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Zusammenfassung

Das Verständnis des Ursprungs der informationsprozessierenden Eigenschaften Schwar-
zer Löcher auf mikroskopischem Niveau ist eine fundamentale Forschungsrichtung in der
Physik. Aufgrund dessen, wie sie sich zeitlich entwickeln und Quanteninformation spe-
ichern, werden Schwarze Löcher oft als einzigartig betrachtet. Jedoch wurde vor kurzem
vorgeschlagen, dass bestimmte Objekte, sogenannte Saturons, oder Saturonen (von engl.
„to saturate“ – sättigen), die gleichen Eigenschaften wie Schwarze Löcher universell aufwei-
sen. Saturonen sind Objekte, die die maximale Entropie besitzen, die von der Unitarität
innerhalb deren jeweiligen Theorien zugelassen ist.

In dieser Dissertation wird zunächst diese Schwarzes Loch–Saturon-Korrespondenz in-
nerhalb einer renormierbaren SU(N)-symmetrischen Theorie verifiziert. Wir zeigen, dass
das Spektrum dieser Theorie eine Reihe von Energieeigenzuständen in Form von Blasen
beinhaltet, die gebundene Zustände aus SU(N)-Goldstone-Bosonen darstellen. Trotz der
Abwesenheit von Gravitation in dieser Theorie weist eine gesättigte Blase die informa-
tionsprozessierenden Merkmale eines Schwarzen Loches auf: deren Entropie ist durch das
Bekenstein-Hawking-Flächengesetz gegeben; semiklassisch besitzt sie einen strikten In-
formationshorizont, evaporiert mit einer thermalen Rate bei einer Temperatur, die zum
Kehrwert deren Radius proportional ist; und die minimale Zeit für den Start der Infor-
mationsgewinnung ist gleich der Page-Zeit. Diese Schwarzes Loch–Saturon-Korrespondenz
zeigt, dass die genannten informationsprozessierenden Charakteristiken nicht spezifisch
für Schwarze Löcher oder Gravitation sind. Stattdessen liegt der fundamentale Ursprung
dieser Eigenschaften generischer Saturonen in der Sättigung der Unitaritätsgrenzen in den
jeweiligen Theorien.

Als nächstes wird der Prozess der Diffusion oder des „Prescrambling“ (von engl. „to
scramble“ – vermischen) der Information innerhalb eines mikroskopischen Systems, das zur
Modellierung der Einspeicherung und Prozessierung von Information in Schwarzen Löch-
ern entworfen wurde, analysiert. Dementsprechend ist dieses Prototypsystem imstande,
große Mengen von Quanteninformation einzuspeichern, da es eine erweiterte Speicherka-
pazität besitzt. Wir untersuchen die frühzeitige Dynamik des Systems auf Zeitskalen vor
Stattfinden des Scrambling, wobei wir die allgemeinste Definition des letzteren verwenden.
Obwohl die Zeitentwicklung des Systems unitär ist, breitet sich dessen Zustand allmählich
über den gesamten Zustandsraum aus und wird dadurch vermischt. Wir definieren ein Maß
für Prescrambling mithilfe einer minimalen Wahrscheinlichkeitsschwelle für die Zustände
im Hilbertraum des Systems. Aufgrund unserer Erkenntnisse können einige Vermutungen
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über generische Quantensysteme, einschließlich Schwarzer Löcher, aufgestellt werden. Ins-
besondere weisen unsere Ergebnisse darauf hin, dass die schnellsten Prescrambler eine in
der Anzahl ihrer Freiheitsgrade logarithmische Zeit benötigen, dass das untersuchte Proto-
typmodell ein schneller Prescrambler ist und dass Schwarze Löcher schnelle Prescrambler
sind.

Als letztes wird die Thermalisierung innerhalb des selben Prototypsystems, das in einem
reinen Anfangszustand |in〉 weit vom Gleichgewichtszustand präpariert wurde, untersucht.
Insbesondere schlagen wir einen neuen expliziten Mechanismus vor, mittels dessen die
Wenigteilchenobservablen innerhalb dieses isolierten Quantensystems unter einer unitären
Zeitentwicklung zu ihren statistischen Ensemblemittlewerten ins Gleichgewicht gebracht
werden. Die Neuheit dieses Mechanismus ist das Auftreten von Thermalisierung trotz
der Korrelationen zwischen den Fluktuationen der Eigenzustandserwartungswerte 〈α| Â |α〉
einer Wenigteilchenobservablen und den Fluktuationen der Koeffizient-Quadraten |Cα|2 =
| 〈α|in〉 |2.

Wir diskutieren die Auswirkungen unserer Erkenntnisse auf die Physik Schwarzer Löcher
und isolierter Quantensysteme, sowohl im Sinne deren fundamentalen Verständnisses als
auch im Bezug auf mögliche Beobachtungen.



Abstract

Understanding the origin of information-processing properties of black holes at a micro-
scopic level is a fundamental direction of research in physics. Black holes are often regarded
as unique due to how they evolve in time and store quantum information. However, it was
recently proposed that these properties are universally exhibited by certain objects, the
so-called saturons, that possess the maximal entropy permitted by unitarity within their
respective theories.

In this dissertation we first verify this black hole–saturon correspondence within a
renormalizable SU(N)-symmetric theory. We demonstrate that the spectrum of the theory
contains a tower of bubbles representing bound states of SU(N) Goldstone bosons. Despite
the absence of gravity in this theory, a saturated bubble exhibits the information-processing
features of a black hole: Its entropy is given by the Bekenstein-Hawking area-law formula;
semiclassically, it possesses a strict information horizon and evaporates at a thermal rate
with a temperature proportional to its inverse radius; and the minimum time for the start
of information retrieval is equal to the Page time. This black hole–saturon correspondence
provides evidence that the above information-processing characteristics are not specific
to black holes or gravity. Instead, the fundamental origin of these properties for generic
saturons lies in the saturation of the unitarity bounds by the respective theories.

Next, we study the process of diffusion or “prescrambling” of information within a
microscopic system designed to model how a black hole stores and processes information.
Correspondingly, this prototype system is able to store large amounts of quantum informa-
tion, that is, it possesses an enhanced memory capacity. We study the early-time dynamics
of the system on timescales before scrambling for the most general definition of the latter.
Although the time-evolution of the system is unitary, its state gradually spreads over the
entire state space and is thus scrambled. We define a measure for prescrambling in terms
of a minimum probability threshold for the states in the Hilbert space of the system. Our
findings lead us to propose a set of conjectures for generic quantum systems, including
black holes. In particular, these state that the most rapid prescramblers take a time log-
arithmic in the number of degrees of freedom, that the investigated prototype model is a
fast prescrambler and that black holes are fast prescramblers.

Last, we consider thermalization within the same prototype system prepared in a pure
initial state |in〉 far from equilibrium. Specifically, we propose a new explicit mechanism
via which under unitary time-evolution few-body observables equilibrate to their statistical
ensemble averages within this isolated quantum system. The novelty is the occurrence of
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thermalization despite correlations between the fluctuations of the eigenstate expectation
values 〈α| Â |α〉 of a few-body observable and the fluctuations of the coefficients-squared
|Cα|2 = | 〈α|in〉 |2.

We discuss the implications of our findings for black hole physics as well as for isolated
quantum systems, both fundamental and observational.
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Chapter 1

Introduction

1.1 Invitation
The main focus of the present dissertation is to further improve the understanding

of the information-processing characteristics of black holes. We review these features in
the corresponding sections below. This brief section serves the purpose of an overview of
the general picture. The current work approaches the task at hand from two directions:
First, we consider a renormalizable, non-gravitational theory in which we demonstrate the
existence of objects that exhibit the same properties as those of black holes. Second, we
consider a specific microscopic prototype model of a black hole. In this quantum setting
we investigate the dynamics of how the state of the system evolves over time and how the
information within it is processed.

On the one hand our goal is to expand the existing notions concerning black holes to
other, in particular non-gravitational, theories. This allows us to provide further evidence
that the known black hole features are not specific to gravity. We can thus explain the
origin of black hole properties at a more fundamental level. On the other hand, our aim
is to suggest new implications and hypotheses for black hole physics. Ultimately, the
intention is to propose novel mechanisms and phenomena that could, ideally, be tested in
a real setting on cosmological black holes at some point in the future, or, what is currently
more realistic, to be tested in simulations and in laboratory experiments on systems of
ultracold bosons with attractive interactions, or on analogue systems of black holes.

1.2 Conventions
We use the following conventions throughout the present work. We set c = kB = ~ = 1,

unless explicitly stated otherwise. Here, c is the speed of light, kB is the Boltzmann constant
and ~ is the reduced Planck constant. We denote Newton’s gravitational constant by GN.
Correspondingly, the Planck length is given by LP =

√
~GN/c3 and the Planck mass is

given by MP =
√
~c/GN. The metric signature convention in four spacetime dimensions
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is given by (+,−,−,−). The general scaling in equations where the specific numerical
factors are unimportant is denoted by “∼”. Where applicable, for brevity, we denote by
“H.c.” the Hermitian conjugate of an operator that follows that operator itself.

1.3 Black holes
Black holes are undoubtedly some of the most fascinating objects in the universe. As

the core results of the present thesis are relevant for black holes, we review some of their
properties below to establish an appropriate foundation. In Schwarzschild coordinates
(t, r, θ, φ) the Schwarzschild black hole solution [6, 7] of the equations of Einstein’s theory
of general relativity is given by the line element

ds2 =
(

1− RS

r

)
dt2 −

(
1− RS

r

)−1
dr2 − r2 dΩ2, (1.1)

where
RS = 2GNM (1.2)

is the Schwarzschild radius of the black hole, M is its mass and dΩ2 = (dθ2 + sin2 θ dφ2)
is the metric on the two-sphere. The Schwarzschild radius determines the event horizon of
the black hole. The corresponding spacetime hypersurface represents a sphere from within
which light can no longer escape the gravitational field.

The suggestion that black holes must have an entropy, which is given by [8, 9]

S = πR2
S

~GN
, (1.3)

has further stimulated the interest in how these objects process and store information. In
relation to subsequent sections, for convenience, we can express the entropy in Eq. (1.3) in
terms of the area of the black hole’s event horizon A = 4πR2

S in units of Planck area L2
P

as
S = A

4L2
P
. (1.4)

A further discovery that black holes must radiate [9, 10] has sparked a long-standing
debate [11,12], dubbed the famous Hawking’s “information paradox”. The apparent para-
dox arises due to the assumption that during the full course of its evaporation, a black hole
can be treated classically. Consequently, the radiation is assumed to be exactly thermal
during the entire evaporation process, leading to loss of information and, therefore, to an
apparent violation of unitarity by black holes. However, in a fully quantum theory of a
black hole the non-thermal corrections to its Hawking radiation are non-negligible [13].
Specifically, the corrections are suppressed by the inverse powers of entropy [14–17].

Hawking’s computations [9, 10] were performed in the semiclassical limit where quan-
tum fields evolve on the background of a fixed classical metric. Therefore, there is no
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backreaction of the quantum fields on the black hole. This double-scaling limit is uniquely
given by [13]

M →∞, GN → 0, but RS ∼ GNM finite, ~ 6= 0. (1.5)

In this limit there is no backreaction and the black hole radiates exactly thermally with a
Hawking temperature of

T = ~
8πGNM

. (1.6)

Note from Eq. (1.3) that, consistently with the fact that there is no backreaction, the
entropy of the black hole is infinite, S →∞. For completeness, let us note from Eqs. (1.3)
and (1.6) that, as expected, in the classical limit

~→ 0, (1.7)

the entropy is also infinite, but the black hole does not emit radiation, T → 0.
Only in the fully quantum picture, where M < ∞, GN 6= 0 and ~ 6= 0 (and hence

S < ∞), are there non-thermal corrections to the radiation spectrum emitted from the
black hole. In [13] it was argued that for a Schwarzschild black hole of entropy S, the non-
thermal corrections to its Hawking radiation temperature scale as ∼ 1/S in the leading
order approximation.

1.4 The quantum N-portrait
A microscopic theory of a black hole was developed in a series of works [14–17], with

subsequent papers expanding on this notion. Here we briefly review this concept, largely
relying on [14]. The key idea is to view a black hole as a multi-graviton state defined on
top of a Minkowski vacuum as a ground state. In this picture, a black hole is regarded
as a leaky bound state of a Bose-Einstein condensate (BEC) of a large number N � 1 of
weakly interacting soft gravitons. The wavelength λ of these gravitons is set by the scale
of the classical geometry, that is by the Schwarzschild radius RS. We can estimate the
typical energy of each such constituent of the black hole as [14]

Egr ∼
~
λ
∼ ~
RS

. (1.8)

With the total mass of the black hole approximately given by the sum of the energies
of its individual quanta as [14]

M ∼ NEgr, (1.9)

we can estimate the number of its constituents as

N ∼ M

Egr
∼ MRS

~
∼ R2

S
~GN

. (1.10)
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Equivalently, we can express N in Eq. (1.10) in a more intuitive form of [14]

N ∼ M2

M2
P
∼ R2

S
L2
P
. (1.11)

The gravitons in the black hole bound-state interact with a dimensionless quantum self-
coupling strength of [14]

αgr ∼
~GN

λ2 ∼
L2
P
λ2 ∼

1
N
. (1.12)

To escape, a quantum needs to attain an energy that exceeds the collective binding
energy of the ∼ N gravitons of the condensate. This is given by [14]

Eesc ∼ αgrN
~
λ
∼ ~√

NLP
. (1.13)

The leading order contribution to this process is the 2→ 2 scattering [14,15]. The Feynman
diagram of this process involves two 3-point interaction vertices. Therefore, the scattering
amplitude of this process scales as αgr. Consequently, the decay rate scales as α2

gr. In a
state of N quanta, the rate is enhanced by the combinatorial factor

(
N
2

)
∼ N2 due to the

choice of 2 out of the N constituent gravitons. With the typical energy of the process Eesc,
the decay rate reads

Γ ∼ α2
grN

2Eesc ∼
~√
NLP

(1.14)

to the leading order in N .
The characteristic timescale corresponding to this rate is given by [14]

∆t ∼ ~Γ−1, (1.15)

during which the black hole emits a graviton of energy Egr. The corresponding mass
decrease of the condensate is then

∆M = −Egr = −~
λ
. (1.16)

We can then estimate the emission rate of the black hole as [14]

dM
dt ∼ −

~
λ

Γ
~
∼ − ~

NL2
P
. (1.17)

Using Eq. (1.11), this can be re-cast in an informative form in terms of the occupation
number N as [14]

dN
dt ∼ −

1√
NLP

. (1.18)

Consistently, the half-life time of the black hole is then given by

τ ∼ N3/2LP. (1.19)
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Restoring the usual units by employing Eq. (1.11) in Eq. (1.19), we recover the well-known
Page’s time for a black hole [18,19]

τ ∼ tmin ∼
G2

NM
3

~
∼ R3

S
~GN

, (1.20)

which is equal to the minimal timescale necessary for the onset of information retrieval
from the black hole.

Defining the Hawking temperature as [14]

T ∼ ~√
NLP

(1.21)

and restoring the usual units we consistently retrieve Eq. (1.6).
We thus obtain a dictionary between the framework of the quantum N -portrait and the

usual cosmological description of black holes, where all of the corresponding properties of
a black hole can be characterized by a single universal quantum parameter, the occupation
number N [14]:

• Occupation number N
• Graviton wavelength λ ∼

√
NLP

• Coupling strength αgr ∼ 1/N
• Mass M ∼

√
NMP

• Schwarzschild radius RS ∼
√
NLP

• Entropy S ∼ N
• Hawking temperature T ∼ ~/(

√
NLP)

• Half-life time τ ∼ N3/2LP.

1.5 Entropy saturation
The properties reviewed in the previous sections are usually attributed as unique to

black holes. Here we list them again for convenience: First, they possess an entropy that
is given by the area-law, the Bekenstein-Hawking entropy [8, 9]

S ∼ Area

GN
, (1.22)

where Area is the area of the black hole event horizon and GN is Newton’s gravitational
constant. Second, semiclassically, black holes have a strict information horizon. Third, in
the semiclassical limit black holes evaporate at a thermal decay rate with a temperature [10]

T ∼ 1
R
, (1.23)

where R is the radius of the black hole. Fourth, there exists a minimal timescale for the
onset of information retrieval, the aforementioned Page’s time [19] for a black hole, which
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is expressed as
tmin ∼

V olume

GN
∼ SR, (1.24)

where V olume is the volume of the black hole.
However, black holes are not special in this regard. In fact, there exist objects in

other non-gravitational theories that exhibit the above features [20–22]. These objects are
called saturons. These are n-particle composite classical objects with maximal entropy.
For further related work see [1,23–27]. For a generic quantum field theory in d dimensions
the bound on the entropy for an object of size R is given by [22]

Smax = 1
α

= Area

GGold
, (1.25)

where α is the effective running coupling of the theory evaluated at the momentum transfer
scale 1/R, Area ∼ Rd−2 is the area of the sphere in which the object is contained, and
GGold is the coupling of the Goldstone field of a spontaneously broken symmetry. Note
that, as a bonus, we recover the Bekenstein bound on entropy [28]

S = 2πMRS. (1.26)

We remark, however, that the Bekenstein bound carries no information regarding the
coupling of the system and thus cannot be seen as equally fundamental as the bounds in
Eq. (1.25).

The underlying reason for the maximal entropy is the non-perturbative saturation of
unitarity by 2 → n particle scattering amplitudes at the point of optimal truncation [22].
Below we briefly review this argument, largely relying on [22]. At large n, the 2 → n
cross-section is given by

σ2→n = cnn!αn, (1.27)
where the factor cn is polynomial in n and is therefore not relevant for such scattering
processes. We can thus set cn to one, with the corresponding error scaling as ∼ ln(n)

n
.

Expanding the above cross-section σ2→n in series of α, we must stop when it reaches a
minimum in n. This occurs for n = α−1, or, in other words, when the collective coupling

λc = αn (1.28)

is equal to one [22]. Using Stirling’s approximation

ln(n!) = n ln(n)− n+O [ln(n)] , (1.29)

we obtain for the cross-section:

σ2→n = e−n = e−1/α. (1.30)

Non-perturbative arguments also lead to the same conclusion for n� α−1 [22]. To obtain
the total cross-section we sum the individual 2 → n cross-sections over the nst-many



1.6 Enhanced memory capacity 7

micro-states that correspond to the same classical macro-state that is the product of this
scattering,

σ =
nst∑

micr. st.
σ2→n. (1.31)

For large n this sum simplifies to multiplying σ2→n by the micro-state degeneracy factor
nst = eS, where S is the entropy [22]. Using Eq. (1.30) we then obtain

σ = e− 1
α

+S. (1.32)

Therefore, when the entropy S saturates the bound in Eq. (1.25), the cross-section σ in
Eq. (1.32) saturates the unitarity bound.

1.6 Enhanced memory capacity
The key property that allows a system to exhibit the microstate entropy as given by

Eq. (1.25), is that it is able assume a large number of microstates nst that correspond to
a given macrostate. For this to hold, these microstates need to be degenerate in energy
and therefore fit within a narrow energy gap [29]. Consequently, they all contribute into
the microstate entropy S = ln(nst). Thus, such a system is able to store large amounts of
information. That is, the system possesses an enhanced memory capacity [29,30]. See [31–
34] for further studies. The brief overview below relies largely on the review [35].

Suppose that we would like to establish such a system, which can store a large amount
of information in terms of the occupation numbers of its modes âk for k = 1, . . . , K.
We refer to these as memory modes [35]. We can assume the modes to be bosonic and
the corresponding creation and annihilation operators obeying the standard commutation
relations [

âj, â
†
k

]
= δjk, [âj, âk] = 0,

[
â†j, â

†
k

]
= 0. (1.33)

The various sequences of the occupation numbers of the respective modes |n1, . . . , nK〉
correspond to the states of the system. We refer to each such distinct state as a memory
pattern [35].

Given the energy cost ε of occupying one such memory mode, we can express the
Hamiltonian of the system as

Ĥ = ε
K∑
k=1

n̂k. (1.34)

However, as the energy gap ε is nonzero, storing large amounts of information is very costly.
We can solve this by employing the effect of assisted gaplessness [34]. Specifically, we in-
troduce an additional bosonic master mode â with the corresponding occupation number
operator denoted by n̂a [35]. This mode interacts attractively with the memory modes,
lowering their effective energy gaps εeff. The master mode â can also exchange occupa-
tion number with an external mode b̂, with the strength of the corresponding coupling
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parametrized by Cb. The Hamiltonian now reads

Ĥ =
(

1− n̂a
N

)
ε︸ ︷︷ ︸

=εeff

K∑
k=1

n̂k + Cb
(
â†b̂+ H.c.

)
. (1.35)

Note that whenever the master mode reaches a certain critical occupation number 〈n̂a(t)〉 =
N , the energy gaps of the memory modes âk become gapless. Consequently, the energy
cost to excite them vanishes. The system is now able to accommodate large amounts of
information in terms of the occupation numbers of the memory modes.

If we evolve the system from the initial state

|in〉 = |na, nb, n1, . . . , nK〉 = |N, 0, n1, . . . , nK〉 , (1.36)

the large amount of quantum information stored in the memory modes will backreact onto
the master mode, preventing it to lose occupation number quickly. That is, the system
becomes stabilized in the above state of enhanced memory capacity and its evolution is
slowed down. We refer to this as the memory burden effect [30,33]. In Sec. 3.2 we discuss
this further and review how memory burden can be avoided.

1.7 Scrambling

Consider a quantum system ofK information-storing degrees of freedom, such as that in
Eq. (1.35). To illustrate our point, we include an additional term of the form (â†j âk+H.c.) in
the corresponding Hamiltonian to allow the various information carrying memory modes âj,
âk with j, k = 1, . . . , K to exchange occupation number. We parametrize the strength of the
corresponding coupling by Cm. Due to the unitary time-evolution of the system, an initial
pure state of the system remains pure throughout. Nevertheless, with time, the initial state
becomes increasingly and sufficiently entangled with all of the other states in the state
space by some measure. We refer to this phenomenon as the system scrambling [36–38]
the information initially contained only in its original state.

Some of the first various measures of scrambling mentioned in the literature include:
Haar-scrambled [36,37] and Page-scrambled [37,39]. However, to understand the process of
scrambling at a quantum level, a microscopic picture is necessary. Based on the quantum
N -portait, such a framework was suggested in [14, 16, 40–42] and developed in related
works. In relation to microscopic models of black holes, the corresponding scrambling
measures and the respective timescales discussed in these papers are those of one-particle
entanglement [41] and maximal entanglement [42]. Building on the findings above, in
chapter 3, which is based on [2], we consider the early-time aspects of scrambling within
such a microscopic model of a black hole.
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1.8 Thermalization
Thermalization of physical systems has long been a prominent field of research. There

exist multiple definitions of thermalization, depending on the specific system and the con-
text of the question being investigated. The concept of scrambling discussed above can
also be viewed as a form of apparent thermalization in isolated quantum systems. Let us
stress again that an initial pure state of a system evolved unitarily in time remains pure.
However, under certain conditions, expectation values of observables may time-evolve to
approach their statistical ensemble averages. Thus, finding microscopic mechanisms by
which isolated quantum many-body systems thermalize has long been a subject of inter-
est [43]. That is, for such a system prepared in a pure initial state far from equilibrium,
what is the underlying reason for few-body observables within that system, under unitary
time evolution, to equilibrate to their typical expectation values predicted by an appropri-
ate statistical ensemble? In other words, the goal is to unveil the mechanisms allowing to
describe isolated quantum systems by equilibrium statistical mechanics.

The Eigenstate Thermalization Hypothesis (ETH) [44, 45] introduced a prominent mi-
croscopic mechanism explaining this thermalization. Since then, it has been expanded
upon in [46–48] among many other works (for reviews see e.g. [49–53]). Subsequently, a
large variety of different thermalization mechanisms were developed: [50, 54–59] to name
only a few. We review the ETH in detail in chapter 4, as well as the relevant aspects of
the other thermalization mechanisms.

1.9 Outline
The present work is structured as follows. In chapter 2, which is based on [1], we

consider a renormalizable SU(N) invariant field theory from [22]. The spectrum of this
theory contains a tower of vacuum bubbles that are bound states of SU(N) Goldstones.
We show that, despite the absence of gravity, saturated vacuum bubbles exhibit properties
that are in one-to-one correspondence to those of black holes. This correspondence is due
to the fact that a vacuum bubble that stores quantum information breaks the Poincaré
symmetry spontaneously. This results in the existence of a Poincaré Goldstone. We address
the implications of our findings for black hole physics.

Chapter 3 is based on [2]. Here we consider the early time-evolution of a prototype
system of enhanced memory capacity introduced to model the information processing char-
acteristics of a black hole. Based on this specific example, we suggest a series of conjectures
regarding the early stages of the process of information scrambling within generic quan-
tum systems. We denote this novel regime as prescrambling and quantify it. We employ
the most nonrestrictive definition of scrambling, namely that the state of the system is
sufficiently distributed over the entire Hilbert space with respect to some measure. Our
findings are in agreement with the fast scrambling conjecture [36–38]. We also address the
relevance of our results to the information-scrambling physics of black holes.

In chapter 4 we consider the long-time behavior of few-body observables in the afore-
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mentioned quantum prototype model with enhanced memory capacity. We find indications
that the expectation values of these observables equilibrate to their respective microcanoni-
cal ensemble averages in the thermodynamic limit (TDL), and thus thermalize in this sense.
We demonstrate that the thermalization mechanisms established in the literature cannot
explain thermalization in this system for the chosen observables. Our findings therefore
lead us to suggest a new thermalization mechanism for isolated quantum systems. The
novelty is the occurrence of thermalization despite unignorable correlations between the
fluctuations of the eigenstate expectation values 〈α| Â |α〉 of a few-body observable Â in
the eigenstate basis {|α〉} and the fluctuations of the squared magnitudes of the coeffi-
cients |Cα|2 = | 〈α|in〉 |2 for a non-equilibrium initial state |in〉 of the system. We discuss
the implications of such correlations for thermalization within isolated quantum systems
as well as the application of our results to black hole physics.

In chapter 5 we summarize the results of the dissertation and provide general conclusions
and an outlook for future research.

For transparency, let us note that some of the results obtained in joint projects together
with collaborators, both published and those in preparation, described in or related to the
present dissertation, have been and will be reported in their respective theses and disser-
tations. Specifically, these include the following: Extensions of the code used for [2,3] were
developed in collaboration with Houssem Amami and the respective results appeared in the
corresponding Master’s thesis based on these findings. Furthermore, results from [1] will
also be reported independently in the dissertation by Juan Sebastián Valbuena-Bermúdez
(in preparation).



Chapter 2

How Special are Black Holes?

This chapter is based on the work [1]. In the corresponding paper, within a renormaliz-
able SU(N)-symmetric theory, we construct bubbles representing bound states of SU(N)
Goldstone bosons. These bubbles are able to attain the maximal entropy permitted by uni-
tarity within this theory. Such objects that saturate the corresponding bounds on entropy
within the respective theories are called “saturons”. As was recently proposed, they possess
the properties that are often considered to be uniquely exhibited by black holes, due to the
seemingly special time evolution and information processing characteristics of the latter.
Despite the absence of gravity in the considered SU(N) invariant theory, a saturated bub-
ble is very similar to a black hole: Its entropy scales as its area; semiclassically, the bubble
evaporates thermally with a temperature proportional to its inverse radius and exhibits
a strict information horizon; and the minimum time for the onset of information recov-
ery is equal to the Page time. The underlying connection within this black hole–saturon
correspondence is due to the transtheoretic notion of a Goldstone boson of spontaneously
broken Poincaré symmetry. This correspondence has significant implications for black hole
physics, both fundamental and observational.

2.1 Introduction
Due to their information processing characteristics, black holes are often considered to

be special. Recently, it has been suggested [22, 24] that these properties are generic for a
class of objects called saturons. For a given theory, these objects saturate the microstate
entropy bound imposed by unitarity within that theory. These findings are based on the
works [20,21], which constructed solitons and instantons that exhibit a high degeneracy of
microstates and, correspondingly, a large microstate entropy.

The corresponding entropy bound has two equivalent formulations [22]. For an object
of size R in d space-time dimensions, the first form of the bound on entropy is given by

S ≤ Area

GGold
, (2.1)
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where Area ∼ Rd−2 denotes the area of the sphere the object is contained within, and
GGold is the Goldstone field coupling of the spontaneously broken Poincaré symmetry.
Any macroscopic object that stores quantum information inevitably breaks the Poincaré
symmetry spontaneously. The above bound holds true in arbitrary space-time dimensions,
including d = 2; see [25] for a specific example.

The bound in Eq. (2.1) has an equivalent form of

S ≤ 1
α

(2.2)

in terms of an effective running coupling α of the theory, that is evaluated at the momentum
transfer scale of 1/R. Note that the equivalence of the above two formulations of the bound
can be seen from the expression for the effective dimensionless Goldstone coupling

αGold ≡
GGold

Area
, (2.3)

evaluated at the momentum transfer scale 1/R. The above two bounds are saturated
simultaneously [21]. We can thus write down the combined form of the entropy bound
imposed by unitarity as

Smax = 1
α

= Area

GGold
. (2.4)

Denoting the canonically normalized Goldstone decay constant as f , we can express the
Goldstone coupling GGold of a Poincaré Goldstone as

GGold ≡ f−2. (2.5)

For the entirety of the chapter we work in d = 4 space-time dimensions. Correspondingly,
f has the dimensionality of mass. For any field-theoretic object that is a bound state of N
quanta of wavelengths R and is self-sustained, Eq. (2.5) takes the form of

GGold = f−2 = R2

N
. (2.6)

Saturons, the objects that saturate the entropy bounds in Eqs. (2.1) and (2.2), possess
a set of common properties, which are identical to those of black holes [22]

(i) Their entropy obeys the area-law, see Eq. (2.4),

(ii) Semiclassically, i.e. up to 1/S corrections, they decay with a thermal rate with a
temperature

T ∼ 1/R, (2.7)

(iii) Semiclassically, they possess a strict information horizon,

(iv) The minimal timescale necessary for the onset of information recovery is bounded
from below by

tmin = V olume

GGold
= R

α
= SmaxR, (2.8)
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with V olume ∼ Rd−1 equal to the volume of the sphere within which the object is con-
tained.

For a black hole, the Goldstone boson of the spontaneously broken Poincaré symmetry
comes from the graviton. The latter has the coupling strength GN. That is, the mapping

GGold → GN (2.9)

demonstrates the complete correspondence of the above properties to those of a black hole.
Under the mapping in Eq. (2.9), from the maximal entropy in Eq. (2.4) we recover the
familiar expression of the Bekenstein-Hawking entropy [8, 9]

SBH ∼
Area

GN
(2.10)

for a black hole of radius R. Equivalently, we can express this entropy in terms of the
quantum gravitational coupling αgr = GN/Area in d space-time dimensions evaluated at
the momentum transfer scale of 1/R as [14,16,22,60]

SBH ∼
1
αgr

. (2.11)

Note that with the mapping in Eq. (2.9), from the timescale in Eq. (2.8) we obtain the
Page’s time [19] for a black hole; the minimal timescale of the start of information retrieval.

The work of [22] suggests that the above characteristics are exhibited by saturons
in arbitrary theories and are thus not unique to black holes or gravity. In addition
to [1], various other works provided examples of this correspondence, including solutions
in Lorentzian and Euclidean spaces, such as solitons, instantons, and other self-sustained
bound states [20–22], bound states in the Gross-Neveu model [25, 61, 62] (see [63, 64] for
reviews), the “color-glass condensate” (CGC) exhibiting the properties of a saturon in
ordinary QCD [23,65], as well as the proposal of the existence of saturon dark matter [27].

Note that the saturon correspondence is a correspondence between black holes and
bound states within the frameworks of other various theories, instead of between the re-
spective theories themselves. The underlying reason for this trans-theoretic correspondence
is the saturation of the entropy bounds given by Eqs. (2.1) and (2.2), which are imposed
by unitarity of the respective theories.

As mentioned previously, the black hole-saturon correspondence allows us to improve
our understanding of black hole physics. As established by the examples above, saturons
exist in renormalizable and calculable theories, while still exhibiting all of the essential
characteristics of black holes. Researching saturons in various theories thus allows us, on
the one hand, to understand at a more fundamental level the underlying reasons which
give rise to the properties of black holes, while on the other hand, to propose new effects
and phenomena for black hole physics. The memory burden effect [30, 35], by which the
quantum information can stabilize the system that carries this information, is one of such
suggested phenomena.
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In this chapter, following [1], we demonstrate a further example of the above black hole-
saturon correspondence. We study saturons within a renormalizable theory of a scalar field
in d = 4 space-time dimensions from [22]. The theory possesses a global SU(N) symmetry
and multiple degenerate vacuum states corresponding to different patterns of spontaneous
symmetry breaking (SSB). As the theory is renormalizable, we can study it at arbitrarily
weak coupling and large N . The spectrum of the theory contains solitonic vacuum bubbles
which separate the vacua corresponding to distinct SSB patterns.

The spectrum includes an infinite set of bubbles that are stable due to the memory bur-
den effect. These bubbles are bound states containing a large number of Goldstone bosons,
which are a result of the SSB. We denote the total occupation number of the Goldstone
quanta within a vacuum bubble by NG. The Goldstones can exist only within the bubble
as the symmetry is unbroken in the asymptotic vacuum outside of the bubble and the
Goldstone quanta therefore cannot propagate there. If a bubble decays, it releases massive
quanta that carry the conserved SU(N) charge into the exterior vacuum. Prior to the
bubble’s decay, this charge is stored in terms of the occupation numbers of the Goldstone
modes in the interior of the bubble. Thus, semiclassically, the bubble is completely stable
due to the resulting energy barrier.

We can label the levels of the spectrum by NG, with each level being exponentially de-
generate. Therefore, the vacuum bubbles can have a high microstate entropy. Specifically,
we show that the bubbles with a Goldstone occupation number NG ∼ N are saturons,
with the entropy of such bound states saturating the bounds in Eqs. (2.1) and (2.2). These
vacuum bubbles possess the maximal entropy given by Eq. (2.4), which is imposed by
unitarity. In other words, we provide a further concrete example of the black hole-saturon
correspondence of [22], with the saturated bound states of the theory possessing all of the
aforementioned relevant characteristics of a black hole.

Furthermore, our findings provide additional evidence for the proposed black hole N -
portrait [14]. There, a black hole is portrayed as a saturated multi-graviton bound state of
N weakly interacting soft gravitons. Similarly, in a direct correspondence to a black hole, a
saturated vacuum bubble represents a bound state of N Goldstone bosons. In this chapter
we reproduce the black hole properties, demonstrated in the framework of the quantum
N -portrait, for the Goldstone bound states within the SU(N) symmetric renormalizable
and calculable theory. The 1/N corrections to the self-similar Hawking evaporation of
black holes are one of these properties.

Let us note that [25] provides yet another example of saturated bound states within the
spectrum of the calculable Gross-Neveu theory in d = 2 dimensions. This provides further
supporting evidence for the correspondence between black holes and generic saturons. The
spectrum of the Gross-Neveu theory contains a set of fermion-bound states with increasing
mass and degeneracy. Within this theory, the bound state of maximal degeneracy is a sat-
uron [25] and possesses all of the relevant characteristics of saturons of higher-dimensional
theories, including black holes and, in particular, the saturons in the four-dimensional the-
ory discussed in this chapter. This demonstrates the ubiquity of large-N physics at the
point of unitarity saturation. It is this universality due to which the relevant properties
of the saturons both in the Gross-Neveu model and in the model of the present chapter
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are identical to each other and to the corresponding characteristics of black holes. This
further justifies the suggestion that the underlying cause for the properties of black holes
is not rooted in gravity and is instead due to the universal physics of saturation [22].

2.2 Saturon model

2.2.1 The model
We consider the theory of [1] in d = 4 space-time dimensions, originally constructed

in [22]. This is a theory of a scalar field φ in the adjoint representation of SU(N), with
N ≥ 3. Thus, the field φ can be represented as an N × N traceless Hermitian matrix φβα
with α, β = 1, . . . , N . The Lagrangian density of the theory reads

L = 1
2tr [(∂µφ) (∂µφ)]− V [φ] ,

with V [φ] = α

2 tr
[(
fφ− φ2 + I

N
tr
[
φ2
])2]

,
(2.12)

where I is the unit N × N matrix, α is a dimensionless coupling, and f is the scale of
symmetry breaking.

We note again that the above theory is renormalizable. We perform our analysis in
the regime where the fundamental quantum coupling α is weak. Nevertheless, even for an
arbitrarily weak coupling α, unitarity of the theory imposes the entirely unperturbative
upper bound on the strength of the coupling, which is given by

α .
1
N
. (2.13)

The underlying physical reason is that the ’t Hooft coupling [66]

λt = αN (2.14)

is the parameter that controls unitarity within the theory, both perturbatively as well as
nonperturbatively.

Unitarity is saturated when the ’t Hooft coupling becomes order one,

λt ∼ 1, (2.15)

irrespective of how weak is the coupling α. The breakdown of the loop expansion and
the saturation of unitarity by scattering amplitudes both indicate this, as discussed in
detail in [22]. The constraint in Eq. (2.13) is a crucial requirement for the upper bound on
entropy in Eq. (2.4). In this chapter we demonstrate the saturation of this bound on the
specific example of the SU(N) theory in Eq. (2.12).

We adopt the regime of weak coupling α and large N . In the limit when the ’t Hooft
coupling in Eq. (2.14) approaches the unitarity bound in Eq. (2.13) from below, certain
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solitons saturate the entropy bounds in Eqs. (2.1) and (2.2) and assume the relevant prop-
erties of black holes.

To find these solitons we first consider the vacuum equations of the theory, which are
given by

fφβα − (φ2)βα + δβα
N

tr
[
φ2
]

= 0. (2.16)

These possess a set of solutions that correspond to vacua with different unbroken symme-
tries. Specifically, these are the unbroken SU(N) symmetry vacuum where φ = 0, and the
vacua with the SSB patterns

SU(N)→ SU(N −K)× SU(K)× U(1), (2.17)

with 0 < K < N . All of the above vacua are degenerate in energy by construction. For the
entirety of the chapter we restrict our analysis to two specific vacua, namely the unbroken
vacuum φ = 0 and the one with K = 1. In the latter vacuum, only the component

φβα = φ(x)√
N(N − 1)

diag ((N − 1),−1, . . . ,−1) (2.18)

has a nonzero expectation value

〈φ〉 = f

√
N(N − 1)
(N − 2) ' f. (2.19)

As we perform our analysis at large N , where appropriate, we approximate the expressions
by their leading order values in the N →∞ limit. The symmetry group of this vacuum is
SU(N − 1)× U(1)Y , with the generator of U(1)Y given by

Ŷ = 1√
2N(N − 1)

diag ((N − 1),−1, . . . ,−1) . (2.20)

In the vacuum which corresponds to the unbroken SU(N) symmetry, the theory pos-
sesses a nonzero mass gap,

m =
√
αf. (2.21)

Therefore, no massless excitations can exist in this vacuum. Conversely, the broken sym-
metry vacuum for K = 1 possesses

NGold = 2(N − 1) (2.22)

distinct species of massless Goldstone bosons, which we equivalently refer to as flavors.
We denote these by θa(xµ) with a = 1, . . . , NGold. These Goldstones correspond to the
spontaneously broken generators T a. We can express these broken generators in terms of
the off-diagonal Pauli matrices as

(T a)βα = 1
2(δ1

αδ
β
k+1 + δk+1

α δβ1 ) for a = 2k − 1, (2.23)
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and
(T a)βα = −i2 (δ1

αδ
β
k+1 − δk+1

α δβ1 ) for a = 2k, (2.24)

with k = 1, . . . , N − 1.
The combinations T±k = T 2k−1±iT 2k of these broken generators form (N−1)-dimensional

fundamental and antifundamental representations under the unbroken SU(N − 1) symme-
try group. The charges Y± = ± N√

2N(N − 1)
of the generators T±k under the U(1)Y group

obey the relation
[Ŷ , T±k ] = Y±T

±
k . (2.25)

The combinations θ±k ≡ θ2k−1 ± iθ2k of the Goldstones transform under the same repre-
sentations as the combinations of the broken generators T±k . Consistently with the above,∑
a θaT

a = 1
2
∑
k θ
∓
k T
±
k holds.

Expressing the field as
φβα = (U † 〈φ〉U)βα (2.26)

where
U = exp[−iθaT a], (2.27)

and substituting this into the action of the theory we can obtain the effective low en-
ergy theory of the Goldstones. Up to the second order in θa, the corresponding effective
Lagrangian density of the Goldstone modes reads

Leff = N2

4(N − 2)2f
2∑

a

(∂µθa) (∂µθa) ' 1
4f

2∑
k

(
∂µθ

+
k

) (
∂µθ−k

)
. (2.28)

The theory discussed in this chapter admits solutions in the form of bubbles. The
wall of such a bubble separates the broken symmetry vacuum within it and the unbroken
symmetry vacuum in its exterior. Therefore, the interior of the bubble can accommodate
for a state with a high microstate entropy because of the gapless Goldstone excitations.
We construct such vacuum bubble solutions below.

2.2.2 Vacuum bubble
The two vacua SU(N) and SU(N − 1) × U(1)Y are degenerate in energy. Therefore,

there exist solutions in the form of domain walls that separate the two. The component in
Eq. (2.18) of the adjoint field for a planar infinite, and therefore static, wall reads

φ(x) = f

2

[
1± tanh

(
mx

2

)]
. (2.29)

Here x is the coordinate perpendicular to the wall. The corresponding thickness of the
wall is parametrized by

δw ∼ m−1. (2.30)
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From such a domain wall solution we can construct a bubble of radius R� δw. The vacuum
of the interior of the bubble corresponds to the broken SU(N −1)×U(1)Y symmetry. The
vacuum of the bubble exterior corresponds to the unbroken SU(N) symmetry group. For a
finite-size vacuum bubble no exact analytic solution is known. Furthermore, the tension of
the bubble wall exerts a force directed radially inwards to the center of the bubble. Thus,
a bubble of a finite radius R will collapse, unless the force caused by the tension of the
bubble walls is balanced out.

In the thin-wall regime R� δw, the profile of the field φ corresponding to a bubble of
radius R can be approximated by

φ(r) = f

2

[
1 + tanh

(
m(R− r)

2

)]
(2.31)

for a slow-moving bubble wall. Here we denote the radial coordinate by r.
As mentioned previously, because of the spontaneous symmetry breaking with the

breaking pattern given by SU(N)→ SU(N − 1)×U(1), there exist gapless Goldstones in-
side the vacuum bubble. The number of the Goldstone bosons is given by NGold = 2(N−1).
In the vacuum outside of the bubble, r � R, the symmetry is unbroken. In this asymp-
totic vacuum the theory exhibits a nonzero mass gap given in Eq. (2.21). Therefore, no
Goldstone modes can propagate out into this region and are thus trapped in the interior
of the bubble. As the Goldstones within the bubble are gapless, the bubble possesses a
high capacity to store information in terms of the occupation numbers of the Goldstone
modes. The information stored in the excitations of the Goldstones prevents the bubble
from collapsing and stabilizes it via the memory burden effect [22].

2.3 Bubble stabilization by memory burden
As discussed above, the memory burden effect can considerably alter the time-evolution

of the bubble, as it can counteract the collapse of the bubble and stabilize it. We investigate
this phenomenon below. Due to the gaplessness of the Goldstones, the energy cost to store
quantum information in terms of the occupation numbers of the Goldstone modes is small.
Specifically, the information can be encoded in sequences of the occupation numbers na
of the different species of Goldstone modes with corresponding SU(N) quantum numbers.
Each such distinct sequence represents a memory pattern.

In the case that the vacuum bubble decays, the information contained in the excitations
of the Goldstone modes within it needs to be stored in terms of the occupation numbers
of the outside quanta. However, gapless excitations cannot exist in the exterior SU(N)-
symmetric vacuum as the theory has a nonzero mass gap there. Therefore, it costs more
energy to store information as a memory pattern in the unbroken SU(N) vacuum outside
of the bubble than in the broken SU(N − 1)× U(1) interior vacuum. Furthermore, as we
demonstrate below, the energy cost to store an information pattern in the exterior vacuum
can exceed the energy of the entire vacuum bubble.
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As mentioned previously, via the memory burden effect, the total occupation number
of the Goldstone modes prevents the bubble from decaying. Specifically, the information
stored in these modes backreacts onto the bubble wall and counteracts the collapse. It is
important to emphasize that only the total occupation number of the Goldstone modes
quantifies the memory burden effect. The specific distribution of the occupation numbers
among the distinct Goldstone species is irrelevant. That is, as far as the stability of the
bubble is concerned, the regime in which many modes are excited to low levels is equivalent
to that in which one single mode is highly excited. A highly excited Goldstone mode can
be approximated by a classical field configuration. In this section we study both of the
above cases.

We consider a field configuration given by

φβα = (U †ΦU)βα (2.32)

for the model in Eq. (2.12). Here, similarly to Eq. (2.18), Φβ
α is given by

Φβ
α = ϕ(t, ~x)√

N(N − 1)
diag ((N − 1),−1, . . . ,−1) (2.33)

with
U = exp [−iθa(t, ~x)T a] . (2.34)

With the above ansatz, up to the second order in θa, the theory in Eq. (2.12) now reads

L = 1
2 (∂µϕ) (∂µϕ) + N

4(N − 1)ϕ
2 (∂µθa) (∂µθa)− α

2ϕ
2 (ϕ− f)2 , (2.35)

where the N -dependent factors of α and f ,

α̃ ≡ α
(N − 2)2

N(N − 1) , f̃ ≡ f

√
N(N − 1)
(N − 2) , (2.36)

are absorbed into the respective redefinitions, α̃→ α and f̃ → f .
The field ϕ is assumed to take an initial configuration of a spherically symmetric bubble

of finite radius R. The bubble is an “island” of the broken SU(N − 1) × U(1) vacuum
embedded in the SU(N)-symmetric one. In other words, the field profile at t = 0 is a
configuration ϕ(0, r) which interpolates between a finite nonzero value at r = 0 to zero
at r = ∞. As discussed above, a vacuum bubble is capable of storing a large amount of
information in terms of the occupation numbers of the Goldstone modes θa. Each sequence
of such occupation numbers constitutes a distinct information pattern. However, if none
of the Goldstone modes are occupied, the corresponding memory pattern is empty and has
no influence on the time-evolution of the vacuum bubble. In this case the bubble collapses,
with the bubble wall undergoing a series of oscillations in the radial direction, before the
bubble ultimately decays into the asymptotic modes of the unbroken SU(N) vacuum.
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Contrarily, a nonempty memory pattern can prevent the bubble from collapsing. We
investigate this below. There are two distinct cases, distinguished by the properties of
the distribution of the total Goldstone occupation number among the individual Gold-
stone species. In the first regime the individual occupation numbers are large. We can
therefore employ the Bogoliubov approximation and reduce the field operators of the corre-
sponding Goldstone modes to c-numbers. Here, we can treat the macroscopically occupied
Goldstones θa as classical fields. However, in the second regime, the individual Goldstone
modes possess a small occupation number. That is, they are occupied microscopically.
Correspondingly, we cannot use the Bogoliubov approximation to replace the operators to
c-numbers, but must instead treat the modes within a quantum framework.

Let us emphasize that the memory burden effect can be equally considerable in the
second case as in the first. That is, despite the fact that in the quantum regime the
occupation numbers of the individual Goldstone modes are small, their collective effect
can be substantial. For large N , correspondingly many (see Eq. (2.22)) Goldstone species
can be excited. Therefore, an entirely quantum memory burden can prevent even a classical
vacuum bubble from collapsing. Below we demonstrate that this occurs when the bubble
saturates the entropy bounds in Eqs. (2.1) and (2.2).

2.3.1 Classical regime

Our goal is to find a solution in the form of a localized stationary vacuum bubble, where
the Goldstone modes in its interior have a time dependence. We start with the ansatz

ϕ = ϕ(r), θa = δa1ωt, (2.37)

with ω parametrizing the rotation frequency in the internal space. As is clear from the
above expression, only one Goldstone mode participates in this rotation. That is, only a
single Goldstone flavor is macroscopically occupied.

As only the Goldstone with the label a = 1 is involved with the rotation, all of the
Goldstones with labels a 6= 1 can be set to zero. The effective Lagrangian density in
Eq. (2.35) is then exact to all orders in θa and is a full nonlinear classical theory for
the ansatz in Eq. (2.37). This holds true as all other components of the Lagrangian
density are bilinear or of higher powers. We can consistently set these components to zero
without invalidating the ansatz in Eq. (2.37). As a specific example, consider the ansatz in
Eq. (2.32) with a generic SU(2) transformation of the subgroup SU(2)×SU(N−2)×U(1) ⊂
SU(N) parametrized by the rotation matrix

U =
cos

(
θ1

2

)
e−iγ − sin

(
θ1

2

)
eiδ

sin
(
θ1

2

)
e−iδ cos

(
θ1

2

)
eiγ

 . (2.38)

The resulting effective Lagrangian density, under the same rescaling of α and f as above,
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reads
L =1

2 (∂µϕ) (∂µϕ) + N

4(N − 1)ϕ
2
(
∂µθ

1
) (
∂µθ1

)
+ N sin2(θ1)

4(N − 1) ϕ
2 (∂µ(γ + δ)) (∂µ(γ + δ))− α

2ϕ
2 (ϕ− f)2 ,

(2.39)

where γ + δ = 0 is a valid solution.
To find the stationary profile of the bubble we therefore need to consider the only

remaining nontrivial equation

d2
rϕ+ 2

r
drϕ+ ϕ

(
ω2 − α(ϕ− f)(2ϕ− f)

)
= 0. (2.40)

As previously, we absorb the N -dependent factors of α and f into their corresponding
redefinitions, as well as performing the same for the frequency ω,

ω̃ ≡ ω

√
N

2(N − 1) → ω. (2.41)

The boundary conditions for a stationary bubble solution are given by

ϕ(0) 6= 0, ϕ(∞) = 0. (2.42)

It is important to note that the Goldstone fields of the primary symmetry breaking, with
the breaking pattern SU(N) → SU(N − 1) × U(1)Y , transform nontrivially under the
SU(N − 1) × U(1)Y group. Therefore, the ansatz in Eq. (2.37) leads to a secondary
symmetry breaking down to the symmetry group SU(N −2)×U(1)X . Here, the generator
of the U(1)X symmetry group reads

X̂ = 1√
N(N − 2)

diag ((N − 2)/2, (N − 2)/2,−1, . . . ,−1) . (2.43)

This secondary symmetry breaking gives rise to an extra set of 2N − 3 Goldstone bosons.
However, let us emphasize that some internal Goldstones mix with the Goldstone boson
of the broken time-translation symmetry. This is a crucial aspect, but in the large-N limit
its effect on the entropy count is negligible.

Below we consider the stationary classical configuration. Regarding Eq. (2.40), we can
think of ϕ(r) as the “coordinate” ϕ of a particle moving in “time” r in the external potential
given by

V (ϕ) = 1
2ϕ

2
(
ω2 − α(ϕ− f)2

)
. (2.44)

In the parameter subspace where

ω2

αf 2 < 1, or equivalently, ω2 < m2, (2.45)
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the potential V (ϕ) in Eq. (2.44) possesses two maxima, which are given by ϕ0 = 0
and ϕmax = f

4

(
3 +

√
1 + 8ω2

αf2

)
, with a minimum between these two, given by ϕmin =

f
4

(
3−

√
1 + 8ω2

αf2

)
. The potential vanishes at ϕ0 = 0 and ϕ± = f ± ω√

α
.

We can argue the validity of the stationary bubble solution as follows: The initial
position of the particle ϕ at time r = 0 is ϕ(0). The initial velocity of ϕ is fixed to zero,
drϕ(r)|r=0 = 0, to control the friction term, which is singular at r = 0. To fully specify the
initial conditions of the problem it remains to set the initial coordinate ϕ(0). The initial
position must satisfy ϕ− < ϕ(0) ≤ ϕmax for the particle to reach ϕ0 = 0 in the asymptotic
future r = ∞. With the initial position and velocity set, the initial acceleration of the
particle reads

d2
rϕ|r=0 = ϕ(0)

(
−ω2 + α(ϕ(0)− f)(2ϕ(0)− f)

)
. (2.46)

By continuously varying the initial position ϕ(0) we can obtain a valid solution with
ϕ(∞) = 0. On the one hand, if we set ϕ(0) sufficiently close to ϕmax, the initial ac-
celeration d2

rϕ|r=0 can be made correspondingly small. Thus the particle has enough time
to remain stationary before the friction term becomes negligible. Consequently, within a
finite time, the particle will reach ϕ0 = 0 with nonzero kinetic energy. On the other hand,
if we pick ϕ(0) = ϕ−, the particle unavoidably loses energy because of a nonzero friction
term and always undershoots. As we vary ϕ(0) continuously, clearly, by the intermediate
value theorem, there exists an initial position ϕ(0) ∈ (ϕ−, ϕmax], so that the friction term
has exactly the right value in order for ϕ to reach ϕ0 = 0 at r =∞.

The thin-wall approximation, given by

ω2

αf 2 � 1, or equivalently, ω2 � m2, (2.47)

allows us to simplify our analysis. In this regime the Goldstone frequency ω is much smaller
than the finite mass gap m of the unbroken SU(N) vacuum. We discuss the implications
of this from the perspective of quantum physics in a later section.

The energy difference between the two maxima ϕmax ' f
(
1 + ω2

αf2

)
and ϕ0 = 0 in the

thin-wall regime is approximately

V (ϕmax) '
1
2ω

2f 2
(

1 + ω2

αf 2

)
. (2.48)

To find the radius R of a thin-wall bubble for a given value of ω we extremize the action

S = 4π
∞∫
0

[1
2 (drϕ(r))2 − V (ϕ(r))

]
r2 dr, (2.49)

evaluated for the bubble solution ϕ(r). In the thin-wall approximation, the particle is
close to its initial position near the maximum ϕmax during the time r ∈ (0, R). As ϕ(r) is
approximately constant on this time interval, the contribution of the 1

2 (drϕ(r))2 term to
the action is negligible in comparison to the contribution of the potential energy V (ϕ(r))
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evaluated at ϕmax. For this part of the action, corresponding to the interior of the bubble,
we obtain Sint ' −4π

3 V (ϕmax)R3 ' −2π
3 ω

2m2

α
R3. The most part of the transition of the

particle from ϕmax to ϕ0 = 0 occurs during the time ∆r = m−1. This time interval sets
the thickness of the bubble wall δw. We denote the corresponding portion of the action as
Swall ' 2π

3
m3

α
R2. For the total action of the thin-wall bubble solution we therefore obtain

Sbubble = Swall + Sint = 2π
3
m3

α

(
R2 − ω2

m
R3
)
. (2.50)

We can find the radius R of a stationary bubble by extremizing the action Sbubble with
respect to R. We thus obtain

R = 2
3
m

ω2 . (2.51)

Note that for ω � m we obtain
R� 1

m
. (2.52)

This is consistent with the thin-wall approximation ω2 � m2, where the bubble radius R
is much larger than the wall thickness δw ∼ m−1.

The solution ϕ(r) that we found above corresponds to a stationary, spherically sym-
metric bubble in Minkowski space. The energy of this bubble reads

Ebubble = Ewall + Eint = ω

α

m5

ω5

(40π
81

)
, (2.53)

with
Eint = 2

3Ewall, (2.54)

where Ewall is the energy due to the wall tension and Eint is the energy of the interior.

2.3.2 Quantum picture of classical stability
The wall of the bubble consists of mainly the radial excitations of the ϕ field of mass

m. Contrarily, the interior of the bubble consists of mainly the Goldstone excitations of
frequency ω. For our analysis it is instructive to express the energies Eint and Ewall in
terms of the corresponding occupation numbers of the respective quanta NG and Nϕ as

Eint = ωNG, with NG ≡
1
α

m5

ω5

(16π
81

)
, (2.55)

and
Ewall = mNϕ, with Nϕ ≡

1
α

m4

ω4

(8π
27

)
. (2.56)

In the thin-wall approximation, the occupation number of the Goldstone modes is much
higher than that of the massive ϕ quanta for a stationary bubble,

NG

Nϕ

= 2
3
m

ω
� 1. (2.57)
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We can therefore conclude that the bubble is stationary due to the excitations of the
Goldstones. We can view this stability from the perspective of quantum physics. As
discussed previously, in the thin-wall approximation of Eq. (2.47), the frequency ω of the
Goldstone modes within the bubble is much less than the mass m of the asymptotic quanta
in the exterior vacuum. The energy of the interior of the bubble in Eq. (2.55) consists of
the excitations of the Goldstone modes. This energy makes up 2/3 of the wall energy, or
equivalently, 2/5 of the entire bubble energy.

The bubble is stable due to two reasons: First, the SU(N) charge is conserved. Second,
creating a state with the same amount of charge would cost more energy in the unbroken
exterior vacuum than in the broken interior vacuum.

As discussed above, in the case that the bubble decays, the SU(N) charge, previously
stored in terms of the occupation numbers of the Goldstone modes within the bubble, must
be carried away by the outgoing quanta of the unbroken SU(N) vacuum. However, as the
minimum energy cost to create one particle in this SU(N)-symmetric vacuum is m, which
is nonzero, no gapless excitations are possible in this vacuum. Therefore, a state comprised
of particles of mass m, that carry the entire SU(N) charge, would cost more energy than
the total energy of the bubble by a factor of 3

5 + 2
5
m
ω
� 1. This is the underlying reason

for the stability of the bubble.

2.4 Closer look at Goldstones

2.4.1 Goldstones of internal symmetry
The solution in Eq. (2.37) breaks the global SU(N) symmetry spontaneously. This

causes the existence of massless Goldstone flavors within the bubble. In the large-N limit,
their number scales as 4N ' NGold. These Goldstones have a tower of eigenmodes θaε
of different eigenfrequencies ε. In the limit of an infinite bubble radius these eigenmodes
correspond to the momentum modes of the free Goldstone plane waves.

Employing the mode analysis of linearized fluctuations on top of the background of the
classical solution we can find the exact form of these mode functions. This will not be
covered here as it is not our primary goal. However, we are interested in the eigenmodes
of the frequencies ε = 0 and ε = ω.

The modes θa0 correspond to ε = 0. These modes have zero frequencies and are respon-
sible for the degeneracy of the bubble interior vacuum with respect to the broken SU(N)
generators. That is, a set of gapless Goldstone modes is excited when the bubble undergoes
a corresponding SU(N) transformation. As these Goldstones are massless, the respective
energy cost to excite such a mode is zero. Due to this, the bubbles are degenerate in
energy. These bubbles are related by global SU(N) transformations and form irreducible
representations under SU(N).

The modes θaω correspond to ε = ω. These modes are the contents of the bubble. At
least some of these modes possess a nonzero occupation number for a stationary bubble.
Acting on the bubble solution with an SU(N) rotation we can arbitrarily redistribute
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the total occupation number of the Goldstones among the individual θaω modes, while the
energy of the state remains the same.

That is, the modes of the two above frequencies play the following roles in the stationary
bubble solution: The Goldstone modes θaω with frequencies ω are occupied to a total
occupation number of NG. The total energy of these Goldstones corresponds to the energy
of the interior of the bubble given by Eq. (2.55). In the ansatz of Eq. (2.37), only the mode
flavor a = 1 possesses the entire occupation number NG. However, because the theory
is symmetric under SU(N), we can redistribute this total occupation number among the
various Goldstone species. All solutions that can be obtained by such an SU(N) rotation
are degenerate. The gapless Goldstone bosons θa0 are responsible for this degeneracy in
energy.

As discussed above, with an SU(N) transformation we can redistribute the occupation
numbers of the individual Goldstones of frequency ω. This can be performed as long as
the constraint

2N∑
a

na = NG (2.58)

(in the large-N limit) is satisfied. A distinct sequence of these occupation numbers na
results in an individual memory pattern,

|pattern〉 = |n1
ω, n

2
ω, . . .〉 (2.59)

that stores information. All of these correspond to classical solutions degenerate in energy
and have an energy cost Eint given by Eq. (2.55). This is the total energy cost that is
necessary to encode the information pattern in terms of the excitations of the Goldstone
modes of frequency ω.

Let us emphasize the following point regarding the above information patterns: Con-
sider two distinct memory patterns, |n1

ω, n
2
ω, . . .〉 and |n′1ω , n′2ω , . . .〉. Furthermore, assume

that the differences ∆naω = |naω−n′aω | in occupation number among some modes a are large.
Specifically, we consider the case where the ratio ∆naω

NG
is nonzero for NG → ∞ for some

modes a. Such patterns are classically distinguishable.
Now, the patterns that have small differences that vanish in the NG → ∞ limit con-

stitute subsets of the set of all possible degenerate patterns. These patterns cannot be
distinguished classically, but still contribute to the quantum microstate count. We con-
clude that one part of the memory burden effect can be observed classically, and the other
can be observed only at the quantum level.

We remark that in the thin-wall regime of Eq. (2.47), from Eq. (2.55) we obtain

NG ∼
1
α

m5

ω5 �
1
α
∼ NGold. (2.60)

Note that the number of Goldstone species scales as NGold ∼ N in the large-N approxima-
tion. Furthermore, unitarity of the theory imposes the upper bound N ∼ 1/α. Thus, for
a thin-wall bubble, we obtain that

NG � NGold. (2.61)
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In other words, for a bubble in the thin-wall regime, the total Goldstone occupation num-
ber NG greatly exceeds the number of the Goldstone flavors NGold. For this reason the
corresponding memory burden effect is dominated by its classical part. For bubbles of
smaller radius the quantum part of the memory burden effect has an equally significant
stabilizing role.

In the case that the bubble decays, it releases the quantum information previously
stored in the pattern of the form of Eq. (2.59) as external quanta with mass m. Recall
that the SU(N) charge is conserved. Therefore, the minimum energy cost corresponding
to such a state is

Epattern = mNG, (2.62)

with NG given in Eq. (2.55). We can rewrite this energy in several convenient forms

Epattern = mNG = m
1
α

m5

ω5

(16π
81

)
= 2m

5ω Ebubble. (2.63)

We observe that if the bubble decays, the energy cost in the exterior vacuum of the memory
pattern corresponding to the information previously stored in the interior of the bubble
would be larger than the energy of the bubble by a factor of 2m/(5ω). This is not possible.
We therefore conclude that it costs less energy to retain the Goldstone charge in the interior
of the bubble, instead of releasing it in terms of the occupied quanta of the exterior vacuum.

We remark that the scenario of releasing the SU(N) charge as smaller bound states
with a more favorable mass-to-charge ratio, instead of in the form of free quanta, appears
unlikely. Since the coupling α is weak, a bound state of size R ∼ m−1 would consist of at
least 1/α particles. Note that because of the energy scale of the problem, R ∼ m−1 is the
smallest possible size a bound state can have. Such an object has the energy ∼ m/α and a
charge capacity ∼ 1/α. Such a bound state corresponds to a vacuum bubble with the least
possible radius. Evidently, such bound states would not be able to carry the charge of a
large bubble that collapsed. In other words, a vacuum bubble cannot decay into multiple
smaller bubbles. For a given value of the SU(N) charge, the stationary vacuum bubble
configuration obtained above is the optimal solution in terms of energy. That is, at least
among the solutions that are spherically symmetric. Our numerical analysis of the problem
confirms this.

Note that the theory does not have a parameter that defines the amount of asymmetry
for the lowest energy configuration. Such a configuration must exist as it is not possible
for it to decay into free quanta. Therefore, non-spherically symmetric deviations from a
bubble configuration with zero angular momentum cannot lower its energy.

The fact that there are bubble solutions within this theory is an existence proof for
bound states that are able to store the Goldstone charge in a configuration that is more
energy-efficient than a set of asymptotic quanta. Therefore, the theory contains bound
states that are stabilized by memory burden.

In this regard stationary vacuum bubbles can be viewed as nontopological solitons, or
Q-balls [67,68]. These have been studied extensively in the literature. Specifically, Q-balls
with arbitrarily small classical charges were considered in [69]. Various related physical
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phenomena were also thoroughly investigated, such as the catalysis of proton decay due
to symmetry breaking within the Q-ball [70]. Therefore, our work offers an additional
perspective on the stability of Q-balls, considering it as a form of memory burden effect.

However, the vacuum bubbles we study differ from Q-balls. The bubbles possess a large
microstate entropy, which can also become maximal, saturating the bounds in Eqs. (2.1)
and (2.2). Therefore, the information stored in terms of the occupation numbers of the
Goldstone modes that stabilize the bubble can be of quantum nature.

This type of stabilization occurs for thick-wall bubbles with ω ∼ m ∼ 1/R. Here, the
quantum portion of the memory burden is as significant as its classical part. This is due
to the fact that thick-wall bubbles saturate the bounds in Eqs. (2.1) and (2.2). These
saturated bound states are characterized by NG ∼ NGold ∼ N ∼ 1/α.

2.4.2 Goldstones of broken Poincaré symmetry
We now consider the Goldstones of the broken Poincaré symmetry. These are made up

of broken space and time translations. Consequently, the Lorentz boosts are also broken.
We study how the various components of the bubble break the space-time symmetries.

The space-translation symmetry is spontaneously broken mostly by the bubble walls.
The ϕ quanta with the corresponding occupation number of Nϕ play the main role in this
breaking. The contribution of each such quantum into the breaking of space translations is
m. Up to order-one numerical factors, we thus find the couplings of the space-translation
Goldstones to be

G
(s)
Gold = R

mNϕ

. (2.64)

The time translations are mostly broken by the interior of the bubble because of the nonzero
frequency ω of the Goldstones within it. The total occupation number of the Goldstones
is NG. The contribution of each of the Goldstone quanta into the order parameter is ω.
Therefore, for we coupling of the time-translation Goldstone bosons we find

G
(t)
Gold = R

ωNG

. (2.65)

From Eq. (2.57), we obtain
ωNG ∼ mNϕ. (2.66)

We thus observe that the couplings of the space-translation and the time-translation Gold-
stones are of the same order,

G
(s)
Gold ∼ G

(t)
Gold ∼

R

ωNG

. (2.67)

This can also be understood intuitively, as the breaking of time translations by the interior
of the bubble stabilizes its walls that break the space-translation symmetry.

Let us emphasize that the expressions in Eqs. (2.66) and (2.67) are valid for any clas-
sically stable bubbles, including thick-wall bubbles. Now, we can rewrite the coupling of a
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generic Goldstone boson G(P)
Gold corresponding to a broken Poincaré symmetry in terms of

the Goldstone occupation number NG. Using the expression in Eq. (2.51), we obtain

G
(P)
Gold ∼

R

ω

1
NG

∼
√
R3

m

1
NG

. (2.68)

We can now define the dimensionless effective Poincaré Goldstone coupling α(P)
Gold. This

coupling is evaluated at the scale 1/R, which corresponds to the size R of the bubble. As
previously, denoting Area ∼ R2 as the area of the bubble, we obtain

α
(P)
Gold ≡ G

(P)
Gold

1
R2 = G

(P)
Gold

Area
= 1√

mR

1
NG

= ω

m

1
NG

. (2.69)

We can express the entropy bounds in Eqs. (2.1) and (2.2) in terms of the SU(N)
Goldstone occupation number by employing Eqs. (2.68) and (2.69). We thus obtain

Smax ∼
1

α
(P)
Gold
∼ Area

G
(P)
Gold
∼ NG

√
mR ∼ NG

m

ω
. (2.70)

This is the maximum entropy that a bubble can possess in a unitary theory. Below we
show that only thick-wall bubbles can saturate this unitarity bound on entropy.

2.5 Spectrum of bubbles
We demonstrated that bubbles are bound states of excited Goldstone modes with the

corresponding occupation number NG. We can write the energy spectrum of the bubbles
in terms of this Goldstone occupation number. Thus, for thin-wall bubbles we obtain

ENG = 5
2ωNG = 5√

6

√
m

R
NG. (2.71)

This relation holds for thick-wall bubbles with radius R ∼ 1/m, up to order-one numerical
factors. Below we demonstrate that only thick-wall bubbles can saturate the entropy
bound. This occurs when NG ∼ N ∼ 1/α. The energy of such a saturon vacuum bubble
is

EN ∼
N

R
∼ 1
αR
∼ m

α
. (2.72)

In other words, a saturated bubble is a bound state of NG ∼ N Goldstones and Nϕ ∼ N
radial modes.

2.6 Entropy of a bubble
In this section we estimate the entropy of a bubble. The number of all possible memory

patterns in Eq. (2.59) subject to the constraint in Eq. (2.58) is equal to the total number
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of degenerate microstates. We can estimate the number of these degenerate microstates in
Stirling’s approximation at leading order in large N and NG as

nst ∼
(

1 + 2N
NG

)NG (
1 + NG

2N

)2N
. (2.73)

This number of degenerate microstates is typical for solitonic solutions that break the global
symmetry spontaneously, as discussed in [20–22]. This can be seen from two complementary
viewpoints.

Internal perspective: The microstate degeneracy in Eq. (2.73) represents the degeneracy
of the Goldstone vacuum from the viewpoint of the soliton. An observer within the soliton,
which is a bubble in our case, observes the SSB of the global SU(N) symmetry and the
corresponding emergence of gapless Goldstone species. The resulting broken vacuum is
degenerate, like any other Goldstone vacuum. For a bubble of finite radius, there is only
a finite number of independent orthogonal vacuum states. For a bubble of infinite size
this degeneracy is infinite. Thus, the bubble vacuum is the usual Goldstone vacuum of a
four-dimensional theory in the R→∞ limit. That is, for an internal observer, the various
degenerate microstates in Eq. (2.73) correspond to the Goldstone vacua that are related
to each other by SU(N) transformations.

External perspective: For an external observer in the asymptotic vacuum, the SU(N)
symmetry is unbroken. Therefore, that observer can catalogue all of the states by the rep-
resentations of the SU(N) group. To the external observer, the vacuum bubble transforms
under one such representation, which is exponentially large. This is due to the fact that
the bubble consists of a large number of quanta, with each quantum transforming under
the adjoint representation of SU(N). We denote the total occupation number of these
quanta as NT . The bubble transforms as a tensor product of NT adjoint representations.
We can represent the wave function of the bubble as the tensor

Bβ1,...,βNT
α1,...,αNT

. (2.74)

This tensor is totally symmetric under both the lower indices α1, . . . , αNT and the upper
indices β1, . . . , βNT . The trace of this tensor is zero with respect to each conjugated pair
of indices. The dimensionality of this tensor equals the square of the binomial coefficient,
to leading order. Again, using Stirling’s approximation we can express this dimensionality
as

nst ∼
(

1 + 2N
NT

)NT (
1 + NT

2N

)2N
. (2.75)

As discussed above, it holds that NT ' NG. Using Eq. (2.57), in the thin-wall regime of
Eq. (2.47), the total Goldstone occupation number NG is much larger than the occupation
number of the other constituents. Thus, indeed, we obtain NT ' NG. For a thick-wall
bubble it holds that Nϕ ∼ N . We can therefore state that NT ∼ NG without loss of
generality. Thus, the number of degenerate microstates in Eqs. (2.73) and (2.75) is equal.
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Defining λ ≡ 2N/NG ∼ 2N/NT , we can calculate the entropy corresponding to this
number of degenerate microstates as

S = ln (nst) ' 2N ln
[
(1 + λ)

1
λ

(
1 + 1

λ

)]
. (2.76)

The parameter λ is the ratio of the number of the primary Goldstone species NGold ' 2N
to their total occupation number NG within the bubble. This quantity λ is a measure of
saturation of the unitarity bounds by the entropy of the bubble.

2.7 Saturation
In this section we study under which conditions does a bubble saturate the entropy

bounds in Eqs. (2.1) and (2.2). One may suggest that we can increase the entropy in
Eq. (2.76) indefinitely by increasing N . However, this is impossible as both N and α are
subject to the unitarity constraint in Eq. (2.13). Therefore, when the ’t Hooft coupling of
the theory saturates its upper bound

λt = αN ∼ 1, (2.77)

the parameter N reaches its maximum. An increase of λt beyond this bound leads to a
change of the regime. This was discussed in [22]. The breakdown of the loop expansion
and the saturation of unitarity by scattering amplitudes both indicate this.

As NGold ∼ N , from the saturation of the unitarity bound in Eq. (2.77) we obtain

NGold ∼ N ∼ 1
α
. (2.78)

This condition needs to be satisfied when calculating the entropy of the bubble. We
compute this entropy below both in the thin-wall approximation and in the thick-wall
regime.

2.7.1 Entropy of thin-wall bubbles
For a thin-wall bubble, from Eq. (2.55) we obtain

NG �
1
α
. (2.79)

In the thin-wall regime, from Eqs. (2.77) and (2.78) we have λ � 1. We can state the
above equivalently as

NG � NGold ∼ N ∼ 1
α
. (2.80)

Thus, for a thin-wall bubble, the entropy in Eq. (2.76) now reads

S ' 2N ln
( e
λ

)
∼ 1
α

ln
(
m10

ω10

)
. (2.81)
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To obtain the last term of the above expression we used Eq. (2.77), employing Eq. (2.55) we
expressed NG in terms of α, ω and m. Furthermore, in the logarithm we ignored order-one
numerical factors (8eπ/81 ∼ 1).

The entropy of such a thin-wall bubble given by Eq. (2.81) is greatly exceeded by the
upper bound on the entropy in Eq. (2.2) for the same bubble. Specifically, if we rewrite NG

using Eq. (2.55), we obtain that in the thin-wall regime the maximum entropy in Eq. (2.70)
allowed by the Poincaré Goldstone reads

Smax ∼
1
α

m6

ω6 . (2.82)

Evidently, in the thin-wall regime where m/ω � 1, this greatly exceeds the actual entropy
of the bubble in Eq. (2.81), as the latter scales logarithmically with m/ω. Therefore, from
the perspective of entropy capacity, a thin-wall bubble is an undersaturated bound state.

We can observe the same by considering the entropy bounds imposed by the SU(N)
Goldstone bosons. We apply the argument of [22]. We consider an effective dimensionless
Goldstone coupling

α
(SU(N))
Gold = 1

(fR)2 ∼ α
ω4

m4 , (2.83)

which is taken at the scale 1/R. The scattering of Goldstones with momentum transfer
scale of the process ∼ 1/R is controlled by this coupling. We assume the perspective of an
observer within the effective low energy theory of the SU(N) Goldstones. This theory has
the cutoff Λcutoff ∼ 1/R.

For this low energy theory to be consistently valid, the observer needs to verify that
it is unitary up to the scale ∼ 1/R. Due to the mildness of this restriction, the observer
may introduce as many as NGold ∼ 1/α(SU(N))

Gold flavors of Goldstones. By Eq. (2.83), the
microstate entropy of a bubble with such a large number of Goldstone species reads

Smax ∼
1
α

m4

ω4 . (2.84)

The low energy observer would therefore think that it is possible for a bubble of radius
R to have such an entropy. However, for this to occur the full theory would have to
violate unitarity. Yet the low energy observer cannot know this due to the cutoff of the
corresponding low energy theory.

Specifically, note that the value of the parameter N determines the number of the
Goldstone flavors within the bubble. Therefore, for the bubble to have the entropy given
by Eq. (2.84), N would have to be as large as N ∼ 1

α
m4

ω4 . However, in this case the full
theory would violate the unitarity constraint in Eq. (2.13).

This constraint forbids the number of Goldstone flavors to exceed the value given in
Eq. (2.78). This determines the upper bound on the actual entropy capacity of the bubble
and is given by Eq. (2.81). The entropy in Eq. (2.81) is much smaller than that in Eq. (2.84).
The latter is erroneously assumed by the low energy observer to be the maximal entropy,
with the cutoff scale of the corresponding effective low energy theory given by Λcutoff ∼ 1/R.
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We can thus conclude that the entropy of a thin-wall bubble given in Eq. (2.81) is much
smaller than that saturating the bounds in Eqs. (2.1) and (2.2).

2.7.2 Entropy of thick-wall bubbles
The case of thick-wall bubbles, for which R ∼ 1/m, differs significantly. A classical

solution of a stationary bubble, given by Eqs. (2.37) and (2.42), is valid as long as the
requirement of Eq. (2.45) is fulfilled, or equivalently if ω < m. For preciseness, we take
Eq. (2.45) to be satisfied, and assume that ω ∼ m holds.

For such a bubble configuration we obtain

ω ∼ m ∼ 1
R
. (2.85)

Consequently, from Eq. (2.55) we have

NG ∼
1
α
. (2.86)

Using the saturation of unitarity in Eq. (2.77), Eq. (2.76) becomes

S ∼ 1
α
. (2.87)

We therefore conclude that the entropy of such a bubble saturates the unitarity bound in
Eq. (2.2).

Correspondingly, this bubble also saturates the area-law bound in Eq. (2.1). In partic-
ular, as for such a bubble all three scales in Eq. (2.85) are of the same order, we find that
the Poincaré Goldstone coupling in Eq. (2.68) becomes

G
(P)
Gold ∼

1
N
Area ∼ αArea. (2.88)

Evidently, the area-law bound in Eq. (2.1) is saturated by the entropy of the bubble in
Eq. (2.87).

Clearly, for a saturated bubble, the couplings of the internal Goldstones and the cou-
plings of the Poincaré Goldstones are equal. Consequently, their corresponding decay
constants are also equal. For simplicity, we therefore denote these quantities by GGold and
f , respectively. We also denote the dimensionless Goldstone coupling by αG from here on.

The couplings and the decay constants of both the internal and the Poincaré Goldstones
are given by Eq. (2.6). We express this in the new notation as

GGold = f−2 = 1
N
Area ∼ αArea. (2.89)

Furthermore, the fundamental coupling α of the theory is equal to the dimensionless cou-
plings αG of both the internal and the Poincaré Goldstones, evaluated at the scale 1/R.
Specifically, for a thick-wall bubble we obtain

αG = GGold

Area
= 1

(fR)2 = α. (2.90)
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Consequently, the entropy of a thick-wall bubble saturates the bounds in Eqs. (2.1) and
(2.2) in terms of all couplings and decay constants of the theory.

As discussed in [22], we note that the entropy of a saturated bubble is equal to

S ∼ EbubbleR. (2.91)

This can be obtained by using Eqs. (2.72), (2.87) and (2.85). The entropy in Eq. (2.91)
recovers the Bekenstein bound on entropy [28]. However, a priori, this latter bound does
not contain any information on the coupling of the system. Contrarily, the bounds in
Eqs. (2.1) and (2.2) are more strict, as they prohibit a bubble to have excessive entropy
even if the Bekenstein bound on entropy is formally obeyed.

That is, we find that when the theory saturates the bound on unitarity, the bubbles
in the thick-wall regime saturate the entropy bounds in Eqs. (2.1) and (2.2). In other
words, when the ’t Hooft coupling becomes critical (see Eq. (2.13)), a thick-wall bubble
becomes a saturon. Thin-wall bubbles, however, are undersaturated bound states. The
entropy of these bubbles is greatly exceeded by the bound on entropy within the effective
low-energy theory of Goldstone bosons, with the cutoff Λcutoff ∼ 1/R. The full theory
would have to violate the unitarity constraint in order for the thin-wall bubble to possess
such an entropy. We summarize these results in Table 2.1. We note that the same results
were obtained in [22] for thin-wall and thick-wall bubbles that were not stabilized by the
memory burden effect due to the SU(N) Goldstone charge, but were allowed to oscillate
freely and subsequently decay.

Entropy
Bubble Bound on S Actual S

Thin-wall, m
ω
� 1 S ' 1

α
m6

ω6 S ' 1
α

ln
(
m10

ω10

)
Thick-wall, m

ω
∼ 1 S ∼ 1

α
S ∼ 1

α

Table 2.1: Entropy bounds and the actual entropies for bubbles in the thin-wall and thick-wall
regimes. Evidently, thin-wall bubbles are undersaturated bound states. Only thick-wall bubbles
can become saturons.

This exposes a profound relation between the properties of memory burden and the
saturation of the entropy bounds. The total occupation number of the Goldstones NG

greatly exceeds the number of the Goldstone flavors NGold ∼ N for an undersaturated
bubble state. Consequently, the memory burden stabilizing such a bubble is classical in
nature. However, a saturated bubble can be stabilized by the fully quantum memory
burden effect. We study the physics of this below.

2.8 Stabilization by quantum memory burden
We have found above that when the ’t Hooft coupling of the theory saturates the

unitarity bound in Eq. (2.77), the thick-wall bubble becomes a saturon. We emphasize the
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following: Although the solution corresponding to a stationary bubble can be described
classically, the memory burden that stabilizes the bubble can be entirely quantum. Let us
consider this in detail.

We begin with the ansatz in Eq. (2.37). As mentioned above, in this classical solu-
tion a single Goldstone mode, say θ1, is occupied macroscopically with the corresponding
occupation number of NG ∼ 1/α, see Eq. (2.86). We can make the occupation number
NG ∼ N arbitrarily large by taking the coupling α correspondingly small, as our analysis
only improves for weaker α. Up to ∼ 1/N corrections, we can regard such a state as
classical.

In the thick-wall regime, the number of Goldstone flavors NGold is of the same order
as the total Goldstone occupation number NG. Furthermore, both of these are of the
order of N . For a classical bubble configuration in Eq. (2.37), a single Goldstone flavor
possesses the entire occupation number NG. From the perspective of the memory pattern
in Eq. (2.59) we have naω = δa1NG.

Nevertheless, because of the SU(N) symmetry, with the restriction of Eq. (2.58), the
theory allows for bubble solutions in which the occupation number NG is distributed among
the different Goldstone species. These solutions are related via the permitted SU(N)
symmetry transformations. This makes them all exactly degenerate in energy.

Within the set of all patterns given by Eq. (2.59), we focus on the ones where the total
occupation number NG is distributed approximately uniformly among all NGold Goldstone
species. For such states, the occupation numbers of all the Goldstone flavors are small,
as for a saturated bubble we have NG ∼ NGold ∼ N . Here, the corresponding memory
patterns of Eq. (2.59) are characterized by naω ∼ 1 for all a. Thus, the Goldstone modes
are all in their respective quantum states, as their individual occupation numbers are
microscopic.

The corresponding memory burden possesses the same stabilizing power as that of the
classical solution in Eq. (2.37) where naω = δa1NG, due to the SU(N) symmetry. That is,
despite the fact that the bubble states with naω ∼ 1 in Eq. (2.59) are quantum, they have
the equivalent stabilizing effect as that of the classical state naω = δa1NG. Again, these are
related to each other by the SU(N) symmetry.

We therefore conclude that saturated thick-wall bubble states are stabilized by the
memory burden effect which can be entirely quantum. Such bubbles are similar in their
properties to black holes.

2.9 Information horizon
All saturons have a strict information horizon in the semiclassical limit, as discussed

in [22]. In other words, in this limit it is impossible to extract any information from
the interior of the saturon. We can understand this intuitively as the decoupling of the
information-carrying memory modes. Therefore, in the semiclassical limit, the information
stored in terms of the occupation numbers of these modes is forever preserved within the
saturon.
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We show this explicitly for the saturated vacuum bubble solutions within the present
theory. Here, the Goldstone modes of the broken SU(N) symmetry correspond to the
memory modes. The interaction strength of these modes is suppressed by the corresponding
decay constant f . For the effective coupling of a Goldstone mode with frequency ε we obtain

αG = ε2

f 2 . (2.92)

Below we demonstrate that in the semiclassical limit this coupling vanishes for any finite
ε.

First, we need to define the correct semiclassical limit. In this limit, the quantum fluc-
tuations do not backreact onto the classical bubble solution of finite size R and frequency
ω. Correspondingly, the semiclassical limit is uniquely defined as

α→ 0, R = finite, ω = finite, αN = finite. (2.93)

Note that in this limit the mass m =
√
αf is finite, while the Goldstone decay constant f

is infinite. Subsequently, for this limit we obtain

f →∞, αG → 0, (2.94)

for any finite frequency ε. In other words, the coupling of a Goldstone that has an arbitrarily
high finite frequency ε goes to zero. Consequently, this also holds for the Goldstone modes
with frequencies ε exceeding the mass m of the asymptotic quanta in the exterior vacuum.
Therefore, in the limit of zero backreaction, no information can be transferred from within
the bubble to an observer in the exterior r � R.

Consider the case when the energy of a Goldstone perturbation greatly exceeds the
mass gap of the exterior vacuum. Even such a mode cannot transmit any information to
the modes in the outside vacuum. Thus, just like in the case of a black hole, the bubble
has an information horizon in the semiclassical limit.

However, even for finite f there exists a Goldstone horizon. At finite f the coupling
αG between the modes is finite. Nevertheless, no Goldstone waves of frequencies ε � m
can propagate into the exterior vacuum. There are two different cases here.

In the first case the energy of a Goldstone perturbation is less than the mass gap m.
Here, no propagation is possible because the energy gap is finite and nonzero.

In the second case the energy of the internal perturbation can be greater than the
mass gap at the price of occupying a large number of Goldstones, even if its frequency ε
is smaller than m. From the classical viewpoint, although the frequency may be very low,
the amplitude of the Goldstone wave can be sufficiently high to match the energy given by
m.

However, in this case the propagation of the wave is strongly suppressed. We can view
this as a process where an initial state of highly occupied soft quanta of frequency ε� m
and corresponding occupation number nε transitions into a final state of few quanta with
frequencies higher or equal to m. As a specific example, consider nε = m/ε Goldstones
of frequencies ε transitioning into a single mode of mass m in the outside vacuum. This
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transition is exponentially suppressed by a factor of e−nε [22]. Transition processes from
high to low occupation numbers are universally exponentially suppressed by such a factor.

2.10 Hawking evaporation
Although stable classically, saturated vacuum bubble states are able to decay via quan-

tum processes. This decay is analogous to the Hawking evaporation of a black hole. This
evaporation process occurs universally for all saturons [22]. In the semiclassical limit, sim-
ilarly to black holes, the bubble evaporates at a thermal rate with a temperature T , which
is inversely proportional to its radius R,

T ∼ 1
R
. (2.95)

In the semiclassical approximation of Eq. (2.93) an outside observer cannot resolve the
quantum information contained in the radiated quanta. For a completely quantum theory,
the resolution time is defined by Eq. (2.8). Up to numerical factors, this is equal to the
Page’s time of a black hole.

The asymptotic theory of a physical black hole is gapless, because it contains a massless
graviton field. Thus, to elucidate the correspondence between black holes and saturated
bubble states we introduce additional massless fields in the exterior vacuum of our theory.

Specifically, we introduce a scalar field ξα, which transforms under the fundamental
representation of the SU(N) group. Furthermore, we assume that the new theory is the
most general SU(N)-invariant renormalizable theory of φβα and ξα. The only condition we
impose is that ξα is massless in the exterior SU(N)-invariant vacuum.

To illustrate the connection between saturated bubbles and black holes we focus on the
following terms,

Lξ = (∂µξ†α)(∂µξα)− αξξ†α(φ2)βαξβ. (2.96)

Here, αξ > 0 is a coupling constant that obeys the unitarity constraint

αξN . 1. (2.97)

This constraint is analogous to the bound in Eq. (2.13) for the coupling α. Again, similarly
to α, we take αξ close to the saturation point αξ ∼ 1/N of the above bound.

While the field ξ is massless in the asymptotic unbroken SU(N) vacuum outside of
the bubble, its components possess positive mass terms of order m2

ξ ∼ αξf
2 ∼ m2 in the

broken SU(N − 1) × U(1) vacuum inside the bubble. Therefore, from the perspective of
the field ξ, the bubble is a potential barrier.

First, consider a thin-wall bubble of Eq. (2.47). In this case the wave functions of the ξ
modes with momenta q � m are exponentially suppressed by a screening factor of ∼ e−mR
within the bubble, because of their positive mass-squared in its interior.

Now consider a saturated thick-wall bubble. In this case the above suppression is not as
powerful. Bubbles in the thick-wall regime obey Eq. (2.85). Therefore, the bubble radius
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R is of the same order as the screening depth given by 1/m. Furthermore, we have ω ∼ m.
Consequently, the ξ modes and the interior of a saturated bubble have an order-one overlap.

Although the newly added massless field ξ does not influence the classical stability of the
bubble, it provides a new quantum decay channel. To obtain the corresponding decay rate
within the semiclassical limit, we will need to quantize ξ in the background of the classical
bubble solution of Eq. (2.37). However, only thick-wall bubbles can become saturons. The
corresponding analytical solution is not known. Therefore, studying a quantized field ξ on
top of a classical bubble background will be only qualitative. We do not investigate this
here.

Rather, we consider the full quantum theory directly. Here, we employ the universality
of Goldstones. Specifically, we exploit the fact that the Goldstone couplings are given
by the corresponding symmetry breaking order parameter. Furthermore, recall that the
Goldstone modes within the bubble carry most of the quantum information. That is, for
an external observer, the processes in which the bubble decays via the Goldstones are the
most valuable from the viewpoint of information retrieval.

The Goldstone theorem uniquely defines the couplings between the Goldstones and the
modes of the ξ quanta. Moreover, the value of these couplings is set by a single scale.
In the framework of the full (3 + 1)-dimensional theory, in the vacuum of the broken
SU(N)×U(1) symmetry the coupling between the Goldstone and the ξ modes is local and
of the form

i∂µθ
a
(
∂µξ†T aξ − ξ†T a∂µξ

)
+ · · · . (2.98)

Here the dimensionless phases are obtained from the canonically normalized Goldstone
fields aa by θa ≡ aa

f
.

In an infinitely large vacuum with the SU(N − 1) × U(1) symmetry, the Goldstones
are well defined everywhere. Plane waves represent the mode expansions of both the
Goldstones and the ξ quanta. An SU(N − 1)× U(1) vacuum of finite extent, such as in a
bubble of finite radius R, changes the mode expansion and the configurations of momentum
eigenstates. Specifically, only the bubble interior is inhabited by the Goldstones, which
become ill-defined in the exterior vacuum. The scattering between the Goldstones of
frequency ω and the ξ modes is controlled by the effective coupling αG(ω) = ω2

f2
ω
. The

effective scale fω possesses all of the information regarding the mode profiles and other
factors. For a saturated thick-wall bubble we have fω ∼ f . Again, this is due to the fact
that for a saturated bubble, all of the scales are of the same order; see Eq. (2.85). We
therefore obtain that the coupling that controls all of the relevant Goldstone processes is
given by αG = ω2

f2 .
Energy and Goldstone charge conservation are not an issue regarding the bubble decay,

as the ξ quanta are massless. However, a decay of a bubble into a large number of ξ modes
is very unlikely, as each elementary vertex involving ξ is suppressed by the coupling αG.
Therefore, such an explosive bubble decay process does not constitute a substantial decay
channel. In the case of a black hole, a process where the black hole decays explosively into
a large number of soft gravitons is analogously suppressed.

There are two types of leading order processes of bubble evaporation. The first cor-
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responds to the decays of Goldstones of frequency ω into pairs of ξ quanta. The second
describes the rescatterings of pairs of Goldstone quanta into the asymptotic ξ quanta. The
rates corresponding to the two categories of these processes read

Γ1→2 ∼ ωαGNG ∼ 1/R (2.99)

and
Γ2→2 ∼ ωα2

GN
2
G ∼ 1/R, (2.100)

respectively, where we used the fact that saturated bubbles obey Eq. (2.85) and employed
the property NG ∼ NGold ∼ 1/αG. Rescattering processes which include a higher number
of Goldstone quanta are more suppressed. For the decay rate of a saturated bubble we
therefore obtain

Γdecay ∼ 1/R. (2.101)
This decay rate is equivalent to the Hawking rate of an evaporating black hole. Similarly to
a black hole, a saturated bubble emits, on average, a quantum of energy ∆E ∼ 1/R during
a time interval ∆t ∼ R. Therefore, the power of the radiation emitted by the bubble is
given by

P ∼ 1
R2 ∼ T 2. (2.102)

This is nothing else than the power of radiation of a black hole of temperature T given by
Eq. (2.95).

For the bubble to emit ξ quanta of energies E � 1/R, a large number n of Goldstone
quanta need to rescatter into a small number of ξ quanta. Processes such as these are
strongly suppressed. Specifically, creating n � 1 of the ξ quanta with energies E =
n/R requires the rescattering of ∼ n Goldstone quanta. Such processes are additionally
suppressed by a factor of e−n, typical for n→ 2 processes for n� 1 [22].

Therefore, an exponential factor of the type

ΓE�T ∼ e−ER (2.103)

suppresses the rate of emission of quanta with an energy of E � 1/R. The suppression
factor in Eq. (2.103) can be equivalently viewed as the Boltzmann factor

ΓE�T ∼ e−ET . (2.104)

This is typical for thermal radiation with a corresponding temperature of T ∼ 1/R, as
given by Eq. (2.95). One may therefore expect the saturon state to be thermal. However,
this is in contradiction to the full microscopic theory. In particular, the radiation spectrum
possesses 1/N , or equivalently 1/S, non-thermal corrections. These corrections carry the
information about the purity of the state. An observer can fully specify in which pure
state the saturon is, only after fully resolving these corrections. The time necessary for
the observer to resolve these corrections is rather long and is given by Eq. (2.8). We study
this property below.
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2.11 Information in Hawking radiation
We now study how Hawking radiation extracts information from the bubble. First,

note that in the semiclassical limit of Eq. (2.93), the quantum information encoded in
the emitted quanta is completely unresolvable. This is evident as in this limit, all of the
quantum couplings vanish, αG, αξ, α → 0. Thus, an external observer cannot resolve the
SU(N) quantum numbers of the emitted radiation. The evaporation rate in Eq. (2.101)
and the power of the outgoing radiation in Eq. (2.102) remain finite in this limit at the
price of infinite NG.

An external observer therefore perceives the radiation as exactly thermal with the
temperature given by Eq. (2.95), and cannot resolve the information contained within it
on a finite timescale. Again, in the semiclassical limit of Eq. (2.93), a saturon bubble
processes information just like a black hole. We analyze this in detail below.

We consider the evaporation of two distinct saturon bubbles. These bubbles possess
different information patterns, given by |n1

ω, n
2
ω, . . .〉 and |n′1ω , n′2ω , . . .〉. These patterns are

related by an SU(N) transformation and obey Eq. (2.58).
We emphasize that although SU(N) commutes with the Hamiltonian of the theory, the

two bubbles possess distinct memory patterns. Again, the quantum information patterns
are related to each other by an SU(N) transformation. Therefore, the interaction of the
corresponding states with a fixed reference probe will differ.

From the previous findings we recall that for a saturon bubble, the following holds,

α ∼ αG ∼ αξ ∼
1

NGold
∼ 1
NG

∼ 1
N
. (2.105)

In other words, all of the collective couplings are critical, and the total occupation number
of Goldstones NG is of the order of the number of Goldstone flavors NGold, which is also of
the order N .

For a saturated bubble, the above relation holds both in the semiclassical limit and in
the full quantum theory. The distinction is that in the full quantum theory, despite the
fact that all numbers are large and, correspondingly, all couplings are weak, these are all
finite. However, in the semiclassical regime all three numbers are infinitely large while all
three couplings are infinitely weak.

We can therefore summarize the two regimes of a saturon bubble as

α ∼ αG ∼ αξ ∼
1

NGold
∼ 1
NG

∼ 1
N

=
 6= 0, � 1 in full quantum theory,

= 0 in semiclassical theory.
(2.106)

We now compare the radiation emitted by the two bubbles above. All SU(N)-invariant
properties of the decay are the same for the two bubbles, as the two corresponding memory
patterns are related by an SU(N) transformation. One of these common characteristics is
the decay rate in Eq. (2.101).

An observer has to carry out a measurement that is sensitive to the differences ∆naω
among the individual occupation numbers of the two information patterns, to be able
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to distinguish the two corresponding bubbles. In the semiclassical approximation this
can be done only if some of the ratios ∆naω/NG are finite. That is, the observer can
only distinguish information patterns that differ classically. The relative fraction of such
memory patterns goes to zero in the NG →∞ limit. The patterns for which the differences
in the individual occupation numbers are small carry the majority of the information. Such
patterns are indistinguishable in the semiclassical limit. Consistently, in this limit, the
quantum information encoded in the radiation emitted by the bubble cannot be recovered
on a finite timescale.

Contrarily, within the full quantum theory, the difference in the radiation emitted by
the two bubbles with distinct corresponding patterns can be resolved within a finite time,
even if the differences ∆naω are of order one. These differences are encoded in deviations
which are of order 1/NG or, equivalently, of order 1/S.

We illustrate the corresponding radiation process within the effective theory of the
bubble as a composite state that transforms as the SU(N) tensor representation given in
Eq. (2.74). The effective coupling of the bubble and the ξ quanta reads

Bβ1,β2,...,βNT−1,βNT
α1,α2,...,αNT−1,αNT

ξ†αNT ξβNT B̃
α1,α2,...,αNT−1
β1,β2,...,βNT−1

. (2.107)

Here, B̃α1,α2,...,αNT−1
β1,β2,...,βNT−1

is the operator that corresponds to a bubble transforming under a
smaller representation of SU(N). The emission process can be written as

Bβ1,β2,...,βNT−1,βNT
α1,α2,...,αNT−1,αNT

→ ξαNT + ξ†βNT + B̃β1,β2,...,βNT−1
α1,α2,...,αNT−1 . (2.108)

We can visualize this process in the notation of ’t Hooft as a planar diagram shown in
Fig. 2.1. Here, the flows of global SU(N) “color” and “anticolor” are denoted by oppositely
directed arrows.

ξ

ξ†

...
B

B̃

Figure 2.1: The decay process B → B̃ + ξ + ξ† as a planar diagram in ’t Hooft’s notation. The
flow of SU(N) color and anticolor is denoted by oppositely directed arrows. The red and blue
lines denote the quantum numbers carried away by the emitted ξ quanta.

Let us emphasize the usefulness of this diagrammatic visualization in understanding the
emission of information by the bubble. Specifically, we can clearly see that a single emission
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possesses a negligible fraction of the information stored within the bubble. Moreover, the
origin of the exponential suppression factor in Eq. (2.104) is evident. A diagram of the
characteristic process contributing to the radiation of highly energetic ξ quanta is given in
Fig. 2.2.

Finally, the backreaction onto the bubble due to the emission is of order 1/N . In
the semiclassical treatment of Eq. (2.93), clearly, the initial bubble state B and the final
bubble state B̃ are indistinguishable. In the full quantum theory, that is for a finite N , the
distinction is nonzero. Nevertheless, the time to detect this difference scales with N . This
sets the timescale necessary for the extraction of information. We study this below.

ξ

ξ†

Figure 2.2: Diagram of a many → 2 scattering process, which results in the emission of highly
energetic ξ quanta.

2.12 Timescale of information retrieval

In this section we consider the timescale of the retrieval of information carried by
Hawking radiation. In the work [22] it was suggested that any saturon possesses a universal
lower bound on the timescale on which information retrieval can start. This bound is given
by Eq. (2.8). Applying the logic of [22] to the theory of this chapter, we can verify that this
relation is reproduced for a saturon bubble. We have previously demonstrated that thick-
wall bubbles of Eq. (2.85) can become saturons with their properties satisfying Eq. (2.105).

As already discussed, the bubble stores quantum information in terms of the occupa-
tion numbers of Goldstone modes in a corresponding memory pattern given by Eq. (2.59).
Consequently, an interaction involving the Goldstone modes is necessary to extract any
quantum information from a bubble. The specific procedure of the corresponding mea-
surement is arbitrary, as long as the Goldstone modes interact with some “agents” that
carry SU(N) quantum numbers in the exterior vacuum. There exist two categories of
information recovery: Passive and proactive. We discuss these below.
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2.12.1 Passive retrieval
In the case of passive information retrieval, an outside observer needs to examine the

properties of the Hawking radiation emitted by the bubble. As previously mentioned, up
to the zeroth order in 1/N , or 1/S, the radiation carries no information. To recover the
information contained in the radiation, the observer needs to resolve these 1/S deviations.
To do this, the external observer has to measure the SU(N) content of the radiation. This
measurement requires a long time, due to the following two reasons.

First, for the initial stage of the emission, the radiated quanta carry only a very small
fraction of the total information of the bubble. Consider the decay of one Goldstone mode
into two ξ quanta. From the viewpoint of the information pattern, this process can be seen
as a “spontaneous emission”, where the occupation number of one of the Goldstones, say
n1
ω, decreases by one,

|n1
ω, n

2
ω, . . .〉 → |n1

ω − 1, n2
ω, . . .〉+ ξ† + ξ. (2.109)

Correspondingly, the SU(N) charge of the decaying Goldstone mode is carried by the ξ
quanta. The characteristic wavelength of these emitted ξ quanta is of order R.

An external observer who would like to decode the charge of the radiated ξ particles
must pass these through a detector containing some sample particles. If such a detector
is maximally packed, it contains probe quanta with an occupation number of Nξ ∼ 1/αξ
per de Broglie volume ∼ R3. The maximum interaction rate for an emitted ξ particle
with such a detector is given by Γξ ∼ α2

ξNξ/R ∼ αξ/R. Consequently, the minimum time
necessary to be able to resolve the quantum numbers of ξ is

tξ ∼
R

αξ
∼ SR ∼ R3f 2. (2.110)

However, the measurement of a single emitted quantum does not allow to gain a significant
amount of information regarding the information pattern of the bubble. To obtain a
sufficient amount of information stored in terms of the occupation numbers of the Goldstone
modes within the bubble, at least ∼ NG emitted quanta would need to be measured.

The detection of this number of quanta requires a measurement time of

tmin ∼ NGR. (2.111)

Again, due to saturation and Eq. (2.105), this time is of the same order as that in
Eq. (2.110).

We can therefore summarize with the following: An external observer has to detect
∼ NG radiated particles and measure their SU(N) quantum numbers, to be able to obtain
any reasonable amount of information about the SU(N) charge content of the bubble.
Both of the timescales corresponding to these processes are given by Eq. (2.110). This
timescale is also of the order of that in Eq. (2.8).
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2.12.2 Proactive retrieval
There is a different option for an external observer to measure the quantum information

contained within the bubble. Namely, the observer can proactively scatter probe particles
at the bubble and measure the scattering products, instead of passively waiting for a
sufficient portion of the bubble to evaporate. Below we demonstrate that in this scenario
the minimum timescale for the onset of information recovery is given by Eq. (2.8).

The underlying reason for this is that tmin must be larger than the interaction time
between the external probe quanta and the information carrying Goldstone modes. Irre-
spective of the experimental realization of the scattering process, the Goldstone theorem
sets the interaction time in terms of the Goldstone decay constant f .

The interaction rate of the scattering process is suppressed by the square of the coupling
αG, which is taken at the scale ω ∼ 1/R. However, the rate is enhanced by the total
Goldstone occupation number NG. In total, the interaction rate is given by

ΓGold ∼ α2
GmNG ∼

1
R3f 2 . (2.112)

The corresponding timescale is then

tmin = 1
ΓGold

∼ R3f 2. (2.113)

This defines the minimum time for the onset of information retrieval by this proactive
extraction method. By using the saturation relations we can express the above timescale
as

tmin ∼ SR ∼ R

α
. (2.114)

That is, we obtain that, up to numerical factors, the minimum time necessary for the onset
of information recovery for both the passive and the proactive extraction methods is given
by Eq. (2.8).

We thus recover the result of [22], where it was discussed that generic saturons obey the
universal lower bound on the minimal timescale of information retrieval, given in Eq. (2.8).
Black holes are therefore not special in this regard: The Page time of a black hole of size
R is equal to the time tmin for a generic nongravitational saturon of the same size.

Note that the information retrieval time in Eq. (2.113) is in agreement with the notion
of an information horizon in the semiclassical approximation. Specifically, from Eqs. (2.93)
and (2.94) we obtain that, in the semiclassical limit, the timescale tmin becomes infinite.
Therefore, with the help of Eqs. (2.113) and (2.114) we can understand why a generic
saturon has a strict information horizon in the semiclassical limit of the corresponding
theory.

As a final remark, we emphasize that the mechanisms underlying the properties of
Hawking radiation and the information recovery timescales are in agreement with the
results provided by the framework of the quantum N -portrait of a black hole [14, 16, 60].
This should not be a surprise as within the quantum N -portrait a black hole is regarded as



44 2. How Special are Black Holes?

a saturated bound state of N soft gravitons. Due to the arguments of universality discussed
here, the two systems must have similar behavior. At the end of this chapter we provide
more comments on the correspondence of black holes and generic saturons.

2.13 Numerical results
To perform a numerical analysis of the problem, we consider the case where a sin-

gle Goldstone flavor θa = δa1θ(x) is occupied macroscopically. We can then rewrite the
Lagrangian density in Eq. (2.12) in terms of the fields ϕ and θ as

L = 1
2 (∂µϕ) (∂µϕ) + N

4(N − 1)ϕ
2 (∂µθ) (∂µθ)− α̃

2ϕ
2
(
ϕ− f̃

)2
, (2.115)

where α̃ and f̃ are defined above in Eq. (2.36). To allow for a simpler implementation, we
define

Ψ = 1√
2
ρeiχ/f̃ , (2.116)

where
ρ ≡ ϕ, χ ≡

√
N

2(N − 1) f̃ θ. (2.117)

We can recover the original fields ϕ and θ as

ϕ =
√

2 |Ψ| , θ =
√

2(N − 1)
N

Arg (Ψ) , (2.118)

respectively. In terms of the field Ψ the Lagrangian density takes the form of

L = (∂µΨ∗) (∂µΨ)− α̃ |Ψ|2
(√

2 |Ψ| − f̃
)2
. (2.119)

Correspondingly, the equations of motion for Ψ read

�Ψ + α̃Ψ
(√

2 |Ψ| − f̃
) (

2
√

2 |Ψ| − f̃
)

= 0. (2.120)

As initial field configurations at t = 0 we could use

Ψ(t, r)|t=0 = f̃

2
√

2

[
1 + tanh

(
m(R0 − r)

2

)]
(2.121)

and
∂tΨ(t, r)|t=0 = iω̃

f̃

2
√

2

[
1 + tanh

(
m(R0 − r)

2

)]
. (2.122)

Here, r is the radial coordinate of (3 + 1)-dimensional space-time, R0 is the bubble radius at
t = 0, ω̃ is the initial frequency of the internal rotation of the field χ, andm =

√
α̃f̃ =

√
αf

as before. We can express these initial conditions equivalently as

ϕ(t, r)|t=0 = f̃

2

[
1 + tanh

(
m(R0 − r)

2

)]
(2.123)
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and

θ̇ ≡ ∂tθ(t, r)|t=0 =
√

2(N − 1)
N

ω̃ , (2.124)

respectively.
However, note that the above ansatz is valid only in the thin-wall approximation.

Furthermore, we can obtain more exact initial profiles of the fields by solving Eq. (2.40)
numerically. We set this solution as the initial conditions for our simulation. This has two
benefits: First, we improve the accuracy of our numerical analysis, and second, we can
extend our study to that of thick-wall bubbles.

With the initial configurations obtained from Eq. (2.40), we solve the full equations
of motion for Ψ(t, r) in (3 + 1) space-time dimensions. In our simulations we set α̃ = 1
and f̃ = 1 throughout. For simplicity, we again absorb the N -dependent factors into the
definitions of α̃, f̃ and ω̃, resulting in α, f and ω, respectively. From the simulations,
we obtain that for a certain critical value of the frequency, which we denote by ωc, as
expected, the bubble is stabilized. The corresponding result is shown in Fig. 2.3. That is,
a certain critical Goldstone mode occupation number, set by ωc, stabilizes the bubble and
prevents it from collapsing. Specifically, ωc corresponds to the frequency in Eq. (2.51). We
find this expression again below from the requirement of the conservation of the SU(N)
charge. Furthermore, we extend the calculation to estimate the frequency of the bubble-
wall oscillations about a static bubble configuration.

(a) (b)

Figure 2.3: Numerical simulations of the time-evolution of bubbles with initial radii of (a)
R0 ' 13.2/f−1, (b) R0 ' 2.5/f−1. Both bubbles are stable for a certain respective critical
frequency ωc. The color bar represents the value of

√
2|Ψ(t, r)|/f = ϕ(t, r)/f . This is plotted

over the radial and time coordinates, r/f−1 and t/f−1, respectively. The arrows correspond to
the vector

√
2Ψ(t, r)/f on the complex plane, indicating the value of θ(t, r).
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2.13.1 Critical frequency estimate
As before, we assume our problem to possess spherical symmetry. In the thin-wall

approximation, we can write the total energy of the bubble of radius R� 1/m as

E = 2π
3αm

3R2
(
1− Ṙ2

)−1/2
+ 2π

3αm
2ω2R3. (2.125)

Here we also assumed ω = ω(R) to be homogeneous in space. We aim to find an expression
for ω, for the value of which the bubble is stabilized. We begin from the fact that the SU(N)
charge

Q = −i
∫

(Ψ∗∂tΨ−Ψ∂tΨ∗) r2 dr (2.126)

is conserved in time. That is, Q̇ = 0. For a thin-wall bubble the charge becomes

Q = 2π
3 f 2ωR3 = 2π

3αm
2ωR3. (2.127)

Using Eq. (2.127) in Eq. (2.125), for the total energy of the bubble we obtain

E = 2π
3αm

3R2
(
1− Ṙ2

)−1/2
+ 2π

3αm
2
( 3αQ

2πm2R3

)2
R3. (2.128)

For a static bubble configuration we have Ṙ = 0. Consequently, the total energy in the
expression above simplifies to

E = 2π
3αm

3R2 + 3αQ2

2πm2R3 . (2.129)

Now, solving dE
dR = 0 for R, we obtain

R0 ≡
[

3
2

(3αQ
2π

)2]1/5

m−1. (2.130)

Finally, using Eq. (2.127), we find that the critical frequency for which the bubble is stable
is equivalent to that in Eq. (2.51) and reads

ωc =
√

2m
3R0

. (2.131)

The initial bubble radius is denoted by R0 in the initial conditions of the numerical
simulations below. The total energy and the total SU(N) charge for a static bubble
configuration are given by

E0 ≡
40πm5

81αω4
c

and Q0 ≡
16π
81α

(
m

ωc

)5
, (2.132)

respectively.
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In this section we verify the above findings and analyze how the system behaves in
various frequency regimes. Additionally, we can estimate the frequency of the radius os-
cillations ω0 in the near-critical frequency regime as follows: Let R = R0 + δR. The total
energy of the bubble given in Eq. (2.125) now reads

E = 10πm3R2
0

9α +
(
πm3R2

0
3α

)
δṘ2 +

(
10πm3

3α

)
δR2 +O

(
δR3, δR2δṘ, δR δṘ2, δṘ3

)
. (2.133)

From the above, we obtain that the frequency of the radius oscillations is given by

ω0 ≡
√

10R−1
0 =

√
103ω2

c
2m . (2.134)

We investigate this also numerically below.

2.13.2 Critical frequency regime
For a critical Goldstone occupation number, corresponding to ωc, a vacuum bubble is

stable. We show this in Fig. 2.3. We demonstrate below that bubbles in the low frequency
regime, in particular with ω = 0.1ωc, collapse at a time tcol ∼ R0. However here, in the
critical frequency regime, the bubbles have not collapsed at 4tcol ' 60/f−1.

Now, for a frequency that differs slightly from ωc, the bubble radius oscillates about its
mean position Rm. We observe at least two frequencies characterizing these oscillations.
We present the corresponding results of this near-critical regime in Fig. 2.4.

(a) (b)

Figure 2.4: Bubble radius oscillations in the near-critical frequency regime for a frequency ω =
1.1ωc. The individual panels show the numerical data for the bubble radius R/f−1 in red over
time t/f−1. The radius is determined by the coordinate r corresponding to the maximum of the
energy density. The numerical fits of these data R(t) = Rm+A0 cos(ω0t)+A1 cos(ω1t) are shown
in black. The initial radii of the respective simulations are (a) R0 ' 13.2/f−1, (b) R0 ' 2.5/f−1.

The fit parameters of the fit function R(t) = Rm+A0 cos(ω0t)+A1 cos(ω1t) in figure 2.4
read as follows: For the large bubble we obtain: Rm = 13.730±0.002, A0 = −0.464±0.003,
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ω0 = 0.1537 ± 0.0002, A1 = −0.042 ± 0.002 and ω1 = 0.370 ± 0.002. The coefficient of
determination R

2 and the unbiased root-mean-square error (RMSE), both adjusted for
the number of fit-model parameters, are 0.999995 and 0.0301, respectively. For the small
bubble we have: Rm = 2.5297±0.0004, A0 = −0.0519±0.0005, ω0 = 1.4287±0.0003, A1 =
−0.0237 ± 0.0005 and ω1 = 0.2023 ± 0.0006, with R2 = 0.999994 and RMSE = 0.00599.
Four outlier data points were excluded from the fit for the small bubble. Both numerically
obtained estimates of ω0 are close to the analytical result of ω0 =

√
10R−1

0 from above.
Specifically, we have ω0 = 0.264 for the large bubble and ω0 = 3.11 for the small bubble.

2.13.3 Low frequency regime
The bubble decays for sufficiently low values of the frequency ω. This is due to the

fact that in this case the tension of the bubble wall greatly exceeds the pressure due to
the rotation of the χ field. Therefore, the bubble collapses. We have numerically obtained
the result that the bubble collapses for ω = 0. This case has been thoroughly investigated
in the existing literature. In our study we consider the case ω = 0.1ωc. We find that also
in this case the bubble collapses. Our results are shown in Fig. 2.5. From the simulation
for the large bubble, we can estimate its collapse time as tcol ' 1.1R0 ' 15/f−1. For the
small bubble we estimate its collapse time to be tcol ∼ R0.

(a) (b)

Figure 2.5: Numerical simulations of the time-evolution of bubbles in the low frequency regime
ω = 0.1ωc for different initial radii (a) R0 ' 13.2/f−1, (b) R0 ' 2.5/f−1. For such low frequencies,
the bubbles collapse.

2.13.4 High frequency regime
In the high frequency regime, where ω > ωc, the time-evolution of the bubble begins

with its expansion. The corresponding simulation results are presented in Fig. 2.6. This



2.13 Numerical results 49

should not be surprising, as initially the pressure from the internal rotation exceeds the
tension of the bubble wall. After the bubble expands to a radius where the wall tension
is able to counterbalance the internal pressure, it begins to shrink back. Subsequently,
these oscillations repeat. Note, however, that a part of the energy is emitted. This is also
expected, and is a consistency check for our numerical simulations. In the semiclassical
approximation, as discussed above, the energy of the bubble is infinite. Consequently, any
finite gap results in the propagation of waves emitted by the oscillating bubble. This is
precisely what we observe in our simulations.

(a) (b)

Figure 2.6: Numerical simulations of the time-evolution of bubbles in the high frequency regime
ω = 4ωc for different initial radii (a) R0 ' 13.2/f−1, (b) R0 ' 2.5/f−1. Clearly, the bubbles
initially expand. Note the increased space-time domain of the simulation in panel (a).

2.13.5 Information horizon
Here we provide results of numerical simulations that illustrate the notion of an in-

formation horizon for a bubble in the semiclassical approximation. In the corresponding
simulations, shown in Fig. 2.7, we consider a perturbation

p(r) = exp
[
iπ

2
f(r)
f(0)

]
(2.135)

of the initial r profile of θ. Here,

f(r) = 1
σ
√

2π
e− 1

2 (r/σ)2
(2.136)

is the probability density function of a normal distribution. The corresponding size of the
perturbation is set by σ ≡ 5/m� 1/m.
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That is, we obtain the new initial conditions from the old ones via the mapping Ψ|t=0 →
Ψ|t=0p(r) and ∂tΨ|t=0 → ∂tΨ|t=0p(r). From the simulations we observe that both the total
energy and the total SU(N) charge are conserved throughout the evolution of the bubble.
Furthermore, no waves are emitted, as opposed to in the case of the high frequency regime.
We emphasize that the perturbation of θ remains within the bubble. Moreover, note that
the profile of θ is not homogeneous in the interior of the bubble. This can be clearly
seen when compared to the stabilized bubble in Fig. 2.3. Specifically, for a bubble with a
perturbation of θ, the variations of θ within the bubble can be seen from the r-dependent
directions of the vector arrows in Fig. 2.7.

(a) (b)

Figure 2.7: Numerical simulations of the time-evolution of bubbles, with a perturbation of the
r profile of θ, for different initial radii (a) R0 ' 13.2/f−1, (b) R0 ' 2.5/f−1. The perturbation
of θ is contained within the bubble.

2.14 Correspondence to black holes
As argued in [22], we have verified the correspondence between black holes and generic

saturons on the example of a saturated vacuum bubble. This connection is set up via the
Goldstone coupling G(P)

Gold of the Goldstone boson due to the spontaneously broken Poincaré
symmetry. The similarities between the properties of a black hole in the theory of gravity
and a saturon bubble of the SU(N) theory become evident when these are expressed in
terms of G(P)

Gold. The SSB of Poincaré symmetry by any self-sustained physical state is a
generic phenomenon. Therefore, the corresponding coupling G(P)

Gold is well defined in both
theories. In the case of a black hole, G(P)

Gold corresponds to Newton’s gravitational constant
GN. Correspondingly, the decay constant f is equal to the Planck massMP. Thus, there is
a direct correspondence between the properties of black holes and those of generic saturons.
We summarize this correspondence in Table 2.2.
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Object
Quantity Saturons S Black holes

S (fR)2 = α−1 (RMP)2

T R−1 R−1

tmin R3f 2 = SR R3M2
P = SR

Table 2.2: Correspondence between characteristics of generic saturons and their specific realiza-
tions in gravity – black holes.

We can now apply the knowledge obtained from this correspondence to improve our
understanding of black hole physics. First, note that the 1/S, or equivalently 1/N , correc-
tions to the thermality of the radiation are crucial for the purification of the state and the
retrieval of information from it. Correspondingly, the evaporation of a black hole cannot
be self-similar. That is, although two black holes may appear identical in the semiclassical
treatment, viewed from the perspective of the full quantum theory they are not. Further-
more, we conclude that during its evaporation, the black hole develops inner entanglement.
This was previously discussed in [14,16,60]. We also clearly see the mechanism of the mem-
ory burden effect [30,35] at play. Specifically, a saturon bubble is stabilized by the quantum
information it contains.

The above findings provide further compelling evidence that a black hole is a saturated
bound state of soft gravitons, as proposed by the quantum N -portrait [14]. Moreover, this
is supported by the fact that the characteristics of both black holes and generic saturons
can be described using the trans-theoretic notion of the Poincaré Goldstone. The graviton
and the Poincaré Goldstone have one common fundamental property: Both couple to
everything that possesses energy-momentum. For a black hole, the above two are the
same. In other words, the collective excitations of the graviton “condensate” give rise to
the Goldstone boson of the Poincaré symmetry.

A further important aspect of the correspondence of black hole physics and saturons
is that of the information horizon in the semiclassical limit. For the SU(N)-symmetric
theory discussed here, this limit is given by Eq. (2.93). As demonstrated above, a saturon
bubble possesses an information horizon in this limit. Let us compare the information
horizon of a saturated vacuum bubble to the black hole horizon.

The information horizon of a saturon bubble prohibits the transmission of the infor-
mation, which is contained within it in terms of the occupation numbers of the Goldstone
modes, to an outside observer. This is due to the fact that the collective coupling λt = αN
completely dominates the scattering process, while the exchange of the individual Gold-
stone occupation numbers is additionally suppressed by powers of 1/N , resulting in a
vanishing rate.

The main distinction of this horizon to that of a black hole is that in the latter case
any sort of particle cannot escape into the exterior. This difference arises because of the
aforementioned universality of gravitational interaction.

Contrarily, the horizon of saturons in nongravitational theories is less limiting. This
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is because the universality of the Goldstone coupling is limited by the Goldstone theorem
only to the quanta that carry the SU(N) charge. Therefore, only particles carrying an
SU(N) charge are restricted by the information horizon.

Nevertheless, this distinction indicates a universal phenomenon. That is, the above
connection becomes clearer if the notion of the horizon is addressed from the perspective of
the quantum numbers of the information-storing modes contained in a saturon. For a black
hole, the information-storing agents are likely the different energy-momentum excitations
of the graviton modes. These quantum numbers source gravity. That is, any quantum
that has energy-momentum can carry information. The black hole horizon prohibits the
escape of such quanta into the exterior.

Similarly, an SU(N) saturated bubble possesses an horizon for the quanta that carry
SU(N) charge. These information carriers correspond to nontrivial representations of
SU(N). We conclude that, formulated in terms of the quanta that carry information, the
similarity between the horizon of a black hole and that of an SU(N) saturon becomes very
clear.

Note that the saturon bubble is stable in the fully classical limit of vanishing Planck
constant ~. We can see this from the expression of the decay rate in Eq. (2.101), which is
proportional to ~. Recall that in our quantum calculations we have set ~ = 1. However, in
a classical calculation for a saturon of finite mass, ~ = 0 holds and therefore Γdecay vanishes.
This is in one-to-one correspondence with a black hole which also becomes stable in the
classical limit.

One may ask whether saturons possess an analogue of the singularity in the case of
black holes. The saturons discussed here are solitonic objects, which are given by smooth
solutions in the semiclassical limit of Eq. (2.93). Note, however, that in this limit the
radius R is finite, while the expectation value at the origin f is infinite. Therefore, the
radial gradient of the field becomes infinite as well. We can see this infinite field gradient
as being similar to a singularity, although locally the field profile is smooth for any finite
f . The correspondence of this type of singularity with that of a semiclassical black hole
still needs to be thoroughly studied.

Nevertheless, we can argue that the black hole singularity is usually considered to be
a feature of the semiclassical regime alone, and this issue is assumed to be solved within a
fully quantum framework. From this point of view, formally, the results presented here can
be seen as a form of such a solution. That is, the singularity is present in the semiclassical
limit of Eq. (2.93), but is absent in the quantum theory for finite N . Nevertheless, again,
whether this is only a superficial analogy or of fundamental physical significance still needs
to be studied.

We now comment on the predicted observational phenomena regarding black hole
physics. As stated previously, the correspondence between black holes and generic sat-
urons allows us to predict new phenomena for black holes. The 1/S corrections to the
thermality of the emitted radiation are one such phenomenon. In the semiclassical limit of
Eq. (2.93) we have S →∞, and therefore these non-thermal corrections vanish. However,
for a finite S, these corrections have a significant effect over timescales comparable to the
black hole’s half-decay time, which is proportional to S.
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Consequently, deviations from the semiclassical approximation are easier to observe for
black holes that are old and closer to their half-life time. Large astrophysical black holes
are unfortunately too young to exhibit such departures from the semiclassical regime.
However, for primordial black holes of small mass, under the condition that these exist,
such effects may be within an observable window [35]. Let us note that vorticity is another
recently proposed [26] observational phenomenon for rotating black holes.

Another natural direction of research is the realization of entropy-saturated systems
in laboratory experiments. One specific example could be the study of nonrelativistic
saturated many-body systems of the type [29, 34] in experiments with ultracold bosons
with attractive interactions.

Investigating saturation in various laboratory analogs of black holes also appears promis-
ing. Examples of such attempts include realizations based on sound propagation in flu-
ids [71–73], black hole analogs for photon systems [74–76], and dielectrics [77]. Hawking-like
radiation within analogue systems has been discussed in [78,79].

The realization of saturated systems in many-body experiments could also provide a
new perspective for the investigation of black hole analogs.

2.15 Summary and discussion
In this chapter we provided further evidence for the following ideas suggested in [22]:

First, the entropy of a self-sustained field-theoretic object obeys the bounds in Eqs. (2.1)
and (2.2), which arise due to the saturation of the unitarity bound of the corresponding
theory. Second, these entropy-saturating objects, called saturons, possess the same charac-
teristics as black holes. The overview of this correspondence is given in Table 2.2. Various
other works have also discussed this connection [20, 21, 23, 25, 27]. The work contained in
this chapter provides a further advancement of this general framework.

Furthermore, we have observed explicitly that the memory burden effect [30, 35] plays
a significant role in the time evolution of systems that possess an enhanced capacity to
store information. This is a universal phenomenon for such systems. In short, via this
phenomenon, the quantum information stored within a system is able to stabilize it. Pre-
vious works have suggested that also black holes are so long-lived because of this universal
phenomenon. Here we have illustrated this effect on a specific example of a saturon within
an SU(N)-symmetric theory.

We have analyzed the black hole–saturon correspondence both analytically and nu-
merically for a concrete model, initially discussed in [22]. The corresponding theory is
renormalizable, and possesses a global SU(N) symmetry and a coupling α. In our analy-
sis, we took α as arbitrarily small, while scaling N accordingly to keep their product, αN ,
finite. The theory possesses a set of degenerate vacua. The SU(N) symmetry is spon-
taneously broken in these vacua to various maximal subgroups. We considered bubbles
of the SU(N − 1) × U(1) vacuum inside an asymptotic SU(N)-symmetric vacuum. The
bubble contains NGold ∼ N Goldstone flavors due to the spontaneous symmetry breaking.

We have demonstrated that a tower of stationary bubbles is contained within the spec-
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trum of the theory. From a quantum viewpoint, the bubble is a bound state of Goldstone
modes with a total occupation number NG. The bubble configurations that have the least
energy cost to contain a given SU(N) charge are classically stable. This stability can
be seen as a particular realization of the memory burden effect. That is, the bubble is
stable because of the quantum information stored in terms of the occupation numbers of
the Goldstone modes within it. Due to the nonzero energy gap outside of the bubble, the
energy cost of a state containing the quantum information in the exterior vacuum would
greatly exceed the energy cost to store this information within the bubble.

The stabilized bubbles considered here can be seen as a generalization of nontopological
solitons, or Q-balls [67, 68]. The key significant property of the saturon bubble is its high
microstate entropy. This entropy is carried by the Goldstone modes, which are contained
in the interior of the bubble. We note that a different version of a high-entropy Q-ball
is studied in [80]. When the theory saturates the bound on unitarity, the entropy of the
bubble reaches the limit given by Eq. (2.1), or equivalently by Eq. (2.2). A bubble that is
saturated possesses the key characteristics of a black hole. Specifically, its entropy obeys
the area-law, in the semiclassical limit the bubble exhibits an information horizon and
evaporates at a thermal rate with a temperature T ∼ 1/R, and the timescale of information
recovery is similar to the Page time. Written in terms of the universal quantities GGold or
αG, the above properties have the same corresponding expressions for a black hole and a
saturated bubble.

Near the saturation point, the vacuum bubbles of the present (3 + 1)-dimensional
SU(N) theory are similar to the saturated bound states [25] of the (1 + 1)-dimensional
Gross-Neveu theory [61]. The underlying reason for this is the trans-theoretic phenomenon
of unitarity saturation.

Additionally, there is a correlation between the degree to which the memory burden
is quantum and the entropy saturation. Regarding the stability of the bubble, only the
total Goldstone occupation number NG is relevant. That is, the memory burden effect,
and therefore the stability of the bubble, depend on NG alone and are indifferent to its
specific distribution among the different Goldstone flavors. Specifically, in view of the
bubble stability alone, occupying a single Goldstone mode macroscopically is equivalent to
occupying multiple Goldstone modes microscopically.

When the total occupation number NG exceeds the number of Goldstone flavors NGold,
the corresponding memory burden can be described classically. This is due to the fact that
for NG � NGold some of the modes have to be macroscopically occupied. Bubbles that
are stabilized in this way possess an entropy that is much less than the entropy bounds
of Eqs. (2.1) and (2.2). In other words, vacuum bubbles that are stable due to a classical
memory burden effect represent undersaturated bound states.

Contrarily, bubbles with NG ∼ NGold are able to saturate the bounds of Eqs. (2.1)
and (2.2). These bubbles form a multiplet under the SU(N) symmetry, in which the
bubbles stabilized by classical memory burden and those that are stable due to a quantum
memory burden are fully degenerate.

The results presented here can be generalized to constructions within theories with
other symmetries and field content. For example, the group SO(N) with a symmetric
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representation is very similar to the model discussed here. Additionally, one can consider
supersymmetric extensions of the present model.

For all known examples of saturons, the occupation number of their quanta, their
inverse couplings and their entropy are all of the same order. Consequently, the black hole–
saturon correspondence provides evidence for a composite view of a black hole [14,16,60].
In this picture, a black hole corresponds to a bound state of N weakly interacting soft
gravitons. Clearly, this is analogous to the saturated bound state of N Goldstones within
the SU(N) theory discussed here. There is a direct correspondence between the black hole
characteristics proposed by the quantum N -portrait [14] and the characteristics of saturon
bubbles of the present SU(N) theory. Specifically, the quantum information is contained
in the 1/S deviations from a thermal radiation spectrum. These deviations lead to an
information recovery timescale of Eq. (2.114).

The above correspondence provides further evidence for the presence of the memory
burden effect in black holes. Additionally, there is compelling evidence that black holes do
not evaporate self-similarly.
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Chapter 3

Fast Prescramblers

In this chapter we discuss the process of diffusion or “prescrambling” of information in
a quantum system, based on the work in [2]. We define a measure for this spreading of the
system’s state in terms of a minimum probability threshold for the states in the Hilbert
space. We demonstrate our findings within the framework of a specific prototype model
with enhanced memory capacity. We conjecture: (1) The fastest prescramblers require
a time logarithmic in the number of degrees of freedom. (2) The investigated enhanced
memory capacity model is a fast prescrambler. (3) (Fast) prescrambling occurs not later
than (fast) scrambling. (4) Fast scramblers are fast prescramblers. (5) Black holes are fast
prescramblers.

3.1 Introduction

3.1.1 Scrambling
First, as an introduction, we recapitulate and elaborate upon the phenomenon of scram-

bling. Consider a physical quantum system ofK degrees of freedom that carry information.
The system is prepared in a pure state, which transforms under unitary time-evolution.
Therefore, the state of the system remains pure throughout. However, over time, the sys-
tem thermalizes in the following sense: Although the time-evolution is unitary, the initial
state gradually becomes increasingly entangled with the other states within the Hilbert
space. The information originally carried only by the initial state becomes more and more
spread over the other states. That is, the system mixes up, or “scrambles” [36, 37] the
information. We call scrambling time ts [36,37] the timescale on which this process occurs.

Let us now review the definition of scrambling. For this we follow the works of [36–38],
which introduced the notion of scrambling. We refer to a system as scrambled if its state, or
equivalently the information contained within it, is sufficiently distributed over the entire
Hilbert space according to some chosen measure.

We emphasize two important aspects of this definition: First, scrambling requires the
state to be spread over the entire state space of the system. Second, the definition of the
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scrambling measure is deliberately kept general. The latter aspect allows us to apply our
findings to a large set of specific measures. Multiple distinct formulations of such measures
are defined in the literature. We provide a brief overview of several of these. One of the
first definitions of a scrambling measure is the Haar measure in relation to the choice of
the mixing unitary transformation [36]. This measure has also been applied to states and
dubbed “Haar-scrambling” in [37]. Another measure of scrambling in [37] concerns a model
of K qubits, following the work of [39]. For this scrambling measure, a system is said to
be “Page-scrambled” if the entanglement entropy of any subsystem of n < K/2 qubits
equals Sn = n − O(exp[2n − K]). Ultimately, to be able to explain scrambling at the
fundamental quantum level, especially in the case of black holes, a microscopic framework
is necessary. Such a picture was suggested in a series of works including [14,16,40–42]. In
particular, this framework proposes the notion of “memory modes”. We review this concept
below. Additionally, these works consider “one-particle entanglement” [41] and “maximal
entanglement” [42] and the corresponding timescales in application to microscopic models
of black holes.

Here we consider a new regime. This regime applies on timescales smaller than those
of the various scrambling measures above. That is, we define and quantify a new pre-
scrambling stage during the time evolution of a system. We emphasize that the findings
presented here are independent of a specific definition of the scrambling measure.

Having reviewed the definition of scrambling, we can now discuss the corresponding
scrambling time. As suggested by [36–38], the fastest scramblers require a time logarithmic
in the number of degrees of freedom. These are commonly referred to as fast scramblers.
We generalize the number of degrees of freedom in the above definition to the number of
generic quantum labels, such as modes or sites. Additionally, to be as general as possible,
we do not consider a specific temperature dependence of scrambling, or any bound on the
scrambling time due to the temperature of the system, such as those discussed in [37,81–83]
as well as in other works. We emphasize that the findings presented here are valid for
a general definition of scrambling, with the only condition that the scrambling time of
fast scramblers scales logarithmically with the number of its degrees of freedom K. We
consider the temperature dependent scrambling time for the prototype model in Sec. 3.2 in
a separate work [84]. Here, instead, the study this model at timescales before its scrambling
time.

3.1.2 Enhanced memory capacity
Here we review the notion of “enhanced memory capacity” and the concepts related to

it, mostly relying on [35]. Systems that can accommodate states of a high capacity to store
information are studied as part of a larger program of [1, 14, 16, 20–27, 29–35, 40, 85, 86].
Such systems are referred to as those with enhanced memory capacity [16,20–22,29–35,40,
85, 86]. The introduction of this concept was motivated by the goal to create a prototype
mechanism to model the information storing and processing properties of black holes, in
correspondence to the black hole’s quantum N -portrait [14]. One universal feature of
systems with enhanced memory capacity is that of “memory burden” [30,33].
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To illustrate this effect, we consider a quantum system of K degrees of freedom. These
are commonly described as quantum oscillators. We can therefore label the states of the
system by the different sequences |n1, . . . , nK〉 of the occupation numbers of the K oscilla-
tors. Each such sequence constitutes a memory pattern that carries the information. The
memory capacity of the system corresponds to the number of distinct such states that are
degenerate in energy and can therefore be stored within a narrow energy gap [32,34]. The
microstate entropy of nst-many such degenerate states corresponding to distinct patterns
is given by S = ln(nst). Via the memory burden effect [30,33], an information pattern that
stores a large amount of quantum information stabilizes the system and prevents it from
departing from an enhanced memory capacity state.

A system can attain a state of enhanced memory capacity via the effect of assisted
gaplessness [34]. This can be achieved by introducing an additional highly occupied master
mode into the system. This master mode interacts attractively with the set of information-
storing memory modes. This results in smaller energy gaps for the memory modes, and
consequently, lower energy costs for storing large amounts of information in terms of the
excitations of those modes. Consequently, due to the memory burden effect, the memory
modes backreact on the master mode impeding the change of its occupation number, thus
preventing the system from departing from the state of an enhanced memory capacity. It
has been suggested in [30] and further studied in [35], that the effect of memory burden
can be avoided by introducing an additional set of memory modes K ′ into the system. The
system can then transfer the information-storing memory patterns from the K modes to
the new K ′ modes, thus allowing the master mode to evade the memory burden effect. We
recapitulate the corresponding details below.

3.2 A prototype model
As discussed above, memory burden can be alleviated by including a second set of

modes K ′ into the system. We consider such a prototype model with enhanced memory
capacity given in Eq. (34) of [35]. The Hamiltonian of this model is reproduced in Eq. (3.6)
with minor notation changes. The model possesses two sets of bosonic memory modes K
and K ′. The corresponding creation and annihilation operators â†k, âk and â

†
k′ , âk′ obey the

standard commutation relations[
âj(′) , â

†
k(′)

]
= δj(′)k(′) ,

[
âj(′) , âk(′)

]
= 0,

[
â†
j(′)
, â†

k(′)

]
= 0 (3.1)

for j(′), k(′) = 1, . . . , K(′). The occupation number operators corresponding to these are
given by n̂k(′) = â†

k(′) âk(′) . The eigenvalues and the eigenstates of the occupation number
operators are given by nk(′) and |nk(′)〉, respectively. The interaction strength among the
memory modes n̂k(′) is controlled by the coupling Cm. The model contains two more bosonic
modes n̂a and n̂b with creation and annihilation operators â†, â and b̂†, b̂, respectively.
These satisfy commutation relations analogous to those in Eq. (3.1). The corresponding
exchange of occupation number is parametrized by the coupling Cb. We refer to the mode
n̂a as the master mode.
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The distinction in the effective energy gaps

εk ≡ ε
(

1− na
N

)
and εk′ ≡ ε

(
1− na

N −∆

)
(3.2)

of the n̂k and n̂k′ modes, respectively, is set by ∆. Note that the modes of the K and
K ′ sectors become effectively gapless for na = N and na = N − ∆, respectively. That
is, in the initial state of the system, given by Eq. (3.5), na = N and the K modes are
gapless, while the K ′ modes have a finite nonzero gap. Initially, the K memory modes
contain the entire information, while the K ′ modes are empty. Now, as na evolves and
departs from N , a state where na = N −∆, nb = ∆ and the K ′ modes store the quantum
information becomes energetically available. Thus, the memory patterns are transferred
to the K ′ sector, and memory burden is avoided.

The total occupation number of the two memory sectors is conserved and is given by

Nm ≡
K∑
k=1

nk +
K′∑
k′=1

nk′ . (3.3)

As in [35], all modes within the memory sectors are truncated to qubits. The various states
of the system are denoted by

|na, nb, n1, . . . , nK , n1′ , . . . , nK′〉 ≡ |na〉 ⊗ |nb〉
K⊗
k=1
|nk〉

K′⊗
k′=1
|nk′〉 . (3.4)

The system is evolved from an initial state

|in〉 = | N︸︷︷︸
a

, 0︸︷︷︸
b

,

=Nm︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

K

, 0, . . . , 0︸ ︷︷ ︸
K′

〉 (3.5)

where the n̂a and n̂b modes are occupied by N and 0, respectively, and only the first Nm

modes of the K sector contain one particle each. As in [35], the basic energy unit is set to
unity, e ≡ 1. The Hamiltonian of the model then reads

Ĥ = ε

(
1− n̂a

N

)
K∑
k=1

n̂k + ε

(
1− n̂a

N −∆

)
K′∑
k′=1

n̂k′ + Cb
(
â†b̂+ H.c.

)
+

+ Cm


K∑
k=1

K′∑
k′=1

f1(k, k′)
(
â†kâk′ + H.c.

)
+

K∑
k=1

K∑
l=k+1

f2(k, l)
(
â†kâl + H.c.

)
+

+
K′∑
k′=1

K′∑
l′=k′+1

f3(k′, l′)
(
â†k′ âl′ + H.c.

) ,
(3.6)

with

fi(k, l) =
Fi(k, l)− 1 , Fi(k, l) < 0.5
Fi(k, l) , Fi(k, l) ≥ 0.5

(3.7)
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and
Fi(k, l) =

(√
2(k + ∆ki)3 +

√
7(l + ∆li)5

)
mod 1, (3.8)

where
∆k1 = ∆k2 = 1, ∆k3 = K + 1, ∆l1 = ∆l3 = K + 1, ∆l2 = 1. (3.9)

This makes the individual couplings among the memory modes essentially random.
In the case of a spherically symmetric system, specifically a static black hole, we can la-

bel its quantum states by the quantum numbers (l,m) of the spherical harmonics Y m
l (θ, φ).

We can thus determine the free energy gap ε of the corresponding memory modes [35]. In
particular, we can estimate the energy of the highest mode and therefore also the value of
ε from the number of independent solutions for one degree l of a given spherical harmonic
Y m
l (θ, φ) as [35]

ε =
√
K. (3.10)

The memory modes should remain effectively gapless, which imposes the following con-
straints on the couplings [35]

Cb .
1√
N
, Cm .

1√
Nm

√
K
. (3.11)

Following [35], we set
K = K ′. (3.12)

Finally, the condition that close to the initial state in Eq. (3.5) the K ′ memory sector is
not gapless provides the constraint |εk′ | � 1/

√
Nm [35], which can also be expressed as a

constraint on ∆ as
∆� N

1 +
√
Nm

√
K
. (3.13)

Since the numerical simulations require a considerable time to complete, for the majority of
our numerical analysis we pick a value of ∆ that does not satisfy this constraint. However,
first, from the scan over the parameter ∆ we are able to observe a clear dependence of the
analyzed quantities over the majority of the ∆-range. Second, one of the two considered
quantities changes its ∆-dependence only when ∆ is very close to N . We are therefore left
with a set of six free and constrained parameters

N,K,Nm,∆, Cb, Cm. (3.14)

Within the framework of the quantum N -portrait [14] of a black hole of entropy S � 1,
the parameter space is constrained to N = S, K = S, Nm = S/2 [35]. We consider this
scaling in Sec. 3.4.2.

3.3 Two effects
As mentioned previously, a microscopic framework of scrambling was developed in [40–

42, 60, 85–91], based on the quantum N -portrait of a black hole [14]. For a precise and
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consistent definition of scrambling, a specific measure of the uniformity of the distribution
of the state needs to be chosen. Nevertheless, as discussed above, our results are general
and do not depend on a particular definition of the measure. The only requirement we
demand is that the state of a scrambled system is sufficiently distributed over the entire
state space. This is a general property of all definitions of scrambling. Correspondingly,
there are two effects that we expect to occur before the system is scrambled:
(1) The wave function of the system |ψ(t)〉, originally in a single basis state |in〉, diffuses

over the entire particle basis {|vi〉}, given a minimum state probability threshold.

(2) The most probable state that the system can assume, changes from |in〉 to another
basis state |vi〉 6= |in〉.

Les us quantify these effects and the corresponding times. On a finite, nonzero timescale,
|ψ(t)〉 spreads over the entire basis {|vi〉}, with the probability |Ci|2 = | 〈ψ(t)|vi〉 |2 of each
state rounded to a finite, fixed and sufficiently small precision p < 1/dim({|vi〉}). For a
given value of p, we denote by f the fraction of the basis that |ψ(t)〉 spreads over, and by
tf the earliest time for which f = 1 holds. Specifically, we define

f ≡ 1
N

N∑
i=1

H(|Ci|2 − p) , H(x) =
0, x ≤ 0

1, x > 0
. (3.15)

Here, N ≡ dim({|vi〉}) is the number of basis states, or equivalently the dimension of
the Hilbert space, and H(x) is the left-continuous Heaviside step function. Evidently,
for the system in Eq. (3.6), p is nonzero as soon as the system starts evolving. In other
words, |ψ(t)〉 spreads essentially instantaneously over the whole basis, but with minuscule
contributions of most of the states. Nevertheless, at the time tf , all of the corresponding
states probabilities have a value > p.

In addition, we denote the time when the most probable state of the system changes
from |in〉 to a different basis state |vi〉 6= |in〉 by tc. That is, tc is the earliest time for which
maxi(|Ci|2) 6= |Cin|2 holds.

We study the above two effects for the system of Eq. (3.6) in Sec. 3.4. Our primary
objective is to investigate the dependence of the times tf and tc on the parameters in
Eq. (3.14). We emphasize that the definitions of the above two effects of spreading of the
state of the system include quantitative measures of the distribution of the state in terms of
probabilities. Therefore, our definitions are different from those of the diffusion discussed
in [38]. In addition, our definitions are also different from that of minimal scrambling
in [42], which, for a system of N qubits, is defined as the state of the system reaching
a uniform superposition of N basis states, each with 1/N probability. Note that this is
different to a superposition over all 2N basis states.

3.4 Numerical results
We expect the system to exhibit the following behavior during its time-evolution: Ini-

tially, for the state |in〉, we have f = 1/N and maxi(|Ci|2) = |Cin|2. With the system
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evolving in time, the master mode will gradually transfer its occupation number na to that
of the b̂ mode. Therefore, as na departs from N , a state in which the K ′ modes store the
quantum information becomes energetically available. Correspondingly, the occupation
number of the memory modes is gradually transferred from the K sector to the K ′ sector.
Thus, the system explores increasingly larger portions of the Hilbert space. Correspond-
ingly, f will increase until reaching unity at the time tf . In other words, the state of the
system is diffused over the entire state space with a probability |Ci|2 > p of each basis state
i for a chosen value of p. In addition, we expect the state corresponding to maxi(|Ci|2)
to change from |in〉 to a different state at the time tc. Our goal is to understand how the
timescales tf and tc scale with the parameters of the model.

By our definition of tf , specifically because of the condition for the state to diffuse over
the entire Hilbert space, we expect tf to obey an upper logarithmic bound for N , K and
Nm. We expect this for the following reasons: The model given by Eq. (3.6) is designed to
simulate the information-processing characteristics of a black hole. At the same time, black
holes are conjectured to be the fastest scramblers [36,37]. Moreover, the fastest scramblers
are conjectured to scramble information on timescales that are logarithmic in the number of
their degrees of freedom [36,37]. According to all definitions of scrambling, the information
within a system is scrambled when its state is sufficiently spread over the entire Hilbert
space. Therefore, before a system is truly scrambled by any scrambling measure, we expect
the state of the system to become distributed over the entire Hilbert space with a minimal
probability of each of the basis states. We call this process “prescrambling”.

This provides us with a tool to test whether the prototype model in Eq. (3.6) complies
with the conjectures of [36, 37] at the level of prescrambling. This would be fulfilled if
tf ≤ ts ∼ ln(# d.o.f.s). We investigate this numerically below.

We perform our simulations using QuSpin [92–94]. Unless otherwise stated, and except
for the parameter(s) varied, the values of the parameters are given by

p = 5 · 10−21, N = 4, K = 4, Nm = 2, ∆ = 1, Cb = 0.1, Cm = 0.1. (3.16)

Constraining our baseline parameter choice to these values, we thus adopt the quantum
N -portrait scaling regime of a black hole: N = S, K = S, Nm = S/2. From the basis
of this choice we analyze the individual parameter scaling outside of this regime. Note
that as the model in Eq. (3.6) was proposed to capture how a black hole processes and
stores information, the scaling regime of black hole’s quantum N -portrait is the one of
significance. The Hilbert space of the system grows rapidly with an increase in the above
parameters. We therefore restrict their values to the choice N = 4, K = 4, Nm = 2. This
allows us to scale the individual parameters over a greater domain, which in its own turn
provides a better insight into the large-value scaling limit of each of the parameters.

In our simulations we constrain the values of Cb and Cm to satisfy the bounds in
Eq. (3.11). For the value of p in Eq. (3.16), we round each |Ci|2 to 20 decimal places and
include its contribution in f . The precision p has such a small value because for sufficiently
large values of N and/or K, tf begins to diverge from its logarithmic behavior and starts
increasing more rapidly. Nevertheless, for an arbitrary but fixed range of N and/or K we
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expect a sufficiently small value of p to exist, such that tf scales logarithmically for that
range. We show an exemplary plot of the two effects and their corresponding timescales
for these parameter values in Fig. 3.1.

Figure 3.1: Left (blue): Fraction f of Hilbert space that the state of the system is spread over
with a contribution p > 5 · 10−21 of each state. The corresponding basis has 140 states. Right
(red): Maximum probability |Ci|2 of any single basis state |vi〉 with i ∈ [1, 140], and (green,
dot-dashed): Probability of the initial state |Cin|2. The time step of the simulation is 10−2. Note
that the timescale is logarithmic. For this example we obtain tf = 0.32 and tc = 6.25.

We observe in a few of our simulations that the value of f , after reaching unity, tem-
porarily decreases back below 1, but then increases to 1 again before remaining at this
value. However, in the majority of our simulations, once f reaches unity, it tends to stay
at that value. The effect of a temporary decrease in f occurs as the system may some-
times predominantly occupy only a fraction of the states in the Hilbert space for a limited
duration. That is, the system can be temporarily found in a superposition of only a subset
of the states, before again becoming more diffused. However, we have more commonly
observed that the diffusion of the state occurs in a continuous and increasing manner.
Similarly, as depicted in Fig. 3.1, we find that maxi(|Ci|2) may also come back to being
equal to |Cin|2 after a departure from it. However, this return is nonpermanent. Finally,
we note that tf does not always precede tc. This is evident as f depends on the particular
choice of p.

From our numerical analysis we expect large N , K and Nm, that is large systems
with large sizes of the corresponding state spaces, to slow down the spread of the wave
function |ψ(t)〉. Likewise, for a large difference in the energy gaps of the memory modes,
parametrized by ∆, and for weak coupling strengths Cb and Cm, we expect the same to
occur. In our simulations we want to first, verify, and second, quantify the corresponding
parameter scalings. Let us emphasize that the diffusion of the state as defined previously
in terms of f is expected to be an important precondition for scrambling. This is due to the
fact that, clearly, before a state of a quantum system becomes scrambled over the entire
Hilbert space with respect to some measure by any definition of scrambling, it needs to
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first spread over the entire Hilbert space with a nonzero contribution of every basis state.
Moreover, note that every mode in the system of Eq. (3.6) is directly coupled to every
other mode of the corresponding sector(s). We therefore expect there to be no “diffusers”
or “prescramblers” that are faster than this system. Below we study how fast this “fast
prescrambler” is.

3.4.1 Individual parameter scaling

In this part of our analysis we vary the parameters individually. The results are depicted
in Fig. 3.2, along with the corresponding best obtained fit functions. For compactness, only
the general scaling is presented in the individual panels of Fig. (3.2). The detailed scaling
with the corresponding fit parameters is listed in Table A.1 in the Appendix. In the
simulations we are able to verify that large values of N , K, Nm and ∆, and small values of
Cb and Cm slow down the spreading in terms of tf . Furthermore, we find the quantitative
dependence of tf and tc on the parameters of the model. However, let us note that we
were unable to extract the dependence of tc on Nm because of the irregularity of the data.
Additionally, we remark that for the scaling of tf with Nm the standard errors of the free
fit-model parameters are of the same order as the values of the parameters themselves.
Consequently, we cannot assume this to be a good fit for the obtained data. To be able to
find a conclusive scaling of tf with Nm, more data is needed. As Nm is the most costly of
all parameters in view of the simulation run-time, this dependence remains to be studied.

Nevertheless, for larger values of Nm we expect tf to grow as ln(Nm) for the following
two reasons: First, we observe that tf does not scale logarithmically also for small N .
Instead, the logarithmic scaling emerges only for larger N . Second, only the parameters
N , K and Nm determine the dimension of the Hilbert space of the system. We expect
the size of this state space to be the property determining how quickly the wave function
spreads. Consequently, this sets the scaling of tf , and we expect it to depend on N , K and
Nm in the same way.

We find a clear dependence of tf and tc on all of the other parameters of the model.
Our most significant observation is the scaling

tf ∼ ln(K). (3.17)

In other words, given a fixed p, the time tf that the system requires to diffuse the initial
state over the entire Hilbert space {|vi〉} with a probability |Ci|2 > p ∀ i ∈ [1,N ] increases
logarithmically with the number of memory modesK. Note that the model in Eq. (3.6) has
all-to-all couplings among the modes of each sector. Therefore, we expect the “diffusion”
or “prescrambling” of Eq. (3.17) to be the most rapid for any physical system.
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(a) tf ∼ ln(N), N ≥ 20;
tc ∼ N−0.966±0.044, N ≥ 8.

(b) tf ∼ ln(K);
tc ∼ e(−0.083±0.019)K , K ≥ 19.

(c) tf ∼ e(0.43±0.13)Nm ;
tc scaling unknown.

(d) tf ∼ e(2.373±0.087)∆, ∆ ≤ 3.986;
tc ∼ e(−0.323±0.019)∆, ∆ ≥ 0.5.

(e) tf ∼ C−1.177±0.059
b

, Cb ≥ 0.0057;
tc ∼ C−4.41±0.48

b
, Cb ≥ 0.25207.

(f) tf ∼ C−0.3847±0.0051
m ;

tc ∼ C−1.0734±0.0044
m .

Figure 3.2: The general scaling of tf and tc with the individual parameters N , K, Nm, ∆, Cb,
and Cm. The numerical data is shown as points, with the corresponding fits represented by solid
lines. The dependence of tf on the individual parameters is shown in blue (left and bottom axes),
and that of tc is shown in red (right and top axes). Note the different ranges of the axes. In
addition to the scaling of the individual parameters, the parameters changed from the baseline
choice of Eq. (3.16) are: Panel (a) for only the tf scan: p = 5 ·10−41, also, N is scanned over up to
150 for a better fit; the permitted range is N ≤ 100, see Eq. (3.11). The points for N ∈ [101, 150]
and the respective fit are marked green. Panel (c) for both tf and tc scans: K = 8. For panels (b),
(d)-(f) no parameters were additionally changed.
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We thus define a system to be a fast prescrambler, if, given an ar-
bitrarily large but fixed range of number of degrees of freedom K,
there exists a sufficiently small minimum state probability threshold
p < 1/dim({|vi〉}), such that the state of the system |ψ(t)〉, initially
in a single state |in〉, spreads over the entire Hilbert space {|vi〉} into
a superposition of all dim({|vi〉}) basis states each with a probability
|Ci|2 = | 〈ψ(t)|vi〉 |2 > p, in a time logarithmic in K.

We call this phenomenon “prescrambling” for the following two reasons: First, we want
to emphasize the difference to diffusion in [38] and minimal scrambling in [42]. Second,
note that the threshold p can be arbitrarily small. Therefore, this type of diffusion of the
state will occur on timescales before scrambling, for which the state needs to be sufficiently
spread by some chosen measure. It is possible to define a scrambling measure that is equal
to that of our prescrambling. Then, however, for some systems a scenario is possible in
which the initial state, despite some degree of diffusion over the entire basis, remains the
most probable state. That is, if tf < tc. Consequently, it would be problematic to call the
state as truly scrambled.

3.4.2 Application to black holes

We recall that according to the quantum N -portrait of a black hole [14] the parameters
of the model in Eq. (3.6) scale as N = S, K = S, Nm = S/2. A thorough scan in this
parameter regime is very costly regarding resources and run-time (in the order of months
per single data point for N ∼ O(10), and scaling exponentially with N). Additionally,
requiring ∆ to fulfill Eq. (3.13) would slow down the time-evolution of the system. Conse-
quently, the evolution of the system would need to be considered over longer times. This
would further increase the simulation run-time. Nevertheless, we expect the times tf and tc
to scale in this regime as follows: First, as argued above, we expect tf to scale logarithmi-
cally with N , K and Nm. Second, from supplementary scans of tf and tc for N = K ≤ 15,
Nm = 2 fixed constant, and thresholds p = 5 · 10−41 and p = 5 · 10−21, respectively, we find
that both tf and tc each scale as their corresponding N scans.

Furthermore, as discussed in [36,37], black holes are conjectured to be fast scramblers.
That is, they scramble information in a time logarithmic in the number of degrees of
freedom. Therefore, prescrambling is expected to take place during times not later than
scrambling, independent of the particular definition of the scrambling measure. We recall
that the model in Eq. (3.6) possesses direct all-to-all couplings between the modes of the
respective sectors. Consequently, we expect this model to exhibit the fastest prescrambling
time, in terms of the number of degrees of freedom, that a physical system can have. We
have found indications above that this system prescrambles in a time that scales logarith-
mically with N , K and Nm separately. We therefore expect this model to prescramble in
a time logarithmic in N for the black hole scaling regime.



68 3. Fast Prescramblers

3.5 Conjectures
Our observations lead us to conjecture the following:

(1) The time in which the fastest prescramblers diffuse the initial state
of the system over its entire state space scales logarithmically with
the number of degrees of freedom, given a minimum state proba-
bility threshold.

(2) The enhanced memory capacity model in Eq. (3.6) is a fast pre-
scrambler.

(3) (Fast) prescrambling occurs not later than (fast) scrambling, irre-
spective of the choice of a specific measure of the uniformity of the
state distribution for the latter.

(4) Therefore, fast scramblers are fast prescramblers.

(5) Specifically, black holes are fast prescramblers.

We emphasize that we do not claim that all fast prescramblers are fast scramblers. Likewise,
we do not claim that all fast prescramblers have direct all-to-all couplings between the
degrees of freedom of the model. Finally, we note that the above are conjectures and
should not be viewed as proofs.

3.6 Summary and discussion
In addition to the conjectures above, we conclude this chapter with supplementary

comments. First, we note that the spreading of the state of the system, as measured by tf ,
has an at least exponential scaling with ∆. Second, our findings provide further evidence
that the effects observed within the prototype model with an enhanced memory capacity
in Eq. (3.6) agree with the characteristics that black holes are expected to exhibit. Note
also that the all-to-all coupling of the modes in the system of Eq. (3.6) fully agrees with
the picture of a black hole as a fast scrambler in [38]. Third, one may speculate that the
Sachdev-Ye-Kitaev (SYK) model [81,95] is a fast prescrambler, as its modes have all-to-all
direct couplings and as it was shown to be a fast scrambler. In the context of prescrambling,
our findings also verify that quantum information stored by the system stabilizes it via the
memory burden effect.

Based on the observations presented in this chapter, we can introduce several ap-
plications of prescrambling. First, systems of enhanced memory capacity, such the the
model considered here, may be realized in ultracold boson experiments. Correspondingly,
the information-processing properties of such systems, including prescrambling, could be
tested. Thus, on the one hand, the enhanced memory capacity model could be realized in
the physical regime of large N . On the other hand, the proposed information-processing
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characteristics of such systems could be tested in real physical systems. Moreover, if
new effects are observed in the experiments, these would allow to propose corresponding
new phenomena for black holes. Second, as discussed above, prescrambling supports the
arguments of previous works on how black holes store and process information. This con-
tributes to our understanding of these mechanisms at a quantum level. This, in turn, allows
us to improve the corresponding microscopic models. At the level of prescrambling, the
model in Eq. (3.6) is thus far in agreement with the fast scrambling conjectures of [36,37].
Furthermore, via prescrambling, we may quantitatively conjecture how the first stages of
information scrambling occur within a black hole. Third, our prescrambling conjectures,
if true, provide a supplementary test on whether a system is a fast scrambler or not, for a
large variety of definitions of scrambling. Specifically, if a system is not a fast prescrambler,
then it also is not a fast scrambler. This is due to the fact that in this case the state of the
system does not diffuse over the entire state space fast enough to allow for fast scrambling.

We note, as an outlook, that a future work [84] will study the temperature dependent
scrambling [37,81–83] for the model in Eq. (3.6). Additionally, scrambling within this model
and its relation to the Eigenstate Thermalization Hypothesis [44,45] will be considered in
a separate work [96].
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Chapter 4

Thermalization Despite Correlation

This chapter is based on the work [3], which is currently in preparation. In it we propose
a new thermalization mechanism for isolated quantum systems. The novelty is the occur-
rence of thermalization despite unignorable correlations between the fluctuations of the
eigenstate expectation values 〈α| Â |α〉 of a few-body observable Â in the eigenstate basis
{|α〉} and the fluctuations of the squared magnitudes of the coefficients |Cα|2 = | 〈α|in〉 |2
for a non-equilibrium initial state |in〉 of the system. We consider a quantum prototype
system of enhanced memory capacity introduced to model the information processing char-
acteristics of a black hole. The numerical finite-size analysis of this system provides in-
dications that it approaches thermality in the large system size limit via a variation of
the above thermalization mechanism. We discuss the implications of such correlations for
thermalization within isolated quantum systems as well as the application of our results
to black hole physics.

4.1 Introduction
The first goal of this chapter is to propose a new thermalization mechanism. It is

not more general than the already existing ones. However, we are not aware of such a
mechanism in the literature. The novelty is that thermalization can still occur even if the
fluctuations of the eigenstate expectation values 〈α| Â |α〉 of a few-body observable Â in
the eigenstate basis {|α〉} and the fluctuations of the squared magnitudes of the coefficients
|Cα|2 = | 〈α|in〉 |2 for a non-equilibrium initial state |in〉 possess non-negligible correlations.

The distinctive feature of this thermalization mechanism is that the large fluctuations
of both the diagonal matrix elements Aαα = 〈α| Â |α〉 and the squared magnitudes of the
coefficients |Cα|2 around their respective averages are correlated in such a way that the
infinite-time average is equal to the microcanonical ensemble average.

Our second goal is to test thermalization within a quantum prototype system [30, 35]
introduced to model the information processing characteristics of a black hole. First,
extrapolating the finite-size analysis of this system we find indications that it approaches
thermality in the large system size limit. Second, we provide numerical evidence allowing
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us to hypothesize that the corresponding thermalization occurs via a variation of the above
mechanism, in which only a few of the diagonal matrix elements Aαα deviate strongly from
their average. Nevertheless, the fluctuations of the Aαα elements are correlated with the
fluctuations of the |Cα|2 coefficients. Moreover, the |Cα|2’s perform a biased sampling of
the distribution of Aαα’s, but in such a way that the infinite-time average is equal to the
microcanonical ensemble average.

The above results provide us with further insight [2, 36, 37, 41] into how black holes
may process information. Furthermore, this can allow us to formulate new hypotheses
which could be testable for black holes. Moreover, we gain deeper understanding of the
phenomenon of quantum thermalization, as well as obtain a further indication that there
could exist a thermalization mechanism that would unify the already existing ones and
that would operate on a set of more general conditions.

4.1.1 Thermalization
Let Ĥ be a Hamiltonian of an isolated quantum many-body system of N degrees of

freedom with N energy eigenstates |α〉 and corresponding energies Eα. Furthermore, let
Â(t) = eiĤtÂe−iĤt be a local few-body Hermitian operator in the Heisenberg representation
(here and throughout this chapter we set ~ ≡ 1). We assume that the system is prepared
in an initial state |in〉, for which 〈in| Â |in〉 is sufficiently far from the expectation value of
the physically reasonable few-body observable Â predicted by the microcanonical ensemble
taken at the energy of the system 〈in| Ĥ |in〉. Following a common definition [51], we say
that the observable Â(t) thermalizes if:

(i) The infinite-time average of the expectation value of the observable 〈Â(t)〉 is equal
to its microcanonical average, and

(ii) The temporal fluctuations of 〈Â(t)〉 about the microcanonical average are small at
most later times.

The ETH states that an observable Â(t) will thermalize if [44, 45,47,48,97,98]:

(1) The diagonal matrix elements Aαα = 〈α| Â |α〉 vary approximately smoothly with Eα
and the magnitude of the difference between neighboring values |Aα+1,α+1 − Aαα| is
exponentially small in N , and

(2) The magnitudes of the off-diagonal matrix elements |Aαβ| = | 〈α| Â |β〉 | with α 6= β
are themselves exponentially small in N .

These ETH conditions on the matrix elements are often compactly summarized as [47,48,
99–101]

Aαβ = A(E)δαβ + e−S(E)/2fA(E,ω)Rαβ, (4.1)

where E = (Eα+Eβ)/2, ω = Eα−Eβ, and A(E) = tr[ρ̂Â] is the microcanonical average at
energy E with the thermal density matrix ρ̂ ≡ e−βĤ/Z, the partition function Z ≡ tr[e−βĤ ],
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and the inverse temperature β which is set by E = tr[ρ̂Ĥ]. Furthermore, S(E) is the
thermodynamic entropy at energy E given by the logarithm of the number of degenerate
microstates, and fA(E,ω) is a real function that depends on the specific operator Â with
fA(E,ω) = fA(E,−ω). Both A(E) and fA(E,ω) are smooth functions of their arguments.
Finally, Rαβ is a random Hermitian matrix of entries with zero mean and unit variance.

Additionally, it is commonly assumed that all the energy eigenvalues Eα are non-
degenerate [47, 102]. Finally, the condition that the system is prepared in an initial state
with a relatively small energy uncertainty [45–48, 55, 98] is frequently assumed to hold
implicitly in the literature. We call this the 0-th condition of the ETH:

(0) The initial state |in〉 is assumed to be a superposition of energy eigenstates, which
are all sufficiently close in energy.

There exist systems that thermalize, but do not fulfill the conditions of the ETH.
This has motivated the formulation of various thermalization mechanisms, such as those
mentioned previously. Below we briefly review the mechanisms discussed in [55]. This
allows for a clearer connection to the thermalization mechanism introduced in this chapter.
Under the assumption that the initial state has a sufficiently narrow spread in energy,
the authors of [55] suggest two possible mechanisms that are distinct from the ETH for
achieving thermalization:

(i) Even for eigenstates that are close in energy, there are large fluctuations in both the
eigenstate expectation values Aαα = 〈α| Â |α〉 and the squared magnitudes of the
coefficients |Cα|2 = | 〈α|in〉 |2. However, the fluctuations for these two quantities are
not correlated for initial states of physical interest. Therefore, there is an unbiased
sampling of the Aαα values by the squared magnitudes of the coefficients |Cα|2 when
performing the sum for the diagonal ensemble 〈Â(t)〉 =

N∑
α=1
|Cα|2Aαα.

(ii) The squared magnitudes of the coefficients |Cα|2 exhibit essentially no fluctuations
between eigenstates close in energy for initial conditions of physical interest.

However, as noted by the authors themselves, for the above two mechanisms, in contrast
to ETH, there may exist initial states for which the system does not thermalize.

The thermalization mechanism proposed in this chapter is a modification of the mech-
anism (i) above. Namely, we allow for correlations, irrespective of how small, between the
fluctuations of Aαα and |Cα|2. The specific magnitude and form of the correlations are
unimportant, as far as when performing a hypothesis test with the null hypothesis that
the two aforementioned sets of fluctuations are independent and an alternative hypothesis
that they are not, the test shows that the null hypothesis is to be rejected at a chosen
significance level. In this chapter we provide numerical evidence that a system in [30, 35]
approaches thermality in the large system size limit via a variation of this mechanism, with
the independence hypothesis rejected at the 0.05 significance level by the majority of the
applied independence tests.
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In the finite-size scaling analysis of the system we find that only a few of the elements
Aαα differ strongly from their average, but are biased towards and are strongly weighted
by the |Cα|2’s. However, the fluctuations of Aαα and |Cα|2 are distributed and correlated
in such a way that these biases collectively balance each other out. It is important to
note that from our numerical analysis we expect the maxima of the fluctuations of the
Aαα’s, within an appropriate energy window centered around the energy of the system,
not to vanish in the thermodynamic limit, i.e. in the limit of large system size. In fact, we
observe that, within the energy window, the maximal absolute difference of the Aαα’s that
are neighbors in energy, in the thermodynamic limit approaches a value comparable (with
a factor in the range of [1.035, 1.122]) to the average value of the Aαα’s within that energy
window.

4.1.2 The model

As a prototype model of enhanced memory capacity we again consider the setup of
Eqs. (3.1)-(3.13) from Sec. 3.2. As before, we set K = K ′. Additionally, we take the
coupling strengths at their maximum values Cb = 1/

√
N , Cm = 1/(

√
Nm

√
K). Further-

more, we adopt the following scaling regime: In accordance with the black hole’s quantum
N -portrait [14], the parameters scale as N = S, K = S, Nm = S/2 for a black hole of
entropy S � 1 [35]. If the occupation number of the master mode N is odd, we round the
total occupation number of the memory modes down to the nearest integer: Nm = bN/2c.
Finally, we choose ∆ = N/2, which satisfies the constraint in Eq. (3.13) for large N . This
leaves a single free parameter: The system size N , which we vary in the simulations below.
The numerical analysis is performed with QuSpin [92–94]. For the entirety of the chapter
we assume that the Hamiltonian of the system does not have any degenerate eigenvalues
Eα for any values of N .

4.2 Test of thermalization

To test thermalization within the model in Eq. (3.6) we need to verify that the condi-
tions (i) and (ii) of thermalization in Sec. 4.1.1 are satisfied. We deliberately consider only
one realization of the system. That is, the values of the couplings of the individual modes
as well as the initial state of the system are unique and fixed. This avoids averaging over
multiple realizations and thereby obtaining a false positive result. As the values of the
couplings between the individual memory modes were chosen essentially at random, we
claim that this one realization of the system is a typical representative. Additionally, for
the same reason as above, as the few-body observable we consider the occupation number
n̂i of only the mode i = 1 from the K sector. We provide numerical evidence that this
observable approaches thermality in the large system size limit.

To calculate the quantities considered in the numerical analysis we express the initial
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state in Eq. (3.5) as

|in〉 =
N∑
α=1

Cα |α〉 (4.2)

with the normalization
N∑
α=1
|Cα|2 = 1. The dimension of the Hilbert space is denoted by

N . Assuming no degeneracy in the eigenvalues Eα, we define the infinite-time average of
the operator n̂i as

ni ≡ 〈n̂i(t)〉 = lim
T→∞

1
T

T∫
0

〈n̂i(t)〉 dt =
N∑
α=1
|Cα|2ni,αα. (4.3)

The magnitude of the temporal fluctuations of 〈n̂1(t)〉 about ni can be calculated as

σi,t ≡
[
〈n̂i(t)〉2 − n2

i

]1/2
=

∑
α,β
α 6=β

|Cα|2|Cβ|2|ni,αβ|2


1/2

. (4.4)

The energy of the system is given by

E = 〈Ĥ〉 =
N∑
α=1
|Cα|2Eα. (4.5)

We define the half-spread of the energy range of the eigenvalues Eα as

∆E ≡ 1
2 (Eα,max − Eα,min) . (4.6)

As the half-width of the energy window for the microcanonical ensemble average we take
the quantum energy uncertainty [45–48,98]

σE,q ≡
[
〈Ĥ2〉 − 〈Ĥ〉2

]1/2
=
[ N∑
α=1
|Cα|2

(
Eα − E

)2
]1/2

=
[( N∑

α=1
|Cα|2E2

α

)
− E2

]1/2

. (4.7)

We denote the number of eigenvalues Eα contained within the interval (E−σE,q, E+σE,q)
by NσE,q . Finally, we define the microcanonical average of n̂i as

ni,mc ≡
1
NσE,q

∑
α

|E−Eα|<σE,q

ni,αα. (4.8)

Figure 4.1 depicts an exemplary plot of 〈n̂1(t)〉 over time t for N = 8. We observe
similar behavior of the observable for other values of N . In Fig. 4.1, the expectation value
of the occupation number of the mode i = 1 equilibrates to n1 ≈ 0.32 with small temporal
fluctuations at later times. Evidently, it does not thermalize ideally, as for this to be the
case n1 = n1,mc = 0.25 would have to hold, since K = K ′ and Nm = bK/2c.
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Figure 4.1: Relaxation dynamics. Exemplary plot of the expectation value of the time-evolved
occupation number of the first mode from the K memory sector 〈n̂1(t)〉 over time t for N = 8,
marked by the solid blue line. The corresponding infinite-time average n1 ≈ 0.32 is marked by
the red dashed line.

However, we would like to know how the system behaves in the thermodynamic limit.
To analyze this numerically, we perform finite-size scans of the system over N . The results
are shown in Fig. 4.2 with the respective best obtained fit functions for the various quan-
tities. The full list of the corresponding fit parameters is presented in Table A.2 in the
Appendix. The fits that are plotted in the figures of the chapter and the corresponding
values of the fit parameters are marked with a “∗” in Table A.2. Table A.2 additionally
includes other fits that may also be appropriate for the obtained data. We include these
for completeness and to aid the comparison. Moreover, we do not want to exclude the
possibility that these fit functions may become more suitable in a future study where more
numerical data for larger N will be available.

To avoid the effects of small values of N , we consider the fit of n1,mc only for even
N , where Nm = K/2 without the need to round down to the nearest integer as is the
case for odd N . We expect n1 and n1,mc, shown in Figs. 4.2 (a) and (b), respectively, to
possess the same scaling with N . The fit results of Table A.2 provide evidence that the
thermalization condition (i) of Sec. 4.1.1, namely that n1 = n1,mc = 0.25, can be fulfilled
ideally in the large-N limit if these quantities scale as exp(−cN) with c a positive constant.
We observe from Fig. 4.2 (b) that the data points for both the even and the odd N appear
to converge to 0.25. The results therefore suggest that the thermalization condition (i) is
satisfied, with deviations from ideal thermality exponentially small in N . The fit results
in Table A.2 suggest that the temporal fluctuations σ1,t of 〈n̂1(t)〉 about n1, shown in
Fig. 4.2 (c), vanish exponentially with N in the large system size limit. This suggests
that the thermalization condition (ii) of Sec. 4.1.1 is fulfilled. We can therefore conclude
that the numerical data provides evidence that the observable n̂1 thermalizes ideally in the
thermodynamic limit.

The energy of the system E is zero, as can be seen from Eqs. (3.5) and (3.6), and as
is numerically confirmed in Fig. 4.2 (d). Therefore, we cannot judge the smallness of the
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(a) n1 ∼ e(−0.14±0.32)N (b) n1,mc ∼ e(−0.25±0.16)N (c) σ1,t ∼ e(−0.470±0.074)N

(d) E over N
(e) σE,q ∼ (−0.160± 0.039)N−1 (f) NσE,q ∼ e(0.71±0.12)N

(g) ∆E ∼ N1.35±0.26 (h) σE,q
∆E ∼ (0.997± 0.047)N−1/2

Figure 4.2: Thermalization. The subfigures show the scaling of the various quantities with N .
For compactness, only the general scaling is presented in the subcaptions. The complete list of
fit parameter values is given in Table A.2 in the Appendix. The numerical data is represented by
points and the corresponding fits are shown as solid lines. The individual subfigures show: (a)
the infinite-time average n1 of n̂1, (b) the microcanonical average n1,mc of n̂1, (c) the temporal
fluctuations σ1,t of 〈n̂1(t)〉 about n1, (d) the energy of the system E, (e) the quantum energy
uncertainty σE,q, (f) the number of eigenvalues NσE,q within the interval (E−σE,q, E+σE,q), (g)
the half-spread of the energy range ∆E, (h) the ratio of the quantum energy uncertainty to the
half-spread of the energy range σE,q/∆E. For n1(N) the data point N = 3 was excluded from
the fits. The fits of n1,mc(N) were performed only over the data points with even N .
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quantum energy uncertainty σE,q, which we take as the half-width of the energy window
for the microcanonical ensemble average, by comparing it with E. Instead, as a criterion
for the smallness of the microcanonical energy window, we compare σE,q to the half-spread
∆E of the energy range of the eigenvalues Eα. The corresponding results are shown in
Figs. 4.2 (e), (g) and (h). All fit functions for σE,q in Table A.2 indicate that it approaches
a constant value in the interval [1.344, 1.437] in the large-N limit. Conversely, the fit results
of Table A.2 suggest that ∆E increases with N , and, consistently, σE,q/∆E approaches
zero with increasing N . The fit results therefore indicate that the microcanonical energy
window becomes infinitely thin in the large system size limit, when compared to the energy
range of the eigenvalues.

Note that although σE,q approaches a constant in the large system size limit, the number
of eigenvalues NσE,q contained within the interval (E−σE,q, E+σE,q), as shown in Fig. 4.2
(f), increases rapidly with N , as suggested by the fit results in Table A.2.

4.3 Test of ETH
In this section we test the ETH conditions (0), (1) and (2) listed in Sec. 4.1.1. We

provide numerical evidence that the observable n̂1 within the model in Eq. (3.6) does not
fulfill the ETH conditions. Specifically, the ETH condition (1) on the diagonal matrix
elements n1,αα is not satisfied.

4.3.1 Condition (0)
To fulfill the ETH condition (0), the initial state of the system has to have a relatively

small energy uncertainty. That is, the initial state needs to be in a superposition of
eigenstates that are all sufficiently close in energy. Figure 4.3 shows an exemplary plot of
the coefficients Cα over the eigenstate energy Eα for N = 8. The points within the interval
(E − σE,q, E + σE,q) are marked in red, and the rest are marked in blue. As can be seen
from the plot, the points closer to E = 0 have weights Cα with greater absolute values.
We observe analogous behavior for other values of N . Additionally, as discussed in the
previous section, the relative width of the energy window σE,q/∆E appears to approach
zero with increasing N . This provides evidence that the initial state in Eq. (3.5) is indeed
a superposition of eigenstates that are close in energy. The results therefore suggest that
the ETH condition (0) is fulfilled, also in the large-N limit.

4.3.2 Condition (1)
For the observable n̂1 to fulfill condition (1) of the ETH, the diagonal matrix elements

n1,αα need to vary approximately smoothly with Eα and the magnitude of the difference
between neighboring values |n1;α+1,α+1 − n1;α,α| needs to be exponentially small in N . We
test both parts of this condition below. First, we define an auxiliary quantity, the average
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Figure 4.3: Exemplary plot of Cα over the eigenstate energy Eα for N = 8. The data points
within the energy shell, i.e. for which |E−Eα| < σE,q, are marked in red, and those on or outside
the shell are marked in blue.

value of all diagonal matrix elements,

ni,av ≡
1
N

N∑
α=1

ni,αα. (4.9)

This auxiliary factor allows us to appropriately normalize and compare the magnitude of
the difference between diagonal elements neighboring in energy for different N . To do this,
we define the normalized average absolute difference between neighboring diagonal matrix
elements

δi ≡
1

ni,av

1
N − 1

N−1∑
α=1
|ni;α+1,α+1 − ni;α,α|, (4.10)

and its normalized corrected standard deviation

σi ≡
1

ni,av

[
1

N − 2

N−1∑
α=1

(|ni;α+1,α+1 − ni;α,α| − ni,avδi)2
]1/2

. (4.11)

Similarly, we define analogous quantities for the data points within the microcanonical
energy window,

δi,mc ≡
1

ni,mc

1
NσE,q − 1

∑
α

|E−Eα|<σE,q
|E−Eα+1|<σE,q

|ni;α+1,α+1 − ni;α,α| (4.12)

and

σi,mc ≡
1

ni,mc


1

NσE,q − 2
∑
α

|E−Eα|<σE,q
|E−Eα+1|<σE,q

(|ni;α+1,α+1 − ni;α,α| − ni,mcδi,mc)2



1/2

. (4.13)
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Additionally, we define the maximum absolute difference among all pairs of neighboring
diagonal elements by

δi,max ≡
1

ni,av
max{|ni;α+1,α+1 − ni;α,α|}. (4.14)

Finally, we define the maximum absolute difference among pairs of neighboring diagonal
elements within σE,q, i.e. for |E − Eα| < σE,q and |E − Eα+1| < σE,q, by

δi,max
mc
≡ 1
ni,mc

max{|ni;α+1,α+1 − ni;α,α|}. (4.15)

As can be seen from Fig. 4.4 (a), the diagonal matrix elements n1,αα do not vary
smoothly over Eα for N = 8. We observe analogous behavior for other values of N . This is
already in conflict with the first part of the ETH condition (1). However, we are interested
in the large-N limit, and whether the fluctuations between neighboring diagonal elements
decay exponentially in N .

First, from Fig. 4.4 (b) we observe that for even N the average of all diagonal elements
n1,av is equal to 0.25, with its value approaching 0.25 as O(N−1) for odd N . To minimize
small-N effects, we nevertheless perform the fits of δ1 and δ1,mc only over the data points
with even N . The results are shown in Figs. 4.4 (c) and (d), correspondingly. We observe
that both fits approach zero exponentially in the large-N limit. This is explained by
the fact that the diagonal elements n1,αα are clustered around n1,av, with their number
increasing exponentially both in total and within the microcanonical energy window (see
Fig. 4.2 (f)). In other words, we find that on average, the magnitude of the difference
between neighboring diagonal elements is indeed exponentially small in N . However, the
fluctuations between the individual diagonal elements can still be substantial.

To investigate this, we consider the maximum absolute difference among pairs of neigh-
boring diagonal elements both in the entire range of energy eigenvalues, δ1,max, and also
within the microcanonical energy window, δ1,max;mc. The results are shown in Fig. 4.4 (e)
as blue and red data points, respectively. For the fit we consider the maximum absolute
difference among pairs of neighboring diagonal elements only within σE,q and only for even
N . As can be seen from Fig. 4.4 (e), these fluctuations are also the smallest. We find
that δ1,max;mc approaches a value that lies within the interval [1.035, 1.122] in the ther-
modynamic limit. In other words, the maximum difference between neighboring diagonal
elements within the microcanonical energy window slightly exceeds the microcanonical av-
erage itself. Clearly, this is a considerable fluctuation. Note from Fig. 4.4 (e), that this
maximal fluctuation is even larger for points both outside of the microcanonical energy
shell and for other values of N .

Therefore, the numerical results suggest that the ETH condition (1) is not fulfilled, as
the elements n1,αα do not vary smoothly with Eα and the magnitude of the difference be-
tween neighboring values |n1;α+1,α+1−n1;α,α| is not exponentially small in N . This holds not
only for finite N , but also in the large system size limit. Nevertheless, as shown previously,
n1 and n1,mc both appear to approach the same value of 0.25 in the thermodynamic limit.
In a later section we discuss the details of the corresponding thermalization mechanism.
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(a) n1,αα over Eα (b) n1,av ∼ (−0.25± 2.6 · 10−15)N−1

(c) δ1 ∼ e(−0.29±0.66)N (d) δ1,mc ∼ −e(−0.10±0.89)N (e) δ1,max
mc
∼ N−1.451±0.055

Figure 4.4: Test of ETH condition (1). Subfigure (a) shows an exemplary plot of n1,αα over
Eα for N = 8. The points within the interval (E − σE,q, E + σE,q) are marked in red, the
rest are marked in blue. The other subfigures show the scaling of the various quantities with
N . As previously, only the general scaling is presented here, with the full list of fit parameter
values given in Table A.2 in the Appendix. The numerical data is represented by points and the
corresponding fits are depicted by solid lines. The individual subfigures show: (b) the average of
all diagonal elements n1,av with the corresponding fit performed only over the data points with
odd N , (c) the normalized average absolute difference δ1 between neighboring diagonal elements
with its normalized corrected standard deviation σ1 depicted by error bars, (d) the normalized
average absolute difference δ1,mc within the microcanonical energy window with the corresponding
normalized corrected standard deviation σ1,mc as error bars, (e) the maximum absolute difference
among all pairs of neighboring diagonal elements δi,max marked with blue “+”-s, the analogous
quantity for the diagonal elements within σE,q marked with red “×”-s and the fit over the latter
data points for even N marked as a solid green line. The fits of δ1 and δ1,mc are weighted fits
with inverse squares of the corresponding normalized corrected standard deviations as weights,
performed only over the data points with even N .
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4.3.3 Condition (2)
For the observable n̂1 to fulfill condition (2) of the ETH, the magnitudes of the off-

diagonal matrix elements need to be exponentially small in N . If this condition is satisfied,
it leads to the fulfillment of thermalization condition (ii) on the temporal fluctuations of the
observable. We have previously argued the latter to be satisfied. In this section we provide
numerical evidence that the ETH condition (2) is fulfilled. The results are presented in
Fig. 4.5. The diagonal matrix elements dominate over the off-diagonal ones, as shown
in Fig. 4.5 (a). We observe analogous behavior also for other values of N . Moreover,
the average absolute value µ|n1,αβ | of the off-diagonal matrix elements n1,αβ with α 6= β
decays exponentially to zero with increasing N , as can be seen from Fig. 4.5 (b) and the
corresponding fit results in Table A.2.

(a) n1,αβ over Eα and Eβ

(b) µ|n1,αβ
α6=β

| ∼ e(−0.654±0.082)N

Figure 4.5: Test of ETH condition (2). Subfigure (a) shows an exemplary plot of n1,αβ over
Eα and Eβ for N = 4. The color bar represents the value of the individual matrix elements.
Subfigure (b) shows the mean absolute value of the off-diagonal matrix elements over N . The
data is represented by points and the corresponding fit by a solid line.

4.4 Tests of other mechanisms
We have established above that within the system in Eq. (3.6) the observable n̂1 appears

to thermalize not according to the ETH, as the condition (1) is violated, but via a different
mechanism. In this section we provide arguments on why this thermalization cannot be
explained with the other various thermalization mechanisms mentioned previously.

The squared magnitudes of the coefficients |Cα|2 exhibit fluctuations (see Fig. 4.3 for
the fluctuations of the Cα’s) between eigenstates close in energy, especially within the
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interval (E − σE,q, E + σE,q). Therefore, thermalization cannot occur via the mechanism
(ii) of [55], discussed in Sec. 4.1.1.

The fluctuations of diagonal elements n1,αα do not vanish in the thermodynamic limit
(see Fig. 4.4 (e)). The thermal ETH and the smoothness ETH mechanisms [58] therefore
also do not apply.

The thermalization of n̂1 within the model of Eq. (3.6) cannot be explained also by ther-
malization due to integrability [59]. We consider the isolated quantum system in Eq. (3.6)
to be non-integrable (see, for example, [50, 103] for detailed discussions on integrability).
That is, among other properties, in the context of [59], not analytically solvable. Addition-
ally, note that the authors of [59] discuss thermalization on an example of a time-dependent
Hamiltonian, which is not the case for the system in Eq. (3.6).

As we regard the model investigated in this chapter as non-integrable, we consequently
consider it to be also not nearly integrable. Additionally, we do not observe two separate
relaxation timescales. That is, we do not see a process in which the system first equilibrates
on a short timescale to a meta-stable state, and then on a longer timescale reaches the
true thermal equilibrium. We therefore conclude that prethermalization [54] is not the
mechanism responsible for the thermalization of this observable in this system.

Concerning the distribution of the diagonal matrix elements n1,αα around their average
value, there are two factors at play: First, the fraction of points that deviate from the
mean, and second, their support, i.e. how large is the deviation of their values from the
mean. The mechanism behind the strong ETH [56] is that in the thermodynamic limit, the
support of the distribution of the diagonal elements of the observable in the eigenstate basis
around its thermal value shrinks to zero. That is, the rare non-thermal states disappear
completely. As can be observed from Fig. 4.4 (e), the rare states do not vanish in the
large-N limit, since |n1;α+1,α+1 − n1;α,α| approaches a value approximately equal to n1,mc.
This provides evidence for the existence of a rare state in the thermodynamic limit with a
deviation of & n1,mc/2 within the microcanonical energy window. We therefore conclude
that this thermalization mechanism is not applicable to our case.

If thermalization occurs via the weak ETH [56], the fraction of the non-thermal states
vanishes in the thermodynamic limit, so that the distribution of the diagonal matrix el-
ements shrinks around the thermal value. However, in contrast to the strong ETH, the
support of the elements does not shrink towards their thermal value. That is, rare states
exist, but the |Cα|2’s do not bias them too much. In the next section we provide numerical
evidence that this is not the case for our observable and system. Note that the authors
of [56] also suggest that a plausible, but not necessary, assumption for achieving thermal-
ization via the weak ETH is that the |Cα|2’s sample the elements n1,αα with the same
energy rather uniformly. Similarly, other works [104, 105] also conjecture the randomness
of the |Cα|2’s in the context of the ETH.

Mechanisms with the general idea that the fluctuations of the quantities are random
include the mechanism (i) of [55], discussed in Sec. 4.1.1, and the Eigenstate Randomization
Hypothesis (ERH) [57]. The former states that the fluctuations of n1,αα and those of |Cα|2
are not correlated. The latter states that the elements n1,αα fluctuate randomly. Below we
argue that both of the above conditions are not fulfilled, as the two sets of fluctuations are
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unignorably correlated.

4.5 Thermalization despite correlation
In this section we provide numerical evidence that the weak ETH, as well as both

the mechanism (i) of [55] (discussed in Sec. 4.1.1) and the ERH are not applicable to
our system. We demonstrate this by considering the correlations in the fluctuations of the
coefficients-squared C2

α and of the diagonal matrix elements ni,αα. We define the normalized
fluctuations of ni,αα about their average ni,av as

∆ni,αα ≡
ni,αα − ni,av

ni,av
= ni,αα
ni,av

− 1, (4.16)

and the normalized fluctuations in C2
α as

∆C2
α
≡ C2

α − 1/N
1/N = C2

αN − 1. (4.17)

Exemplary plots for N = 8 are shown in Figs. 4.6 (a), (b), (c), (d), (e) and (f). We observe
that the two sets of fluctuations appear to be clearly correlated, with the larger values of
n1,αα biased towards by the higher C2

α values. Plots for other values of N exhibit the same
trait. This is already a strong indication against the fulfillment of conditions for the weak
ETH. Note from Figs. 4.6 (d) and (e) that the tails of the distribution for the diagonal
matrix elements decay differently as n1,αα diverges from n1,av. Namely, the tail of the
distribution for n1,αα < n1,av decays slower than that for n1,αα > n1,av. This is a significant
component of the thermalization mechanism that we discuss in the next section.

We first attempt to investigate how the correlation between the two sets of fluctuations
depends on N by analyzing two quantities: The mutual information of ∆n1,αα and ∆C2

α
,

and the Pearson correlation coefficient. We calculate the mutual information of variables
X and Y as

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (4.18)

with marginal entropies H(X) and H(Y ), where H(X) is defined by

H(X) = −
∑
x∈X

p(x) ln p(x), (4.19)

with H(Y ) defined analogously, and the joint entropy of X and Y

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) ln p(x, y). (4.20)

The mutual information I(X, Y ) is a measure of how much information about one variable
is obtained by measuring the other, and vice versa. Note that, however, I(X, Y ) depends on
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the binning method of the data. For the sake of brevity, we define the mutual information
of ∆n1,αα and ∆C2

α
as

I ≡ I
(
∆n1,αα ; ∆C2

α

)
. (4.21)

We also calculate the Pearson correlation coefficient of variables X and Y ,

ρX,Y = cov(X, Y )
σXσY

, (4.22)

where cov(X, Y ) is the covariance of X and Y , and σX and σY are the standard deviations
of X and Y , respectively. Note, however, that first, ρX,Y depends on the binning method
of the data, and second, it is a measure of linear dependence only. Again, for compactness,
we define

ρ ≡ ρ∆n1,αα ,∆C2
α
. (4.23)

The results are shown in Figs. 4.6 (g) and (h) with the corresponding fit results listed in
Table A.2.

We observe that for the bulk of the range of N , both I and ρ decrease with increasing
N . However, both quantities appear to increase for N = 9. Nevertheless, this could
be an effect of small N , as the data points for both odd and even N separately exhibit
monotonically decreasing behavior for N ≥ 3. Both quantities appear to approach zero
exponentially. Recall, however, that both depend on the binning method, Moreover, ρ is
a measure of linear correlation only. Nonetheless, for a more robust statement, the data
of I and ρ for larger values of N would need to be considered. It would then be possible
to make a more refined statement whether these quantities approach zero in the large-N
limit.

We remark that the conditions of the mechanism (i) of [55] and the ERH require the
fluctuations of the two observables to be completely uncorrelated. That is, any amount of
correlation, provided it persists in the thermodynamic limit, would be sufficient to conclude
that these two mechanisms are not applicable. To test this, for each N we perform a
hypothesis test on the data sets ∆n1,αα and ∆C2

α
with the null hypothesis H0 that the

values of these quantities are independent, and an alternative hypothesis Ha that they are
not. The significance level α is set equal to 0.05. Each independence test returns a p-value,
short for probability value p. Only if the p-value is less than the chosen significance level
α, is the null hypothesis to be rejected at the chosen level of significance. The results are
presented in Fig. 4.7.

We observe that except for the data points for N = 2 and N = 8 in the Blomqvist
β independence test in Fig. 4.7 (a), all points lie below the chosen significance level of
α = 0.05. That is, at this significance level, the null hypothesis that the two sets of
fluctuations ∆n1,αα and ∆C2

α
are uncorrelated is rejected. Moreover, for the majority of the

independence tests, in the bulk of the range, there appears to be a trend for the p-value
to decrease with greater N . Therefore, we can hypothesize that for larger N the two sets
of fluctuations become more correlated. That is, with larger N there is more bias of the
C2
α’s towards n1,αα’s with greater deviation from the mean. We therefore conclude that the

weak ETH is not applicable to our case.
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(a) ∆n1,αα over Eα (b) ∆C2
α
over Eα (c) ∆C2

α
over ∆n1,αα

(d) Count c over n1,αα and C2
α

(e) Count c over n1,αα (f) Count c over n1,αα in σE,q

(g) I ∼ e(−0.357±0.033)N (h) ρ ∼ e(−0.175±0.064)N

Figure 4.6: Thermalization despite correlation. The individual subfigures show: (a) an exemplary
plot of ∆n1,αα over Eα for N = 8, (b) an exemplary plot of ∆C2

α
over Eα for N = 8, (c) an

exemplary plot of ∆C2
α
over ∆n1,αα for N = 8, (d) an exemplary histogram of count c over n1,αα

and C2
α for N = 8, (e) an exemplary histogram of count c over n1,αα for N = 8, (f) an exemplary

histogram of count c over n1,αα within σE,q for N = 8, (g) the mutual information I of ∆n1,αα

and ∆C2
α
over N , (h) the Pearson correlation coefficient ρ between ∆n1,αα and ∆C2

α
over N . In

subfigures (a), (b) and (c) the points within the microcanonical energy window are marked in red,
the rest are marked in blue. Likewise, in subfigure (d) the bins corresponding to points within
the microcanonical energy window are marked in red and the rest are marked in blue. The bins
over identical n1,αα and C2

α are stacked for the sake of clarity. Similarly, in subfigure (e) the bins
corresponding to points within the microcanonical energy window are marked in red and the rest
are marked in blue, with the bins over identical n1,αα stacked as well. In subfigures (g) and (h)
the numerical data is represented by points and the corresponding fits are depicted by solid lines.
The fit of I(N) was performed only over the data points with N ≥ 4. For ρ(N) the data point
N = 3 was excluded from the fit.
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(a) Blomqvist β (b) Goodman-Kruskal γ (c) Hoeffding D

(d) Kendall τ (e) Spearman Rank

Figure 4.7: The p-value plotted over N for various independence tests for ∆n1,αα and ∆C2
α
. The

panels and the corresponding tests are: (a) Blomqvist β, (b) Goodman-Kruskal γ, (c) Hoeffding
D, (d) Kendall τ , (e) Spearman Rank. The Pearson Correlation, Pillai Trace and Wilks W
independence tests were not applicable. Note the logarithmic scale for p in panels (a), (b), (d)
and (e). For the test in panel (c), the values of the data points for N ≥ 6 were lower than
numerical accuracy and were returned as zero. Except for the two data points corresponding to
N = 2 and N = 8 in (a), all data points lie clearly below the significance level of α = 0.05.
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Note that altering the conditions of the mechanisms to, for example, consider only the
eigenstates with Eα within the microcanonical energy shell will, most likely, not reduce
the amount of correlation. Specifically, the points within that energy window appear to
be more correlated (see Fig. 4.6 (c)). We therefore expect that excluding these will only
increase the correlation between the fluctuations. We conclude that our system thermalizes
not via the mechanism (i) of [55] or the ERH, but instead by a new mechanism.

4.6 Discussion

4.6.1 A new thermalization mechanism
As discussed in Sec. 4.1.1, the only two conditions required for the few-body observable

Â to thermalize within an isolated N -body system evolved from a non-equilibrium state
are that

(i)

∑
α

|Cα|2Aαα = 1
Nσw

∑
α

|E−Eα|<σw

Aαα for an appropriate energy window σw, and

(4.24)

(ii)

σt =

∑
α,β
α 6=β

|Cα|2|Cβ|2|Aαβ|2


1/2

is small at most later times. (4.25)

Here, Nσw denotes the number of eigenstates with eigenenergies Eα that lie within the
microcanonical energy window (E − σw, E + σw). How specifically these are achieved does
not influence the validity of the result. That is, there may exist fluctuations in Aαα and/or
|Cα|2, however large and correlated, and the observable may still thermalize. Ultimately, it
not surprising that there are correlations between the distributions of the two quantities:
Aαα = 〈α| Â |α〉 and Cα = 〈α|in〉 are both computed from the same eigenvectors |α〉 of the
system.

Naturally, the simpler the additional conditions on the coefficients and the matrix
elements are, the more elegant and intuitive the thermalization mechanism is, such as
the ETH. Nevertheless, the ETH conditions, although sufficient for thermalization, are
not a necessary set of conditions, as demonstrated by the various mechanisms mentioned
previously as well as many others. One of the goals of this chapter is to provide a new
variant of thermalization conditions. Namely, that despite the fact that the observable
thermalizes, there may still exist correlations between the quantities from which the value
of the same thermalized observable is calculated.
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To summarize, we considered the observable n̂1 in the system of Eq. (3.6), evolved
from the initial state in Eq. (3.5). We provided numerical evidence that this observ-
able approaches thermalization in the thermodynamic limit according to the definition in
Sec. 4.1.1. That is, the infinite-time average of the expectation value of the observable is
equal to its microcanonical average and the temporal fluctuations of the observable about
the microcanonical average are small at most later times in the limit of large N .

We find that the initial state is a superposition of eigenstates that are sufficiently close
in energy, with the quantum energy uncertainty σE,q vanishing relative to the half-range
of all eigenenergies ∆E in the thermodynamic limit. This fulfills ETH condition (0). The
average absolute value of the off-diagonal elements n1,αβ decays exponentially to zero with
increasing N , thus fulfilling ETH condition (2). This ensures that the thermalization
condition (ii) on the temporal fluctuations of the observable is satisfied.

However, we find that the diagonal elements n1,αα do not vary smoothly over Eα, ex-
hibiting large fluctuations instead. Moreover, the maximal difference between neighboring
diagonal elements within the microcanonical energy window approaches a value slightly
larger than that of the microcanonical ensemble average n1,mc itself. Therefore, the ETH
condition (1) is not fulfilled, as well as similar requirements in other thermalization mech-
anisms. Furthermore, the weak ETH, the mechanism (i) of [55] and the ERH are also not
responsible for thermalization in our case, as the fluctuations ∆n1,αα and ∆C2

α
are corre-

lated, with few diagonal elements n1,αα that are farther from and greater than their mean
biased towards by the C2

α’s. Nevertheless, n1 = n1,mc still holds, as on the left-hand side
the fluctuations of the two quantities are correlated in such a way that the many diagonal
elements n1,αα < n1,av which have smaller weights counteract the above bias collectively
and balance it out, while on the right-hand side the diagonal elements within the micro-
canonical energy window average out to n1,mc, see Figs. 4.6 (d), (e) and (f). This fulfills
condition (i) of thermalization. It is important to note that both the large fluctuations of
n1,αα and the strong bias of the coefficients towards them persist in the thermodynamic
limit. Therefore, n1 = n1,mc is fulfilled precisely because of the specific distribution of the
fluctuations of the two quantities and the way they are correlated.

As the expression n1 = n1,mc is the only requirement needed to fulfill thermalization
condition (i), we can allow for an arbitrary amount of bias in calculating its left-hand side,
as long as the equality holds. Moreover, many variations of the mechanism, complementary
to the version presented above, are possible. For example, alternatively, the few diagonal
elements that are farther from and smaller than their mean could be biased towards by
the C2

α’s. Or, in a further variation, the diagonal elements that deviate strongly from the
mean in general could be biased towards by the coefficients. The latter variant would
allow for many diagonal elements to exhibit large fluctuations. In this case the fraction
of the non-thermal states would not vanish in the thermodynamic limit, however with an
appropriately correlated distribution of C2

α’s, n1 = n1,mc could still be achieved. Note that
then δ1 and δ1,mc would not vanish in the large-N limit, in contrast to the results shown
in Figs. 4.4 (c) and (d). An intriguing question is whether it would be possible to arrange
for a system and an observable with such fluctuations in the respective quantities, that it
would thermalize for a finite-size, instead of in the large-N limit.
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Consequently, two natural questions arise here: First, what is the maximum amount of
bias allowed for the observable to still be able to thermalize? And second, how much control
of the correlations do we realistically have? In principle, the fluctuations can be maximally
correlated, as long as the thermalization conditions (i) and (ii) are fulfilled. However, for
the black hole scaling regime, the number of free parameters that we can control for a given
system realization in Eq. (3.6) is N(2N − 1) ∼ O(N2) couplings, whereas the dimension
of the Hilbert space grows exponentially with N . It therefore becomes unlikely for us to
have full control of the distributions of the two quantities in the large-N limit.

Regarding thermalization in isolated quantum systems, we have achieved two goals:
First, we proposed a new thermalization mechanism and demonstrated it on a specific
model in which observables could thermalize via this mechanism where ∆n1,αα and ∆C2

α
are

allowed to be co-dependent. Second, this provides an indication that there could exist a
thermalization mechanism that would operate on a set of more general conditions on the
coefficients and the diagonal elements.

4.6.2 Application to black holes
Regarding black holes, our results may provide further insight into how these objects

process information. Building on previous works, this can help us to improve the formu-
lations of old hypotheses and to define new ones, which may be testable for real black
holes. Based on the prototype model of Eq. (3.6), we have suggested a possible mechanism
of how the information stored within the memory modes of a black hole may spread out
and thermalize. This improves our understanding of the interior information dynamics
of a black hole at a microscopic level. If however, we find evidence that black holes are
supposed to thermalize via a different mechanism, such as, for example, the ETH, this
would allow us to modify the prototype model accordingly and refine our understanding
of the corresponding processes at a quantum level.

4.7 Summary
In this chapter we have proposed a novel thermalization mechanism for few-body ob-

servables in isolated quantum many-body systems. We have based our arguments on the
numerical analysis of finite-size scaling of a quantum prototype system of enhanced memory
capacity designed to model the information processing properties of a black hole. We have
found that the infinite-time averages of the occupation number operators of the informa-
tion carrying modes within this model approach their respective microcanonical ensemble
averages in the thermodynamic limit and thus thermalize.

The key novelty of the proposed mechanism is that the diagonal matrix elements Aαα of
a few-body observable Â in the eigenstate basis {|α〉} and the squared coefficients C2

α fluc-
tuate considerably, but not randomly. Instead, these two sets of fluctuations are correlated
to such an extent, that the null hypothesis that they are independent is rejected at 0.05 sig-
nificance level in favor of the alternative hypothesis that they are co-dependent. Therefore,
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the infinite-time average, expressed in the diagonal ensemble as 〈Â(t)〉 = ∑
α |Cα|2Aαα, is

performed with a bias. That is, the various diagonal elements Aαα in the sum possess
weights |Cα|2 that are not randomly assigned. However, the equality between the infinite-
time and the microcanonical ensemble averages, 〈Â(t)〉 = Amc, still holds, and as that is
the only criterion we demand for 〈Â(t)〉 to fulfill, the amount of bias is irrelevant. The
above equality is achieved due to the specific form of the distributions of both the diagonal
elements and the coefficients. Namely, on the left-hand side of the above equality, the few
diagonal elements much larger than their average are biased towards by the higher values
of the coefficients-squared. Nevertheless, the fluctuations and the correlations are such,
that the smaller diagonal elements with smaller weights |Cα|2 counterbalance the above
bias collectively. At the same time, on the right-hand side, the diagonal elements within
the microcanonical energy window average out to Amc. As mentioned previously, further
variations of this mechanism are possible.

An additional feature is that the prototype model in Eq. (3.6) could potentially be re-
alized in ultracold atom experiments [106–109], as was previously suggested in [34] among
other works. The experimental actualization of this system would possibly allow the above
thermalization mechanism, as well as the other information-processing phenomena pre-
dicted in previous works, to be tested. This is an especially interesting prospect, as first,
the corresponding enhanced memory capacity model would be realized in the realistic set-
ting of large occupation numbers N � 1, and second, the various hypothesized effects
could be tested in real laboratory experiments on systems of ultracold quantum gases.
Moreover, this could open a window to be able to observe new phenomena, which could
lead to new testable hypotheses for black hole physics. This direction of research appears
to be promising, as the prototype model in Eq. (3.6) is quite similar to the Bose-Hubbard
model (BHM) [110,111], which has been successfully realized experimentally (see references
above). Namely, to realize the above prototype model, the following modifications of the
BHM would have to be made: First, two sites would have to be singled out as the master
mode â and the external mode b̂, and second, the hopping amplitude, the on-site interac-
tion and the chemical potential within the BHM would have to be tuned separately for the
individual sites. The memory modes do not necessarily have to be truncated to qubits.
Finally, a further interesting question is whether the nearest-neighbor hopping interactions
would suffice to replicate the general behavior of the prototype model, or if the memory
modes necessarily need to possess direct all-to-all couplings.
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Chapter 5

Conclusions and Outlook

In this dissertation we studied the information processing and storing properties of
black holes. We addressed the task from two different perspectives: First, we considered a
renormalizable SU(N)-invariant theory of a scalar field in (3 + 1) space-time dimensions
from [22], given in Eq. (2.12). We demonstrated that the spectrum of this theory contains
a tower of vacuum bubbles that represent self-sustained bound states of SU(N) Goldstone
bosons. Despite the absence of gravity in the theory, there exist certain vacuum bubbles
that exhibit the information-processing properties of black holes. As has been proposed
recently [20–22], such objects are called “saturons”, as they saturate the entropy bounds
of Eqs. (2.1) and (2.2) set by unitarity in the respective theories. Second, we considered
a specific quantum prototype model of enhanced memory capacity (that is, it can store
large amounts of information) of [35], given in Eq. (3.6). This microscopic model was
designed according to the quantum N -portrait of a black hole [14], in which a black hole
is viewed as a bound state of weakly interacting soft gravitons. Within the framework of
the quantum prototype model of Eq. (3.6) we investigated the dynamics of the system and
how it processes the information that it contains. Let us elaborate on the findings of the
two respective directions.

First, in chapter 2, which is based on [1], we obtained supportive evidence for the propo-
sition of [22] in a specific setting of the theory in Eq. (2.12). The entropy of the vacuum
bubbles within this theory obeys the unitarity bounds of Eqs. (2.1) and (2.2). Moreover,
a saturated bubble exhibits the exact same properties as those of a black hole: Its entropy
is given by the Bekenstein-Hawking area-law formula; semiclassically, the bubble possesses
a strict information horizon and evaporates at a thermal rate with a temperature set by
its inverse radius; and the timescale of information retrieval is similar to the Page time.
This establishes a further concrete example of the black hole–saturon correspondence. This
underlying connection is best described via the trans-theoretic notion of a Goldstone boson
of spontaneously broken Poincaré symmetry. The above properties, written in terms of the
universal quantities of the corresponding Goldstone coupling GGold or the dimensionless
effective Goldstone coupling αGold = GGold/Area have the same respective expressions for
a black hole and a saturated bubble.

Another universal phenomenon that we observed at play is that of memory burden [30,
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35], which occurs generically in systems of enhanced memory capacity. Via this effect the
quantum information stored within such a system is able to stabilize it and prevent it from
leaving a state of enhanced memory capacity. Other works have previously suggested that
black holes are so long-lived because of the memory burden effect. Within the framework of
the SU(N) theory we have demonstrated the influence of this effect on the time-evolution
and stability of vacuum bubbles. Specifically, a bubble is stabilized because it is energeti-
cally more favorable to contain the quantum information stored in terms of the occupation
numbers of the massless Goldstone modes within it, than in excitations of the asymptotic
quanta of the exterior vacuum with a nonzero energy gap.

Next, in chapter 3, based on [2], we considered a specific example of a microscopic proto-
type system with enhanced memory capacity from [35], designed to model the information-
processing characteristics of a black hole. For this model, given in Eq. (3.6), we considered
its early-time dynamics on timescales smaller than scrambling [36, 37]. Due to this phe-
nomenon of scrambling, the information contained within the system is “mixed up” despite
the unitary time-evolution of its state. That is, the information originally contained only
in the initial state gradually diffuses over the entire Hilbert space. Studying the “pre-
scrambling” regime of the system we defined a corresponding measure for the diffusion
of the state in terms of a minimum probability threshold for the states in the system’s
Hilbert space. This measure is independent of the specific definition of scrambling. From
our findings we proposed a series of conjectures, similar to those of [37]. In particular,
these include that the most rapid prescramblers take a time logarithmic in the number
of degrees of freedom, that the model in Eq. (3.6) is a fast prescrambler and that black
holes are fast prescramblers. That is, we observe that, at the level of prescrambling, the
considered prototype model fulfills the requirements on scrambling for a black hole.

Last, in chapter 4 we studied how the same prototype model thermalizes. Specifically,
for this system, prepared in a pure initial state far from equilibrium, we found an explicit
mechanism by which under unitary time-evolution few-body observables equilibrate to
their respective microcanonical ensemble averages. This result is twofold: On the one
hand it proposes a new microscopic mechanism by which isolated quantum many-body
systems thermalize. On the other hand, it suggests a mechanism via which the prototype
model of a black hole in Eq. (3.6) thermalizes. This allows us to adapt and fine-tune our
microscopic models of black holes according to any additional information that we may
obtain on thermalization within astrophysical black holes.

In our analysis we provide evidence that the investigated system does not thermalize via
the mechanisms reviewed in chapter 4, including the Eigenstate Thermalization Hypothe-
sis [44,45], but instead via a different mechanism. The novelty is in thermalization despite
correlations between the fluctuations of the eigenstate expectation values of a few-body
observable and the fluctuations of the coefficients-squared |Cα|2.

In total, this thesis contributes to the general program of improving the understanding
of the behavior of physical black holes in two ways. First, by providing a further spe-
cific example of the black hole–saturon correspondence we strengthen the evidence that
the above information-processing features are not specific to black holes or gravity. Our
results support the idea that instead the fundamental origin of these properties for generic
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saturons within a given theory lies in the theory’s saturation of its unitarity bound. Sec-
ond, we provide supporting evidence of new phenomena for black hole physics. These
include the memory burden effect, prescrambling and the proposed novel thermalization
mechanism. Although it may currently be challenging to test these on astrophysical black
holes, performing corresponding experiments on ultracold bosonic systems in laboratory
settings that are available today appears to be a promising direction of research and an
achievable task.

As an outlook we mention two projects that are in preparation. The first [4] expands
on vortex formation in black holes and saturons [26]. The formation and stability of vor-
tices in black holes may have significant observational implications for astrophysical black
holes. The second [5] studies the saturation of entropy by vortons: Stable configurations
of superconducting strings [112, 113]. The production of stable vortons at a high energy
phase transition can have a substantial effect on the predictions of standard cosmology.
Meanwhile, their formation at lower energies can contribute to the dark matter content of
the universe [114].
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Appendix A

Tables of Fit Functions

tf R
2 RMSE a σa b σb c σc

a+ b ln(N) 9.9991 · 10−1 6.00 · 10−2 −9.645 4.3 · 10−2 3.6420 9.8 · 10−3 n/a n/a
a+ b ln(K) 9.88 · 10−1 4.80 · 10−2 1.97 · 10−1 2.8 · 10−2 7.92 · 10−2 8.8 · 10−3 n/a n/a
a+ b exp(cNm) 9.77 · 10−1 2.86 · 10−1 −1.3 · 10−1 4.3 · 10−1 1.9 · 10−1 1.9 · 10−1 4.3 · 10−1 1.3 · 10−1

a+ b exp(c∆) 9.9996 · 10−1 2.44 · 10−3 3.183 · 10−1 1.0 · 10−3 7.7 · 10−6 2.7 · 10−6 2.373 8.7 · 10−2

a+ bCc
b 9.98 · 10−1 7.81 · 10−2 1.76 · 10−1 3.8 · 10−2 7.2 · 10−3 2.2 · 10−3 −1.177 5.9 · 10−2

a+ bCc
m 9.9993 · 10−1 6.10 · 10−3 5.34 · 10−2 7.5 · 10−3 1.086 · 10−1 4.1 · 10−3 −3.847 · 10−1 5.1 · 10−3

tc R
2 RMSE a σa b σb c σc

a+ bN c 9.996 · 10−1 4.52 · 10−2 9.25 · 10−1 5.9 · 10−2 22.9 1.9 −9.66 · 10−1 4.4 · 10−2

a+ b exp(cK) 9.94 · 10−1 3.97 · 10−1 3.54 3.2 · 10−1 19.2 6.3 −8.3 · 10−2 1.9 · 10−2

a+ b exp(c∆) 9.99994 · 10−1 1.69 · 10−2 8.205 7.2 · 10−2 −2.662 5.3 · 10−2 −3.23 · 10−1 1.9 · 10−2

a+ bCc
b 9.991 · 10−1 7.01 · 10−2 9.72 · 10−1 7.2 · 10−2 3.9 · 10−3 2.7 · 10−3 −4.41 4.8 · 10−1

a+ bCc
m 9.9998 · 10−1 5.55 · 10−2 3.0 · 10−2 4.7 · 10−2 5.288 · 10−1 9.4 · 10−3 −1.0734 4.4 · 10−3

Table A.1: Tables of best obtained fit functions for the numerical analysis of prescrambling
in chapter 3. The tables of fit functions for tf and tc are on the top and bottom, respectively.
The corresponding coefficients of determination R2 and unbiased root-mean-square errors
(RMSE) are both adjusted for the number of fit-model parameters. The values of the free
fit-model parameters are given with the corresponding standard errors. No dependence of
tc on Nm could be extracted from the corresponding data points.
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Object R
2 RMSE a σa b σb c σc

∗ n1(N) = a+ b exp(cN) 9.966 · 10−1 1.96 · 10−2 2.7 · 10−1 1.5 · 10−1 1.5 · 10−1 1.1 · 10−1 −1.4 · 10−1 3.2 · 10−1

n1(N) = a+ bN−1/2 9.968 · 10−1 1.91 · 10−2 2.58 · 10−1 2.8 · 10−2 1.78 · 10−1 6.1 · 10−2 n/a n/a
∗ n1,mc(N) = a+ b exp(cN) 9.998 · 10−1 3.47 · 10−3 2.53 · 10−1 1.5 · 10−2 7.9 · 10−2 1.0 · 10−2 −2.5 · 10−1 1.6 · 10−1

n1,mc(N) = a+ bN−1 9.997 · 10−1 4.56 · 10−3 2.538 · 10−1 4.7 · 10−3 9.5 · 10−2 1.6 · 10−2 n/a n/a
n1,mc(N) = a+ bN−1/2 9.999 · 10−1 3.33 · 10−3 2.273 · 10−1 6.3 · 10−3 1.04 · 10−1 1.2 · 10−2 n/a n/a
σ1,t(N) = a+ b exp(cN) 9.96 · 10−1 5.45 · 10−3 8.9 · 10−3 9.9 · 10−3 4.10 · 10−1 4.7 · 10−2 −4.70 · 10−1 7.4 · 10−2

∗ σE,q(N) = a+ bN−1 9.9990 · 10−1 1.36 · 10−2 1.378 1.0 · 10−2 −1.60 · 10−1 3.9 · 10−2 n/a n/a
σE,q(N) = a+ bN−1/2 9.9989 · 10−1 1.45 · 10−2 1.416 2.1 · 10−2 −1.62 · 10−1 4.3 · 10−2 n/a n/a
σE,q(N) = a+ b exp(cN) 9.9989 · 10−1 1.43 · 10−2 1.3536 7.6 · 10−3 −4.1 · 10−1 4.9 · 10−1 −9.4 · 10−1 5.9 · 10−1

σE,q(N) = a+ bN c 9.9989 · 10−1 1.42 · 10−2 1.359 1.5 · 10−2 −2.7 · 10−1 2.6 · 10−1 −2.0 1.5
∗ NσE,q(N) = a+ b exp(cN) 9.75 · 10−1 248 −107 160 6.7 7.4 7.1 · 10−1 1.2 · 10−1

NσE,q(N) = a+ bN c 9.80 · 10−1 221 −34 118 9 · 10−3 1.6 · 10−2 5.93 8.5 · 10−1

∗ ∆E(N) = a+ bN c 9.97 · 10−1 5.60 · 10−1 0.9 1.3 7.4 · 10−1 4.7 · 10−1 1.35 2.6 · 10−1

∆E(N) = a+ b exp(cN) 9.97 · 10−1 5.69 · 10−1 −19 21 19 20 6.4 · 10−2 4.9 · 10−2

∗ σE,q/∆E(N) = a+ bN−1/2 9.96 · 10−1 1.59 · 10−2 −2.53 · 10−1 2.3 · 10−2 9.97 · 10−1 4.7 · 10−2 n/a n/a
σE,q/∆E(N) = a+ b exp(cN) 9.96 · 10−1 1.44 · 10−2 6.4 · 10−2 1.9 · 10−2 8.43 · 10−1 7.6 · 10−2 −3.85 · 10−1 5.3 · 10−2

σE,q/∆E(N) = a+ bN c 9.95 · 10−1 1.72 · 10−2 −1.8 · 10−1 1.7 · 10−1 9.55 · 10−1 9.2 · 10−2 −5.9 · 10−1 2.4 · 10−1

σE,q/∆E(N) = a+ bN−1 9.93 · 10−1 2.00 · 10−2 −1.0 · 10−2 1.5 · 10−2 9.59 · 10−1 5.7 · 10−2 n/a n/a
n1,av(N) = a+ bN−1 1. 4.45 · 10−16 2.5 · 10−1 5.6 · 10−16 −2.5 · 10−1 2.6 · 10−15 n/a n/a
δ1(N) = a+ b exp(cN) 9.98 · 10−1 1.74 · 10−2 −2 · 10−2 7.9 · 10−1 1.7 1.9 −2.9 · 10−1 6.6 · 10−1

δ1,mc(N) = a+ b exp(cN) 9.99 · 10−1 1.31 · 10−2 −5 · 10−1 8.2 1.5 6.9 −1.0 · 10−1 8.9 · 10−1

∗ δ1,max
mc

(N) = a+ bN c 9.99995 · 10−1 3.00 · 10−3 1.0442 9.2 · 10−3 1.620 4.1 · 10−2 −1.451 5.5 · 10−2

δ1,max
mc

(N) = a+ b exp(cN) 9.9998 · 10−1 5.44 · 10−3 1.1157 6.3 · 10−3 1.831 9.3 · 10−2 −6.29 · 10−1 2.8 · 10−2

µ|n1,αβ
α 6=β

|(N) = a+ b exp(cN) 9.94 · 10−1 2.49 · 10−3 −5 · 10−4 2.8 · 10−3 2.66 · 10−1 4.0 · 10−2 −6.54 · 10−1 8.2 · 10−2

I(N) = a+ exp(bN) 9.80 · 10−1 1.67 · 10−2 −2.4 · 10−2 2.2 · 10−2 −3.57 · 10−1 3.3 · 10−2 n/a n/a
ρ(N) = a+ exp(bN) 9.88 · 10−1 3.79 · 10−2 −9 · 10−2 1.2 · 10−1 −1.75 · 10−1 6.4 · 10−2 n/a n/a

Table A.2: Table of best obtained fit functions for the numerical analysis of thermalization in
chapter 4. The corresponding coefficients of determination R

2 and unbiased root-mean-square
errors (RMSE) are both adjusted for the number of fit-model parameters. The values of the free
fit-model parameters are given with the corresponding standard errors. The fits plotted in the
figures of chapter 4 are marked with a “∗”. For n1(N) the data point N = 3 was excluded from
the fits. The fits of n1,mc(N) were performed only over the data points with even N . The fit of
n1,av(N) was performed only over the data points with odd N . The fit of δ1(N) was a weighted
fit with weights σ−2

1 (N) and was performed only over the data points with even N . The fit of
δ1,mc(N) was a weighted fit with weights σ−2

1,mc(N) and was performed only over the data points
with even N . The fits of δ1,max;mc(N) were performed only over the data points with even N .
The fit of I(N) was performed only over the data points with N ≥ 4. For ρ(N) the data point
N = 3 was excluded from the fit.
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