditions concurrently. In the case of the trans-

fected groups mixed with the DNA transfection reagent complex, the untransfected 
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groups received the transfection reagent without DNA. Subsequently, cell viability was 

assessed using the Water-Soluble Tetrazolium 1 (WST-1) assay (Sigma-Aldrich, Schnell-

dorf, Germany). Specifically, 10 µl of the WST-1 reagent was introduced into each well 

within 96-well plates. Following a 4-hour incubation at 37°C with 5% CO2, the absorb-

ance of the samples was measured using a plate reader (Spectra MR, Dynex Technolo-

gies, Chantilly, USA) at a wavelength of 440 nm. 

2.6.4. Protein extraction 

HaCaT and A431 cells were seeded in 10 cm dishes and allowed to incubate overnight, 

and the grouping for subsequent experiments mirrored that of the cell viability assay. 

After exposing the cells to varying concentrations (0μM, 0.1μM, 1μM, 10μM) of afatinib 

for 24 hours, protein extraction was carried out using RIPA lysis and extraction buffer 

(89901, Thermo Fisher Scientific, Planegg, Germany) along with protease inhibitors set 

(Roche, Mannheim, Germany). 

During protein extraction, the cells were maintained on ice, with culture medium being 

removed and the cells washed twice with cold PBS. Subsequently, 1 ml of cold RIPA lysis 

buffer was added for every 5*10^6 cells, and the plate was swirled occasionally for 5 

minutes. The lysate was then collected and transferred to a microcentrifuge tube, fol-

lowed by centrifugation at 14,000 × g for 15 minutes to remove cell debris. The super-

natant was transferred to a new tube for analysis via the Bradford protein assay. The 

total protein concentration was determined using the Bradford assay (Bio-Rad Labora-

tories GmbH, Feldkirchen, Germany), which relies on Coomassie Brilliant Blue G-250 dye. 

This dye undergoes a color change from red to blue upon binding to proteins, which can 

be quantified spectroscopically. A dye reagent was prepared by diluting 1 part dye rea-

gent concentrate with 4 parts deionized water, and it was filtered to remove any parti-

cles. A protein standard was prepared with five dilutions ranging from 0.25 to 1.4 mg/ml. 

Subsequently, 50 μl of each standard and test sample solution was pipetted into a 96-

well plate, and 200 μl of the diluted Bradford reagent was added to each well. After a 5-

minute incubation at room temperature, the absorbance of each well was measured 

using a plate reader (Spectra MR, Dynex Technologies, Chantilly, USA) at a wavelength 

of 595 nm. The obtained absorbance of the test solution was subjected to regression 

calculations and multiplied by the dilution factor to determine the protein quantity. 

2.6.5. Western Blot 

For SDS-PAGE gel preparation, a 10% separating gel was created by mixing 4 ml of de-

ionized water, 3.3 ml of 30% acrylamide, 2.5 ml of 1.5 M Tris-HCl (pH 8.8), 0.1 ml of 10% 
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SDS, 0.1 ml of 10% ammonium persulfate (APS), and 0.01 ml of TEMED. Additionally, 5% 

stacking gels were prepared using 2.7 ml of deionized water, 0.67 ml of 30% acrylamide, 

0.5 ml of 1 M Tris-HCl (pH 8.8), 0.04 ml of 10% SDS, 0.04 ml of 10% ammonium persulfate 

(APS), and 0.004 ml of TEMED after 30 minutes. 

A Tris-glycine-methanol transfer buffer was created by diluting 10× Tris-glycine buffer 

with methanol and water to achieve a final solution containing 25 mM Tris, 192 mM 

glycine, and 0.1% SDS. A protein ladder (Sigma-Aldrich, Schnelldorf, Germany) was uti-

lized to determine molecular mass (5 μl). Each well of the SDS-PAGE gel was loaded with 

10 μl of cell lysate and 2 μl of 6× loading buffer (Sigma-Aldrich, Schnelldorf, Germany). 

Electrophoresis was conducted at 80 V for 50 minutes, followed by 120 V until the 

marker proteins reached the bottom of the gel. 

Protein samples were subsequently transferred onto polyvinylidene fluoride (PVDF) 

membranes (Sigma-Aldrich, Schnelldorf, Germany) using a transfer buffer composed of 

12 mM Tris and 96 mM glycine. The PVDF membranes were activated with methanol for 

5 minutes. A Filter Paper Sandwich (Thermo Fisher Scientific, Planegg, Germany) config-

uration (sponge-filter paper-gel-membrane-filter paper-sponge) was assembled in the 

transfer tank, and any air bubbles were removed. The transfer was performed at 200 

mA for 90 minutes on ice. 

After completing the transfer, the membrane was removed from the filter paper sand-

wich. The PVDF membranes were blocked with 5% skim milk in TBST (20 mM Tris, 150 

mM NaCl, and 0.1% Tween 20) for 2 hours at room temperature after a 10-minute wash 

with PBS. Subsequently, the membranes were washed three times for 5 minutes each 

with TBST. Primary antibodies targeting CDC42 (HPA069590, Sigma-Aldrich, Schnelldorf, 

Germany), EGFR (AMAB90816, Sigma-Aldrich, Schnelldorf, Germany), and GAPDH 

(#2118, Cell Signaling Technology, USA) were applied and allowed to incubate overnight 

at 4 °C. The membranes were washed three times for 5 minutes each with TBST the 

following day. Secondary antibodies were applied to the membranes and incubated at 

room temperature for 1 hour. Afterward, the membrane was washed again three times 

for 5 minutes each with TBST. Finally, protein bands were visualized using the ChemiDoc 

Imaging Systems (Bio-Rad Laboratories GmbH, Feldkirchen, Germany). 
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3. Results 

3.1.  Heterogeneities between HPV-pos. and HPV-neg. CESC 

3.1.1.  ScRNA-seq analysis of HPV-pos. and HPV-neg. CESC 

CESC is the most known high-risk HPV-associated cancer. Hence, CESC samples were 

used for initial exploration to find out whether there are heterogeneities between HPV-

pos. and HPV-neg. cancers. In the analysis of HPV-pos. and HPV-neg. CESC scRNA-seq 

samples, scRNA data were clustered into 19 groups due to 11,899 marker genes (Fig 1A, 

B), top 5 marker genes of each cluster were used for heatmap visualization. (Fig 1C).  
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Figure 1 The dimension reduction of CESC scRNA-seq. 

A. Separate clusters according to UAMP. 

B. Separate clusters according to tSNE. 

C. Top five marker genes of 19 clusters. 

In the CESC scRNA-seq dataset, cell annotations revealed the presence of nine distinct 

cell types (Fig 2A), which were determined based on variations in marker gene expres-

sion levels (Fig 2B, C). Notably, t-SNE dimensionality reduction illustrated a reduction in 

CD8+ T cell and B cell clusters, accompanied by an increase in Treg cell, CD4+ T cell, and 

epithelial cell clusters within HPV-positive CESC (Fig 2A). Pseudotime trajectory analysis 

further elucidated the intricate process of cell differentiation (Fig 2D, E), underscoring 

the marked heterogeneity in cell development between HPV-positive and HPV-negative 

CESC. Pseudotime plots depicted the estimated lineage trajectories for each cluster 

based on the scRNA-seq data, with dots representing individual cells and black lines rep-

resenting cell differentiation paths. Due to the limited sample size and the absence of 

matched clinical data in the scRNA-seq dataset, complementary analyses were con-

ducted using bulk RNA-seq data to explore HPV-related heterogeneity. Given the ob-

served immune differences in the scRNA-seq data, additional immune analyses were 

conducted using bulk RNA-seq data. 
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Figure 2 The heterogeneity in HPV-pos. and HPV-neg. CESC scRNA-seq. 

A. Cell type annotation of HPV-pos. and HPV-neg. group. 

B. Top marker genes of CD8+T, CD4+T, and B cells in HPV-neg. group. 

C. Top marker genes of CD8+T, CD4+T, and B cells in HPV-pos. group. 

D. Pseudotime and trajectory analysis of HPV-neg. group. 

E. Pseudotime and trajectory analysis of HPV-pos. group. 

3.1.2. Bulk RNA-seq analysis of HPV-pos. and HPV-neg. CESC 

Utilizing the ESTIMATE algorithm with bulk RNA-seq data enabled an in-depth explora-

tion of immunological signatures between HPV-positive and HPV-negative CESC groups, 

capitalizing on the advantages of large-scale integration with matched clinical infor-
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mation. While no significant differences were observed in stromal cell infiltration be-

tween HPV-positive and HPV-negative CESC (Fig 3A), disparities in immune cell infiltra-

tion were evident. Subsequently, CIBERSORT analysis was conducted to delineate the 

immune cell landscape, revealing the proportions of 22 distinct immune cell types (Fig 

3B). These proportions, in conjunction with clinical data from bulk RNA-seq, were em-

ployed in overall survival (OS) analysis (Fig 4). Notably, OS analysis indicated no signifi-

cant associations between survival probability and the expression levels of various im-

mune cell types, including activated dendritic cells, resting dendritic cells, eosinophils, 

macrophages M0, macrophages M1, macrophages M2, resting mast cells, neutrophils, 

activated NK cells, resting NK cells, plasma cells, resting CD4+ T memory cells, naïve 

CD4+ T cells, follicular helper T cells, and gamma delta T cells. Consequently, these im-

mune cell clusters were excluded from subsequent analyses due to their lack of statisti-

cal impact on the survival outcomes of CESC patients. Although low expression levels of 

activated mast cells were associated with favorable CESC OS (P = 7.7e-4), they were not 

further investigated, as scRNA-seq data revealed no differences in the abundance of ac-

tivated mast cells between HPV-positive and HPV-negative CESC. Furthermore, genes 

within the epithelial cell cluster were excluded from analysis due to their absence among 

the 22 immune cell types. Genes from the naïve B cells and CD8+ T cells clusters were 

selected for further investigation, as Kaplan–Meier estimator (KM) curves indicated a 

lower survival probability for patients with reduced abundances of CD8+ T cells and na-

ïve B cells (Fig 3C, D). 
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Figure 3 Character of immune infiltration in bulk RNA-seq. 

A. Stromal score, Immune Score and Estimate Score of HPV-pos. and HPV-neg. bulk 

RNA-seq samples. 

B. Bar charts of 22 immune cell proportions in bulk RNA-seq samples. 

C. KM curves of different expression naïve B cells. 

D. KM curves of different expression CD8+ T cells. 

 

Figure 4 Overall survival analysis with different immune cell types. 
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A. KM curves of different expression activated dendritic cells. 

B. KM curves of different expression resting dendritic cells. 

C. KM curves of different expression eosinophils cells. 

D. KM curves of different expression macrophages M0 cells. 

E. KM curves of different expression macrophages M1 cells. 

F. KM curves of different expression macrophages M2 cells. 

G. KM curves of different expression activated mast cells. 

H. KM curves of different expression resting mast cells. 

I. KM curves of different expression neutrophils cells. 

J. KM curves of different expression activated NK cells. 

K. KM curves of different expression resting NK cells. 

L. KM curves of different expression plasma cells. 

M. KM curves of different expression resting CD4+ T memory cells. 

N. KM curves of different expression naïve CD4+ T cells. 

O. KM curves of different expression follicular helper T cells. 

P. KM curves of different expression gamma delta T cells. 

 

3.1.3. Identification of immune-associated genes in HPV-pos. and HPV-neg. CESC 

DEGs 

To identify genes associated with naïve B cells and CD8+ T cells, a Weighted Gene Co-

expression Network Analysis (WGCNA) was conducted. Initially, in the limma analysis, 

6,317 Differentially Expressed Genes (DEGs) were identified in HPV-positive and HPV-

negative CESC using the criteria of |log2FC | > 1.2 and p < 0.05 (Fig 5A), with red spots 

indicating up-regulated genes and green spots indicating down-regulated genes (in HPV-

positive CESC compared to HPV-negative CESC). Subsequently, a WGCNA analysis was 

performed using a matrix comprising the identified DEGs (Fig 5B). This analysis revealed 

a total of 11 immune-associated modules within the scale-free WGCNA co-expression 

networks (Fig 5C). In the upper left of the squares, the color denoted the correlation 

value with the module and the immune cell type, with red representing a positive cor-

relation and green indicating a negative correlation. The color in the bottom right of the 

squares represented the p-value. Notably, the black module displayed a significant pos-

itive association with the naïve B cell score (r=0.37, p=1.8e-11), while the red module 

exhibited the highest correlation with the CD8+ T cell score (r=0.46, p=2.8e-17). These 

findings suggested that the key components of the black and red modules corresponded 

to CD8+ T cells and naïve B cells, respectively. Consequently, 249 genes meeting the 

criteria of MM>0.8 and GS>0.1 were extracted from these two modules. 
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Figure 5 WGCNA analysis for CESC DEGs 

A. Volcano plot of CESC DEGs. 

B. Clustering results of minded modules in DEGs dataset. 

C. The correlation between different modules and the proportions of 22 immune 

cells. 

 

 

3.1.4. CESC survival risk model based on immune-associated genes 
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The 249 genes were designated as hub genes due to their representation of CD8+ T cells 

and naïve B cells, as well as their differential expression in HPV-positive and HPV-nega-

tive CESC. Given that these hub genes exhibited altered expression in response to HPV 

infection, no distinction was made based on HPV infection status in the development of 

the prognostic model. Initially, a univariate Cox proportional hazard model was em-

ployed to assess the hub genes. Out of these, 200 genes showed significant associations 

with overall survival in CESC (p < 0.05), with 39 genes considered to increase hazard 

(Hazard Ratio > 1), while the remaining 161 genes were identified as reducing hazard 

(Hazard Ratio < 1) (Fig 6A). To address multicollinearity issues and reduce the number 

of genes in the risk model, LASSO regression was applied (Fig 6B). Following LASSO-Cox 

regression, an internal 10-fold cross-validation was conducted to optimize the model 

(Fig 6C), resulting in an optimal lambda value of 0.0285755570440733. Nine genes 

(IKZF3, APOBEC3H, JAK3, CLECL1, FOXP3, CD6, CLEC2D, LINC00158, PILRA) were selected 

to construct the CESC survival risk model. The final 9-gene survival signature is as follows: 

 

RiskScore = -0.110045311944626 * IKZF3 - 0.180200464406653 * APOBEC3H - 

0.009738330408125074 * JAK3 - 0.100574502555081 * CLECL1 - 0.0109656212011594 

* FOXP3 - 0.00569462037861635 * CD6 - 0.00590561916507251 * CLEC2D - 

0.279175668959309 * LINC00158 - 0.00677990623712316 * PILRA 

 

Since all nine genes in the CESC survival risk model have negative coefficients, they are 

considered favorable; lower expression levels of these genes result in higher RiskScores 

(HR = 2.71). CESC bulk RNA-seq samples were classified into high-risk and low-risk groups 

based on median standardization of RiskScore (Fig 6D). Notably, significant differences 

between these two groups were observed (p = 4.0e-5) in the KM curves. Furthermore, 

CESC bulk RNA-seq samples were ranked by calculated RiskScore from lowest to highest 

(Fig 6E), revealing that lower RiskScores were associated with decreased mortality and 

increased survival probabilities in patients with elevated expression of IKZF3, APOBEC3H, 

JAK3, CLECL1, FOXP3, CD6, CLEC2D, LINC00158, and PILRA. Additionally, receiver oper-

ating characteristic (ROC) curves confirmed the sensitivity and specificity of the overall 

survival model (Fig 6F), with AUC values of 0.74, 0.68, and 0.71 for the 1-, 3-, and 5-year 

prognoses, respectively, substantiating the model's accuracy in predicting the overall 

survival of CESC patients. 
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Figure 6 Construction of the Cox and LASSO Cox OS model 

A. Top nine survival-related genes in univariate Cox model. 

B. The trajectory of each independent variable in the survival risk model: The inde-

pendent variable lambda's log2 value is shown on the horizontal axis, while its 

coefficient is shown on the vertical axis. 

C. The confidence interval for each lambda in the survival risk model. 

D. KM curves of different RiskScore in the survival risk model. 

E. RiskScore and survival time with survival status profile and expression levels of 

the 9 gene signatures. 

F. ROC curve for the survival risk model. 

 

3.1.5. CESC relapse risk model based on immune-associated genes 
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The process for creating a relapse model followed a similar procedure as before, but 

specifically focused on relapse data. In the univariate Cox model, 139 genes were signif-

icantly associated with relapse (log-rank test p < 0.05, Figure 7A), including 54 genes 

with increased hazard (HR > 1) and 85 genes with reduced hazard (HR < 1). The optimal 

lambda value for the relapse model was found to be 0.0283647620242562. For the re-

lapse risk model, 7 genes (ARHGAP30, DOK2, ICOS, JAK3, FOXP3, IKZF3, HEATR9) were 

selected (Fig 7B, C), resulting in the following 7-gene relapse signature: 

 

RiskScore = -0.0210123392211442 * ARHGAP30 - 0.0139776933948472 * DOK2 - 

0.0654058831289185 * ICOS - 0.00439045899467425 * JAK3 - 0.0303215128344747 * 

FOXP3 - 0.0203955365226131 * IKZF3 - 1.57542330970538 * HEATR9 

 

Similar to the survival model, all 7 genes in the CESC relapse risk model had negative 

coefficients, classifying them as favorable (HR = 2.06). Notably, the low RiskScore group 

exhibited a significantly lower relapse probability compared to the high RiskScore group 

(Fig 7D). Down-regulation of these genes was identified as a potential risk factor for re-

lapse in patients with decreased expression of ARHGAP30, DOK2, ICOS, JAK3, FOXP3, 

IKZF3, and HEATR9 (Fig 7E). The ROC curves demonstrated AUC values of 0.76 (1-year 

relapse), 0.70 (3-year relapse), and 0.74 (5-year relapse), affirming the model's impres-

sive predictive ability for relapse in CESC patients (Fig 7F). 
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Figure 7 Construction of the Cox and LASSO Cox relapse model 

A. Top 9 relapse-related genes in univariate Cox model. 

B. The trajectory of each independent variable in the survival risk model: The in-de-

pendent variable lambda's log2 value is shown on the horizontal axis, while its coeffi-

cient is shown on the vertical axis. 

C. The confidence interval for each lambda in the relapse risk model. 

D. KM curves of different RiskScore in the relapse risk model. 

E. RiskScore and relapse time with relapse status profile and expression levels of the 7 

gene signatures. 

F. ROC curve for the relapse risk model. 

 

3.1.6. Functional Enrichment Analysis 
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GO functional and KEGG pathway analyses were conducted to explore the non-immu-

nological functions of the hub genes, which exhibited the strongest correlation with 

CD8+ T cells or B cells in the WGCNA. The results indicated that genes essential for both 

the survival risk model and the relapse risk model were primarily enriched in immuno-

logical functions, while their impact on non-immunological processes appeared negligi-

ble (Fig 8A, B, C). However, it's worth noting that no significant hits were identified in 

the KEGG pathway analysis due to the limited number of genes in the relapse risk model. 

 

 

Figure 8 Gene set enrichment analysis of the hub genes. 

A. GO enrichment in the survival risk model. 

B. KEGG pathways in survival risk model. 

C. GO enrichment in the relapse risk model. 

 

3.1.7. HPV-Associated Pan Cancer Analysis 

The shared presence of IKZF3, FOXP3, and JAK3 in both the survival and relapse risk 

models suggests their potential significance in cancerogenesis. To assess whether these 
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genes play similar roles in other HPV-associated cancers, a pan-cancer analysis was con-

ducted (Fig 9A). Among the selected HPV-associated cancers, including bladder urothe-

lial carcinoma (BLCA), colon adenocarcinoma (COAD), prostate adenocarcinoma (PRAD), 

and head and neck squamous cell carcinoma (HNSCC), IKZF3 showed a favorable impact 

on BLCA (Fig 9B) and HNSCC (Fig 9C) survival. However, its expression had no significant 

effect on the survival probability of patients with COAD (Fig 9D) and PRAD (Fig 9E). On 

the other hand, FOXP3 expression did not significantly influence the survival of BLCA (Fig 

9F), PRAD (Fig 9G), and COAD (Fig 9H) patients. Interestingly, higher FOXP3 expression 

was associated with improved survival rates in HNSCC (Fig 9I). Elevated JAK3 expression 

in HNSCC patients correlated with longer survival (Fig 9J), while JAK3 expression levels 

in COAD (Fig 9 K), PRAD (Fig L), and BLCA (Fig 9M) had no significant impact. 

These hub genes exhibit a similar trend in the scRNA-seq analysis of HPV-positive (Fig 

9N) and HPV-negative (Fig 9O) HNSCC as they do in HPV-positive and HPV-negative CESC. 

Furthermore, quantifying the expression profiles of these genes in HNSCC bulk RNA-seq 

data reveals noticeable differences (Fig 9P). 

 

 

Figure 9 Expression levels and survival analysis in HPV-associated cancers. 

A. Expression levels of IKZF3, FOXP3, and JAK3 in BLCA, HNSC, PRAD, and COAD. 

B. Survival analysis in BLCA comparing the high- and low-IKZF3 groups. 

C. Survival analysis in HNSCC comparing the high- and low-IKZF3 groups. 

D. Survival analysis in COAD comparing the high- and low-IKZF3 groups. 
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E. Survival analysis in PRAD comparing the high- and low-IKZF3 groups. 

F. Survival analysis in BLCA comparing the high- and low-FOXP3 groups. 

G. Survival analysis in PRAD comparing the high- and low-FOXP3 groups. 

H. Survival analysis in COAD comparing the high- and low-FOXP3 groups. 

I. Survival analysis in HNSCC comparing the high- and low-FOXP3 groups. 

J. Survival analysis in HNSCC comparing the high- and low-JAK3 groups. 

K. Survival analysis in COAD comparing the high- and low-JAK3 groups. 

L. Survival analysis in PRAD comparing the high- and low-JAK3 groups. 

M. Survival analysis in BLCA comparing the high- and low-JAK3 groups. 

N. Survival analysis in HNSCC comparing the high- and low-JAK3 groups. 

O. Expressions of FOXP3, IKZF3, JAK3 in scRNA-seq HPV-neg. HNSCC. 

P. Expressions of FOXP3, IKZF3, JAK3 in scRNA-seq HPV-pos. HNSCC. 

Q. Quantification of FOXP3, IKZF3, JAK3 in bulk RNA-seq HPV-pos. and HPV-neg. 

HNSCC. 

 

The analysis of HPV-positive and HPV-negative CESC samples has unveiled significant 

heterogeneities between these two groups. Moreover, the survival and relapse models 

have highlighted a consistent protective role for genes with altered expression due to 

HPV infection in various HPV-associated cancers. Given the limited number of HPV-neg-

ative CESC samples, the subsequent steps of this study were not confined to CESC alone. 

Various HPV types, including those other than HPV16 and HPV18, were included in order 

to obtain a comprehensive understanding of the impact of HPV infection on these dis-

eases. 

3.2.  Transcriptome changes in skin low-risk HPV infection 

3.2.1. DEGs and immune infiltration analysis in low-risk HPV infection  

The genetic alterations induced by low-risk HPV infection were explored using samples 

from warts, condyloma acuminata, treeman syndrome, and normal skin. In comparison 

to normal skin samples, wart samples exhibited up-regulation of 9,333 genes and down-

regulation of 2,416 genes (Fig 10A), while treeman syndrome samples showed up-regu-

lation of 2,710 genes and down-regulation of 2,212 genes (Fig 10B). In condyloma acu-

minata samples, 172 genes were up-regulated, and 114 genes were down-regulated 

when compared to normal skin samples (Fig 10C). Subsequently, CIBERSORT analysis 

was performed to characterize the impact of low-risk HPV types on immune infiltration. 

In wart samples, there was an increase in macrophage M0 cells, neutrophils, activated 
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dendritic cells, plasma cells, activated mast cells, and resting NK cells, along with a de-

crease in resting mast cells, resting dendritic cells, activated NK cells, macrophage M1 

cells, and macrophage M2 cells when compared to normal skin (Fig 10D). In treeman 

syndrome samples, an increase in macrophage M2 cells and a decrease in activated den-

dritic cells were observed (Fig 10E). Condyloma acuminata samples showed a decrease 

in neutrophils and CD8+ T cells (Fig 10F). These differences were compiled into an en-

semble for further analyses. 

 

 

Figure 10 DEGs and different immune infiltration of low-risk HPV infection 

A. Volcano plot of DEGs in wart samples vs normal samples. 

B. Volcano plot of DEGs in treeman sample vs normal samples. 

C. Volcano plot of DEGs in condyloma acuminata samples vs normal samples. 

D. Different immune infiltration in wart samples and normal samples. Asterisks rep-

resent statistical significance ((*p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001) 
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E. Different immune infiltration in treeman sample and normal samples. 

F. Different immune infiltration in condyloma acuminata samples and normal sam-

ples. 

 

3.2.2. Identification of hub genes in low-risk HPV infection 

To address the issue of an excessive number of genes in the ensemble that cannot be 

effectively used for subsequent analysis, a Weighted Gene Co-expression Network Anal-

ysis (WGCNA) was performed to reduce the dimensionality of the Differentially Ex-

pressed Genes (DEGs) [35]. In this process, the 22 immune cell types were grouped into 

11 major leukocyte types to create more manageable modules. A total of 23 immune-

associated modules were identified within the WGCNA networks (Fig 11). 

Specifically, the following modules were selected for further analysis based on their as-

sociations with specific immune cell scores: the purple module (associated with macro-

phage cell scores, r=0.28, p=3.2e-9), the ivory module (associated with neutrophils, 

r=0.48, p=3.2e-27), the brown module (associated with CD8+ T cells, r=0.16, p=1.0e-3), 

the green module (associated with dendritic cells, r=0.38, p=1.2e-16), and the royal blue 

module (associated with mast cells, r=0.39, p=8.5e-17). It's worth noting that many 

genes in these modules exhibited low immune cell specificity but were highly associated 

with immune marker genes. 

Next, the Metascape database was utilized to explore the functional roles of genes with 

low immune cell specificity. Immune-associated pathways were excluded from the anal-

ysis [60] (Fig 11C). The enriched pathways primarily included human diseases, human 

papillomavirus infection, metabolic pathways, and pathways in cancer. Additionally, 

pathways related to ferroptosis, oxidative stress, and necroptosis were enriched. These 

pathways have gained recognition in recent years for their close association with HPV 

infection and tumorigenesis [60]. Therefore, differentially expressed genes (DEGs) re-

lated to ferroptosis, oxidative stress, and necroptosis were also included in the subse-

quent analyses. 
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Figure 11 WGCNA analysis for low-risk HPV infection DEGs 

A. Clustering results of minded modules in DEGs dataset. 

B. The correlation between different modules and the proportions of 11 immune 

cells. 

C. Metascape analysis for low immune cell specificity DEGs. 

3.2.3. Association of low-risk HPV-altered genes with skin cancer 

In the analysis of benign skin lesion samples with low-risk HPV infection, the enrichment 

of pathways related to cancer suggests that gene alterations in these samples might be 

associated with the development of skin cancer. To further investigate these genes, im-

mune-associated genes were identified from the WGCNA analysis. Additionally, genes 

associated with ferroptosis, oxidative stress, and necroptosis were obtained by mapping 

differentially expressed genes (DEGs) with the FerrDb and Gene-Cards databases. 

The relationship between these genes with different specificities and overall survival in 

skin cancer was analyzed separately using univariate Cox proportional hazard models. 

To address multicollinearity, LASSO-cox regression was performed. The model was in-

ternally validated through 10-fold cross-validation, and external validation was carried 

out using data from the ICGC database. 

The optimal lambda value for the model based on immune-associated genes was deter-

mined to be 0.103105993256383 (Fig 12). This model included 18 genes: ZNF703, CLN6, 

HMOX2, LINC01138, AC099343.4, SPATA13, UBE2O, TTC39C, PKIG, MYO10, ACSL4, 

FOXK1, HEXD, STAMBPL1, AP003721.4, CREG1, HSPA7, and AC012213.1. The final 18-

gene relapse signature is represented by the following RiskScore formula: 

 

RiskScore = 0.000447096284873543 * ZNF703 + 0.000496930564037156 * CLN6 + 

0.00198313033500234 * HMOX2 - 0.0140447939837885 * LINC01138 - 

0.0227729288000317 * AC099343.4 - 0.00166467347841079 * SPATA13 + 

0.000775173016576975 * UBE2O - 0.00545438753998658 * TTC39C - 

0.000169884439727878 * PKIG + 2.08968514258868e-05 * MYO10 - 

0.00075962394768721 * ACSL4 + 0.000530366943891432 * FOXK1 - 

0.00356655757176417 * HEXD - 0.000171228577629836 * STAMBPL1 - 

0.0034310030038542 * AP003721.4 - 0.000169331851861702 * CREG1 - 

0.000145982841095522 * HSPA7 - 0.0419117546482515 * AC012213.1 
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Figure 12 Construction of the immune-associated Cox and LASSO Cox model 

A. Top 9 immune-associated genes in univariate Cox model. 

B. The trajectory of each independent variable in the immune-associated survival 

risk model. 

C. The confidence interval for each lambda in the immune-associated survival risk 

model. 

D. KM curves of different RiskScore in the immune-associated survival risk model. 

E. RiskScore and survival time with survival status profile and expression levels of 

the 18 gene signatures. 

F. ROC curve for the immune-associated risk model. 

 

In the model based on ferroptosis-associated genes, the optimal lambda value was de-

termined to be 0.016512977172364 (Fig 13). This model included 18 genes: NCF2, 

ANGPTL7, CHAC1, SLC7A11, JDP2, VEGFA, HSD17B11, HMOX1, FTL, DRD4, MAP3K5, 

SLC2A1, ALOX5, ALOX15, HBA1, NNMT, HIC1, and AURKA. The final 18-gene relapse sig-

nature is represented by the following RiskScore formula: 
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RiskScore = -0.00938989420423927 * NCF2 - 0.000472378323572829 * ANGPTL7 + 

0.00259420769181918 * CHAC1 + 0.00269077908427012 * SLC7A11 - 

0.00200395718658391 * JDP2 - 0.000501434252325555 * VEGFA - 

0.0010393709159819 * HSD17B11 + 0.000295359464052238 * HMOX1 + 

8.16942125872471e-06 * FTL - 0.0344816232911417 * DRD4 - 0.00072296935563573 

* MAP3K5 + 0.0011747907951178 * SLC2A1 - 0.00829774914015909 * ALOX5 + 

0.00341581793741788 * ALOX15 + 0.0300329250092999 * HBA1 - 

0.000737359738304914 * NNMT + 0.0043877495412482 * HIC1 + 

0.00177997795502466 * AURKA 

 

Figure 13 Construction of the ferroptosis-associated Cox and LASSO Cox model 

A. Top 9 ferroptosis-associated genes in univariate Cox model. 

B. The trajectory of each independent variable in the ferroptosis-associated sur-

vival risk model. 

C. The confidence interval for each lambda in the ferroptosis-associated survival 

risk model. 

D. KM curves of different RiskScore in the ferroptosis-associated survival risk model. 
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E. RiskScore and survival time with survival status profile and expression levels of 

the 18 gene signatures. 

F. ROC curve for the ferroptosis-associated risk model. 

 

In the model based on oxidative stress-associated genes, the optimal lambda value was 

determined to be 0.016512977172364 (Fig 14). This model included 43 genes: HRNR, 

UGT1A7, SPRR2B, KIT, TGM3, HMOX2, PITX1, PSMB8, STAT1, PLAAT4, RABIF, HLA-DQB1, 

PAEP, KPNA2, ICAM1, KCNN4, CLIC2, HEXD, IRF7, TM6SF2, MZB1, MEAK7, ADORA2A, 

FCER1G, CAP2, S100A11, SNX22, RTN1, KCNMB1, NEFM, DOCK9, MED12L, NOX4, IFI27, 

FGF13, WNT1, CD33, IQGAP2, UNC13A, PSCA, ABCB4, WWTR1, and PCSK1. The final 43-

gene relapse signature is represented by the following RiskScore formula: 

 

RiskScore = 0.0159716926846922 * HRNR + 0.108696999312889 * UGT1A7 + 

0.00100154577184382 * SPRR2B + 0.000281405166826053 * KIT + 

0.000614857020909774 * TGM3 + 0.00186458220852995 * HMOX2 + 

0.00358982603802565 * PITX1 - 0.000262977849183458 * PSMB8 - 

0.00024566538943957 * STAT1 - 0.000499686021817832 * PLAAT4 + 

0.00513672254515595 * RABIF - 9.65773499678376e-05 * HLA-DQB1 + 

1.13712788414208e-05 * PAEP + 0.000888337787254083 * KPNA2 - 

0.000572284523885771 * ICAM1 - 0.000720372269384761 * KCNN4 - 

0.00271567021722054 * CLIC2 - 0.00855204231985427 * HEXD - 3.69585688325384e-

05 * IRF7 + 0.0672400620745375 * TM6SF2 - 0.00011572610524236 * MZB1 + 

0.00217099443046481 * MEAK7 - 0.0655107652306773 * ADORA2A - 

0.000130763104916954 * FCER1G + 0.00238916558287936 * CAP2 + 

8.455153079688e-06 * S100A11 - 0.00080750734003968 * SNX22 - 

0.00887381802525652 * RTN1 - 0.0194093598950961 * KCNMB1 + 

0.00199095439803593 * NEFM + 0.000396657527955989 * DOCK9 - 

0.145183403561008 * MED12L - 0.00221609711218496 * NOX4 - 0.0001609032171123 

* IFI27 - 0.01251629634583 * FGF13 - 0.00204177776550964 * WNT1 - 

0.00110634263981778 * CD33 - 0.000204348990660977 * IQGAP2 - 

0.0015563390828012 * UNC13A - 6.21504474707566e-05 * PSCA - 

0.00054863662562471 * ABCB4 - 1.8846670226815e-05 * WWTR1 - 

0.000627142494598778 * PCSK1 
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Figure 14 Construction of the oxidative stress-associated Cox and LASSO Cox model 

A. Top 9 oxidative stress-associated genes in univariate Cox model. 

B. The trajectory of each independent variable in the oxidative stress-associated 

survival risk model. 

C. The confidence interval for each lambda in the oxidative stress-associated sur-

vival risk model. 

D. KM curves of different RiskScore in the oxidative stress-associated survival risk 

model. 

E. RiskScore and survival time with survival status profile and expression levels of 

the 43 gene signatures. 

F. ROC curve for the oxidative stress-associated risk model. 

 

In the model based on necroptosis-associated genes, the optimal lambda value was de-

termined to be 0.0426492157852511 (Fig 15). This model includes 16 genes: HRNR, 

CD74, CLEC7A, KRT16, TUBB4A, TUBA1C, GSDMD, NOX4, NME8, KRT19, PELI1, COPS2, 

ACHE, HSPA4, FLNC, and DAPK1. The final 16-gene relapse signature is represented by 

the following RiskScore formula: 
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RiskScore = 0.042540605234936 * HRNR - 4.77265188341723e-05 * CD74 - 

0.0132404452836909 * CLEC7A + 8.15839193972035e-06 * KRT16 + 

0.0001478075116376 * TUBB4A + 0.00209534884027515 * TUBA1C - 

0.00427908155832343 * GSDMD - 0.00914688320536871 * NOX4 - 

0.0271025523792678 * NME8 + 0.000978209322398353 * KRT19 - 

0.00157133493894347 * PELI1 - 0.00553120824438331 * COPS2 - 

0.00254324843510403 * ACHE + 0.000895966855034512 * HSPA4 + 

0.000396142731535711 * FLNC + 0.00189832090895527 * DAPK1 

 

Figure 15 Construction of the necroptosis-associated Cox and LASSO Cox model 

A. Top 9 necroptosis-associated genes in univariate Cox model. 

B. The trajectory of each independent variable in the necroptosis-associated sur-

vival risk model. 

C. The confidence interval for each lambda in the necroptosis-associated survival 

risk model. 

D. KM curves of different RiskScore in the necroptosis-associated survival risk 

model. 
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E. RiskScore and survival time with survival status profile and expression levels of 

the 16 gene signatures. 

F. ROC curve for the necroptosis-associated risk model. 

 

The internal validation of the survival risk model based on oxidative stress showed the 

highest AUC values, with 0.75, 0.78, and 0.81 for the 1-, 3-, and 5-year prognoses, re-

spectively. External validation also yielded similar results, with AUC values of 0.67, 0.69, 

and 0.74 for the 1-, 3-, and 5-year prognoses (Fig 16A). The other modules also exhibited 

AUC values above 0.5 in external data validation (Fig 16B, C, D), indicating that the genes 

altered in low-risk HPV infection skin lesions are associated with the progression of skin 

cancer. These results demonstrate the potential utility of these gene signatures in pre-

dicting the prognosis of skin cancer patients. 

 

Figure 16 External validation from ICGC database. 



 55 

A. ROC curve for the oxidative stress-associated risk model. 

B. ROC curve for the immune-associated risk model. 

C. ROC curve for the ferroptosis-associated risk model. 

D. ROC curve for the necroptosis-associated risk model. 

3.2.4. Relationship between low-risk HPV-altered genes and cancer therapeutics 

response 

All the models had AUC values greater than 0.5, suggesting that all genes in the models 

were highly correlated with the prognosis of skin cancer. A protein-protein interaction 

(PPI) network analysis was performed using all the genes in the survival risk model (Fig 

17A), resulting in 86 nodes and 84 edges. Subsequently, the Cytoscape software plug-in 

MCODE was employed with specific settings (degree cutoff = 2, node score cutoff = 0.2, 

K-core = 2, and maximum depth = 100) to identify the most significant genes, which 

included VEGFA, STAT1, HMOX1, ICAM1, HSPA4, KIT, and NOX4 (Fig 17B). 

To assess the relationship between clinical features and gene expression levels, CTRP V2 

was utilized. Among the identified genes, ICAM1 and KIT were downregulated in the 

lesions, so drugs with a negative correlation with their gene expression levels were se-

lected. On the other hand, VEGFA, STAT1, HMOX1, HSPA4, and NOX4 were upregulated 

in the lesions, and drugs were chosen that showed a positive correlation with their gene 

expression levels. Based on the results of drug sensitivity correlated with gene expres-

sion levels, signaling pathways with altered genes were identified (Fig 17C).  
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Figure 17 Relationship between the core genes of the PPI network and cancer thera-

peutics response 

A. PPI network of genes in survival risk models. 

B. Selection of core genes in cytoscape plug-in MCODE. 

C. signaling pathways with core genes. 

 

The study revealed that the expression of core genes was altered in HPV-infected skin 

lesions and had an impact on the prognosis of skin cancer, suggesting the potential in-

fluence of low-risk HPV infection. However, the association between skin cancer and 

HPV infection was not confirmed, and the observed gene alterations could be attributed 

to skin tissue lesions. Therefore, further analysis of drug sensitivity related to these ge-

netic alterations was not conducted. The next phase of the study aims to identify genes 

that are influenced by disease progression and regulated by HPV infection in a type of 

cancer that is definitively affected by HPV infection. 
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3.3. Identification of genes associated with carcinogenesis and HPV 

infection 

3.3.1. Identify DMPs between normal, precancerous lesion and cancer samples   

The analysis began with 390,065 probes that passed quality control. Principal compo-

nent analysis (PCA) was conducted to compare the β-values for all samples (Fig 18A). 

The separation of the normal anal group and normal cervical group indicated meaningful 

grouping, but AIN3, ASCC, and CESC samples were closely clustered, making it difficult 

to distinguish between them. This pattern was also evident in the heatmap of the cor-

relation matrix (Fig 18B), where samples from AIN3, ASCC, and CESC could not be clearly 

separated. Similarly, CESC samples were mixed with ASCC samples in the visualization 

of sample similarity based on the top 1000 most variable probes. It was observed that 

there was a significant overlap of differentially methylated probes (DMPs) between 

AIN3, ASCC, and CESC samples, while CIN3 samples were more similar to normal cervical 

samples. Consequently, the analysis focused on genes with overlapping DMPs between 

the different tumor groups, excluding intraepithelial neoplasia groups due to their dis-

tinct similarity. 

Among the 390,065 probes, 44,137 (11.31%) showed differential methylation levels in 

CESC and adjacent normal tissues, while 11,440 (2.9%) probes exhibited differences in 

ASCC compared to normal tissues. In the comparison to the normal cervical group, 

25,300 (57.4%) probes were hypermethylated, and 18,837 (42.6%) probes were hypo-

methylated. In contrast, compared to the normal anal group, 9,726 (85.0%) probes were 

hypermethylated, and 1,714 (15.0%) probes were hypomethylated in the ASCC group. 

The distribution of DMPs varied among genomic locations, with the majority enriched 

in open sea regions (Fig 18C). Furthermore, both hypermethylated and hypomethylated 

DMPs were predominantly distributed on Chromosome 1 (Fig 18D). A Venn plot was 

used to quantify the overlapping hypermethylated and hypomethylated DMPs between 

ASCC and CESC (Fig 18E). The trends in methylation were similar in ASCC and CESC, with 

only 3 probes exhibiting contrasting methylation patterns. In total, 7,633 DMPs were 

hypermethylated, while 1,024 DMPs were hypomethylated in both tumors. 

 

Due to the insufficient number of overlapping genes in the analysis of differentially 

methylated regions (DMRs), DMPs were employed for the subsequent analysis. 
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Figure 18 Overview of DNA methylation data. 

A. Individuals plot of PCA, samples were represented as follows: red, AIN3. Brown, 

ASCC. Green, CESC. Blue cross, CIN3. Blue square, Normal cervical. Purple, Nor-

mal anal. 

B. Heatmap of Top 200 DMPs, samples were represented as: Purple, AIN3. Red, 

ASCC. Blue, CESC. Green, CIN3. Light blue normal anal. Brown, normal cervical. 

C. Proportion of the feature of CpG-islands, orange represented for hypermethyl-

ated probes, blue represented for hypomethylated probes. 

D. The overlapped DMPs between CESC and ASCC, X axis represented for different 

chromosome, Y axis represented for number of DMPs, black bar represented for 

hypomethylated DMPs, white bar represented for hypermethylated DMPs. 

E. Quantities of overlapped DMPs. 
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In the next step, KEGG analysis was conducted on the 7,633 hypermethylated DMPs and 

1,024 hypomethylated DMPs (Fig 19A). The red bars represent genes associated with 

hypermethylated DMPs (p < 0.05), while the blue bars represent genes with hypometh-

ylated DMPs (p < 0.05). Many of these sites were associated with carcinogenesis and the 

immune system. Furthermore, pathways related to HPV infection (173/3,314), oxidative 

stress (15/3,314), ferroptosis (17/3,314), and necroptosis (48/3,314) were also enriched. 

Oxidative stress, ferroptosis, and necroptosis processes are linked with infection and can 

occur in immune cells and some epithelial cells. It was hypothesized that these processes 

could be a result of HPV infection and contribute to carcinogenesis. Therefore, genes 

annotated with these functions were selected for further analysis. 

Considering that the KEGG database is extensive but may have omissions in details, such 

as the omission of inducers, promoters, and drivers in the mapping of ferroptosis, addi-

tional annotation was performed using CIBERSORT, FerrDb, GeneCard, and other spe-

cific methods. As a result, 264 genes were identified as oxidative stress-associated, 23 

genes were ferroptosis-associated, and 65 genes were necroptosis-associated. CIBER-

SORT was used to analyze the immune proportions of the genes with overlapping meth-

ylations (Fig 19B), revealing differences mainly in T-reg cells, CD4+ T cells, CD8+ T cells, 

dendritic cells, and monocytes (Fig 19C). This result was obtained from CESC due to the 

absence of RNA data and clinical data for ASCC. 

 

 

 

Figure 19 Function annotations and difference in immune infiltration of DMPs 
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A. KEGG analysis of the DMPs, red bars represented the genes with hypermethyl-

ated DMPs, blue bars represented the genes with hypomethylated DMPs. 

B. Immune infiltration base on the gene with DMPs, each column represented one 

sample, different color represented different proportions of immune cell type.  

C. Immune cell types with significant differences in the enrichment of genes for 

DMPs. （*p < 0.05, **p < 0.01） 

 

3.3.2. Identification of key genes 

Differential immune infiltration information was obtained through CIBERSORT analysis, 

but it was important to connect these immune alterations with specific genes. To 

achieve this, genes related to these immune alterations were identified from the scRNA 

data. 

To analyze the immune identities and functions of the cells, the scRNA data from CESC 

were first clustered and visualized, resulting in 21 clusters using the Seurat FindCluster() 

function, and UMAP and tSNE algorithms from the Seurat R package (Fig 20A). Marker 

genes were obtained from these 21 clusters using the Findmarker() function, and the 

top 3 marker genes of each cluster were used for heatmap visualization to show the 

differential abundance of marker gene expression (Fig 20B). Reference data from 

Celldex were obtained, and the SingleR algorithm was used to automatically annotate 

clusters with well-known cellular markers (Fig 20C). Clusters that were annotated as spe-

cific cell types including T-reg cells (Cluster 4, marker: FOXP3), CD4+ T cells (Clusters 5, 

7, 18, marker: IL7R), CD8+ T cells (Cluster 2, marker: CD8A), dendritic cells (Cluster 11, 

13, 16, marker: LYZ), and monocytes (Cluster 8, 17, marker: CXCL6) were selected for 

further analysis. 



 61 

 

 

 

Figure 20 Clusters, marker genes and annotations of CESC scRNA-seq data. 

A. The dimension reduction of CESC scRNA-seq. Visualization of separate clusters 

based on UAMP and tSNE. 

B. Heatmap of the most significant marker genes, each cluster showed top 3 marker 

genes. 

C. Clusters annotated by immune cell markers. 

 

A co-expression network was constructed using the new matrix, and a soft threshold 

power β of 6 was selected to ensure a scale-free network (Fig 21A). Subsequently, 14 

distinct gene modules were generated based on hierarchical clustering dendrogram (Fig 

21B). Clinical features "Early group" and "Advanced group" were input as previously de-

fined, and several modules including the pink module (r=-0.13, p=0.04), purple module 

(r=-0.14, p=0.04), salmon module (r=-0.13, p=0.04), blue module (r=-0.13, p=0.05), and 

grey module (r=-0.14, p=0.03) showed significant correlations with progression stage 

(Fig 21C). 

 

To assess the potential biological function of these modules, a correlation between gene 

significance (GS) and module membership (MM) was created. Scatter plots were used 

to show the correlation of two modules as representations (Fig 21D, E). The modules 

demonstrated a significant association between GS and MM, indicating that the genes 

in those modules are not only co-expressed but also positively linked to clinical features. 



 62 

All modules associated with clinical features were included in the study, resulting in a 

large set of 652 genes obtained from different modules. This data, including gene infor-

mation (nodes) and weight from the adjacency matrix (edges), was visualized using Cy-

toscape.  

 

 

Figure 21 WGCNA analysis of the correlation between gene modules and clinical fea-

tures 

A. The mean connectivity and scale-free topology index for each power value be-

tween 1 to 20. Investigation of the mean connectivity (degree, Y axis) for differ-

ent soft-thresholding powers (X axis). 

B. Dendrogram of genes in new matrix (Associated to ferroptosis, necroptosis, oxi-

dative stress, HPV infection pathway, T-reg cells, CD4+ T cells, CD8+ T cells, den-

dritic cells and monocytes) clustered based on a dissimilarity measure (1-TOM). 

Densely linked, highly co-expressed genes are grouped together on the dendro-

gram's branches. 

C. Correlations of modules and clinical feature. Each row corresponded to a mod-

ule, The number in the upper left corner represents the correlation, and the 

number in the lower right corner represents the p-value. 

D. Scatter plot of module membership (MM) vs. gene significance (GS) in blue mod-

ules. MM presents the correlation between gene expression and each module 

eigengene. GS represents the association between gene expression and each 

trait. In both modules, GS and MM have a high correlation. 

E. Scatter plot of module membership (MM) vs. gene significance (GS) in grey mod-

ules. 
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In the co-expression network analysis using Cytoscape plugin MCODE, highly intercon-

nected regions in the network were identified, with nodes having more interconnected 

neighbors achieving higher scores. The highest region detected by MCODE revealed the 

top 10 highest scoring genes (Fig 22A), which included PSMD11, RB1, SAE1, TAF15, 

TFDP1, CORO1C, JOSD1, CDC42, KPNA2, and NUP62. 

Subsequently, the relationship between the expression of these genes and CESC survival 

was analyzed using the GEPIA2021 online tool (Fig 22B, C, D, E, F, G, H, I, J, K). Among 

these highly co-expressed genes associated with progression, the expression of CDC42 

was found to be significantly correlated with the survival of CESC (Hazard Ratio: 1.6, 

p=0.045), indicating that patients with higher expression levels of CDC42 had a worse 

prognosis. Therefore, CDC42 was selected as the target for downstream analysis. 

All the connections of CDC42 were listed in the network (Fig 22L), where green diamonds 

represented genes associated with ferroptosis, purple ellipses represented genes clus-

tered in immune cell clusters of scRNA, orange rectangles represented genes related to 

necroptosis, and yellow triangles represented genes annotated with oxidative stress. 
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 Figure 22 Identification of hub genes 

A. Top 10 MCODE scoring genes were highlighted in the co-expression network. 

B. KM curves (Kaplan–Meier estimator) showed the correlation between CESC 

overall survival and CDC42 expression. 

C. KM curves showed the correlation between CESC overall survival and NUP62 ex-

pression. 

D. KM curves showed the correlation between CESC overall survival and CORO1C 

expression. 

E. KM curves showed the correlation between CESC overall survival and JOSD1 ex-

pression. 

F. KM curves showed the correlation between CESC overall survival and KPNA2 ex-

pression. 

G. KM curves showed the correlation between CESC overall survival and PSMD11 

expression. 

H. KM curves showed the correlation between CESC overall survival and RB1 ex-

pression. 

I. KM curves showed the correlation between CESC overall survival and SAE1 ex-

pression. 

J. KM curves showed the correlation between CESC overall survival and TAF15 ex-

pression. 

K. KM curves showed the correlation between CESC overall survival and TFDP1 ex-

pression. 

L. Hub gene CDC42 with its highly co-expressed neighbors. Green diamonds repre-

sented genes associated with ferroptosis, purple ellipses represented genes clus-

tered in immune cell clusters of scRNA, orange rectangles represented genes re-

lated to necroptosis, and yellow triangles represented genes annotated with ox-

idative stress. 

 

The role of CDC42 in HPV infection and carcinogenesis was investigated through DNA 

methylation and gene expression analysis. Three differentially methylated probes 

(DMPs) in CDC42, namely cg08608952, cg13962372, and cg23019935, were identified. 

The volcano plot showed the differential methylation of CDC42 between CESC and nor-

mal cervical tissue (Fig 23A) and between CESC and CIN3 (Fig 23B). Hypermethylation of 

the three DMPs was significant in the CESC group compared to the normal cervical 

group, while it was only slightly significant in CIN3 (Fig 23C). 

In RNA profiling, the expression of CDC42 was found to be higher in CESC compared to 

normal cervical tissue (Fig 23D). This upregulation of CDC42 in CESC was also observed 

in scRNA-seq data, where CDC42 was upregulated in CESC samples compared to normal 
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samples (Fig 23E), indicating that the upregulation of CDC42 may be driven by carcino-

genesis. 

To assess the impact of HPV infection on CDC42 expression, CDC42 expression was quan-

tified in HPV-positive CESC, HPV-negative CESC, and normal groups (Fig 23F). In the CESC 

scRNA-seq data, CDC42 was found in cluster 1 (Dendritic cells), cluster 3 (Dendritic cells), 

and cluster 7 (CD4+ T cells). Violin plots showed the expression of CDC42 in dendritic 

cells and CD4+ T cells between the three groups. Compared to normal tissues, CDC42 

expression was lower, while among CESC samples, it was higher in the HPV-positive 

group than in the HPV-negative group, though not significantly. This suggests that the 

upregulation of CDC42 may be caused by both carcinogenesis and HPV infection. 

Furthermore, a correlation analysis between CDC42 expression level and chemical sen-

sitivities was performed using the CTRP database. The results revealed a significant pos-

itive correlation between the expression of CDC42 and 14 chemical compounds, with 

the epidermal growth factor receptor (EGFR) inhibitor afatinib being the most significant 

one (Fig 23G). In vitro experiments, including cell proliferation, cell viability, and western 

blot analysis, were conducted to validate these findings. 
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Figure 23 Gene pathway and process enrichment analysis and WGCNA analysis. 

A. Volcano plot of the DMPs between CESC and normal samples. Red plot corre-

sponded to hypermethylated probe, green plot corresponded to hypomethyl-

ated probes. 

B. Volcano plot of the DMPs between CESC and CIN3 samples. 

C. β value of CDC42 DMPs (cg08608952, cg13962372 and cg23019935) in different 

groups. 

D. RNA expression of CDC42 in CESC and normal samples. 

E. Colors single cells on a dimensional reduction plot according to the expression of 

CDC42. 

F. Quantifies of CDC42 in CD4+ T cells and dendritic cells between CESC and normal 

samples, HPV-pos. CESC and HPV-neg. CESC. 

G. Correlation analysis of CDC42 expression level and chemical compounds sensi-

tives, afatinib showed the significantly and positively correlation. 
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3.3.3. Cell proliferation, cell viability and western blot 

WST-1 assays were conducted on HaCaT and A431 cells with or without HPV16 E6 and 

E7 transfection in the presence of various concentrations (0 M, 0.1 M, 1 M, and 10 M) 

of afatinib to assess changes in cell viability. The spectrophotometric readings of cells 

exposed to afatinib at a concentration of 0 M were used as the reference standard (100%) 

in the figure (Fig 24A, C). Similarly, the spectrophotometric readings of cells without 

transfection and afatinib were set as the standard to determine the effect of HPV trans-

fection on cell proliferation (Fig 24B, D). 

The results showed that cell proliferations of HaCaT and A431 were increased after 

transfection with HPV16 E6 and E7 (p < 0.05). In HaCaT cells, afatinib did not reach the 

IC50 at 10 μM, whereas HaCaT cells transfected with HPV had a lower IC50 at 1 to 10 μ

M. Similar results were observed in A431 cells, where the IC50 was between 1-10 μM 

without transfection and there was a lower IC50 after transfection with HPV. 

Cell proliferation and cell viability assays confirmed that transfection with HPV16 E6 and 

E7 can make cells more sensitive to afatinib. However, the proteins altered in this pro-

cess remained unclear. After treating the cells with afatinib for 24 hours (48 hours fol-

lowing transfection), protein expressions were measured (Fig 24E). Transfection with 

HPV16 E6 and E7 enhanced the effects of afatinib. Quantitative analysis with Image J 

showed lower expression of pEGFR in the transfected HPV group at the same afatinib 

concentration, while CDC42 was up-regulated in the transfected HPV group (Fig 24F). 

It's important to note that these results should be interpreted as a general trend and 

not as precise quantification. The Western blot analysis could not clarify the specific 

mechanism, and no replicate experiments were performed, so the results were not sta-

tistically significant. 
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Figure 24 Cell proliferation activities and Western blot 

A. WST-1 cell viability assay of HaCaT cell, 0 μM afatinib groups were set as 100%. 

B. WST-1 cell proliferation test of HaCaT cells transfected with HPV E6 and E7, un-

transfected and untreated HaCaT cells groups were set as 100%. 

C. WST-1 cell viability assay of A431 cell, 0 μM afatinib groups were set as 100%. 

D. WST-1 cell proliferation test of A431 cells transfected with HPV E6 and E7, un-

transfected and untreated A431 cells groups were set as 100%. 

E. Western blot of EGFR, pEGFR and CDC42.  

F. Quantitative analysis of the western blot results. Experiment was performed only 

once, so there was not statistical analysis. 

 

3.3.4. Molecular docking 

Molecular docking analysis was performed to investigate the binding of afatinib with 

CDC42 and EGFR. The binding poses and interactions of afatinib with CDC42 and EGFR 

were acquired, and binding energy was calculated for each interaction (Fig 25A, B). The 

results showed that afatinib bound to both CDC42 and EGFR through apparent hydrogen 

bonds and strong electrostatic interactions. Afatinib also occupied the hydrophobic 

pockets of CDC42 and EGFR (Fig 25C, D). 

Binding energy values less than -7.0 kcal/mol indicate strong binding activity of the lig-

and to the receptor. There were 9 binding models of afatinib to EGFR, and all of them 

had low binding energies, ranging from -8.027 kcal/mol to -9.186 kcal/mol, indicating 

highly stable binding. In contrast, the only binding model of afatinib to CDC42 had a 

much lower binding energy of -81.793 kcal/mol, indicating a higher affinity. The figure 

displayed the interaction forces as dashed lines, and the amino acids involved in the 

interaction were shown in a ball-and-stick model, illustrating the super-strong interac-

tion force between afatinib and CDC42. 

Although the affinity of afatinib for both CDC42 and EGFR was confirmed, it remained 

unclear how CDC42 acted on EGFR after binding to afatinib. Attempts were made to 

calculate CDC42-afatinib-EGFR interactions, but no interactions could be calculated. 

However, in the PDB database, it was found that CDC42 could bind to the extended 

GTPase-effector interface. Therefore, a combination of CDC42-GTPase-effector inter-

face-EGFR-afatinib was constructed, and ZDOCK was used for protein structure docking. 

The top 10 best ZDOCK scores for the CDC42-GTPase-effector interface-EGFR-afatinib 

complex were obtained, and they all had high scores, indicating strong docking (Fig 25E). 
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The interaction involved hydrogen bond links with amino acid sites such as GLU 171, 

ASN167, LEU165, VAL 168, PHE 169, and LYS 166-GTPase-effector interface GLU1005, 

ARG 489, LEU 475. GTPase-effector interface formed hydrogen bond links with amino 

acid sites such as GLN303, ASN996-PRO 975, ALA 972 EGFR (Fig 25F). EGFR was bound 

to afatinib through amino acids such as ASN 808, HIS 988, PRO 848, forming hydrogen 

bonds and strong interactions (Fig 25G). Comprehensive analysis indicated that the 

CDC42-GTPase-effector interface-EGFR-afatinib complex formed a stable docking 

model. 

 

Figure 25 Molecular docking and Rigid protein–protein docking 

A. Binding mode of afatinib to CDC42. CDC42 was set as ball-and-stick model with 

gaussian volume. The amino acids involved in the interaction are shown in a ball-

and-stick model, the amino acids did not involve in the interaction were showed 

as cartoon. 

B. Binding mode of afatinib to EGFR. 

C. The Molecule of the Month feature used cartoon illustrations to demonstrate 
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the overlay of the crystal structures of afatinib and CDC42. 

D. The Molecule of the Month feature used cartoon illustrations to demonstrate 

the overlay of the crystal structures of afatinib and EGFR. 

E. CDC42 formed hydrogen bonds with the extended GTPase-effector interface 

amino acid sites. 

F. Extended GTPase-effector interface formed hydrogen bonds with EGFR amino 

acid sites. 

G. Binding mode of afatinib to CDC42- Extended GTPase-effector interface -EGFR. 
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4. Discussion  

4.1. Heterogeneities of tumors caused by high risk-HPV infection 

While HPV-associated lesions are known to carry an elevated risk of progressing to ma-

lignant tumors [61], there has been a noticeable scarcity of studies delving into the com-

parative aspects of immune cell infiltration, gene expression profiles, and tumor heter-

ogeneity between HPV-pos. and HPV-neg. cancers. This study underscores the potential 

of single-cell transcriptomics as a potent tool for dissecting the intricacies of heteroge-

neity within HPV-pos. and HPV-neg. cancers. This multifaceted approach not only en-

hances our comprehension of the influence of HPV infection on cancer biology but also 

lends itself to the identification of prospective gene markers with diagnostic, prognostic, 

and therapeutic significance [12]. 

Our initial analysis honed in on CESC samples, unequivocally linked to high-risk HPV in-

fection, to corroborate the presence of discernible heterogeneity between HPV-pos. and 

HPV-neg. cases. Our underlying hypothesis posits that HPV's impact on the host extends 

from manifest transcriptional alterations to distinct patterns of immune cell infiltration. 

Consequently, our investigative journey embarked on scrutinizing transcriptional vari-

ances between HPV-pos. and HPV-neg. samples, leveraging a combination of scRNA-seq 

and bulk RNA sequencing. 

Our findings brought to light distinct gene expression profiles within HPV-pos. samples. 

Notably, CD8+ T cells and B cells displayed a propensity for downregulation, juxtaposed 

with the upregulation of T-reg, CD4+ T cells, and epithelial cells among HPV-pos. CESC 

patients. Remarkably, these discernible patterns of gene expression align harmoniously 

with observations from prior investigations into immunotherapeutic strategies for CESC 

[62]. This concurrence is particularly evident in the pivotal roles played by adaptive im-

munity activation and the ensuing generation of helper T cells, which, in turn, catalyze 

the production of CD8+ cytotoxic T cells, specially attuned to target viral early proteins—

an essential facet of HPV clearance in basal epithelial cells. Furthermore, the orchestra-

tion of T-helper cells serves to amplify B cell activation, culminating in enhanced defense 

mechanisms against subsequent infections, both at mucosal and systemic levels. 

Following the observation of differential immune infiltration between HPV-pos. and 

HPV-neg. samples, our investigation delved deeper into the landscape of tumor immune 

infiltration through CIBERSORT analysis of bulk RNA sequencing samples coupled with 

survival data. This examination unveiled a noteworthy finding: samples characterized by 
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the infiltration of CD8+ cells and B cells exhibited significantly prolonged survival dura-

tions. 

In light of this, we embarked on a quest to identify differential genes, which included 

genes with low immune cell specificity, and bore the strongest association with CD8+ 

cells and B cells. This endeavor was facilitated through the employment of WGCNA. Sub-

sequently, these genes served as the foundation for constructing survival and relapse 

prediction models. Our quest culminated in the identification of three genes—JAK3, 

FOXP3, and IKZF3—exhibiting reduced expression in the HPV-pos. group. These genes 

emerged as protective factors, heralding enhanced prospects for both survival and re-

duced risk of recurrence. Notably, heightened expression of these three genes corre-

sponded to lower RiskScores within the model, indicative of a diminished risk of mortal-

ity and relapse. 

The observed differences between HPV-pos. and HPV-neg. HNSCC samples align with 

the increased expression of these three pivotal genes, thereby signifying a higher likeli-

hood of survival among HNSCC patients. However, it's noteworthy that no other poten-

tial HPV-associated tumors yielded analogous results. In fact, only IKZF3 was identified 

as a favorable factor in BLCA. This outcome resonates with the insights of Jørgensen KR 

and Jensen JB, who emphasized the challenges in establishing a conclusive role of HPV 

in BLCA across its various histological subtypes [63]. In COAD and PRAD, our analysis did 

not identify any hub genes capable of correlating gene expression levels with survival 

outcomes. This observation resonates with the findings of KHOURY et al. [64], who 

pointed out that RNA-Seq data did not detect any HPV transcripts in prostate or colon 

adenocarcinomas. Hence, it becomes evident that while HPV infection exerts an impact 

on hub genes, elevated hub gene expression in non-HPV-infected tumors does not in-

herently confer a protective effect against adverse clinical outcomes. 

Considerable research has explored the roles of FOXP3, JAK3, and IKZF3 within the realm 

of tumor immunology. FOXP3, deemed the most specific and reliable biomarker for T-

reg cells, has yielded conflicting results. In the context of patient survival across various 

cancer types, the infiltration of tumors by FOXP3+ Tregs has been regarded as unfavor-

able. Recent research has introduced Helios as a novel Treg marker, indicating that the 

immunosuppressive function of Tregs is only exerted when both FOXP3 and Helios are 

expressed [65]. Interestingly, FOXP3 has emerged as a favorable prognostic factor in the 

study of HPV-positive tonsillar squamous cell carcinoma [65, 66]. Additionally, the Foxp3 

gene has been identified as an immune regulator capable of suppressing oncogenes 

while activating tumor suppressor genes [67]. A reduction in FOXP3 expression may 

compromise its ability to repress oncogenes and activate tumor suppressors [68, 69]. 
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JAK3, a tyrosine kinase belonging to the Janus family of kinases, is predominantly ex-

pressed in T cells and NK cells [70]. Studies have indicated that HPV-infected individuals 

exhibit significant combined immunological dysfunction associated with JAK3 deficiency 

[71]. Moreover, JAK3 mutations have been detected in HPV-positive Squamous Cell Car-

cinomas of the Oropharynx (OP-SCC) [72] and Cervical Precancers [73]. IKZF3, a tran-

scription factor crucial for regulating B cell proliferation and differentiation, has been 

implicated as a target for HPV integration [74]. In investigations involving OPSCC, IKZF3 

RNA was detected in HPV-positive cell lines, and immune cell infiltration exhibited sub-

stantial IKZF3 positivity, irrespective of the tumor cells' expression pattern. Notably, 

IKZF3 demonstrated a protective effect with a hazard ratio of 0.38 in this study [75]. This 

research has introduced two signatures based on the heterogeneity of CESC, potentially 

applicable for prognostic evaluation, relapse prediction, and the identification of novel 

immunotherapy targets. 

In conclusion, the analysis of scRNA-seq and bulk RNA-seq data from both HPV-positive 

and HPV-negative CESC samples has unveiled a spectrum of heterogeneity encompass-

ing transcriptional states and immune infiltration. Leveraging this polymorphism, we 

have identified genes associated with prognosis that are influenced by HPV infection. 

Using these genes, we have constructed survival and relapse prediction models through 

LASSO Cox regression analysis. Remarkably, the distribution and protective effects of 

IKZF3, FOXP3, and JAK3 within both risk models closely mirror their roles in HPV-associ-

ated HNSCC, suggesting that HPV infection modulates the expression of specific hub 

genes. However, it's worth noting that the genetic mechanisms underlying both signa-

tures remain unexplored. Future research should delve into the molecular intricacies of 

signature genes, providing experimental evidence to facilitate their application in risk 

prediction and the treatment of HPV-associated cancers. 

4.2. Transcriptome changes caused by skin low-risk HPV infection 

The analysis of CESC not only revealed heterogeneity in transcriptional states and im-

mune infiltration between HPV-pos. and HPV-neg. cancers but also indicated that HPV 

infection led to changes in specific hub genes. However, it remained unclear whether 

these effects were exclusive to high-risk HPV infections. To address this question, an 

analysis of low-risk HPV infections was conducted. 

The analysis of low-risk HPV began by examining samples from various sources, including 

condyloma acuminata, treeman syndrome, and normal skin samples, alongside wart 

samples. It was hypothesized that low-risk HPV might have similar effects to high-risk 
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HPV. Consequently, the analysis of low-risk HPV infections commenced by identifying 

DEGs and assessing immune infiltration. 

In low-risk HPV-pos. samples, a reduction in CD8+ T cells, consistent with high-risk HPV 

infections, was observed. Furthermore, alterations were noted in various immune cell 

populations, including macrophages, neutrophils, dendritic cells, plasma cells, mast cells, 

and NK cells. Prior research has indicated that low-risk HPV infections can induce the 

transformation of macrophages from an M1 to an M2 phenotype, contributing to im-

munosuppression [76]. Additionally, FOXP3+ Tregs have been implicated in this process 

[77], aligning with the findings from the analysis of high-risk HPV infections. Further 

analysis of different low-risk HPV-infected samples highlighted a significant infiltration 

of dendritic cells, particularly plasmacytoid dendritic cells (pDCs). pDCs are a specialized 

subset of dendritic cells known for their robust production of type I interferons (IFNs) 

and their crucial role in antiviral responses [78]. 

While previous studies have predominantly examined the association of neutrophils, 

plasma cells, mast cells, and NK cells with high-risk HPV infections, this analysis focused 

on their relationship with low-risk HPV infections. These immune cell alterations have 

been frequently linked to high-risk HPV infections in various cancers, including penile 

cancer[79], head and neck squamous cell carcinoma (HNSCC)[80, 81], squamous cell car-

cinoma (SCC)[82], and cervical squamous cell carcinoma (CESC)[83, 84]. The unexpected 

changes in immune infiltration and the involvement of genes with low immune cell spec-

ificity prompted further characterization of genes related to these cell types using func-

tional assays. 

 

Surprisingly, the analysis revealed enrichment of pathways associated with cancer, hu-

man diseases, and human papillomavirus (HPV) infection, suggesting that genetic 

changes induced by low-risk HPV may share similarities with alterations caused by high-

risk HPV infections. Additionally, pathways related to tumor processes such as ferropto-

sis, oxidative stress, and necroptosis were also enriched. Epithelial tissues, being the 

primary target of HPV infection, are highly exposed to oxidative stress from various 

sources [85]. High-risk HPV infections have been shown to induce oxidative stress, per-

petuate the inflammatory process, generate reactive oxygen species (ROS), cause DNA 

damage, and create a favorable environment for malignant transformation [86]. Fur-

thermore, cells exhibit increased resistance to oxidative stress after undergoing cancer-

ization, and HPV E7 promotes uncontrolled proliferation of infected cells [86]. High-risk 

HPV infections also induce oxidative stress, leading to reduced SLC7A11 expression and 

increased sensitivity to ferroptosis [60]. Ferroptosis is generally associated with high-
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risk HPV infections, as squamous intraepithelial lesions progress into squamous cell car-

cinoma following such infections, leading to the accumulation of intracellular Fe-(II) [87]. 

Moreover, HPV-induced oxidative stress can induce necroptosis, but high-risk HPV in-

fections render cells resistant to necroptosis by downregulating RIPK3 [88]. RIPK3 ex-

pression controls macrophage M1 markers, which have been associated with the prog-

nosis of HPV-related cancers [89]. 

Despite the strong predictability of the models based on these pathways, it is challeng-

ing to determine which group of pathways is the most critical. Therefore, a PPI network 

incorporating all genes from the risk models was constructed to gain further insights. 

Seven genes were obtained from the hub cluster of the protein-protein interaction (PPI) 

network. STAT1 [90], ICAM1 [91], NOX4 [92], and KIT [93] are associated with oxidative 

stress. ICAM1 is highly expressed in neutrophils [94], while STAT1 is specifically ex-

pressed in single-cell cluster T cells [95]. KIT is enriched in granulocytes [96] and NK cells 

[97], while NOX4 is detected in non-immune cells. HSPA4 is a low immune-specific gene 

associated with necroptosis [98]. Low immune-specific VEGFA and monocyte-specific 

HMOX1 are associated with ferroptosis [99]. According to the CTRP V2 database, alter-

ations in the expression of these seven hub genes are associated with different com-

pound sensitivities. Integration of major inhibitors revealed that the Ras-ERK and PI3K-

mTOR pathways are primarily involved. 

 

This step offers the advantage of integrating transcriptomic alterations caused by mul-

tiple low-risk HPV infections, enabling the discovery of potential associations of genes 

in low-risk HPV skin lesions with skin cancer through predictive models and functional 

analysis. However, there is a notable disadvantage. Genetic alterations caused by differ-

ent low-risk HPV types were analyzed together, potentially obscuring disease-specific 

alterations or alterations specific to a particular HPV type. For instance, some studies 

have reported that low-risk HPV infections could be associated with a 1-3% risk of cancer 

progression [100], a small change that may easily be overlooked without a large sample 

size. 

 

If the genetic alterations originate from skin lesions, the results are understandable 

since both high-risk and low-risk HPV types can be found on the skin of immunocompe-

tent individuals without symptomatic lesions [100]. However, the presence of other dis-

eases may make patients more susceptible to HPV infections and the development of 

precancerous lesions in sun-exposed areas [101]. If the genetic alterations are attributed 
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to low-risk HPV infections, it raises the question of whether the carcinogenic role of high-

risk HPV infections should also be attributed to immune alterations. This would imply 

altered pathways, including those related to cancer, oxidative stress, ferroptosis, and 

necroptosis, rather than solely focusing on immune changes, as in the CESC analysis. 

 

The question remains, and it may be worthwhile to address it in the next step by inves-

tigating a disease where both precancerous lesions and cancer are affected by HPV in-

fection. The findings from the first two analyses were also mapped to transcriptome 

profiling data to determine if the target genes were altered with HPV infection and the 

carcinogenesis of keratinocytes. 

   

4.3.  Commonalities of high-risk and low-risk HPV infections 

 

CESC and ASCC, along with their precancerous lesions CIN3 and AIN3, were selected for 

further investigation to elucidate the hypothesis. Additionally, this study aimed to ad-

dress the treatment of HPV-associated cancer. Despite significant advancements in 

chemoradiotherapy, there have been no substantial changes in the management of 

ASCC and CESC treatment in recent years. The identification of biomarkers that support 

clinical decision-making could be highly beneficial. However, there is a limited amount 

of research on precision medicine for ASCC and CESC, highlighting the need for increased 

focus to enhance our understanding of these diseases [102, 103]. 

In the preceding steps, HPV-positive and HPV-negative cervical cancer samples were an-

alyzed to illustrate the heterogeneity from the transcriptional state to immune infiltra-

tion. Similar trends were observed in other HPV-related cancers, such as HNSCC. Fur-

thermore, the analysis of low-risk HPV infections revealed that, in addition to immune 

effects similar to high-risk HPV infections, low-risk HPV also impacts pathways related 

to ferroptosis, necroptosis, oxidative stress, and other cancer-related pathways. This 

suggests that benign skin lesions exhibit genetic alterations similar to those seen in skin 

cancer. Consequently, this step aims to achieve a more profound molecular characteri-

zation of HPV-associated cancers and to propose novel potential treatment options. 

Through a comparison of the methylation β-values of probes, we identified 7,633 DMPs 

that were hypermethylated and 1,024 DMPs that were hypomethylated in both ASCC 

and CESC. These DMPs were associated with genes primarily involved in carcinogenesis 
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and immune function. CIBERSORT analysis revealed that genes with overlapping meth-

ylation patterns were predominantly differentially expressed in T-reg cells, CD4+ T cells, 

CD8+ T cells, dendritic cells, and monocytes. Genes related to these immune cell types 

were extracted from CESC single-cell RNA-seq data. Additionally, we identified 264 

genes associated with oxidative stress, 23 genes associated with ferroptosis, and 65 

genes associated with necroptosis based on functional annotations. Using these genes 

from CESC RNA-seq data, we constructed a new matrix that included expression profiles 

and clinical data. WGCNA analysis of this new matrix demonstrated that 652 of these 

genes were significantly correlated with clinical TNM stage, with CDC42 showing high 

co-expression and a significant association with overall survival in CESC. 

Further network analysis in Cytoscape of the genes connected to CDC42 revealed that 

most of these connections were related to oxidative stress, and oxidative stress-related 

genes were prominent among the hub genes identified in low-risk HPV infections. While 

the results of immune analysis partially agreed, it is plausible to assume that immune 

alterations occur separately in different types of HPV infections. However, the more 

likely commonality appears to be alterations in the oxidative stress pathway. 

CDC42, a pivotal regulator of cell cycle progression, has been firmly implicated in the 

pathogenesis of various cancer types [104]. Notably, CDC42 tends to be overexpressed 

in a multitude of malignancies, a phenomenon often associated with unfavorable clinical 

outcomes [104]. The present study has unveiled a notable increase in CDC42 expression 

levels that parallel disease progression, a trend consistent with observations in other 

cancer types. Intriguingly, both high-risk HPV E6 and low-risk HPV E6 have been identi-

fied as activators of CDC42, with the former demonstrating a more pronounced effect 

on CDC42 activation levels [105]. To further elucidate these findings, in vitro experi-

ments were conducted using normal keratinocytes (HaCaT) and squamous cell carci-

noma cells (A431), which revealed heightened CDC42 expression subsequent to trans-

fection with HPV E6/7. Consequently, it can be postulated that the upregulation of 

CDC42 in both CESC and ASCC can be attributed to epithelial cell carcinogenesis facili-

tated by HPV infection. 

 

However, it is worth noting that developing a selective inhibitor for CDC42 remains an 

intricate challenge, primarily due to its structural resemblance to other GTPases within 

the Rho family and the broader Ras superfamily [106]. An intriguing observation 

emerged from our analysis, demonstrating a positive correlation between elevated 

CDC42 expression levels and heightened sensitivity to the EGFR inhibitor afatinib, as ev-

idenced by data obtained from the CTRP database. The apparent conundrum regarding 
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CDC42's high affinity for the EGFR inhibitor prompted us to employ molecular docking 

techniques in an attempt to elucidate potential intermolecular interactions. Surpris-

ingly, afatinib exhibited a higher binding affinity for CDC42, underscored by a lower bind-

ing energy. Nonetheless, this observation left us grappling with the physical conundrum, 

given that CDC42 is localized within microtubules and cytokinetic bridges, while EGFR 

primarily resides within the plasma membrane and cell junctions. Such spatial incongru-

ities do not readily explain their direct interaction. 

 

To unravel this perplexity, we delved deeper into the molecular intricacies. It emerged 

that upon binding, an extended GTPase-effector interface formed, linking CDC42 to 

EGFR in a stable docking model when afatinib was introduced. This finding suggests that 

the augmented sensitivity to afatinib resulting from CDC42 upregulation likely involves 

a more complex mechanistic interplay. Remarkably, CDC42, a gene closely associated 

with oxidative stress, has been shown to interact with the γ subunit of the coatomer 

protein complex, thus facilitating the accumulation of EGFR [107]. This interaction trig-

gers the production of reactive oxygen species (ROS), often seen in response to EGFR 

overexpression, mutational activation, or the abnormal activation of downstream effec-

tors upon exposure to oxidative stress. ROS, in turn, promote cell proliferation [108]. 

 

In vitro experiments further substantiated these findings by revealing that afatinib-in-

duced apoptosis in HaCaT/A431 cells was notably enhanced in conjunction with ele-

vated CDC42 expression levels, resulting in the more efficient repression of EGFR signal-

ing. Consequently, it is plausible to posit that HPV infection and epithelial cell carcino-

genesis contribute to the upregulation of CDC42 in CESC, a phenomenon that holds 

promise as a potential biomarker for EGFR-targeted inhibitor therapy. 

 

While afatinib is primarily indicated for the treatment of non-small cell lung cancer 

(NSCLC) in individuals harboring EGFR mutations [109], its selection for this study was 

motivated by the absence of specific EGFR inhibitors tailored for the treatment of HPV-

related squamous cell carcinoma. Although the precise mechanistic details underlying 

the interaction between afatinib and CDC42 remain elusive, it is worth noting that one 

CESC patient derived notable benefit from afatinib. However, the levels of CDC42 ex-

pression in this particular patient with EGFR amplification remain undisclosed [110]. 

In summary, our comprehensive analysis has illuminated both shared characteristics and 

nuanced distinctions between high-risk and low-risk HPV infections. While these distinct 
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HPV types engender diverse alterations in immune cell subtypes, a common thread 

emerges in their shared impact on oxidative stress pathways. Our investigation has fur-

ther delved into the intricacies of oxidative stress alterations, shedding light on the un-

derlying mechanisms of carcinogenesis in the context of HPV infection. 

 

Notably, the upregulation of CDC42 has emerged as a significant contributor to the in-

creased sensitivity of cancer cells to the EGFR inhibitor afatinib. This finding suggests a 

promising avenue for therapeutic intervention, emphasizing the potential utility of 

CDC42 as a biomarker for guiding EGFR-targeted inhibitor therapy. The proposed spe-

cific interaction involving CDC42, the GTPase-effector interface, EGFR, and afatinib pre-

sents an intriguing direction for future research and clinical exploration. 

 

Moving forward, it is imperative for future investigations to shift their focus towards 

intricate in vivo models, which can provide invaluable insights into the practical applica-

tion of the CDC42-afatinib-EGFR combination. Additionally, the development of specific 

oxidative stress inhibitory compounds tailored to HPV infection and epithelial cell car-

cinogenesis represents a promising frontier in the quest for more effective therapeutic 

strategies. 
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