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Zusammenfassung

Diese Dissertation ist durch die Herausforderungen motiviert, die sich bei der Syn-
these von Reglern für teilbeobachtbare cyber-physische Systeme (PO-CPS) ergeben. In
den letzten zehn Jahren sind CPS allgegenwärtig und ein integraler Bestandteil unseres
täglichen Lebens geworden. Beispiele für solche Systeme reichen von autonomen Fahrzeu-
gen, Drohnen und Flugzeugen bis hin zu Robotern und moderner Fertigung. In vie-
len Bereichen wird von diesen Systemen erwartet, dass sie komplexe logische Aufgaben
erfüllen. Solche Aufgaben können in der Regel mit Formeln der temporalen Logik oder
als (un)endliche Zeichenketten über endlichen Automaten ausgedrückt werden. In den
letzten Jahren haben sich abstraktionsbasierte Techniken als sehr vielversprechend für die
formale Synthese von Steuerungen erwiesen. Da diese Techniken auf der Diskretisierung
von Zustands- und Eingabemengen beruhen, leiden sie bei großen Systemen leider stark
unter dem Fluch der Dimensionalität, d.h. die Rechenkomplexität wächst exponentiell
mit der Dimension der Zustandsmenge. Um den großen Rechenaufwand zu überwinden,
hat ein diskretisierungsfreier Ansatz, der auf Kontroll-Barriere-Funktionen basiert, großes
Potenzial zur Lösung formaler Syntheseprobleme gezeigt. In dieser Dissertation wird ein
systematischer Ansatz zur Synthese einer hybriden Kontrollregel für teilweise beobachtbare
(stochastische) Regler ohne Diskretisierung der Zustandsmengen vorgestellt.

In vielen realen Anwendungen sind vollständige Zustandsinformationen nicht immer
verfügbar (aufgrund der Kosten für die Erfassung oder der Nichtverfügbarkeit der Mes-
sungen). Daher betrachten wir in dieser Dissertation teilweise beobachtbare (stochastis-
che) Regler. Unter der Voraussetzung geeigneter Zustandsschätzer ist es unser Ziel, einen
Konzept von Kontroll-Barriere-Funktionenzu verwenden, um Kontrollregeln zu synthetisieren,
die eine untere Schranke für die Wahrscheinlichkeit liefern (und möglicherweise maximieren),
dass die Trajektorien des teilweise beobachtbaren (stochastischen) Kontrollsystems kom-
plexe logische Spezifikationen wie Sicherheit und solche, die als deterministische endliche
Automaten (DFA) ausgedrückt werden können, erfüllen. In dieser Dissertation werden zwei
Hauptansätze zur Konstruktion von Kontroll-Barriere-Funktionenvorgestellt. Beim ersten
Ansatz ist kein Vorwissen über die Schätzgenauigkeit erforderlich. Der zweite Ansatz ver-
wendet eine (Wahrscheinlichkeits-)Grenze für die Schätzgenauigkeit.

Obwohl das Syntheseverfahren für niedrigdimensionale Systeme an sich schon eine Her-
ausforderung darstellt, ist die Aufgabe für große zusammenhängende Systeme sehr viel
rechenintensiver (wenn nicht gar unmöglich). Um die Herausforderungen zu bewältigen, die
sich bei großen Systemen ergeben, entwickeln wir Ansätze zur Verringerung des Rechenaufwan-
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des. Indem wir ein großes, teilweise beobachtbares Kontrollsystem als eine Verbindung von
niederdimensionalen Subsystemen betrachten, berechnen wir sogenannte lokale Kontroll-
barrierefunktionen für Subsysteme zusammen mit den entsprechenden lokalen Reglern.
Unter der Annahme einiger small-gain Bedingungen nutzen wir dann die lokalen Kontroll-
barrierefunktionen der Teilsysteme, um kompositionell eine Gesamtkontrollbarrierefunk-
tion für das gesamte verbundene System zu konstruieren.

Da geschlossene mathematische Modelle für viele physikalische Systeme entweder nicht
verfügbar oder zu kompliziert sind, um von Nutzen zu sein, erweitern wir unsere Disser-
tation auch auf die Synthese von Sicherheitsreglern für teilweise beobachtbare Systeme
mit unbekannter Dynamik. Um dieses Problem anzugehen, verwenden wir einen datenges-
teuerten Ansatz und konstruieren Kontroll-Barriere-Funktionenund ihre entsprechenden
Regler anhand von Datensätzen, die aus den Trajektoren der Ausgangswerte der Systeme
und den Trajektorien der Schätzer gesammelt wurden.

Um die Wirksamkeit der in dieser Dissertation vorgeschlagenen Ergebnisse zu demon-
strieren, betrachten wir verschiedene Fallstudien, wie z.B. einen Gleichstrommotor, ein
adaptives Geschwindigkeitsregelungssystem (ACC), das aus Fahrzeugen in einem Zug besteht,
und ein Moore-Greitzer-Triebwerksmodell.



Abstract

This dissertation is motivated by the challenges arising in the synthesis of controllers
for partially-observable cyber-physical systems (PO-CPSs). In the past decade, CPSs have
become ubiquitous and an integral part of our daily lives. Examples of such systems range
from autonomous vehicles, drones, and aircraft to robots and advanced manufacturing.
In many applications, these systems are expected to do complex logic tasks. Such tasks
can usually be expressed using temporal logic formulae or as (in)finite strings over finite
automata. In the past few years, abstraction-based techniques have been very promising
for the formal synthesis of controllers. Since these techniques are based on the discretiza-
tion of state and input sets, when dealing with large-scale systems, unfortunately, they
suffer severely from the curse of dimensionality (i.e., the computational complexity grows
exponentially with the dimension of the state set). In order to overcome the large computa-
tional burden, a discretization-free approach based on control barrier functions has shown
great potential to solve formal synthesis problems. In this thesis, we provide a systematic
approach to synthesize a hybrid control policy for partially-observable (stochastic) control
systems without discretizing the state sets.

In many real-life applications, full-state information is not always available (due to the
cost of sensing or the unavailability of the measurements). Therefore, in this thesis, we
consider partially-observable (stochastic) control systems. Given proper state estimators,
our goal is to utilize a notion of control barrier functions to synthesize control policies that
provide (and potentially maximize) a lower bound on the probability that the trajectories
of the partially-observable (stochastic) control system satisfy complex logic specifications
such as safety and those that can be expressed as deterministic finite automata (DFA).
Two main approaches are presented in this thesis to construct control barrier functions.
In the first approach, no prior knowledge of estimation accuracy is needed. The second
approach utilizes a (probability) bound on the estimation accuracy.

Though the synthesis procedure for lower-dimensional systems is challenging itself, the
task is much more computationally expensive (if not impossible) for large-scale intercon-
nected systems. To overcome the challenges encountered with large-scale systems, we
develop approaches to reduce the computational complexity. In particular, by considering
a large-scale partially-observable control system as an interconnection of lower-dimensional
subsystems, we compute so-called local control barrier functions for subsystems along with
the corresponding local controllers. By assuming some small-gain type conditions, we then
utilize local control barrier functions of subsystems to compositionally construct an overall
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control barrier function for the interconnected system.
Finally, since closed-form mathematical models of many physical systems are either

unavailable or too complicated to be of any use, we also extend our work to the synthesis
of safety controllers for partially-observable systems with unknown dynamics. To tackle
this problem, we utilize a data-driven approach and construct control barrier functions and
their corresponding controllers via sets of data collected from the output trajectories of
the systems and the trajectories of the estimators.

To demonstrate the effectiveness of the proposed results in the thesis, we consider vari-
ous case studies, such as a DC motor, an adaptive cruise control (ACC) system consisting
of vehicles in a platoon, and a Moore-Greitzer jet engine model.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Cyber-physical systems (CPSs) consist of sensing, computation, and communication
components that collaborate together in order to control a physical entity [1]. This close-
knit interaction between communication and computing devices with the physical envi-
ronment extends human capabilities by allowing for real-time monitoring and control of
physical entities. These characteristics make CPSs ideal for use in a wide range of appli-
cations, such as autonomous drones, autonomous vehicles, robot-assisted surgery, building
management systems, and so on. Figure 1.1 illustrates the use of CPSs.

Information flow
Physical sensing

Cyber space

Figure 1.1: Application scenarios of CPSs.

The real-time monitoring and control of physical entities in CPSs is enabled by the
presence of feedback control loops. In these feedback control loops, sensors, controllers,
and communication networks work together in order to satisfy a property of interest.
Figure 1.2 depicts the feedback control loop in CPSs. Due to the increasing complexity
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Physical process

Sensors

Communication 
networks Controller

Cyber space
Physical world

Figure 1.2: Closed-loop interpretations of CPSs.

of CPSs, designing controllers for these systems poses several challenges. Some of these
challenges are listed below:

• Stochasticity: CPSs can exhibit stochastic behaviour [2].

• Incomplete or partial information: in many real-world applications, not all of the
system’s states are measurable due to factors such as low sensor quality, sensor failure,
or adverse environmental conditions [1].

• Large system sizes: systems are becoming larger, more complex, and more intercon-
nected [3].

• Complex properties of interests: traditionally, stability was the main concern when
synthesizing controllers for CPSs. However, as systems become more complex, the
properties of interest go beyond classical stability and robustness. Nowadays, real-
world systems are expected to perform complex logic tasks. Such complex tasks
can usually be expressed via temporal logic formulae or as (in)finite strings over
automata [4].

• Unknown mathematical models: in many cases, the mathematical model of the sys-
tem is unknown, and developing accurate mathematical models for systems can be
too complicated to be of any use [5].

One approach to addressing the above-mentioned challenges and synthesize automated,
correct-by-construction controllers is to utilize abstraction-based techniques [6, 7, 8]. Since
these techniques are based on the discretization of state and input sets, when dealing with
large-scale systems, unfortunately, they suffer severely from the curse of dimensionality
(i.e., the computational complexity grows exponentially with the dimension of the state
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set). In order to address this issue, compositionality techniques have shown great po-
tential, where formal synthesis for the interconnected system is performed by computing
abstractions and controllers for smaller subsystems [9, 10, 11].

Alternatively, another promising method for solving formal synthesis problems is the
use of discretization-free approaches based on so-called control barrier functions. Control
barrier functions (CBFs) are an important class of mathematical functions used to guar-
antee the safety of a control system by ensuring that it avoids a predefined unsafe region.
Particularly, CBFs are useful in synthesizing controllers that satisfy complex logic spec-
ifications. The use of CBFs in synthesizing controllers has several advantages. First, it
provides a formal and rigorous approach to the controller design process, ensuring that the
system remains safe and satisfies the desired specifications. Second, it can handle complex
specifications that cannot be satisfied using traditional control design techniques. See the
results in [12, 13, 14], and [15] for the synthesis of controllers using CBFs.

Since in many real-life applications, all the system’s states are not available, some recent
works have investigated controller synthesis problems via CBFs for systems with partial-
information. Developing techniques that can handle the case where not all the system
states are available will further enhance the applicability of CBFs in real-world applica-
tions. To this end, by assuming a priori knowledge of control barrier functions and having
an unbounded input set, the results in [16] and [17] synthesize barrier-based controllers
for stochastic systems with partial information. In particular, these results require the
control barrier functions to exhibit supermartingale property, which presupposes stochas-
tic stability and vanishing noise at the equilibrium point of the system. Moreover, the
aforementioned approaches are only applicable to systems with unbounded input sets, and
they do not provide any probabilistic guarantee when the input set is bounded.

Motivated by the above results and their limitations, this thesis focuses on developing
state-space discretization-free techniques to synthesize controllers for partially-observable
(stochastic) control systems. When only partial system information is available, several
approaches can be used to estimate the missing information. One common approach is to
use state observers or state estimators, which estimate the system’s states based on the
available measurements. These estimated states can then be used to compute the CBF and
its corresponding controller. In this thesis, using proper state estimators, we utilize notions
of CBFs to synthesize controllers enforcing complex logic specifications such as safety and
those that can be expressed as deterministic finite automata (DFA). In particular, the re-
sults provide two approaches for the construction of CBFs. In the first approach, CBFs are
constructed over the dynamics of the estimator. This approach requires a priori knowledge
of the estimation accuracy. In the second approach, CBFs are defined over augmented
systems that include both the systems and their estimators. By doing so, it becomes pos-
sible to design CBFs without explicitly requiring the estimation accuracy. This approach
can be effective when obtaining the estimation accuracy is challenging or not possible. We
also provide a sum-of-squares (SOS) optimization approach to search for those CBFs and,
accordingly, compute the corresponding controllers. To address the challenge of scalabil-
ity arising from the numerical search for CBFs, a compositional approach to construct
control barrier functions for large-scale systems is provided. This approach considers the
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large-scale system as an interconnected one, consisting of finitely many smaller subsys-
tems, allowing for the design of distributed controllers. Finally, we extend our results to
partially-observable systems with unknown dynamics, where control barrier functions and
their corresponding controllers are constructed using input-output data collected from the
trajectories of the system and its estimator.

1.2 Outline of the Thesis

This dissertation is divided into 7 chapters, the first of which is the current introduc-
tion. The remaining are structured as follows.
Chapter 2 contains mathematical notations, preliminaries, and system definitions that
will be used throughout the thesis.
Chapter 3 discusses the synthesis of controllers for partially-observable continuous-time
stochastic control systems to ensure finite-time safety. Given an estimator with a prob-
abilistic guarantee on the accuracy of the estimation, this chapter proposes an approach
to compute a controller together with a lower bound on the probability that the system’s
trajectories remain safe over a finite time-horizon. Additionally, this chapter presents a
method to compute a probability bound on estimator accuracy using stochastic simulation
functions.
Chapter 4 focuses on the formal synthesis of controllers for partially-observable continuous-
time jump-diffusion systems against complex logic specifications. The proposed approach
in this chapter does not require knowledge of estimation accuracy. The synthesized con-
trollers provide lower bounds on the probabilities of the system’s trajectories satisfying
complex specifications expressed by deterministic finite automata.
Chapter 5 presents a compositional framework for synthesizing safety controllers for
networks of partially-observable discrete-time stochastic control systems, also known as
POMDPs. In particular, the results in this chapter reduce the computational complexity
of the synthesis schemes outlined in Chapters 3 and 4. This approach involves the use
of local control barrier functions that are computed for subsystems, which are then used
in a compositional manner to construct control barrier functions for POMDPs. The pro-
posed method employs two different strategies for computing local control barrier functions
for subsystems. The first strategy, which builds upon the results discussed in Chapter 4,
eliminates the need for prior knowledge of estimation accuracy. On the other hand, the sec-
ond framework incorporates the probability bound on the estimation accuracy by utilizing
stochastic simulation functions, as introduced in Chapter 3. Both proposed schemes derive
sufficient small-gain type conditions to compositionally construct control barrier functions
for interconnected POMDPs using local barrier functions computed for subsystems. The
constructed CBFs for the overall networks enable the computation of lower bounds on the
probabilities that the interconnected POMDPs avoid certain unsafe regions in finite time
horizons.
Chapter 6 provides a data-driven approach for computing polynomial-type controllers
that ensure the safety of partially-observable continuous-time polynomial-type systems



1.2 Outline of the Thesis 5

with unknown dynamics by leveraging a notion of control barrier functions. The proposed
approach only requires a single output trajectory from the system and a single state tra-
jectory from its estimator.
Chapter 7 provides a summary of the results of this dissertation and outlines potential
future research directions.
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Chapter 2

Mathematical Notations,
Preliminaries and Basic Notions in
Control Theory

2.1 Notations

The following notations are employed throughout the thesis. The sets of nonnegative
and positive integers are denoted by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .}, respectively.
Moreover, the symbols R,R>0, and R≥0 denote, respectively, the sets of real, positive and
nonnegative real numbers. We use Rn to denote an n-dimensional Euclidean space and
Rn×m to denote the space of real matrices with n rows and m columns. Given N vectors
xi ∈ Rni , ni ∈ N≥1, and i ∈ {1, . . . , N}, we use [x1; . . . ;xn] and [x1, . . . , xn] to denote the
corresponding column and row vectors, respectively, with dimension

∑
i ni. We denote by

∥ . ∥ and ∥ . ∥2 the infinity and Euclidean norms, respectively. Given a set X, we denote
its ϵ-inflated version by Xϵ := {x̂ ∈ X | ∃x ∈ X, ∥x̂ − x∥ ≤ ϵ}, with ϵ ∈ R>0, and by 2X

the power set of X, i.e., the set of all subsets of X. Moreover, we denote the empty set
by ∅ and the diagonal set by ∆d, where ∆d ⊂ R2n is defined as ∆d = {(x, x), x ∈ Rn}.
Given any a ∈ R, |a| denotes the absolute value of a. Symbols 0n, and 1n denote the
column vector in Rn×1 with all elements equal to zero and one, respectively. Furthermore,
we denote by ei ∈ Rn the vector whose all elements are zero, except the ith element, which
is one. We also use In and 0n×m to denote the identity matrix in Rn×n and the zero matrix
in Rn×m, respectively. The identity function and composition of functions are denoted by
Id and the symbol ◦, respectively.

Given a matrix M ∈ Rn×n, Tr(M) represents trace of M which is the sum of all
diagonal elements of M . A symmetric matrix P ∈ Rn×n is said to be positive definite,
denoted by P ≻ 0, if all its eigenvalues are positive. We also use λmin(P ) to represent
the minimum eigenvalue of the symmetric matrix P . Given sets X and Y , we denote
f : X → Y an ordinary map from X to Y and the notation |X| denotes the cardinality
of set X. Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian product
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i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is defined as (

∏N
i=1 fi)(x1, . . . , xN) = [f1(x1); . . . ; fN(xN)].

We define an indicator function IA (x) : X → {0, 1}, where IA (x) := 1 if x ∈ A ⊆ X, and
IA (x) := 0 otherwise. A function κ : R≥0 → R≥0, is said to be a class K function if it is
continuous, strictly increasing, and κ(0) = 0. A class K function κ(·) is said to be a class
K∞ if κ(r) → ∞ as r → ∞.

2.2 Preliminaries

We consider a probability space (Ω,FΩ,PΩ), where Ω is a sample space, FΩ is a sigma-
algebra on Ω, and PΩ is a probability measure that assigns probabilities to events. We
assume that the triple (Ω,FΩ,PΩ) is endowed with a filtration F = (Fs)s≥0 satisfying the
usual conditions of right continuity and completeness [18]. Moreover, we consider (Wks)s≥0

as a r̄k-dimensional F-Brownian motions, k = 1, 2, and (Pks)s≥0 as a q̄k-dimensional F-
Poisson processes, with k = 1, 2. We assume that the Poisson processes and Brownian
motions are independent of each other. The Poisson process Pks := [P 1

ks; · · · ;P
q̄k
ks ] models

q̄k kinds of events, k = 1, 2, whose occurrences are assumed to be independent of each
other.

We assume that random variables introduced in this thesis are measurable functions of
the form X : (Ω,FΩ) → (SX ,FX). Any random variable X induces a probability measure
on its space (SX ,FX) as Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often directly
discuss the probability measure on (SX ,FX) without explicitly mentioning the underlying
probability space and the function X itself. We call a topological space S a Borel space
if it is homeomorphic to a Borel subset of a Polish space (i.e., a separable and completely
metrizable space). Examples of a Borel space are the Euclidean space Rn and its Borel
subsets endowed with a subspace topology, as well as hybrid spaces. A Borel sigma-algebra
is denoted by B(S), where any Borel space S is assumed to be endowed with it. A map
f : S → Y is measurable whenever it is Borel measurable.

2.3 System Definitions

In this section, we define different forms of partially-observable control systems that
are considered throughout this thesis.

2.3.1 Partially-Observable Continuous-Time Stochastic Control
Systems

The formal definition of partially-observable continuous-time stochastic control systems
is given as follows.

Definition 1. A partially-observable continuous-time stochastic control system (PO-ct-
SCS) is a tuple SS = (Rn,Rm, U, f, g1,Rp, h, g2), where
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• Rn is the state space;

• Rm is the input space;

• U is a subset of all F-progressively measurable processes with values in Rm, (see [19]);

• f : Rn ×Rm → Rn satisfies the following Lipschitz assumption: there exist constants
Lx, Lu ∈ R≥0 such that ∥f(x, u)−f(x′, u′)∥2 ≤ Lx∥x−x′∥2+Lu∥u−u′∥2, ∀x, x′ ∈ Rn

and ∀u, u′ ∈ Rm;

• g1 : Rn → Rn×r̄1 satisfies the following Lipschitz assumption: there exists a constant
Lg1 ∈ R≥0 such that ∥g1(x)− g1(x

′)∥2 ≤ Lg1∥x− x′∥2, ∀x, x′ ∈ Rn;

• Rp is the output space;

• h : Rn → Rp satisfies the following Lipschitz assumption: there exists a constant
Lh ∈ R≥0 such that ∥h(x)− h(x′)∥2 ≤ Lh∥x− x′∥2, ∀x, x′ ∈ Rn;

• g2 : Rn → Rp×r̄2 satisfies the following Lipschitz assumption: there exists a constant
Lg2 ∈ R≥0 such that ∥g2(x)− g2(x

′)∥2 ≤ Lg2∥x− x′∥2, ∀x, x′ ∈ Rn.

A stochastic process ξ : Ω × R≥0 → Rn is said to be a solution process of SS if there
exists υ ∈ U satisfying the stochastic differential equations (SDE)

SS :

{
d ξ = f(ξ, υ) d t+ g1(ξ) dW1t,

d y = h(ξ) d t+ g2(ξ) dW2t,
(2.3.1)

where y(t) taking values in Rp denotes the output of SS and represents the noisy partial
information at each time t ∈ R≥0 P-almost surely (P-a.s.). Solution process of SS exists and
is unique due to the assumptions on f and g1 [18]. We assume that the pair (∂f

∂x
(x, u), h(x))

is uniformly detectable [16, Definition 6]. For a PO-ct-SCS SS in (2.3.1), we use the
notation ξx0υ(t) to denote the value of the solution process at time t ∈ R≥0 under the input
signal υ starting from the initial state ξx0υ(0) = x0 P-a.s., in which x0 is a random variable
that is measurable in F0.

2.3.2 Partially-Observable Continuous-Time Jump-Diffusion Sys-
tems

In some part of this thesis, we consider partially-observable continuous-time jump-
diffusion systems formally defined as follows.

Definition 2. A partially-observable jump-diffusion system (po-JDS), denoted by SJ , is
described by the following stochastic differential equations (SDE)

SJ :

{
d ξ = f(ξ, υ) d t+ g1(ξ) dW1t + r1(ξ) dP1t,

d y = h(ξ) d t+ g2(ξ) dW2t + r2(ξ) dP2t,
(2.3.2)
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where ξ(t) ∈ X ⊆ Rn is the value of solution process ξ of SJ , υ(t) ∈ U ⊆ Rm is the
input vector, and y(t) ∈ Rp is the output vector representing the noisy partial observation
at time t ∈ R≥ P-almost surely (P-a.s.). Functions f : X × U → Rn, g1 : X → Rn×r̄1,
g2 : X → Rp×r̄2, r1 : X → Rn×q̄1, r2 : X → Rp×q̄2, and h : X → Rp are assumed to be
Lipschitz continuous to ensure existence and uniqueness of the solution of SJ [20]. For the
PO-JDS SJ in (2.3.2), we use the notation ξx0υ(t) to denote the value of the solution process
of SJ at time t ∈ R≥0 under the input signal υ starting from the initial state ξx0υ(0) = x0
P-a.s., in which x0 is a random variable that is measurable in F0. We assume that the
Poisson processes P i

ks for any i ∈ {1, . . . , q̄k}, k = 1, 2, have the rates of λki.

2.3.3 Partially-Observable Continuous-Time Polynomial-Type Sys-
tems

A partially-observable continuous-time polynomial-type systems is formalized in the
following definition.

Definition 3. A partially-observable continuous-time polynomial-type system (PO-ct-PS)
is described by

SP :

{
ẋ = AM(x) + Bu,
y = CM(x),

(2.3.3)

where A ∈ Rn×N ,B ∈ Rn×m, and C ∈ Rp×N . The vector function M(x) ∈ RN contains
monomials in state x ∈ X, with X ⊂ Rn being the state set. Furthermore, u ∈ U is the
control input with input set U ⊂ Rm, and y ∈ Y is the output with output set Y ⊂ Rp.
For the PO-ct-PS (2.3.3), we employ notation xx0υ to denote the trajectory of SP starting
from an initial state x0 = x(0), under an input υ, and xx0υ(t) denotes the value of this
trajectory at time t ∈ R≥0.

2.3.4 Partially-Observable Discrete-Time Stochastic Control Sys-
tems

In some part of this thesis, we consider partially-observable discrete-time stochastic
control systems as formalized in the following definition.

Definition 4. A partially-observable discrete-time stochastic control system (PO-dt-SCS)
is characterized by the tuple

ΣS = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2), (2.3.4)

where,

• X ⊆ Rn is a Borel space as the state space of the system. The measurable space with
B(X) being the Borel sigma-algebra on the state space is denoted by (X,B(X));

• U ⊆ Rm is a Borel space as the external input space of the system;
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• W ⊆ Rp is a Borel space as the internal input space of the system;

• ςi, i ∈ {1, 2}, denote sequences of independent and identically distributed (i.i.d.)
random variables from a sample space Ω to the uncertainty set Vςi,

ςi = {ςi(k) : Ω → Vςi , k ∈ N},

• f : X×U ×W ×Vς1 → X is a measurable function characterizing the state evolution
of the system;

• Y1 ⊆ Rp is a Borel space as the internal output space of the system;

• Y2 ⊆ Rq is a Borel space as the external output space of the system;

• h1 : X → Y1 is a measurable function that maps a state x ∈ X to its internal output
y1 = h1(x);

• h2 : X×Vς2 → Y2 is a measurable function that maps a state x(k) ∈ X to its external
output y2(k) = h2(x(k), ς2(k)).

An evolution of the state of PO-dt-SCS ΣS and its output for given input sequences
υ(·) : N → U and w(·) : N → W are described by

ΣS :


x(k + 1) = f(x(k), υ(k), w(k), ς1(k)),

y1(k) = h1(x(k)),

y2(k) = h2(x(k), ς2(k)), k ∈ N.
(2.3.5)

A PO-dt-SCS ΣS in (2.3.4) can be equivalently represented as a partially-observable Markov
decision process (POMDP) [21]. Hence, we interchangeably employ terms PO-dt-SCS and
POMDP in the thesis.

We associate to U and W sets U and W , respectively, to be collections of sequences
{υ(k) : Ω → U, k ∈ N} and {w(k) : Ω → W,k ∈ N}, in which υ(k) and w(k) are
independent of ςi(l) for any k, l ∈ N, l ≥ k and i ∈ {1, 2}. The random sequences
xx0υw : Ω × N → X, y1x0υw : Ω × N → Y1, and y2x0υw : Ω × N → Y2 satisfying (2.3.5) are
called respectively the solution process, internal output and external output processes of
ΣS, respectively, under an external input υ, an internal input w, and an initial state x0.
The external output signal y1 and the internal input signal w represent the interconnec-
tions between subsystems, where y1 is the information that each subsystem sends to its
neighbouring subsystems and w is the information fed to each subsystem by its neighbours.

In this thesis, we are ultimately interested in investigating networks of systems. In this
case, the tuple representing interconnected systems, not containing internal inputs and
outputs, is ΣS = (X,U, ς1, f, Y, h, ς2), where f : X × U × Vς1 → X, and

ΣS :

{
x(k + 1) = f(x(k), υ(k), ς1(k)),

y(k) = h(x(k), ς2(k)), k ∈ N.
(2.3.6)

Note that in this thesis, with a slight abuse of notation, we use the same naming in
both continuous and discrete time, but the distinction will be clear from the context.
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Chapter 3

Controller Synthesis for
Partially-Observable Stochastic
Control Systems

This chapter deals with the problem of synthesizing controllers for partially-observable
stochastic control systems to ensure finite-time safety. Given an estimator with a proba-
bilistic guarantee on the accuracy of the estimations, we provide an approach to compute a
controller providing a lower bound on the probability that the trajectories of the stochastic
control system remain safe over a finite time-horizon. To obtain such controllers, we utilize
a notion of control barrier functions. We also provide an approach to compute a probability
bound on estimator accuracy by using a notion of so-called stochastic simulation function.

3.1 Introduction

Stochastic control systems are becoming ubiquitous and an integral part of our daily
lives. Examples of such systems range from robots and medical devices to smart grids and
automotive networks. Safety is an important design objective for many of these control
systems. Failure to ensure safety could result in loss of life or damage to the system and
the environment. For this reason, formal verification and synthesis of controllers against
safety specifications has gained considerable attention among both control theorists and
computer scientists. In principle, safety verifications’ goal is to show that the systems’
trajectories will not enter an unsafe region in the state space. In the context of partially-
observable stochastic control systems, ensuring safety becomes an even more challenging
task. Partial-observability is a common characteristic in many real-world systems, where
only a subset of the system’s states can be directly measured or observed. This limited
information poses challenges in system analysis and control design, requiring techniques
like state estimation to estimate the unobservable states.



143. Controller Synthesis for Partially-Observable Stochastic Control Systems

3.1.1 Related Literature

Abstraction-based techniques, which are based on the discretization of state and input
sets, have become quite popular for the formal synthesis of controllers [6, 7, 22]. However,
the major bottleneck of these techniques is that they suffer severely from the curse of di-
mensionality, where the computational complexity grows exponentially with the dimension
of the state set.

On the other hand, discretization-free approaches using barrier functions have shown
potential for solving verification or synthesis of deterministic and stochastic systems against
safety specifications (see [12, 23, 24] for deterministic systems and [13, 15, 25, 26] for
stochastic systems). These functions are defined over the state space of the system and
have to satisfy a set of inequalities defined over the function itself and the one step transition
of the system. The existence of such a function provides directly the controller together
with a guarantee on the satisfaction of the safety specification.

However, all the aforementioned results assume the availability of full state information,
which is not the case in many real-world applications. This limitation led to new challenges
in the synthesis of controllers for systems with partial or incomplete information. Motivated
by these challenges, the proposed approaches in [17] and [16] provide infinite-time horizon
guarantees for the safety of the system with probability 1 while assuming a prior knowledge
of control barrier functions and considering an unbounded input set. However, in order
to provide infinite time horizon guarantees, they require that the control barrier functions
exhibit supermartingale property, which presupposes stochastic stability and vanishing
noise at the equilibrium point of the system. The problem of synthesizing safety controllers
for partially-observable Markov decision processes (POMDPs) using barrier functions has
also been studied in [27].

3.1.2 Contributions

The contents of this chapter have been published in the IFAC World Congress [28]. It
is a joint work with Prof. Pushpak Jagtap and Prof. Majid Zamani. The author of the
thesis has established the results and written the draft. Pushpak Jagtap contributed to
the initial discussions, the results, the revision of the draft, and mentoring. Majid Zamani
supervised the work.

In this chapter, we consider the problem of formal synthesis of continuous-time stochas-
tic control systems with partial state information ensuring safety specification over a finite-
time horizon without requiring any assumptions on the stability of the stochastic system.
In order to achieve this, we do not require the supermartingale property on control bar-
rier functions. In our setting, we only require that control barrier functions exhibit a
c-martingale property, which is a relaxation of the supermartingale one. Remark that a
supermartingale property often presupposes stochastic stability and vanishing noise at the
equilibrium point, which are not the case for the c-martingale property. Hence, finding
c-martingale barrier functions is much easier than finding supermartingale ones. On the
other hand, requiring only c-martingale property comes at the cost of providing a guaran-
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tee for only finite time horizon, whereas the supermartingale property provides an infinite
time horizon guarantee.

Our main contribution is to provide a systematic approach for computing a lower bound
on the probability that the stochastic control system with partial information satisfies
safety specifications over a finite-time horizon. Given an appropriate estimator with a
probabilistic guarantee on the closeness of the estimator’s and system’s trajectories, we
provide sufficient conditions for control barrier functions under which one can provide
the lower bound on the probability of satisfying safety specifications over a finite time-
horizon. Then, we provide sufficient conditions for computing control barrier functions
and corresponding controllers. We also provide an approach to compute probability bound
on the estimator accuracy for a class of stochastic control systems by utilizing a notion of
so-called stochastic simulation function ([29, 30]).

3.2 Preliminaries and Problem Definition

In order to synthesize safety controllers for PO-ct-SCSs as in (2.3.1), we first raise
the following assumption on the existence of the estimator that estimates the state of the
PO-ct-SCS SS as in (2.3.1) with a probabilistic guarantee on the estimation accuracy.

Assumption 1. The states of the PO-ct-SCS SS in (2.3.1) can be estimated by a proper

estimator ŜS represented in the form of stochastic differential equation with the estimated
state trajectory ξ̂(t) which is described by:

ŜS : d ξ̂ = f(ξ̂, υ) d t+K
(
d y − h(ξ̂) d t

)
, (3.2.1)

where K ∈ Rn×p is the estimator gain. Moreover, the probabilistic bound on the accuracy
of the estimator is given as [31]:

∀θ ∈ (0, 1] ∃ϵ > 0 such that P
(
sup
t≥0

∥ξx0υ(t)− ξ̂x̂0υ(t)∥2 ≤ ϵ
)
≥ 1− θ. (3.2.2)

To find the relation between ϵ and θ, one can use the notion of so-called stochastic
simulation functions introduced in [32]. The construction of stochastic simulation functions
and the probability bound for the case of linear stochastic control systems is provided in
Section 3.4.

For later use, we provide the definition of the infinitesimal generator (denoted by opera-
tor D) for the stochastic control system SS using Ito’s differentiation [18]. Let B : Rn → R
be a twice differentiable function. The infinitesimal generator of B associated with the
system SS for all x ∈ Rn and for all u ∈ U is given by

DB(x, u) = ∂B
∂x

(x)f(x, u) +
1

2
Tr
(
g⊤1 (x)

∂2B
∂x2

(x)g1(x)
)
. (3.2.3)

Now, we formally define the main synthesis problem considered in this chapter.
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Problem 5. Given a partially-observable continuous-time stochastic control system SS in
(2.3.1), its estimator Ŝs (3.2.1) satisfying (3.2.2), and initial and unsafe sets X0 ⊂ Rn,
X1 ⊂ Rn, respectively, compute a controller (if existing) and a real value ϑ ∈ (0, 1) such
that the probability of the solution process of SS starting from X0 and not reaching X1 over
the finite time horizon T ∈ R>0 is lower bounded by ϑ, i.e.,

P{∀t ∈ [0, T ), ξx0υ(t) ̸∈ X1} ≥ ϑ,∀x0 ∈ X0.

Finding a solution to Problem 5 (if existing) is difficult in general. In this chapter, we
provide a sound method in solving this problem. To synthesize a controller, we utilize the
notion of control barrier functions introduced in the next section.

3.3 Control Barrier Functions for PO-ct-SCSs

In this section, we provide sufficient conditions using the so-called control barrier func-
tions under which we can provide the lower bound on the probability that the trajectories
of system SS start from any initial state in set X0 ⊂ Rn and do not reach unsafe set
X1 ⊂ Rn. Now, we provide an intermediate result providing an upper bound on the
reachability probability for the trajectory of the estimator ŜS in (3.2.1).

Theorem 6. Consider a PO-ct-SCS SS in (2.3.1), an estimator ŜS with the accuracy ϵ
as in (3.2.2), and sets X0, X

ϵ
1 ⊂ Rn, where Xϵ

1 is the inflated version of X1. Suppose there
exists a twice differentiable function B : Rn → R≥0, constants c ≥ 0 and β0 ∈ [0, 1) such
that

B(x̂) ≤ β0 ∀x̂ ∈ X0, (3.3.1)

B(x̂) ≥ 1 ∀x̂ ∈ Xϵ
1, (3.3.2)

inf
u∈U

∂B
∂x̂

(x̂)f(x̂, u) + Lhϵ∥
∂B
∂x̂

(x̂)K∥2 +
1

2
Tr
(
g⊤2 (x̂)K

⊤∂
2B
∂x̂2

(x̂)Kg2(x̂)
)
≤ c ∀x̂ ∈ Rn,

(3.3.3)

where Lh ∈ R≥0 is the Lipschitz constant for the function h. Then, the probability that the

solution process ξ̂ of the estimator ŜS starting from an initial state x̂0 ∈ X0 and reaching
region Xϵ

1 within time horizon [0, T ) ⊂ R≥0 is upper bounded by β0 + cT .

Proof. Consider the infinitesimal generator associated with the estimator ŜS as

DB(x̂, u) =∂B
∂x̂

(x̂)
(
f(x̂, u) +K

(
h(x)− h(x̂)

))
+

1

2
Tr
(
g⊤2 (x̂)K

⊤∂
2B
∂x̂2

(x̂)Kg2(x̂)
)
.

If ∥x− x̂∥2 ≤ ϵ, then one gets

∂B
∂x̂

(x̂)K
(
h(x)− h(x̂)

)
≤ ∥∂B

∂x̂
(x̂)K∥2∥h(x)− h(x̂)∥2 ≤ ∥∂B

∂x̂
(x̂)K∥2Lhϵ.
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Hence, if (3.3.3) holds, then

inf
u∈U

∂B
∂x̂

(x̂)
(
f(x̂, u) +K

(
h(x)− h(x̂)

))
+

1

2
Tr
(
g⊤2 (x̂)K

⊤∂
2B
∂x̂2

(x̂)Kg2(x̂)
)

≤ inf
u∈U

∂B
∂x̂

(x̂)f(x̂, u) + Lhϵ∥
∂B
∂x̂

(x̂)K∥2 +
1

2
Tr
(
g⊤2 (x̂)K

⊤∂
2B
∂x̂2

(x̂)Kg2(x̂)
)
≤ c.

Thus, one has infu∈U DB(x̂, u) ≤ c. Now by utilizing [33, Theorem 1], (3.3.1), and the fact
that Xϵ

1 ⊆ {x̂ ∈ Rn | B(x̂) ≥ 1}, we have P{ξ̂x̂0υ(t) ∈ Xϵ
1 for some 0 ≤ t < T | ξ̂x̂0υ(0) =

x̂0} ≤ P{sup0≤t<T B(ξ̂x̂0υ(t)) ≥ 1 | ξ̂x̂0υ(0) = x̂0} ≤ B(x̂0) + cT ≤ β0 + cT which concludes
the proof.

The function B in Theorem 6 satisfying (3.3.1) - (3.3.3) is usually referred to as the

control barrier function for ŜS.

Remark 7. The above theorem gives controller as the infimum over u of the left-hand side
of inequality (3.3.3).

The result of Theorem 6 guarantees that the following inequality holds:

P
{
∃t ∈ [0, T ), ξ̂x̂0υ(t) ∈ Xϵ

1

}
≤ β0 + Tc, (3.3.4)

In the next theorem, we provide the upper bound on the reachability property over the
trajectory of the original system SS by utilizing the bound obtained in Theorem 6 and the
estimator accuracy.

Theorem 8. Consider a PO-ct-SCS SS in (2.3.1), an estimator ŜS with the accuracy ϵ as
in (3.2.2), the results in Theorem 6, and sets X0, X1, X

ϵ
1 ⊂ Rn. Then for any x0 ∈ X0

P
{
∃t ∈ [0, T ), ξx0υ(t) ∈ X1

}
≤ β0 + Tc+ θ − θ(β0 + Tc). (3.3.5)

Proof. The proof is inspired by the proof of Corollary 3.5 in [34]. Given x0, x̂0 ∈ X0, let
us define the events A1 := {∃t ∈ [0, T ), ξx0υ(t) ∈ X1}, A2 := {∃t ∈ [0, T ), ξ̂x̂0υ(t) ∈ Xϵ

1},
and A3 := {supt≥0 ∥ξx0υ(t)− ξ̂x̂0υ(t)∥2 ≤ ϵ}. Then, we have

P{Ā1}
(∗)
= P{Ā2 ∩ A3} = P{Ā2}P{A3}

(∗∗)
≥ (1− β0 − Tc)(1− θ),

where Āi is the complement of event Ai for i ∈ {1, 2}. The first equality (∗) comes from
the definition of Xϵ

1 being an ϵ−inflated version of X1. Notice that in the inequality (∗∗),
the term P{Ā2} is lower bounded by (1−β0−Tc) . Furthermore, according to (3.2.2), the
term P{A3} is lower bounded by (1− θ). Thus, one can conclude

P{A1} ≤ β0 + Tc+ θ − θ(β0 + Tc).

This concludes the proof.

Corollary 9. Given the results in Theorem 8, the probability that the trajectories of SS

start from any x0 ∈ X0 and stay in Rn \X1 is lower bounded by

P
{
∀t ∈ [0, T ), ξx0υ(t) ̸∈ X1

}
≥ (1− β0 − Tc)(1− θ). (3.3.6)
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3.3.1 Computation of Control Barrier Functions

Proving the existence of a control barrier function and finding one are in general hard
problems. However, one can search for parametric barrier functions of the form B(q̄, x̂) =∑rb

i=1 q̄ibi(x̂) with some user-defined (possibly nonlinear) basis functions bi(x̂) and unknown
coefficients q̄i ∈ R, i ∈ {1, 2, . . . , rb}, and the parametric state feedback controller of the
similar form. The following lemma provides a set of sufficient conditions for the existence
of such a parametric control barrier function required in Theorem 6, which can be solved
as an optimization problem.

Lemma 10. Consider compact sets X0, X
ϵ
1, X1 ⊂ Rn as given in Theorem 6. Suppose there

exists a parametric function B(q̄, x̂) and parametric functions ψui
(dui

, x̂) corresponding to
the ith input in u = (u1, u2, . . . , um) ∈ U ⊂ Rm with vectors of parameters q̄ and dui

of
appropriate sizes, respectively, constants c ≥ 0 and β0 ∈ [0, 1) that satisfy

B(q̄, x̂) ≥ 0 ∀x̂ ∈ Rn, (3.3.7)

B(q̄, x̂) ≤ β0 ∀x̂ ∈ X0, (3.3.8)

B(q̄, x̂) ≥ 1 ∀x̂ ∈ Xϵ
1, (3.3.9)

∂B
∂x̂

(q̄, x̂)f(x̂, u) + Lhϵ∥
∂B
∂x̂

(q̄, x̂)K∥2 +
m∑
i=1

(ui − ψui
(dui

, x̂))

+
1

2
Tr
(
g⊤2 (x̂)K

⊤∂
2B
∂x̂2

(q̄, x̂)Kg2(x̂)
)
≤ c ∀x̂ ∈ Rn,∀u ∈ U.

(3.3.10)

Then B(q̄, x̂) satisfies conditions in Theorem 6 and ui = ψui
(dui

, x̂) is the corresponding
controller.

Proof. The first three conditions implies (3.3.1) and (3.3.2) along with non-negativeness of
the function B. Now, if we choose control input ui = ψui

(dui
, x̂), condition (3.3.10) implies

(3.3.3) in Theorem 6 which concludes the proof.

In order to search for the parameters q̄ and dui
in Lemma 10 satisfying (3.3.7)-(3.3.10),

one can use existing nonlinear optimization solvers such as [35]. Note that, the methods
may run into local optima, however, one can utilize multi-start techniques [36] to obtain
global optima. For the final rigorous verification step, one can use tools such as dReal [37]
or RSolver [38] to formally verify that the computed functions indeed satisfy the required
conditions.
In order to compute θ in (3.3.6), we utilize the notion of stochastic simulation function
which is introduced in the next section.

3.4 Stochastic Simulation Functions

In this section, we define a notion of stochastic simulation functions similar to the one
defined by [32] which can be used to quantify the distance (a.k.a. error) between a system’s
state and its estimation as in inequality (3.2.2).
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We first define the augmented process
[
ξ ξ̂

]⊤
, where ξ and ξ̂ are the solution processes

of SS and ŜS, respectively. The corresponding augmented stochastic control system is given
as

d

[
ξ

ξ̂

]
=

([
f(ξ, u)

f(ξ̂, u)

]
+

[
0n×p 0n×p

K −K

] [
h(ξ)

h(ξ̂)

])
d t+

[
g1(ξ) 0n×r̄2

0n×r̄1 Kg2(ξ)

] [
dW1t

dW2t

]
. (3.4.1)

Next, we define a notion of stochastic solution functions which can be used to obtain the
probability bound in (3.2.2).

Definition 11. A continuous function ϕ : Rn × Rn → R≥0 that is twice differentiable on

Rn × Rn \∆d is a stochastic simulation function from ŜS to SS if

1. for all (x, x̂) ∈ Rn × Rn, ϕ(x, x̂) ≥ ε(∥x− x̂∥2), where ε is a K∞-function;

2. for all u ∈ Rm, (x, x̂) ∈ Rn × Rn there exists a constant c̄1 ≥ 0 and c̄2 ≥ 0 such
that Dϕ(x, x̂, u) ≤ −c̄2ϕ(x, x̂) + c̄1, where the operator D is acting on the augmented
dynamics in (3.4.1).

The next result provides the probability bound on the estimation accuracy by using
the stochastic simulation function.

Theorem 12. Consider stochastic systems SS and ŜS with dynamics as in (2.3.1) and

(3.2.1), respectively, and a stochastic simulation function ϕ : Rn × Rn → R≥0 from ŜS to
SS. Then for any υ ∈ U , any ϵ ∈ R>0, and any x0, x̂0 ∈ Rn the following holds:

P
(

sup
0≤t≤T

∥ξx0υ(t)− ξ̂x̂0υ(t)∥2 ≥ ϵ | x0, x̂0
)

≤ 1−
(
1− ϕ(x0, x̂0)

ε(ϵ)

)
e−c̄1T/ε(ϵ), if ε(ϵ) ≥ c̄1

c̄2
,

(3.4.2)

P
(

sup
0≤t≤T

∥ξx0υ(t)− ξ̂x̂0υ(t)∥2 ≥ ϵ | x0, x̂0
)

≤ ϕ(x0, x̂0) + (ec̄2T − 1)(c̄1/c̄2)

ε(ϵ)ec̄2T
, if ε(ϵ) ≤ c̄1

c̄2
,

(3.4.3)

where T > 0 is the time horizon.

Proof. Since ϕ is a stochastic simulation function from ŜS to SS, one obtains the following
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chain of inequality

P
(

sup
0≤t≤T

∥ξx0υ(t)− ξ̂x̂0υ(t)∥2 ≥ ϵ | x0, x̂0
)

= P
(

sup
0≤t≤T

ε(∥ξx0υ(t)− ξ̂x̂0υ(t))∥2 ≥ ε(ϵ) | x0, x̂0
)

≤ P
(

sup
0≤t≤T

ϕ(ξx0υ(t), ξ̂x̂0υ(t)) ≥ ε(ϵ) | x0, x̂0
)

≤


1−

(
1− ϕ(x0,x̂0)

ε(ϵ)

)
e−c̄1T/ε(ϵ), if ε(ϵ) ≥ c̄1

c̄2
,

ϕ(x0,x̂0)+(ec̄2T−1)(c̄1/c̄2)

ε(ϵ)ec̄2T
, if ε(ϵ) ≤ c̄1

c̄2
.

The equality holds due to the fact that ε is a K∞ function. The second inequality holds
based on condition 1 of Definition 11, and the last inequality follows from the result in [39,
Theorem 1].

Next, we provide sufficient conditions under which we can construct a stochastic simula-
tion function for linear stochastic control systems. Consider the following linear stochastic
control system

SS :

{
d ξ = (Aξ +Bυ) d t+ g1(ξ) dW1t,

d y = Cξ d t+ g2(ξ) dW2t,
(3.4.4)

and the corresponding linear estimator as

ŜS : d ξ̂ = (Aξ̂ +Bυ) d t+K(d y − Cξ̂ d t). (3.4.5)

Next, we impose the following assumption in order to provide the main result of this
section.

Assumption 2. Consider the linear system SS in (3.4.4). We assume that there exist a
positive definite matrix Pϕ, gain K, and a constant c̄2 ∈ R≥0 such that the following matrix
inequality holds

(A⊤ − C⊤K⊤)Pϕ + Pϕ(A−KC) < −c̄2Pϕ. (3.4.6)

Note that if pair (A,C) is observable, then there always exists such choices of Pϕ and K.

From now on we assume that we are interested in studying behaviours of SS over
compact set X ⊂ Rn. In the following lemma, we provide sufficient conditions under
which one can have a quadratic stochastic simulation function from ŜS to SS.

Lemma 13. Consider a linear stochastic control systems SS and estimator ŜS as in (3.4.4)
and (3.4.5), respectively. Assume SS satisfies Assumption 2 and for all x ∈ X there exists
c̄1 ≥ 0 such that

Tr
( [
g1(x) −Kg2(x)

]⊤
Pϕ

[
g1(x) −Kg2(x)

] )
≤ c̄1. (3.4.7)

Then
ϕ(x, x̂) = (x− x̂)⊤Pϕ(x− x̂), (3.4.8)

is a stochastic simulation function from ŜS to SS.
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Proof. By following (3.2.3), the infinitesimal generator acting on the function ϕ is as fol-
lows:

Dϕ(x, x̂) =(x− x̂)⊤[(A⊤ − C⊤K⊤)Pϕ + Pϕ(A−KC)](x− x̂)

+ Tr
( [
g1(x) −Kg2(x)

]⊤
Pϕ

[
g1(x) −Kg2(x)

] )
≤ −c̄2ϕ(x, x̂) + c̄1.

The inequality follows from (3.4.6) and (3.4.7) which implies condition 2 of Definition 11
being satisfied. Condition 1 of Definition 11 is satisfied by choosing

ε(s) =
1

2
λmin(Pϕ)s

2.

3.5 Case Study

In this section, we consider a DC motor to demonstrate the effectiveness of our results.
Consider the dynamics of a DC motor given using stochastic differential equation as follows:

SS :


d

[
ξ1

ξ2

]
=

( A︷ ︸︸ ︷−Rdc

Ldc
−Kdc

Ldc

−Kdc

Jdc
− bdc

Jdc

[ξ1
ξ2

]
+

[
1

Ldc

0

]
υ

)
d t+

[
0.05 0

0 0.05

]
dW1t,

d y =
[
0 1

]
︸ ︷︷ ︸

C

[
ξ1

ξ2

]
d t+ 0.01 dW2t,

(3.5.1)

where ξ1, ξ2, υ, Rdc, Ldc and Jdc are the armature current, the rotational speed of the shaft,
the voltage source applied to the motor’s armature, the resistance, the inductance, and the
moment of inertia of the rotor, respectively. W1t and W2t denote the standard Brownian
motions. Constant Kdc represents both the motor torque constant and the back emf
constant. The values of the parameters are Jdc = 0.01, bdc = 0.1, Kdc = 0.01, Rdc = 1, and
Ldc = 0.5, which are adopted from [1]. From matrices A and C, one can readily see that
the system is observable. We consider the state set X =

[
−0.1 0.1

]
×
[
−0.5 0.5

]
, and

regions of interestX0 =
[
−0.01 0.01

]
×
[
−0.2 0.2

]
, X1 =

[
−0.1 −0.05

]
×
[
−0.5 −0.3

]
∪[

0.05 0.1
]
×
[
0.3 0.5

]
. The aim is to compute a controller with a potentially tight upper

bound on the probability of the states starting from the initial set X0 reaching the unsafe
set X1 within time horizon T = 10, as in (3.3.5). We compute matrices

K =

[
0.0069
0.0027

]
, Pϕ =

[
0.0554 0.0053
0.0053 0.3209

]
,

and c̄2 = 0.1 satisfying (3.4.6) by converting it to an LMI using Schur complement. The
stochastic simulation function according to Lemma 13 is given as ϕ(x, x̂) = (x−x̂)⊤Pϕ(x−x̂)
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Figure 3.1: A few realizations of the errors between concrete state trajectories and esti-
mated trajectories.

with ε(s) = 0.02768s2 and c̄1 = 3.7693 × 10−7. By use of the results in Theorem 12 we
obtain θ = 0.1272 by choosing ϵ = 0.01. The obtained probability that is at least 87.28% is
also empirically verified by computing distance between trajectories of the concrete system
and the estimated system at time using 10000 realizations. Several realizations are shown
in Figure 3.1.

A quadratic control barrier function using the approach discussed in Subsection 3.3.1
is obtained as follows:

B(x̂) = 290.9438x̂21 + 10.98940x̂1x̂2 + 1.1977x̂22,

and the corresponding controller as

u(x̂) = 0.2721x̂1 + 1.3607x̂2. (3.5.2)

with the values β0 = 0.099, c̄1 = 1 × 10−5, T = 10. All the computations are done using
GUROBI and YALMIP [40]. The lower bound in (3.3.6) is computed as:

P
{
∀t ∈ [0, T ), ξx0υ(t) ̸∈ X1

}
≥ 0.8647, ∀x0 ∈ X0.

Figure 3.2 shows a few realizations of the trajectories starting from the initial region X0

under the controller (3.5.2).

3.6 Summary

In this chapter, we provided a framework for designing control barrier functions for
partially-observable stochastic control systems subjected to noisy measurements. The con-
trollers associated with control barrier functions provide the upper bound on the probability
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β0

Figure 3.2: A few realizations of the closed-loop trajectories using controller (3.5.2). The
blue ellipsoid shows the β0-level set of B, defined as {x̂ ∈ X | B(x̂) = β0}.

that the system reaches an unsafe region in a finite time horizon. This upper bound is
provided by utilizing the probability bound obtained for the accuracy of the estimator via
the notion of stochastic simulation functions.
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Chapter 4

Synthesis of Partially-Observable
Jump-Diffusion Systems

In this chapter, we study formal synthesis of controllers for partially-observable jump-
diffusion systems against complex logic specifications. Given a state estimator, we utilize
a discretization-free approach for formal synthesis of control policies by using a notation of
control barrier functions without requiring any knowledge of the estimation accuracy. Our
goal is to synthesize an offline control policy providing (potentially maximizing) a lower
bound on the probability that the trajectories of the partially-observable jump-diffusion
system satisfy some complex specifications expressed by deterministic finite automata.

4.1 Introduction

Recent years have witnessed a growing interest in formal synthesis of controllers for
complex systems against complex logic specifications [7]. These specifications are usually
expressed using temporal logic formulae or as (in)finite strings over finite automata. In
general, the problem is very challenging, and a closed-form solution does not exist. In
this regard, approximate or probabilistic solutions have been used to synthesize controllers
enforcing complex logic specifications for stochastic control systems.

4.1.1 Related Literature

Several approaches based on finite abstractions have been widely used to formally syn-
thesize policies enforcing complex logic specifications. Existing techniques include policy
synthesis enforcing linear temporal logic specifications for non-stochastic systems [6, 41]
and for stochastic ones [42, 43, 44]. In these approaches, which rely on the discretization of
the state set, an abstract system is used as a substitution for the original system. Moreover,
a (probabilistic) error between the original systems and that of their finite abstractions is
also computed.
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To alleviate the curse of dimensionality appearing in large systems, control barrier func-
tions are used in order to solve the formal synthesis problem against complex specifications.
To this end, barrier functions were used in [45] to verify temporal properties in nonlinear
deterministic systems. As an extension of [45], the results in [46] verify hybrid dynami-
cal systems against syntactically co-safe linear temporal logic (LTL) specifications using
barrier functions. The results in [47] utilizes time-varying control barrier functions for
control synthesis under signal temporal logic tasks. The results in [48] and [49] use barrier
functions for the formal verification of hyperproperties (properties that are described over
sets of traces) in control systems. As for stochastic systems, the results in [50] use barrier
functions to verify discrete-time stochastic systems against safe LTL over finite traces, and
provide a lower bound on the probability of satisfaction. The proposed approach in [51]
provides sufficient conditions on probabilistic reach-avoid-stay specification using stochas-
tic Lyapunov-barrier functions. By utilizing control barrier functions and composing risk
metrics with stochastic predicates, the authors in [52] provide risk signal temporal logic
(RiSTL) to quantify the risk by which a predicate is not satisfied in a stochastic control
system.

Note that the aforementioned works assume the availability of complete state informa-
tion, while in many real applications we do not have access to complete state information.
To this end, the results in [53] provide an approach to synthesize controllers for POMDPs
with LTL specifications such that the probability of satisfying LTL formulae is maximized.
In Chapter 3, we considered the problem of synthesizing controllers for partially-observable
stochastic control systems. In particular, we searched for a control barrier function that
provides a controller along with a lower bound on the probability that the system satisfies
invariance specifications over a finite-time horizon. This chapter is an extension of the
previous chapter to solve the problem of controller synthesis for partially-observable jump-
diffusion systems against complex temporal logic specifications. The approach provided
in this chapter does not require prior knowledge of the estimation accuracy, which is a
requirement in the results proposed in Chapter 3.

4.1.2 Contribution

The contents of this chapter have been published in the IEEE Control Systems Let-
ters [55]. It is a joint work with Prof. Pushpak Jagtap and Prof. Majid Zamani. The
author of the thesis has established the results and written the draft. Pushpak Jagtap
contributed to the initial discussions, the results, the revision of the draft, and mentoring.
Majid Zamani supervised the work.

The contributions of this chapter are twofold. First, we provide a controller synthesis
approach enforcing complex logic specifications expressed by (non)deterministic finite au-
tomata for partially-observable jump-diffusion systems. As a special case, those properties
include invariance ones. Second, we provide an approach for computing a lower bound
on the probability that the system satisfies given specifications over a finite-time horizon
without requiring any knowledge of the estimator’s accuracy.
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4.2 Preliminaries and Problem Definition

For the PO-JDS SJ in (2.3.2), we first raise the following assumption on the existence
of the estimator that estimates the state of SJ .

Assumption 3. The states of the PO-JDS SJ in (2.3.2) can be estimated by a proper

estimator ŜJ represented in the form of an SDE as:

ŜJ : d ξ̂ = f(ξ̂, υ) d t+K
(
d y − h(ξ̂) d t

)
, (4.2.1)

where K ∈ Rn×p is the estimator gain.

There are plenty of results in the literature on the computation of estimator gain K
for various classes of stochastic systems; see the results in [16, 56, 57], and [58]. We define

the augmented process [ξ, ξ̂]⊤, where ξ and ξ̂ are the solution processes of SJ and ŜJ ,

respectively. The corresponding augmented jump-diffusion system S̃J can be defined as:[
d ξ

d ξ̂

]
=
([f(ξ, υ)

f(ξ̂, υ)

]
+

[
0n×p 0n×p

K −K

] [
h(ξ)

h(ξ̂)

])
d t

+

[
g1(ξ) 0n×r̄2

0n×r̄1 Kg2(ξ)

][
dW1t

dW2t

]
+

[
r1(ξ)
0n×q̄1

]
dP1t+

[
0n×q̄2

Kr2(ξ)

]
dP2t. (4.2.2)

For later use, we provide the definition of the infinitesimal generator for S̃J using Ito’s
differentiation [20]. Let B : X×X → R be a twice differentiable function. The infinitesimal

generator of B associated with the system S̃J for all (x, x̂) ∈ X ×X and for all u ∈ U is
given by

DB(x, x̂, u) =
[
∂xB ∂x̂B

]
(

[
f(x, u)
f(x̂, u)

]
+

[
0n×p 0n×p

K −K

] [
h(x)
h(x̂)

]
)

+
1

2
Tr(

[
g1(x) 0n×r̄2

0n×r̄1 Kg2(x)

][
g1(x) 0n×r̄2

0n×r̄1 Kg2(x)

]⊤[
∂xxB ∂xx̂B
∂x̂xB ∂x̂x̂B

]
)

+

q̄1∑
i=1

λ1i(B(x+ r1(x)ei, x̂)− B(x, x̂)) +
q̄2∑
i=1

λ2i(B(x+Kr2(x)ei, x̂)− B(x, x̂)).

(4.2.3)

The symbols ∂x and ∂x,x̂ in (4.2.3) represent first and second-order partial derivatives with
respect to x (1st argument) and x̂ (2nd argument), respectively. Note that we dropped the
arguments of ∂xB, ∂x̂B, ∂x,xB, ∂x,x̂B, ∂x̂,xB, and ∂x̂,x̂B in (4.2.3) for the sake of simplicity.

Given a PO-JDS SJ in (2.3.2), we aim at synthesizing a control policy that guarantees
a potentially tight lower bound on the probability that system SJ satisfies a complex
specification over a finite time horizon. The class of specifications considered in this chapter
are provided in the next subsection.
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Remark 14. The use of the augmented system S̃J will allow us to provide the main result
of this chapter without any correctness requirement on the observer. In particular, our
augmented system formulation provides the user the flexibility to design any observer by
means of any technique. The probabilistic distance between the values of state and their
estimator is natively considered in our formulation and one does not need to quantify this
distance a-priori which is needed in the results proposed in [16, 54].

4.2.1 Specifications

In this subsection, we consider the class of specifications expressed by nondeterministic
finite automata (NFA) as defined below.

Definition 15. [4] A nondeterministic finite automaton (NFA) is a tuple
A = (Q,Q0,Σ, δ, F ), where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, Σ
is a finite set (a.k.a. alphabet), δ : Q × Σ → P (Q) is a transition function, where P (Q)
denotes the power set of Q, and F ⊆ Q is a set of accepting (or final) states.

NFA A is called deterministic if the transition function is defined as δ : Q×Σ → Q, and
we refer to it as deterministic finite automata (DFA). Since every NFA can be converted
to its equivalent DFA using the powerset construction [59], in the rest of this chapter, we
only deal with DFA. Moreover, it is well known that the complement of a DFA A, denoted
by Ac, is again a DFA [60]. We use the notation q

ϖ−→ q′ to denote transition relation
(q,ϖ, q′) ∈ δ. A finite word ϖ = (ϖ0, ϖ1, . . . , ϖk−1) ∈ Σk is accepted by DFA A if there

exists a finite state run q = (q0, q1, . . . , qk) ∈ Qk+1 such that q0 ∈ Q0, qi
ϖi−→ qi+1 for all

0 ≤ i < k and qk ∈ F . The accepted language of A, denoted by L(A), is the set of all
words accepted by A.

In this chapter, we consider those specifications given by the accepting languages of
DFA A defined over a set of atomic propositions Π, i.e., the alphabet Σ = Π. We should
highlight that all linear temporal logic specifications defined over finite traces, referred to
as LTLF , are recognized by DFA [61].

4.2.2 Satisfaction of Specification by PO-JDS

A given PO-JDS SJ in (2.3.2) is connected to the specification given by the accepting
language of a DFA A defined over a set of atomic propositions Π, with the help of a
measurable labeling function L : X → Π as described in the next definition which is
similar to [45, Definition 2].

Definition 16. For a PO-JDS SJ as in (2.3.2) and the labeling function L : X → Π, a
finite sequence ϖ(ξx0υ) = (ϖ0, ϖ1, . . . , ϖk−1) ∈ Πk, k ∈ N, is a finite trace of the solution
process ξx0υ over a finite time horizon [0, T ) ⊂ R≥0 if there exists an associated time
sequence t0, t1, . . . , tk−1 such that t0 = 0, tk = T , and for all j ∈ {0, 1, . . . , k− 1}, tj ∈ R≥0

following conditions hold

• tj < tj+1;
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• ξx0υ(tj) ∈ L−1(ϖj);

• If ϖj ̸= ϖj+1, then for some t′j ∈ [tj, tj+1], ξx0υ(t) ∈ L−1(ϖj) for all t ∈ (tj, t
′
j);

ξx0υ(t) ∈ L−1(ϖj+1) for all t ∈ (t′j, tj+1); and either ξx0υ(t
′
j) ∈ L−1(ϖj) or ξx0υ(t

′
j) ∈

L−1(ϖj+1).

Next, we define the probability that the solution process ξx0υ of the PO-JDS SJ starting
from some initial state ξx0υ(0) = x0 ∈ X0 under control policy υ satisfies the specification
given by DFA A.

Definition 17. The finite trace corresponding to the solution process of a PO-JDS SJ in
(2.3.2) starting from x0 ∈ X0 and under the control policy υ over a finite-time horizon
[0, T ) ⊂ R≥0, i.e., ϖ(ξx0υ) = (ϖ0, ϖ1, . . . , ϖj, . . . , ϖk−1) ∈ Πk as in Definition 16, satisfies
a specification given by the language of a DFA A, denoted by ϖ(ξx0υ) |= A, if there exists
j ∈ {0, . . . , k−1} such that (ϖ0, ϖ1, . . . , ϖj) ∈ L(A). The probability of satisfaction of the
specification given by A is denoted by P{ϖ(ξx0υ) |= A}.

Remark 18. The set of atomic propositions Π = {p0, p1, . . . , pM} and the labeling function
L : X → Π provide a measurable partition of the state set X = ∪N

i=1Xi as Xi := L−1(pi).
Without loss of generality, we assume that Xi ̸= ∅ for any i.

4.2.3 Problem Definition

Now, we formally define the main synthesis problem considered in this chapter.

Problem 19. Given a PO-JDS SJ as in (2.3.2), a specification given by the accepting lan-
guage of DFA A = (Q,Q0,Π, δ, F ) over a set of atomic propositions Π = {p0, p1, . . . , pM},
a labeling function L : X → Π, and a real value ϑ ∈ (0, 1), compute an offline control
policy υ (if existing) such that P{ϖ(ξx0υ) |= A} ≥ ϑ, for all x0 ∈ L−1(pi) and some
i ∈ {0, 1, . . . ,M}.

Finding a solution to Problem 19 (if existing) is difficult in general. Our approach is
to compute a policy υ together with a lower bound ϑ. Our aim is to find the potentially
largest lower bound, which can be compared with ϑ and gives policy, i.e., a solution for
Problem 19 if ϑ≥ ϑ. Instead of computing a control policy that guarantees the lower bound
ϑ, we compute a policy that guarantees P{ϖ(ξx0υ) |= Ac} ≤ ϑ̄, for any x0 ∈ L−1(pi) and
some i ∈ {0, 1, . . . ,M}. Then for the same control policy the lower bound can be easily
obtained as ϑ= 1 − ϑ̄. This is done by constructing a DFA Ac whose language is the
complement of the language of DFA A. To synthesize a controller, we utilize the notion
of control barrier functions defined for augmented jump-diffusion system S̃J introduced in
the next section.
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4.3 Control Barrier Functions for PO-JDSs

In this section, we provide sufficient conditions using so-called control barrier functions
under which we can provide the upper bound on the probability that the trajectories of
system SJ starting from any initial state in X0 ⊆ X reach X1 ⊆ X. To provide a result
giving an upper bound on the reachability probability for the trajectory of SJ , we provide
conditions on barrier functions constructed over the augmented system S̃J .

Theorem 20. Consider a PO-JDS SJ as in (2.3.2), its estimator ŜJ as in (4.2.1), the

resulting augmented system S̃J as in (4.2.2) and sets X0, X1 ⊆ X. Suppose there exists a
twice differentiable function B : X ×X → R≥0, constants c ≥ 0 and β0 ∈ [0, 1) such that

∀(x, x̂) ∈ X0 ×X0, B(x, x̂) ≤ β0, (4.3.1)

∀(x, x̂) ∈ X1 ×X, B(x, x̂) ≥ 1, (4.3.2)

∀x̂ ∈ X, ∃u ∈ U,∀x ∈ X, DB(x, x̂, u) ≤ c. (4.3.3)

Then, the probability that the solution process ξx0υ of the system SJ starts from any initial
state x0 ∈ X0 and reaches region X1 under the control policy υ within time horizon [0, T ) ⊂
R≥0 is upper bounded by β0 + cT .

Proof. By using (4.3.1) and the fact that X1 ×X ⊆
{
(x, x̂) ∈ X ×X | B(x, x̂) ≥ 1

}
, we

have P
{
ξx0υ(t) ∈ X1 ∧ ξ̂x̂0υ(t) ∈ X ∃t ∈ [0, T ) | x0, x̂0

}
≤ P

{
sup0≤t≤TB(ξx0υ(t), ξ̂x̂0υ(t)) ≥

1 | x0, x̂0
}
≤ B(x0, x̂0) + cT ≤ β0 + cT . The second inequality is obtained by utilizing the

result of [33, Theorem 1]. This implies that the probability of the augmented trajectory of

S̃J staring from any (x0, x̂0) ∈ X0×X0 and reaching X1×X is upper bounded by β0+ cT .
Now we get P

{
ξx0υ(t) ∈ X1 ∧ ξ̂x̂0υ(t) ∈ X ∃t ∈ [0, T ) | x0, x̂0

}
≤ P

{
ξx0υ(t) ∈ X1 ∃t ∈

[0, T ) | x0
}
+ P

{
ξ̂x̂0υ(t) ∈ X ∃t ∈ [0, T ) | x̂0

}
− P

{
ξx0υ(t) ∈ X1 ∨ ξ̂x̂0υ(t) ∈ X ∃t ∈

[0, T ) | x0, x̂0
}
. Since the second and last terms trivially hold with probability 1, one has

P
{
ξx0υ(t) ∈ X1 ∧ ξ̂x̂0υ(t) ∈ X ∃t ∈ [0, T ) | x0, x̂0

}
≤ P

{
ξx0υ(t) ∈ X1 ∃t ∈ [0, T ) | x0

}
. Now,

since the right term of the and (i.e., ∧) is held for all time, the inequality above becomes
an equality and one gets P

{
ξx0υ(t) ∈ X1 ∃t ∈ [0, T ) | x0

}
≤ β0 + Tc which concludes the

proof.

The function B in Theorem 20 satisfying (4.3.1)-(4.3.3) is usually referred to as the

control barrier function for ŜJ .

Remark 21. Condition (4.3.3) implicitly associates a stationary controller u : X → U
according to the existential quantifier on u for any x̂ ∈ X and is independent of choice
of x ∈ X. The stationary control policy υ driving the system is readily given by υ(t) =
u(ξ̂x0υ(t)), where ξ̂x0υ is the solution process of the estimator.
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4.4 Formal Synthesis of Controllers

To synthesize control policies using control barrier functions enforcing specifications
expressed by DFA A, we first provide the decomposition of specifications into sequential
reachability tasks which will later be solved using control barrier functions.

4.4.1 Decomposition into Sequential Reachability

Consider a DFA A expressing the properties of interest for the system SJ . Consider
DFA Ac = (Q,Q0,Π, δ, F ) whose language is the complement of the language of DFA A.
The sequence q = (q0, q1, . . . , qk) ∈ Qk+1, k ∈ N is called an accepting state run if q0 ∈ Q0,

qk ∈ F , and there exists a finite word ϖ = (ϖ0, ϖ1, . . . , ϖk−1) ∈ Πk such that qi
ϖi−→ qi+1

for all i ∈ {0, 1, . . . , k − 1}. We denote the finite word corresponding to accepting state
run q by ϖ(q). We also indicate the length of q ∈ Qk+1 by |q|, which is k + 1. Let R be
the set of all finite accepting state runs starting from q0 ∈ Q0 excluding self-loops, where

R :={q=(q0, q1, . . . , qk)∈Qk+1 | qk∈F, qi ̸=qi+1,∀i<k}.

Computation of R can be done algorithmically by viewing Ac as a directed graph G =
(V , E) with vertices V = Q and edges E ⊆ V × V such that (q, q′) ∈ E if and only if

q′ ̸= q and there exist p ∈ Π such that q
p−→ q′. For any (q, q′) ∈ E , we donate the atomic

proposition associated with the edge (q, q′) by ϖ(q, q′). From the construction of the graph,
it is obvious that the finite path in the graph starting from vertices q0 ∈ Q0 and ending at
qF ∈ F is an accepting state run q of Ac without any self-loop and therefore belongs to
R. One can easily compute R using depth first search algorithm [62]. For each p ∈ Π, we
define a set Rp as

Rp := {q = (q0, q1, . . . , qk) ∈ R | ϖ(q0, q1) = p}. (4.4.1)

Decomposition into sequential reachability is performed as follows. For any q = (q0, q1, . . . , qk)
∈ Rp ∀p ∈ Π, we define Pp(q) as a set of all state runs of length 3,

Pp(q) := {(qi, qi+1, qi+2) | 0 ≤ i ≤ k − 2}. (4.4.2)

Now, we define P(Ac) :=
⋃

p∈Π
⋃

q∈Rp Pp(q).

Remark 22. Note that Pp(q) = ∅ for |q| = 2. In fact, any accepting state run of length 2
specifies a subset of the state set such that the system satisfies Ac whenever it starts from
that subset. This gives trivial zero probability for satisfying the specification, thus neglected
in the sequel.

For the illustration of the above sets, we kindly refer the interested reader to Example
1 in [13]. Having Pp(q) in (4.4.2) as the set of state runs of length 3, in this subsection, we
provide a systematic approach to compute a policy together with a (potentially tight) lower
bound on the probability that the solution process of SJ satisfies the specifications given by
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DFA A. Given a DFA Ac, our approach relies on performing a reachability computation
over each element of P(Ac) (i.e.,

⋃
p∈Π
⋃

q∈Rp Pp(q)), where reachability probability is
upper bounded using control barrier functions along with appropriate choices of control
inputs as mentioned in Theorem 20. However, computation of control barrier functions and
the policies for each element ν ∈ P(Ac), can cause ambiguity while utilizing controllers in
closed-loop whenever there are more than one outgoing edges from a state of the automaton.
To resolve this ambiguity, we simply merge such reachability problems into one reachability
problem by replacing the reachable set X1 × X in Theorem 20 with the union of regions
corresponding to the alphabets of all outgoing edges. Thus we get a common control barrier
function and a corresponding controller. This enables us to partition P(Ac) and put the
elements sharing a common control barrier function and a corresponding controller in the
same partition set. These sets can be formally defined as

µ(q,q′,∆(q′)) := {(q, q′,q′′) ∈ P(Ac) | q, q′, q′′ ∈ Q and q′′ ∈ ∆(q′)}.

The control barrier function and the controller (as discussed in Remark 21) corresponding
to the partition set µ(q,q′,∆(q′)) are denoted by Bµ(q,q′,∆(q′))

(x, x̂) and uµ(q,q′,∆(q′))
(x̂), respec-

tively. Thus, for all ν ∈ P(Ac), we have

Bν(x, x̂) = Bµ(q,q′,∆(q′))
(x, x̂) and uν(x̂) = uµ(q,q′,∆(q′))

(x̂), if ν ∈ µ(q,q′,∆(q′)). (4.4.3)

4.4.2 Control Policy

From the above discussion, one can readily observe that we have different control policies
at different locations of the automaton which can be interpreted as a switching control
policy. Next, we define the automaton representing the switching mechanism for control
policies. Consider the DFA Ac = (Q,Q0,Π, δ, F ) corresponding to the complement of DFA
A as discussed in Section 4.4.1, where ∆(q) denotes the set of all successor states of q ∈ Q.
Now, the switching mechanism is given by a DFAAm = (Qm, Qm0,Πm, δm, Fm), where Qm :=
Qm0 ∪{(q, q′,∆(q′)) | q, q′ ∈ Q \F}∪Fm is the set of states, Qm0 := {(q0,∆(q0)) | q0 ∈ Q0}
is the set of initial states, Πm = Π, Fm = F , and the transition relation (qm, ϖ, q

′
m) ∈ δm is

defined as

• for all qm = (q0,∆(q0)) ∈ Qm0,

(q0,∆(q0))
ϖ(q0,q′′)−→ (q0,q

′′,∆(q′′)), where q0
ϖ(q0,q′′)−→ q′′;

• for all qm = (q, q′,∆(q′)) ∈ Qm \ (Qm0 ∪ Fm),

– (q, q′,∆(q′))
ϖ(q′,q′′)−→ (q′, q′′,∆(q′′)), such that q, q′, q′′ ∈ Q, q′

ϖ(q′,q′′)−→ q′′, and q′′ /∈
F ; and

– (q, q′,∆(q′))
ϖ(q′,q′′)−→ q′′, such that q, q′, q′′ ∈ Q, q′

ϖ(q′,q′′)−→ q′′, and q′′ ∈ F .
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The hybrid controller defined over augmented state-space X ×Qm that is a candidate for
solving Problem 19 is given by

ũ(x̂, qm) = uµ(q′m)
(x̂), ∀(qm, L(x̂), q′m) ∈ δm. (4.4.4)

The corresponding hybrid control policy υ is given by υ(t) = ũ(ξ̂(t), qm). For the illustration
of the switching mechanism, see Example 1 in [13, Section 5]. In the next subsection, we
discuss the computation of bound on the probability of satisfying the specification under
such a policy, which then can be used for checking if this policy is indeed a solution for
Problem 19.

4.4.3 Computation of Probability

The next theorem provides an upper bound on the probability that the solution process
satisfies the specifications given by A.

Theorem 23. For a specification given by the accepting language of DFA A, let Ac be the
DFA corresponding to the complement of A, Rp be the set defined in (4.4.1), and Pp be the
set of runs of length 3 defined in (4.4.2). Then the probability that the solution process of
the system SJ starting from any initial state x0 ∈ L−1(p) under the hybrid control policy υ
associated with the hybrid controller (4.4.4) satisfies Ac within time horizon [0, T ) is upper
bounded by

P{ϖ(ξx0υ)|=Ac}≤
∑
q∈Rp

∏
{(β0ν+cνT )|ν=(q,q′,q′′)∈Pp(q)}, (4.4.5)

where β0ν + cνT is the upper bound on the probability that the solution process of SJ starts
from X0 := L−1(ϖ(q, q′)) and reaches X1 := L−1(ϖ(q′, q′′)) under control policy υ within
time horizon [0, T ) which is computed via Theorem 20.

Proof. The proof is similar to that of [13, Theorem 5.2] and is therefore omitted.

Theorem 23 enables us to decompose the specification into a collection of sequential
reachabilities, compute bounds on the reachability probabilities using Theorem 20, and
then combine the bounds in a sum-product expression.

Remark 24. In case we are unable to find control barrier functions for some of the el-
ements ν ∈ Pp(q) in (4.4.5), we replace the related term (β0ν + cνT ) by the pessimistic
bound 1 and apply random control input. In order to get a non-trivial bound in (4.4.5), at
least one control barrier function must be found for each q ∈ Rp.

Corollary 25. Given the result of Theorem 23, the probability that the solution process of
SJ in (2.3.2) starts from any x0 ∈ L−1(p) under control policy υ and satisfies specifications
given by DFA A over time horizon [0, T ) ⊂ R≥0 is lower-bounded by

P{ϖ(ξx0υ) |= A} ≥ 1− P{ϖ(ξx0υ) |= Ac}.
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4.4.4 Computation of Control Barrier Functions

Proving the existence of a control barrier function and finding one are in general hard
problems. However, if functions f , h, g1, g2, r1, and r2 in SJ are polynomial with respect
to their arguments and partition sets Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M}, are bounded semi-
algebraic sets (i.e., they can be represented by polynomial (in)equalities), one can formulate
conditions in Theorem 20 as a sum-of-squares (SOS) optimization problem. See [13, Section
5.3.1.] for a detailed discussion on a similar approach. Having an SOS optimization
problem, one can efficiently search for a polynomial control barrier function Bν(x, x̂) and
controller uν(x̂), for any ν ∈ P(A¬φ) as in (4.4.3) using SOSTOOLS [63] in conjunction
with a semidefinite programming solver such as SeDuMi [64] while minimizing constants
β0ν and cν . Having values of β0ν and cν for all ν ∈ P(A¬φ), one can simply utilize results
of Theorem 23 and Corollary 25 to compute a lower bound on the probability of satisfying
the given specification. Note that it may not be possible in advance to obtain a probability
bound that is meaningful, in such cases the order of a control barrier function needs to
increase to achieve the desired probability bound.

Remark 26. Under the assumption that sets X,X0, and X1 in Theorem 20 are com-
pact and input set U is finite, one can utilize counterexample guided inductive synthesis
(CEGIS) approach to search for barrier control functions for more general nonlinear func-
tions f, h, g1, g2, r1, and r2 in (2.3.2). For more detailed discussion on CEGIS approach,
we kindly refer interested readers to the algorithm in [13, Section 5.3.2.].

Computational Complexity: The number of triplets and hence the number of con-
trol barrier functions needed to be computed are bounded by |Q|3, where |Q| is the number
of states in DFA A. However, this is the worst-case bound and in practice, the number
of control barrier functions is much smaller. In the case of sum-of-squares optimization
approach, the computational complexity of finding polynomial control barrier functions
depends on both the degree of polynomials and the number of state variables. One can
easily see that for fixed polynomial degrees, the required computations grow polynomially
with respect to the dimension of the augmented system. For the CEGIS approach, due
to its iterative nature and lack of guarantee on termination, it is difficult to provide any
analysis on the computational complexity.

4.5 Case Study

We consider a nonlinear Moore-Greitzer jet engine model in no-stall mode [65] as a
partially-observable jump-diffusion systems by adding noise and jump terms which is given
by:

SJ :


d ξ1 = (−ξ2 − 3

2
ξ21 − 1

2
ξ31) d t+ 0.2 dW11t + 0.9 dPt,

d ξ2 = (ξ1 − υ) d t+ 0.06 dW12t,

d y = ξ2 d t+ 0.06 dW2t,
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Figure 4.1: The DFA A representing specification (left) and the DFA Ac representing
complement of A (right).

where ξ = [ξ1, ξ2]
⊤, ξ1 = Φ− 1, ξ2 = Ψ− ψ − 2, Φ is the mass flow, Ψ is the pressure rise,

and ψ is a constant. Terms W11t,W12t, and W2t denote the standard Brownian motions
and Pt denotes the Poisson process with rate λ = 5. We consider a compact state set X =
[−1, 3]× [−4, 4] and regions of interest X0 = [0, 1]× [−1, 1], X1 = [−1,−0.2]× [−4,−2.5],
X2 = [1, 3]× [2, 4], and X3 = X \(X0∪X1∪X2). The set of atomic propositions is given by
Π = {p0, p1, p2, p3} with labeling function L(xj) = pj for all xj ∈ Xj, j ∈ {0, 1, 2, 3}. The
objective here is to compute a control policy that provides a lower bound on the probability
that the trajectories of the system satisfy the specification given by the accepting language
of the DFA A given in Figure 4.1 over finite time-horizon [0, T = 10). Language of A
entails that if we start in X0 then the system will always stay away from X1 or X2. The
corresponding DFA Ac accepting complement of L(A) is shown in Figure 4.1. Following
Subsection 4.4.1, we only need to compute a control barrier function corresponding to
triplet (q0, q1, q2).

Now with an estimator gain in (4.2.1) asK = [6.1394, 7.8927]⊤, we use SOSTOOLS and
SeDuMi to compute a sum-of-squares polynomial control barrier function B(x, x̂) of order 4,
sum-of-square polynomials ψ0(x, x̂), ψ1(x, x̂), ψ(x, x̂) of order 4, with total 1125 coefficients
resulting in a computation time of about 15 minutes. The corresponding controller of order
2 is obtained as follows:

u(x̂) = 0.7321x̂1 − 1.8612x̂1x̂2 − 1.4356x̂2. (4.5.1)

The values of β0 = 0.099 and c = 1 × 10−5 are obtained using bisection method resulting
in P{ϖ(ξx0υ) |= A} ≥ 0.89 for all x0 ∈ L−1(p0), as discussed in Subsection 4.4.4. One
can see that only one controller is enough for enforcing the specification, thus we do not
need any switching mechanism. Figure 4.2 shows a few trajectories starting from different
initial conditions under the control policy (4.5.1).

4.6 Summary

In this chapter, we proposed a discretization-free approach for the formal controller
synthesis of partially-observable jump-diffusion systems. The proposed method computes
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Figure 4.2: A few closed loop trajectories starting from different initial conditions in X0

under controller (4.5.1).

a hybrid control policy together with a lower bound on the probability of satisfying complex
temporal logic specifications given by the accepting language of DFA A over a finite-time
horizon. This is achieved by constructing control barrier functions over an augmented
system consisting of both the system and the estimator. As a result, the probability bound
is computed without requiring any prior information of the estimation accuracy.



Chapter 5

Compositional Construction of Safety
Controllers for Networks of
Continuous-Space POMDPs

In this chapter, we propose a compositional framework for the synthesis of safety con-
trollers for networks of partially-observable discrete-time stochastic control systems (a.k.a.
continuous-space POMDPs). Given an estimator, we utilize a discretization-free approach
to synthesize controllers ensuring safety specifications over finite time horizons. The pro-
posed framework is based on a notion of so-called local control barrier functions computed
for subsystems in two different ways. In the first scheme, no prior knowledge of estimation
accuracy is needed. The second framework utilizes a probability bound on the estimation
accuracy using a notion of so-called stochastic simulation functions. In both proposed
schemes, we derive sufficient small-gain type conditions in order to compositionally con-
struct control barrier functions for interconnected POMDPs using local barrier functions
computed for subsystems. The constructed control barrier functions for the overall net-
works enable us to compute lower bounds on the probabilities that the interconnected
POMDPs avoid certain unsafe regions in finite time horizons. We demonstrate the ef-
fectiveness of our proposed approaches by applying them to an adaptive cruise control
problem.

5.1 Introduction

Large-scale stochastic systems have received significant attentions in the past few years
due to their broad applications in modeling many engineering systems such as power grids,
road traffic networks, and industrial control systems, to name a few. Guaranteeing safety
and reliability of such complex systems in a formal as well as time- and cost-effective way
has always been very challenging. In the previous chapters, we presented discretization-free
approaches based on control barrier functions in order to formally synthesize controllers
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satisfying complex logic specifications such as safety and those that can be expressed as
deterministic finite automata. Though promising, the computational complexity of the
proposed methods will prevent us from applying them to large-scale systems. One way to
address this issue is to utilize compositional approaches.

5.1.1 Related Literature

Discretization-based and discretization-free compositional techniques have both been
utilized for the formal synthesis of controllers for large-scale systems. By viewing large-
scale systems as the interconnections of reasonably-sized and properly interconnected sub-
systems, one only deals with the analysis and design of the subsystems instead of the
overall interconnected system.

Compositional abstraction-based approaches

Several compositional abstraction-based approaches were proposed to deal with the afore-
mentioned scalability issue, where compositional techniques have been used to construct
finite abstractions of interconnected systems based on abstractions of smaller subsystems.
See the results in [8, 9, 10, 66, 67, 68, 69, 70] for more details.

Compositional approaches based on control barrier functions

As we have discussed in chapters 3 and 4, control barrier functions serve as a powerful
tool to formally synthesize safety controllers for partially-observable systems. However,
when dealing with large scale systems, the monolithic view of the proposed approaches re-
sults in high computational complexity. To this end, compositional construction of control
barrier functions for non-stochastic systems is presented in [14]. Moreover, compositional
construction of control barrier functions for continuous and stochastic hybrid systems is
presented in [71, 72, 73, 74, 75].

Unfortunately, all the above-mentioned literatures on both discretization and discretization-
free techniques assume that full state information is available, which is not the case in many
practical applications. Taking this limitation into account, the results in [76, 77, 78] study
verification of partially-observable Markov decision processes with finite state and action
spaces (finite POMDPs) using barrier certificates. A controller synthesis in multi-agent
POMDPs via discrete-time barrier functions to enforce safety is proposed in [79] and [27].

5.1.2 Contribution

The contents of this chapter have been published in the IEEE Transactions on Control
of Network Systems [80]. It is a joint work with Prof. Abolfazl Lavaei and Prof. Majid
Zamani. The author of the thesis has established the results and written the draft. Abolfazl
Lavaei contributed to the initial discussions, some results, the revision of the draft, and
mentoring. Majid Zamani supervised the work.

In this chapter, we propose a compositional approach for the construction of control
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barrier functions for partially-observable discrete-time stochastic control systems (a.k.a.
continuous-space POMDPs). In particular, by considering a large-scale partially-observable
stochastic control system as an interconnection of lower-dimensional subsystems, we com-
pute so-called local control barrier functions for subsystems along with the corresponding
local controllers. We then utilize local control barrier functions of subsystems to composi-
tionally construct an overall control barrier function for the overall interconnected system.

5.2 Preliminaries and Problem Definition

We now formally define the main synthesis problem we are interested to solve in this
chapter.

Problem 27. Given an interconnection of partially observable stochastic control systems,
synthesize a decentralized safety controller ensuring that the trajectories of the intercon-
nected system will not enter a given unsafe region over a finite time horizon with some
lower bound on the probability of satisfaction.

Finding a solution to Problem 27 (if existing) is difficult in general. In this chapter,
we provide a computational approach which is sound but not complete in solving the
synthesis problem. This means if our proposed method fails to find a controller, then a
controller satisfying the safety specification may or may not exist. Here, we develop a
compositional controller synthesis scheme for networks of partially-observable stochastic
control systems based on barrier functions. By requiring some small-gain type conditions,
we compositionally construct a control barrier function for the interconnected system based
on local barrier functions of subsystems.

We propose two approaches, based on the results in Chapter 3 and Chapter 4, for
the construction of control barrier functions. In the first one, local control barrier func-
tions are defined over augmented systems consisting of subsystems and their estimators.
This formulation makes it possible to search for local control barrier functions, and the
overall one, without requiring explicitly the accuracies of the estimators. In the second
framework, local control barrier functions are constructed using the estimators’ dynamics
(without augmenting them with the subsystems’ dynamics) where we utilize a notion of
so-called stochastic simulation functions to compute a probabilistic bound on the estima-
tion accuracy. We propose a sum-of-squares (SOS) optimization approach to search for
local control barrier functions in both approaches, and accordingly, to compute the cor-
responding controllers. In order to illustrate the effectiveness of our proposed results, we
apply both approaches to an adaptive cruise control problem.

For the sake of controller synthesis using control barrier functions which are explained
later in detail, we raise the following assumption on the existence of an estimator that
estimates the state of the PO-dt-SCS in (2.3.5).

Assumption 4. Consider a PO-dt-SCS ΣS = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2). States of

ΣS in (2.3.5) can be estimated by a proper estimator Σ̂S which is characterized by the tuple
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Σ̂S = (X,U,W, f̂ , Y1, Y2, h1) and represented in the following form:

Σ̂S :

{
x̂(k + 1) = f̂(x̂(k), υ(k), ŵ(k), y2(k)),

ŷ1(k) = h1(x̂(k)),
(5.2.1)

where υ and y2 are external input and output signals of ΣS and ŵ is the internal input
signal coming from other estimators. We explain later how ŵ is being fed by the estimators
of other neighbouring subsystems.

There exist numerous results in the relevant literature for the design of the estimator
in (5.2.1) for different classes of stochastic systems (cf. [81, 82, 83, 84]).

In the next section, we introduce notions of local control barrier functions (LCBF) and
control barrier functions (CBF) for respectively POMDPs (with both internal and external
inputs) and interconnected POMDPs (without internal inputs and outputs).

5.3 (Local) Control Barrier Functions

First, we define (local) control barrier functions ((L)CBF) over an augmented system
consisting of the stochastic (sub)system’s and its estimator’s dynamics. This formulation
enables one to search for (local) control barrier functions with no prior knowledge of the
estimation accuracy. Second, we formulate (local) control barrier functions over the esti-
mator’s dynamics (without augmenting them with the subsystem’s dynamics) by utilizing
a given probability bound on the estimation accuracy computed via a notion of so-called
stochastic simulation functions.

5.3.1 Notions of (L)CBF without considering the estimation ac-
curacy

Here, we first define the augmented process
[
x(k); x̂(k)

]
, where x(k) and x̂(k) are

the solution processes of subsystems ΣS in (2.3.5) and their estimators Σ̂S in (5.2.1),

respectively. The corresponding augmented stochastic subsystem Σ̃S can be defined as:

Σ̃S :

[
x(k + 1)
x̂(k + 1)

]
=

[
f(x(k), υ(k), w(k), ς1(k))

f̂(x̂(k), υ(k), ŵ(k), y2(k))

]
. (5.3.1)

Now, the local control barrier function is defined for system Σ̃S in (5.3.1).

Remark 28. The use of the augmented system Σ̃S will allow us to provide one of the main
results of the chapter without requiring explicitly any prior knowledge of the probabilistic
distance between the actual states and their estimations. This will provide flexibility in
designing estimators by means of any existing method.

We now formally define local control barrier functions constructed over the augmented
system Σ̃S.
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Definition 29. Consider a POMDP ΣS in (2.3.5), its estimator Σ̂S in (5.2.1), and the

resulting augmented system Σ̃S in (5.3.1). Let X0, X1 ⊆ X represent some initial and
unsafe regions, respectively. A function B : X ×X → R≥0 is called a local control barrier

function (LCBF) for Σ̃S if there exist constants c̄, β̄0 ∈ R≥0 and β̄1 ∈ R>0, such that

• ∀(x, x̂) ∈ X ×X,

B(x, x̂) ≥ α(∥
[
h1(x)
h1(x̂)

]
∥2

), (5.3.2)

• ∀(x, x̂) ∈ X0 ×X0,
B(x, x̂) ≤ β̄0, (5.3.3)

• ∀(x, x̂) ∈ X1 ×X,
B(x, x̂) ≥ β̄1, (5.3.4)

• ∀x̂(k) ∈ X, ∀ŵ(k) ∈ W , ∃υ(k) ∈ U , such that ∀x(k) ∈ X, ∀w(k) ∈ W ,

E
[
B
(
f(x(k), υ(k), w(k), ς1(k)), f̂(x̂(k), υ(k), ŵ(k), y2(k))

) ∣∣x(k), x̂(k), υ(k), w(k), ŵ(k)]
≤ max

{
κ̄B(x(k), x̂(k)), ρ(∥

[
w(k)
ŵ(k)

]
∥2

), c̄
}
,

(5.3.5)
for some κ̄ ∈ K∞, with κ̄ < Id, α ∈ K∞, and ρ ∈ K∞ ∪ {0}.

Definition 29 can also be stated for interconnected systems without internal inputs and
outputs by eliminating all the terms related to the internal input w, its estimation ŵ,
internal output h1(x), and its estimation h1(x̂) as defined below.

Definition 30. Consider an (interconnected) POMDP ΣS = (X,U, ς1, f, Y, h, ς2), its es-

timator Σ̂S also without internal inputs and outputs, and the augmented system Σ̃S =
[ΣS; Σ̂S]. Let X0, X1 ⊆ X, respectively, represent initial and unsafe regions. A function

B : X×X → R≥0 is called a control barrier function (CBF) for Σ̃S if there exist constants
c, β0 ∈ R≥0 and β1 ∈ R>0 such that β0 < β1, and

• ∀(x, x̂) ∈ X0 ×X0,
B(x, x̂) ≤ β0, (5.3.6)

• ∀(x, x̂) ∈ X1 ×X,
B(x, x̂) ≥ β1, (5.3.7)

• and ∀x̂(k) ∈ X, ∃υ(k) ∈ U , such that ∀x(k) ∈ X,

E
[
B
(
f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k))

) ∣∣x(k), x̂(k), υ(k)]
≤ max

{
κB(x(k), x̂(k)), c

}
,

(5.3.8)

for some κ ∈ K∞, with κ < Id.
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Remark 31. Note that the compositionality conditions in this chapter are based on so-
called max-type small-gain approach. Thus, the upper bound in (5.3.8) is in the max form
and the overall CBF is the maximum of LCBF of subsystems under some scaling (this is
explained further in Section 5.5).

Remark 32. Note that we need the condition β0 < β1 ( i.e., X0 ∩ X1 = ∅) in order to
provide a meaningful probability in Theorem 33 later. This requirement is only for the
interconnected system and not for subsystems. In particular, LCBFs are mainly utilized
for the compositional construction of CBFs over interconnected systems and are not directly
employed for ensuring the probability of safety satisfaction. The above definition associates
a controller u : X → U to a CBF, where X here is the state set of the estimator Σ̂S.
Definition 30 gives such a controller according to the existential quantifier over the input
for any estimator’s state x̂ ∈ X.

The next theorem shows the usefulness of having a CBF to quantify an upper bound
on the exit probability (i.e., the probability that the solution process of the interconnected
system reaches the unsafe region in a finite time horizon) of POMDP (without internal
inputs and outputs).

Theorem 33. Let ΣS = (X,U, ς1, f, Y, h, ς2) be a POMDP (without internal inputs and

outputs) and Σ̂S be its corresponding estimator. Suppose B is a CBF according to Definition
30 with a controller u : X → U . Then, the probability that the solution process of ΣS starts
from any initial states x(0) = x0 ∈ X0 and reaches X1 under the controller u within a time
horizon [0, Td] is formally upper bounded as

P
[
xx0υ(k) ∈ X1 for some k ∈ [0, Td]

∣∣ x0, υ] ≤ δ, (5.3.9)

where,

δ :=


1− (1− β0

β1
)(1− c

β1
)Td , if β1 ≥ c

1−κ
,

β0

β1
κTd + ( c

(1−κ)β1
)(1− κTd), if β1 <

c
1−κ

.

(5.3.10)

Proof. According to condition (5.3.7), X1 ×X ⊆ {(x, x̂) ∈ X ×X | B(x, x̂) ≥ β1}. Then
we have

P
[
xx0υ(k) ∈ X1 ∧ x̂x̂0υ(k) ∈ X for some k ∈ [0, Td]

∣∣ x0, x̂0, υ]
≤ P

[
sup

0≤k≤Td

B(xx0υ(k), x̂x̂0υ(k)) ≥ β1
∣∣ x0, x̂0, υ] ≤ δ. (5.3.11)

The proposed bounds in (5.3.9) follow directly by applying [39, Theorem 3, Chapter III] to
the above inequality and employing conditions (5.3.8) and (5.3.6), respectively. Inequality
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(5.3.11) is obtained by utilizing the result of [33, Theorem 1]. Now we get

P
[
xx0υ(k) ∈ X1 ∧ x̂x̂0υ(k) ∈ X for some k ∈ [0, Td]

∣∣ x0, x̂0, υ]
≤ P

[
xx0υ(k) ∈ X1 for some k ∈ [0, Td] | x0, υ

]
+ P

[
x̂x̂0υ(k) ∈ X for some k ∈ [0, Td]

∣∣ x̂0, υ]
− P

[
xx0υ(k)∈X1∨x̂x̂0υ(k)∈X for some k∈ [0, Td]

∣∣ x0, x̂0, υ].
Since, the second and last terms trivially hold with probability 1, one has

P
[
xx0υ(k) ∈ X1 ∧ x̂x̂0υ(k) ∈ X for some k ∈ [0, Td]

∣∣ x0, x̂0, υ]
≤ P

[
xx0υ(k) ∈ X1 for some k ∈ [0, Td]

∣∣ x0, υ].
Now, since the right term of the conjunction (i.e., ∧) holds for all time, the inequality
above becomes an equality and one gets P

[
xx0υ(k) ∈ X1 for some k ∈ [0, Td]

∣∣ x0, υ] ≤ δ
which concludes the proof.

Remark 34. Utilizing the augmented system Σ̃S as in (5.3.1) provides us with the results
in Theorem 33 without requiring the estimation accuracy explicitly. This allows more
flexibility in designing the estimator and potentially results in tighter upper bounds.

In the next subsection, we formulate control barrier functions only over the estimators’
dynamics by utilizing a probability bound on the estimation accuracy.

5.3.2 Notions of (L)CBF by considering the estimation accuracy

Given an estimator with a probabilistic guarantee on the accuracy of the estimation,
we propose an approach to construct a CBF defined only over the states of the estimator
Σ̂S. For a given time horizon Td, we assume the probabilistic bound on the accuracy of
the estimator is given by [31]:

∀ϵ > 0,∃θ ∈ (0, 1], such that

P
[

sup
0≤k≤Td

∥xx0υ(k)− x̂x̂0υ(k)∥ < ϵ
∣∣x0, x̂0, υ] ≥ 1− θ,

(5.3.12)

for any x0, x̂0 ∈ X and any υ ∈ U . In order to quantify the distance (a.k.a. error)
between a system’s state and its estimation, we employ notions of so-called stochastic
(pseudo)-simulation functions. To do so, we first introduce stochastic pseudo-simulation
functions (SPSF) for POMDPs with both internal and external inputs. We then define
stochastic simulation functions (SSF) for interconnected POMDPs without internal inputs
and outputs.

Definition 35. Consider a POMDP ΣS in (2.3.5) and its corresponding estimator Σ̂S in
(5.2.1). A function ϕ : X × X → R≥0 is called a stochastic pseudo-simulation function

(SPSF) from Σ̂S to ΣS if
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1. ∀x ∈ X, ∀x̂ ∈ X,
ε(∥x− x̂∥) ≤ ϕ(x, x̂),

2. ∀x̂(k) ∈ X, ∀ŵ(k) ∈ W,∀υ(k) ∈ U , ∀x(k) ∈ X, and ∀w(k) ∈ W ,

E
[
ϕ
(
f(x(k), υ(k), w(k), ς1(k)),f̂(x̂(k), υ(k), ŵ(k), y2(k))

) ∣∣x(k), x̂(k), υ(k), w(k), ŵ(k)]
≤ max

{
c̄2ϕ(x(k), x̂(k)), ϱ(∥w(k)− ŵ(k)∥), c̄1

}
,

for some c̄2 ∈ K∞, with c̄2 < Id, ε ∈ K∞, ϱ ∈ K∞ ∪ {0}, and c̄1 ∈ R≥0.

Definition 35 can also be stated for POMDPs without internal inputs and outputs by
eliminating all the terms related to the internal input w and its estimation ŵ as defined
below.

Definition 36. Consider an (interconnected) POMDP ΣS = (X,U, ς1, f, Y, h, ς2) and its

estimator Σ̂S. A function ϕ : X × X → R≥0 is called a stochastic simulation function

(SSF) from Σ̂S to ΣS if

1. ∀x ∈ X, ∀x̂ ∈ X,
ε(∥x− x̂∥) ≤ ϕ(x, x̂),

2. ∀x̂(k) ∈ X, ∀υ(k) ∈ U , and ∀x(k) ∈ X,

E
[
ϕ
(
f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k))

) ∣∣x(k), x̂(k), υ(k)]
≤ max

{
c2ϕ(x(k), x̂(k)), c1

}
,

for some c2 ∈ K∞, with c2 < Id, ε ∈ K∞, and c1 ∈ R≥0.

The next theorem shows how an SSF can be employed to obtain the probability bound
on the estimation accuracy.

Theorem 37. Consider a POMDP ΣS in (2.3.6), its estimator Σ̂S in (5.2.1) (without

internal inputs and outputs), and ϵ > 0. Suppose ϕ is an SSF from Σ̂S to ΣS. For any

υ ∈ U , and for any random variables x0 and x̂0 as initial states of ΣS and Σ̂S, respectively,
the following inequality holds:

P
[

sup
0≤k≤Td

∥xx0υ(k)− x̂x̂0υ(k)∥ ≥ ϵ
∣∣x0, x̂0, υ] ≤ θ,

where,

θ :=


1− (1− ϕ(x0,x̂0)

ε(ϵ)
)(1− c1

ε(ϵ)
)Td , if ε(ϵ) ≥ c1

1−c2
,

(
ϕ(x0,x̂0)

ε(ϵ)
)cTd

2 + ( c1
(1−c2)ε(ϵ)

)(1− cTd
2 ), if ε(ϵ) < c1

1−c2
.

(5.3.13)
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Proof. Since ϕ is a stochastic pseudo-simulation function from Σ̂S to ΣS, one has

P
[

sup
0≤k≤Td

∥xx0υ(k)− x̂x̂0υ(k)∥ ≥ ϵ
∣∣x0, x̂0, υ]

= P
[

sup
0≤k≤Td

ε(∥xx0υ(k)− x̂x̂0υ(k)∥) ≥ ε(ϵ)
∣∣x0, x̂0, υ]

≤ P
[

sup
0≤k≤Td

ϕ(xx0υ(k), x̂x̂0υ(k)) ≥ ε(ϵ)
∣∣x0, x̂0, υ] ≤ θ.

The equality holds due to the fact that αϕ is a K∞ function. The second inequality holds
based on the first condition of Definition 36, and the last inequality follows from the result
in [39, Theorem 1].

We now propose our second formulation of control barrier functions defined only over
the estimators’ dynamics as the following.

Definition 38. Consider a POMDP ΣS as in (2.3.5), its estimator Σ̂S, and ϵ > 0. Let
X0, X1 ⊆ X denote respectively initial and unsafe sets. Let us define Xϵ

1 := {x̂ ∈ X | ∃x ∈
X1, ∥x̂−x∥ ≤ ϵ} ( i.e., unsafe set for Σ̂S). A function B : X → R≥0 is called a local control

barrier function (LCBF) for Σ̂S if there exist constants c̄, β̄0 ∈ R≥0 and β̄1 ∈ R>0, such
that

• ∀x ∈ X,
B(x) ≥ α(∥h1(x)∥

2

), (5.3.14)

• ∀x ∈ X0,
B(x) ≤ β̄0, (5.3.15)

• ∀x ∈ Xϵ
1,

B(x) ≥ β̄1, (5.3.16)

• and ∀x̂(k) ∈ X, ∀ŵ(k) ∈ W , ∃υ(k) ∈ U , such that ∀x(k) ∈ X,

E
[
B
(
f̂(x̂(k), υ(k), ŵ(k), h2(x(k), ς2(k)))

)
| x̂(k), υ(k), ŵ(k), x(k)

]
≤max

{
κ̄B(x̂(k)), ρ(∥ŵ(k)∥2

),κ(∥x(k)− x̂(k)∥2

),c̄
}
,

(5.3.17)

for some κ̄ ∈ K∞, with κ̄ < Id, α,κ ∈ K∞, and ρ ∈ K∞ ∪ {0}.

We now modify Definition 38 and present it for the interconnected POMDPs as the
following.

Definition 39. Consider an (interconnected) POMDP ΣS = (X,U, ς1, f, Y, h, ς2), its esti-

mator Σ̂S without internal inputs and outputs and ϵ > 0. Let X0, X1 ⊆ X denote respec-
tively initial and unsafe sets. Let us define Xϵ

1 := {x̂ ∈ X | ∃x ∈ X1, ∥x̂ − x∥ ≤ ϵ}. A

function B : X → R≥0 is called a control barrier function for Σ̂S if there exist constants
c, β0 ∈ R≥0 and β1 ∈ R>0 such that β0 < β1 and
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• ∀x ∈ X0,

B(x) ≤ β0,

• ∀x ∈ Xϵ
1,

B(x) ≥ β1,

• and ∀x̂(k)∈X, ∃υ(k)∈U , such that ∀x(k) ∈X,

E
[
B
(
f̂(x̂(k), υ(k), h(x(k), ς2(k)))

)
| x̂(k), υ(k), x(k)

]
≤ max

{
κB(x̂(k)),κ(∥x(k)− x̂(k)∥2

),c
}
,

for some κ ∈ K∞, with κ < Id, and κ ∈ K∞.

In the next Theorem, we provide an upper bound on the exit probability of POMDP
using the estimation accuracy.

Theorem 40. Let ΣS = (X,U, ς1, f, Y, h, ς2) be a POMDP without internal inputs and

outputs, Σ̂S be its corresponding estimator with an accuracy ϵ and a probability bound on
the estimation accuracy θ, as in Theorem 37. Suppose B is a CBF for Σ̂S as in Definition
39 with a controller u : X → U . Then, the probability that the solution process of ΣS starts
from any initial state x(0) = x0 ∈ X0 and not reaches X1 under the controller u within a
time horizon [0, Td] is lower bounded as

P
[
xx0υ(k) ̸∈ X1 for all k ∈ [0, Td]

∣∣ x0, υ]≥ (1− δ)(1− θ), (5.3.18)

where θ is computed as in (5.3.13), and δ is computed as in (5.3.10) with c in (5.3.10)
being replaced with a constant ĉ ≥ 0 satisfying ĉ ≥ κ(∥ϵ∥2

) + c.

Proof. Given x0, x̂0 ∈ X0, let us define the events A1 :=
[
xx0υ(k) ∈ X1 for some k ∈

[0, Td]
]
, A2 :=

[
x̂x̂0υ(k) ∈ Xϵ

1 for some k ∈ [0, Td]
]
and A3 :=

[
sup0≤k≤Td

∥xx0υ(k) −
x̂x̂0υ(k)∥ ≤ ϵ

]
. Then, we have

P
[
Ā1

] (∗)
= P

[
Ā2 ∩ A3

]
= P

[
Ā2 |A3

]
P
[
A3

] (∗∗)
≥ (1− δ)(1− θ),

where Āi is the complement of event Ai for i ∈ {1, 2}, and P[Ā2 | A3] is conditional
probability. The first equality (∗) comes from the definition of Xϵ

1 being an ϵ−inflated
version of X1. Notice that in the last inequality (∗∗), the term P[Ā2 | A3] is lower bounded
by (1− δ), since if A3 holds, κ(∥x(k)− x̂(k)∥2

) in Definition 39 will be upper bounded by
κ(∥ϵ∥2

). Furthermore, the term P[A3] is lower bounded by (1 − θ) by Theorem 37. This
concludes the proof.
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Remark 41. Note that the first proposed approach does not require a prior knowledge of
the estimation accuracy, and accordingly, it gives the user more flexibility on the estimator
design. Moreover, in the first approach the computation of the exit probability can be
done in one shot without utilizing SSFs and, hence, be less conservative. However, the
computational complexity in the first approach is more than the second one since the control
barrier function should be constructed over the augmented system.

In the next sections, we analyze networks of POMDP and discuss under which condi-
tions one can construct a CBF of an interconnected system based on LCBF of its subsys-
tems.

5.4 Interconnected POMDP

We consider a collection of partially-observable stochastic control subsystems and their
estimators as

ΣSi
= (Xi, Ui,Wi, ς1i, fi, Y1i , Y2i , h1i , h2i , ς2i),

Σ̂Si
= (Xi, Ui,Wi, f̂i, Y1i , Y2i , h1i), i ∈ {1, . . . , N},

where internal inputs and outputs are partitioned as

wi =
[
wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN

]
,

y1i =
[
y1i1 ; . . . y1i(i−1)

; y1i(i+1)
; . . . ; y1iN

]
,

(5.4.1)

and their internal output spaces and functions are of the form

Y1i =
N∏

j=1,j ̸=i

Y1ij ,

h1i(xi) = [h1i1(xi); . . . ;h1i(i−1)
(xi);h1i(i+1)

(xi); . . . h1iN (xi)].

(5.4.2)

Furthermore, the internal input and output of the estimators are also partitioned similar
to (5.4.1) and (5.4.2).

Outputs y1ij with i ̸= j are internal outputs which are employed for the sake of in-
terconnections. If there is a connection from ΣSj

to ΣSi
, we assume that wij is equal to

y1ji . Otherwise, the connecting output function is identically zero, i.e., h1ji ≡ 0. The

same interconnections hold for the estimators. If there is a connection from Σ̂Sj
to Σ̂Si

, we
assume that ŵij is equal to ŷ1ji . Otherwise, the connecting output function is identically
zero, i.e., h1ji ≡ 0. Now we define interconnected partially-observable stochastic control
systems.

Definition 42. Consider N ∈ N≥1 POMDPs ΣSi
= (Xi, Ui,Wi, ς1i , fi, Y1i , Y2i , h1i , h2i , ς2i),

i ∈ {1, . . . , N}, with the input-output configuration as in (5.4.1)-(5.4.2). The interconnec-
tion of ΣSi

, for any i ∈ {1, . . . N}, is the interconnected POMDP ΣS = (X,U, ς1, f, Y, h, ς2),
denoted by I(ΣS1 , . . . ,ΣSN

), such that X :=
∏N

i=1Xi, U :=
∏N

i=1 Ui, ς1 =
[
ς11 ; · · · ; ς1N

]
,
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f :=
∏N

i=1 fi, Y :=
∏N

i=1 Yi, h :=
∏N

i=1 hi, and ς2 =
[
ς21 ; · · · ; ς2N

]
, subjected to the following

constraint:
∀i, j ∈ {1, . . . , N}, i ̸= j : wji = y1ij , Y1ij ⊆ Wji.

In a similar way, we define the interconnection of estimators Σ̂S as the following.

Definition 43. Consider N ∈ N≥1 estimators Σ̂Si
= (Xi, Ui,Wi, f̂i, Y1i , Y2i , h1i), i ∈

{1, . . . , N}, with the input-output configuration similar to (5.4.1)-(5.4.2). The intercon-

nection of Σ̂Si
, for any i ∈ {1, . . . N}, is the interconnected estimator Σ̂S = (X,U, f̂ , Y ),

denoted by I(Σ̂S1 , . . . , Σ̂SN
), such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui, f̂ :=

∏N
i=1 f̂i, and

Y :=
∏N

i=1 Yi, subject to the following constraint:

∀i, j ∈ {1, . . . , N}, i ̸= j : ŵji = ŷ1ij , Y1ij ⊆ Wji.

An example of the interconnection of two POMDPs ΣS1 and ΣS2 is illustrated in Fig-
ure 5.1.

I(ΣS1 ,ΣSS2
)

ΣS1

ΣS2

y21υ1

y22υ2

y112

w21 y121

w12

Figure 5.1: Interconnection of two POMDPs ΣS1 and ΣS2 .

5.5 Compositional Construction of CBF

In this section, we analyze networks of POMDP and provide a compositional approach
to construct a CBF of an interconnected POMDP based on LCBF of its subsystems. For
i ∈ {1, . . . , N}, consider the PO-dt-SCS ΣSi

in (2.3.5), its corresponding estimator Σ̂Si
in

(5.2.1), and the augmented system Σ̃S in (5.3.1). Assume there exists a LCBF Bi as defined
in Definition 29 or 38 with functions αi ∈ K∞, ρi ∈ K∞ ∪ {0} and constants β̄1i , c̄i ∈ R≥0,
β̄0i ∈ R>0, and 0 < κ̄i < 1. Now we raise the following small-gain assumption that is
essential for the compositionality results of this section.

Assumption 5. Assume that K∞ functions κ̄ij defined as

κ̄ij :=

{
κ̄i, if i = j,

ρi ◦ α−1
j , if i ̸= j,

∀i, j ∈ {1, . . . , N},

satisfy
κ̄i1i2 ◦ κ̄i2i3 ◦ · · · ◦ κ̄ir−1ir ◦ κ̄iri1 < Id, (5.5.1)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.
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Remark 44. The small-gain condition (5.5.1) implicitly states that in every strongly con-
nected component of the graph representing the topology of the interconnected system, the
effect of strong interconnections can be compensated by weak ones as long as their compo-
sition is less than identity.

Remark 45. Note that the small-gain condition (5.5.1) is a standard one in studying
the stability of large-scale interconnected systems via ISS Lyapunov functions [85, 86].
This condition can be readily satisfied if each κ̄ij is less than identity (κ̄ij < Id,∀i, j ∈
{1, . . . , N}). Since each κ̄i is less than identity (0 < κ̄i < 1,∀i ∈ {1, . . . , N}) by Definition
29 or 38, one only needs to satisfy ρi ◦ α−1

j < Id,∀i, j ∈ {1, . . . , N}, i ̸= j.

The small-gain condition (5.5.1) implies the existence of K∞ functions σi > 0 [87,
Theorem 5.5], satisfying

max
i,j

{
σ−1
i ◦ κ̄ij ◦ σj

}
< Id, i, j ∈ {1, . . . , N}. (5.5.2)

In the next theorem, we show that if Assumption 5 holds and maxi σ
−1
i is concave (in order

to employ Jensen’s inequality), then one can compute a CBF for the interconnected system
ΣS as in Definition 30 in a compositional fashion.

Theorem 46. Consider the interconnected POMDP ΣS = I(ΣSi
, . . . ,ΣSN

) induced by

N ∈ N≥1 subsystems ΣSi
. Suppose that for each ΣSi

there exists an estimator Σ̂Si
together

with a corresponding LCBF Bi as defined in Definition 29 with initial and unsafe sets X0i

and X1i, respectively. If Assumption 5 holds and maxi σ
−1
i for σi as in (5.5.2) is concave

and

max
i

{σ−1
i (β̄0i)} < max

i
{σ−1

i (β̄1i)}, (5.5.3)

then function B(x, x̂) defined as

B(x, x̂) := max
i

{
σ−1
i (Bi(xi, x̂i))

}
, (5.5.4)

is a CBF for the augmented system Σ̃S = [ΣS ; Σ̂S] with initial and unsafe sets X0 =∏N
i=1X0i, X1 =

∏N
i=1X1i, respectively.

Proof. We first show that conditions (5.3.6) and (5.3.7) in Definition 30 hold. For any
(x, x̂) ∈ X0 ×X0, with X0 =

∏N
i=1X0i , and from (5.3.3), we have

B(x, x̂) = max
i

{
σ−1
i (Bi(xi, x̂i))

}
≤ max

i

{
σ−1
i (β̄0i)

}
= β0,
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and simply for any (x, x̂) ∈ X1 ×X, with X1 =
∏N

i=1X1i , X =
∏N

i=1Xi and from (5.3.4),
we have

B(x, x̂) = max
i

{
σ−1
i (Bi(xi, x̂i))

}
≥ max

i

{
σ−1
i (β̄1i)

}
= β1,

satisfying conditions (5.3.3) and (5.3.4) with β0 = maxi
{
σ−1
i (β̄0i)

}
and β1 = maxi

{
σ−1
i (β̄1i)

}
.

Moreover, β1 > β0 according to (5.5.3). Now we show that condition (5.3.8) holds, as well.
Let κ(s) = maxi,j{σ−1

j ◦ κ̄ij ◦ σj(s)}. It follows from (5.5.2) that κ < Id. Since maxiσ
−1
i

is concave, one can readily acquire the chain of inequalities in (5.5.5) using Jensen’s in-

equality. Hence, B is a CBF for the augmented system Σ̃S = [ΣS; Σ̂S], which completes
the proof.

Remark 47. Note that inequality (5.5.3) in general is not very restrictive. Indeed, func-
tions σi in (5.5.2) play the role of rescaling LCBFs of the individual subsystems while
normalizing the effect of internal gains of other subsystems (see [86] for a similar discus-
sion in the context of Lyapunov stability). Due to this scaling, one can expect that such an
inequality holds in many applications.

Remark 48. The K∞ functions σi, i ∈ {1, . . . , N}, can always be chosen as identity pro-
vided that κ̄ij < Id,∀i, j ∈ {1, . . . , N}, for functions κ̄ij defined in Assumption 5.

Similarly, we propose the next theorem to compute a CBF for an interconnected system
ΣS as in Definition 39 in a compositional way based on LCBFs of subsystems.

Theorem 49. Consider an interconnected POMDP ΣS = I(ΣSi
, . . . ,ΣSN

) induced by

N ∈ N≥1 subsystems ΣSi
. Suppose that for each ΣSi

there exists an estimator Σ̂Si
together

with a corresponding LCBF Bi as defined in Definition 38 with initial and unsafe sets X0i

and Xϵ
1i
, respectively. If Assumption 5 holds and maxi σ

−1
i for σi as in (5.5.2) is concave

and
max

i
{σ−1

i (β̄0i)} < max
i

{σ−1
i (β̄1i)}, (5.5.6)

then function B(x) defined as

B(x) := max
i

{
σ−1
i (Bi(xi))

}
, (5.5.7)

is a CBF for the estimator Σ̂S = I(Σ̂Si
, . . . , Σ̂SN

) with initial and unsafe sets X0 =∏N
i=1X0i, X

ϵ
1 =

∏N
i=1X

ϵ
1i
, respectively.

The proof of Theorem 49 follows the same reasoning as that of Theorem 46 and is
therefore omitted.

Remark 50. In the case of sum-of-squares optimization approach, the computational com-
plexity of finding polynomial-type local barrier functions depends on both the degree of poly-
nomials and the number of state variables. One can easily see that for fixed degrees of
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E
[
B(f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k)))

∣∣x(k), x̂(k), υ(k)]
= E

[
max

i

{
σ−1
i (Bi(fi(xi(k), υi(k), wi(k), ς1i(k)), f̂i(x̂i(k), υi(k), ŵi(k), y2i(k))))

}
∣∣x(k), x̂(k), υ(k), w(k), ŵ(k)]
≤ max

i

{
σ−1
i (E

[
Bi(fi(xi(k), υi(k), wi(k), ς1i(k)), f̂i(x̂i(k), υi(k), ŵi(k), y2i(k)))∣∣x(k), x̂(k), υ(k), w(k), ŵ(k)])}

= max
i

{
σ−1
i (E

[
Bi(fi(xi(k), υi(k), wi(k), ς1i(k)), f̂i(x̂i(k), υi(k), ŵi(k), y2i(k)))∣∣xi(k), x̂i(k), υi(k), wi(k), ŵi(k)

]
)
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(∥

[
wi(k)
ŵi(k)

]
∥2

), c̄i})
}

= max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j ̸=i
∥
[
wij(k)
ŵij(k)

]
∥2

), c̄i})
}

= max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j ̸=i
∥
[
y1ji(k)
ŷ1ji(k)

]
∥2

), c̄i})
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j ̸=i
∥
[
h1j(xj(k))
h1j(x̂j(k))

]
∥2

), c̄i})
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j ̸=i
{α−1

j (Bj(xj(k), x̂j(k)))}), c̄i})
}

= max
i,j

{
σ−1
i (max{κ̄ij(Bi(xi(k), x̂i(k))), c̄i})

}
= max

i,j

{
σ−1
i (max{κ̄ij ◦ σj ◦ σ−1

j (Bj(xj(k), x̂j(k))), c̄i})
}

≤ max
i,j,l

{
σ−1
i (max{κ̄ij ◦ σj ◦ σ−1

l (Bl(xl(k), x̂l(k))), c̄i})
}

= max
i,j

{
σ−1
i (max{κ̄ij ◦ σj(B(x(k), x̂(k))), c̄i})

}
= max{κ(B(x(k), x̂(k))), c

}
. (5.5.5)

polynomials, the required computations grow polynomially with respect to the dimension of
the (augmented) subsystems [45]. Furthermore, the computational complexity of finding a
CBF for the interconnected system is linear with respect to the number of subsystems. In
the counter example guided inductive synthesis (CEGIS) approach proposed in [14, Section
5.1], due to its iterative nature and lack of guarantee on the termination, it is difficult
to provide any analysis on the computational complexity with respect to the dimension of
subsystems. Evidently in both SOS and CEGIS approach, the computational complexity is
independent of the time horizon Td.
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Finally, we provide an approach to compositionally construct an SSF for an intercon-
nected POMDP ΣS based on SPSFs of its subsystems. Note that the constructed SSF is
one of the main ingredients used in Theorem 40. First, we raise the following small-gain
assumption.

Assumption 6. Assume that K∞ functions c̄2ij defined as

c̄2ij :=

{
c̄2i, if i = j,

ϱi ◦ ε−1
j , if i ̸= j,

∀i, j ∈ {1, . . . , N},

satisfy

c̄2i1i2 ◦ c̄2i2i3 ◦ · · · ◦ c̄2ir−1ir ◦ c̄2iri1 < Id, (5.5.8)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

The small-gain condition (5.5.8) implies the existence of K∞ functions ζi > 0 [87,
Theorem 5.5], satisfying

max
i,j

{
ζ−1
i ◦ c̄2ij ◦ ζj

}
< Id, i, j = {1, . . . , N}. (5.5.9)

In the next proposition, we show that if Assumption 6 holds and maxi ζ
−1
i is concave, then

we can compositionally construct an SSF for an interconnected system based on SPSFs of
its subsystems.

Proposition 51. Consider an interconnected POMDP ΣS = I(ΣSi
, . . . ,ΣSN

) induced by

N ∈ N≥1 subsystems ΣSi
. Suppose that for each ΣSi

there exists an estimator Σ̂Si
together

with a corresponding SPSF ϕi(xi, x̂i). If Assumption 6 holds and maxi ζ
−1
i for ζi as in

(5.5.9) is concave, then the function ϕ(x, x̂) defined as

ϕ(x, x̂) := max
i

{
ζ−1
i (ϕi(xi, x̂i))

}
,

is an SSF from Σ̂S = I(Σ̂Si
, . . . , Σ̂SN

) to ΣS = I(ΣSi
, . . . ,ΣSN

), as defined in Definition 36,
with

c2(s) = max
i,j

{
ζ−1
i ◦ c̄2ij ◦ ζj(s)

}
, i, j = {1, . . . , N},

c1 = max
i
ζ−1
i (c̄1i).

The proof of Proposition 51 follows the same reasoning as that of Theorem 46 and is
omitted here.
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5.6 Computation of LCBF

In this section, we provide a systematic approach to search for LCBFs and the corre-
sponding control policies for subsystems. The proposed approach is based on the sum-of-
squares (SOS) optimization problem [88], in which LCBF is restricted to be non-negative
which can be written as a sum of squares of different polynomials. To do so, we need to
raise the following assumption.

Assumption 7. For the POMDP ΣS = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2), the transition map
f : X × U ×W × Vς1 → X is a polynomial function of its arguments. Furthermore, the
internal output map h1 : X → Y1 and K∞ functions α and ρ are polynomial.

Under Assumption 7, one can reformulate conditions of Definition 29 and Definition
38 to an SOS optimization problem in order to search for a polynomial LCBF Bi(·, ·) and
Bi(·), and their corresponding control policies. In the following Lemmas, SOS formulations
are provided.

Lemma 52. Suppose Assumption 7 holds and sets X0, X1, X,W can be defined by vectors of
polynomial inequalities X0 = {x ∈ Rn | ga(x) ≥ 0}, X1 = {x ∈ Rn | gb(x) ≥ 0}, X = {x ∈
Rn | g̃(x) ≥ 0}, W = {w ∈ Rp | gw(w) ≥ 0}, and U = {υ(k) ∈ Rm | gc(υ(k)) ≥ 0}, where
the inequalities are defined element-wise. Suppose there exists a sum-of-square polynomial
B(x, x̂), constants β̄0, c̃ ∈ R≥0, β̄1 ∈ R>0, 0 < κ̃ < 1, functions α ∈ K∞, ρ̃ ∈ K∞ ∪ {0},
polynomials lυj(x̂, ŵ) corresponding to the jth input in υ(k) = (υ1(k), υ2(k), . . . , υm(k)) ∈
U ⊆ Rm, and vectors of sum-of-squares polynomials lz(x), l̂z(x̂) for z ∈ {0, 1, 2, 3}, and
lc(υ(k)),lw(w), l̂w(ŵ), of appropriate dimensions such that the following expressions are
sum-of-square polynomials:

B(x, x̂)−
[
l⊤0 (x) l̂

⊤
0 (x̂)

][g̃(x)
g̃(x̂)

]
−α(

[
h1(x)
h1(x̂)

]⊤[
h1(x)
h1(x̂)

]
), (5.6.1)

−B(x, x̂)−
[
l⊤1 (x) l̂⊤1 (x̂)

] [ga(x)
ga(x̂)

]
+ β̄1, (5.6.2)

B(x, x̂)−
[
l⊤2 (x) l̂⊤2 (x̂)

] [gb(x)
g̃(x̂)

]
+ β̄0, (5.6.3)

−E
[
B
(
f(x(k), υ(k), w(k), ς1(k)), f̂(x̂(k), υ(k), ŵ(k), y2(k))

)
,
∣∣x(k), x̂(k), υ(k), w(k), ŵ(k)]

+ κ̃B(x(k), x̂(k)) +ρ̃(

[
w(k)
ŵ(k)

]⊤ [
w(k)
ŵ(k)

]
2p

) + c̃−
m∑
j=1

(υj(k)−lυj(x̂(k), ŵ(k)))

−
[
l⊤3 (x(k)) l̂⊤3 (x̂(k)

] [g̃(x(k))
g̃(x̂(k))

]
−
[
l⊤w(w(k)) l̂⊤w(ŵ(k))

] [gw(w(k))
gw(ŵ(k))

]
−l⊤c (υ(k))gc(υ(k)),

(5.6.4)
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where p is the dimension of the internal inputs w and ŵ. Then B(x, x̂) satisfies condi-
tions (5.3.2)-(5.3.17) in Definition 29 and υ(k) = [lυ1(x̂(k), ŵ(k)); . . . ; lυm(x̂(k)ŵ(k))] is
the corresponding safety controller, with

κ̄ =Id − (Id − π1) ◦ (Id − κ̃),

ρ =(Id + π2) ◦ (Id − κ̃)−1 ◦ π−1
1 ◦ π3 ◦ ρ̃,

c̄=(Id+π
−1
2 )◦(Id−κ̃)−1◦π−1

1 ◦π3◦(π3−Id)
−1 ◦ (c̃),

where π1, π2, π3 being some arbitrarily chosen K∞ functions so that (Id − π1) ∈ K∞, and
(π3 − Id) ∈ K∞.

The proof follows the same argument as in [14, Lemma 5.9], and is therefore omitted.

Remark 53. Inequalities (5.3.2) and (5.3.5) consider infinity norms over
[
h1(x);h1(x̂)

]
and

[
w; ŵ

]
, respectively. Since such norms cannot be expressed as polynomials, we convert

infinity norms to Euclidean ones and that is the reason constant 2p appears as a denomi-
nator in (5.6.4).

Remark 54. Note that even if the functions mentioned in Assumption 7 are not polynomi-
als, one can still use the proposed results in the chapter by searching for LCBFs via CEGIS
(we refer interested readers to [14, Section 5.1] for more details on the CEGIS framework).

We now state another lemma for the computation of LCBF as in Definition 38.

Lemma 55. Suppose Assumption 7 holds and sets X0, X
ϵ
1, X,W, Y2 can be defined by vec-

tors of polynomial inequalities X0 = {x ∈ Rn | ga(x) ≥ 0}, Xϵ
1 = {x ∈ Rn | gϵb(x) ≥

0}, X = {x ∈ Rn | g̃(x) ≥ 0}, U = {υ(k) ∈ Rm | gc(υ(k)) ≥ 0}, and W = {w ∈
Rp | gw(w) ≥ 0}, where the inequalities are defined element-wise. Suppose there exists
a sum-of-square polynomial B(x), constants β̄0, c̃ ∈ R≥0, β̄1 ∈ R>0, 0 < κ̃ < 1, func-
tions α,κ ∈ K∞, ρ̃ ∈ K∞ ∪ {0}, polynomials lυj(x̂, ŵ) corresponding to the jth input in
υ(k) = (υ1(k), υ2(k), . . . , υm(k)) ∈ U ⊆ Rm, and vectors of sum-of-squares polynomials
lz(x) for z ∈ {0, 1, 2, 3}, l̂3(x̂), lc(υ(k)), and l̂w(ŵ) of appropriate dimensions such that the
following expressions are sum-of-square polynomials:

B(x)− l⊤0 (x)g̃(x)− α(h1(x)
⊤h1(x)), (5.6.5)

−B(x)− l⊤1 (x)ga(x) + β̄1, (5.6.6)

B(x)− l⊤2 (x)g
ϵ
b(x) + β̄0, (5.6.7)
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−E
[
B
(
f̂(x̂(k), υ(k), ŵ(k), h2(x(k), ς2(k)))

)
| x̂(k), υ(k), ŵ(k), x(k)

]
+ κ̃B(x̂(k))

+ ρ̃(
ŵ⊤(k)ŵ(k)

p
) +c̃+κ(

(x(k)− x̂(k))⊤(x(k)− x̂(k))

n
)

−
m∑
j=1

(υj(k)− lυj(x̂(k), ŵ(k)))− l⊤3 (x(k))g̃(x(k))− l̂⊤3 (x̂(k))g̃(x̂(k))

− l̂⊤w(ŵ(k))gw(ŵ(k)) −l⊤c (υ(k))gc(υ(k)), (5.6.8)

where p and n are the dimensions of the internal input w and state x, respectively. Then
B(x̂) satisfies conditions (5.3.14)-(5.3.17) in Definition 38 and

υ(k) = [lυ1(x̂(k), ŵ(k)); . . . ; lυm(x̂(k), ŵ(k))],

is the corresponding safety controller, where κ̄, ρ, c̄ can be acquired based on κ̃, ρ̃, c̃ similar
to Lemma 52.

Remark 56. In order to compute the sum-of-square polynomials B(x, x̂) and B(x) ful-
filling reformulated conditions (5.6.1)-(5.6.4), and (5.6.5)-(5.6.8), one can employ existing
software tools such as SOSTOOLS [63] together with a semidefinite programming solver
such as SeDuMi [64].

5.7 Case Study

In this section, we illustrate our proposed results by applying them to an adaptive
cruise control (ACC) system consisting of N vehicles in a platoon (see Figure 5.2). This
model is adapted from [89]. The evolution of states can be described by the interconnected
PO-dt-SCS

ΣS :

{
x(k + 1) = Āx(k) + B̄υ(k) + ς1(k),

y(k) = C̄x(k) + ς2(k),

where Ā is a block matrix with diagonal blocks A, and off-diagonal blocks Ai(i−1) = Aw, i ∈
{2, . . . , N}, where

A =

[
1 −1
0 1

]
, Aw =

[
0 τ
0 0

]
,

with τ = 0.01 being the interconnection degree, and all other off-diagonal blocks being zero
matrices of appropriate dimensions. Moreover, B̄ is a partitioned matrix with main diag-
onal blocks B = [0 ; 1], and all other off-diagonal blocks being zero matrices of appropriate
dimensions. The matrix C̄ is a partitioned matrix with main diagonal blocks C = [1 ; 0]⊤

and all other off-diagonal blocks being zero matrices of appropriate dimensions. More-
over, x(k) = [x1(k); . . . ;xN(k)], υ(k) = [υ1(k); . . . ; υN(k)], ς1(k) = [ς11(k); . . . ; ς1N (k)], and
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leader

d1i − 1

v0vi − 2

di

vi − 1vN − 1

1 0N idN

Figure 5.2: Platoon model for N = 1000 vehicles.

ς2(k) = [ς21(k); . . . ; ς2N (k)], where ς1(k), ς2(k) have standard normal distributions. Let us
consider each individual vehicle ΣSi

described as

ΣSi
:


xi(k + 1) = Axi(k) +Bυi(k) + Awwi(k) + ς1i(k),

y1i(k) = C1xi(k),

y2i(k) = C2xi(k) + ς2i(k),

where y1i(k) = y1i(i+1)
(k) = C1xi(k), i ∈ {1, . . . N}, (with C1 = [0 ; 1] and y1N(N+1)

=
0) and C2 = C. One can readily verify that ΣS = I(ΣSi

, . . . ,ΣSN
), where wi(k) =

[0;wi(i−1)(k)], i ∈ {1, . . . , N}, (with wi(i−1) = y1(i−1)i
= C1xi−1, w1,0 = 0). The state of

the i-th vehicle is defined as xi = [di; vi], for i ∈ {1, . . . , N}, where di denotes the relative
distance between the vehicle i and its proceeding vehicle i− 1 (the 0-th vehicle represents
the leader), vi is its velocity in the leader’s frame, and υi ∈ [−1, 1] is the bounded control
input. The overall control objective in ACC is for each vehicle to adjust its speed in order
to maintain a safe distance from the vehicle ahead [90]. For the system ΣSi

, we design a
proper estimator of the following form

Σ̂Si
:


x̂i(k + 1) = Ax̂i(k) +Bυi(k) + Awŵi(k)

+K(y2i(k)− C2x̂i(k)),

ŷ1i(k) = C1x̂i(k),

where K = [1.7;−0.72] is the estimator gain. We consider a network of N = 1000 vehicles
where the regions of interest for each vehicle are X ∈ [0, 3.5] × [−2, 3], X0 ∈ [1, 1.5] ×
[−0.4, 0.4], and X1 ∈ [0, 0.5] × [−2,−1.5] ∪ [3, 3.5] × [2.5, 3]. Now, for each vehicle we
compute LCBFs while compositionally synthesizing safety controllers for a bounded-time
horizon. We construct LCBFs using the two methods introduced in Section 5.3 and employ
the software SOSTOOLS to search for LCBFs as described in Section 5.6. According to
Section 5.3.1, we compute the LCBF Bi(xi, x̂i) of an order 4 and its corresponding controller
as the following:

υi(d̂i, v̂i, v̂i−1) = 0.06d̂i − 0.72v̂i − 0.01v̂i−1 − 0.08, (5.7.1)

for i ∈ {1, . . . , N}, with a computation time of about 9 minutes. Moreover, the corre-
sponding constants and functions in Definition 29 are quantified as αi(s) = 10−5s, s ∈
R≥0, β̄0i = 0.1, β̄1i = 2, κ̄i = 0.95, ρi(s) = 2 × 10−8s, s ∈ R≥0, c̄i = 0.001. Now, we check
the small gain condition (5.5.1) that is required for the compositionality result. By
taking σi(s) = s, i ∈ {1, . . . , N}, the condition (5.5.1), and as a result the condition
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(5.5.2) are always satisfied without any restriction on the number of vehicles. Hence,
B(x, x̂) = maxi Bi(xi, x̂i) is a CBF for ΣS satisfying conditions in Definition 30 with
β0 = 0.1, β1 = 2, κ = 0.95, and c = 0.001. By employing Theorem 33, one can guaran-
tee that states of the interconnected system starting from X0 remain in the safe set X\X1

within the time horizon Td = 60 with a probability of at least 92.19% (i.e., 1−δ = 0.9219).
Closed-loop state and input trajectories of a representative vehicle with different noise
realizations are illustrated in Figure 5.3 with only 10 trajectories.

We now construct the LCBF Bi(x̂i) of an order 4 for the estimator, as described in
Section 5.3.2, and compute its corresponding controller as

ui(d̂i, v̂i, v̂i−1) = 0.08d̂i − 0.9v̂i + 0.02v̂i−1 − 0.1, (5.7.2)

for i ∈ {1, . . . , N} with a computation time of about 2 minutes. The corresponding con-
stants and functions in Definition 38 are quantified as αi(s) = 10−5s, s ∈ R≥0,β̄0i = 0.1,
β̄1i = 2, κ̄i = 0.95, ρi(s) = 2 × 10−8s, s ∈ R≥0, c̄i = 0.001, and κi(s) = 10−6s, s ∈ R≥0.
Similar to the first method, we check the small gain condition (5.5.1) for the composi-
tionality result. By taking σi(s) = s, i ∈ {1, . . . , N}, the condition (5.5.1), and as a
result the condition (5.5.2) are both satisfied. Hence, B(x̂) = maxi Bi(x̂i) is a CBF for
ΣS satisfying conditions in Definition 39 with β0 = 0.1, β1 = 2, κ = 0.95, c = 0.001, and
κ(s) = 10−6s, s ∈ R≥0. By employing the result of Theorem 33, one can guarantee that
the states of the estimator, with accuracy ϵ = 0.01, starting from X0 will not reach Xϵ

1

within the time horizon Td = 60 with a probability of at least 92.19% (i.e., 1−δ = 0.9219).
Now, in order to compute the exit probability bound for the interconnected system, we
search for an SPSF of a quadratic form ϕi(xi, x̂i) = (xi − x̂i)

⊤M(xi − x̂i), where M is
a positive-definite matrix. Since the dynamic of the system is linear, the conditions in
Definition 35 reduce to solving the following matrix inequality:

(1 + 2/π̃)(A−KC2)
⊤M(A−KC2) ≤ c̄2M,

where K is the estimator gain, and π̃ > 0. By using the tool YALMIP [40], we compute
M as

M =

[
0.0257 0.0259
0.0259 0.0262

]
,

with π̃ = 1. The functions and constants associated with this SPSF are computed by
following the compositional construction method for linear systems introduced in [68, The-
orem 6.10] as ε(s) = 0.3s2, s ∈ R≥0, c̄2 = 0.4, ϱ(s) = 0.002s2, s ∈ R≥0, c̄1 = 10−6. Hence,

ϕ(x, x̂) = maxi ϕi(xi, x̂i) is an SSF from Σ̂S to ΣS satisfying the conditions in Definition 36
with ε(s) = 0.3s2, s ∈ R≥0, c2 = 0.4, c1 = 10−6 and ϵ = 0.01. An upper bound of 2.31%
(i.e., θ = 0.0231) on the probability of the estimation accuracy is computed according to
Theorem 37 within the time horizon Td = 60. Employing Theorem 40, the probability that
the solution process of the system starting from the initial region X0 and not reaching X1

is at least 90.06% (i.e., (1− δ)(1− θ) = 0.9006) . Closed-loop state and input trajectories
of a representative vehicle with different noise realizations are illustrated in Figure 5.4.
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Figure 5.3: Closed-loop state (distance and velocity) and input trajectories of a represen-
tative vehicle with different noise realizations in a network of 1000 vehicles under controller
(5.7.1).
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Figure 5.4: Closed-loop state (distance and velocity) and input trajectories of a represen-
tative vehicle with different noise realizations in a network of 1000 vehicles under controller
(5.7.2).
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5.8 Summary

In this chapter, we proposed a compositional approach based on control barrier func-
tions for the synthesis of safety controllers for networks of POMDP by utilizing small-gain
type reasoning. The proposed scheme provides an upper bound on the probability that the
interconnected system reaches an unsafe region in a finite time horizon. In this respect,
we first quantified probability bounds without any prior information on the estimation ac-
curacy. This is achieved by constructing local barrier functions over an augmented system
composed of subsystems and their corresponding estimators. Alternatively, we formulated
local barrier functions based on only estimators’ dynamics and computed the exit probabil-
ity by utilizing the probability bound on the estimation accuracy computed via notions of
stochastic simulation functions. We finally demonstrated the effectiveness of our proposed
results by applying them to an adaptive cruise control problem.



Chapter 6

Synthesis of Controllers for
Partially-Observable Systems: A
Data-Driven Approach

This chapter is concerned with the formal synthesis of safety controllers for partially-
observable continuous-time polynomial-type systems with unknown dynamics. Given a
continuous-time polynomial-type estimator with a partially-unknown dynamic and a known
upper bound on the estimation accuracy, we propose a data-driven approach to compute a
polynomial-type controller ensuring the safety of the system. The proposed framework is
based on a notion of so-called control barrier functions and only requires a single output
trajectory collected from the system and a single state trajectory collected from its esti-
mator. We show the application of our technique by synthesizing a safety controller for a
partially-observable jet engine with unknown dynamics.

6.1 Introduction

The conventional methods to synthesize controllers, including the ones proposed in
the previous chapters, require precise models of dynamical systems. However, closed-form
mathematical models of many physical systems are either unavailable or too complicated
to be of any use. Therefore, it is not possible to analyze or synthesize controllers for
complex systems with unknown models using model-based methodologies. Since obtaining
precise models for complex systems is typically a tedious and costly task [91], data-driven
approaches are becoming increasingly popular when dealing with systems with unknown
dynamics.
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6.1.1 Related Literature

Over the past few years, several studies have investigated data-driven controller synthe-
sis for systems with complete state information. When the system model is unavailable, [92]
offers an approach to synthesis controllers for single-input, single-output feedback lineariz-
able systems. The result in [93] examines a data-enabled predictive control technique for
linear stochastic systems for which the model is unavailable and the controller is derived
from noisy input-output data. Given that an upper bound on the dimension of the system
is available, [94] presents a data-driven model predictive control scheme solely based on
initially measured input-output data. By collecting input-output data over a finite time
horizon, [95] proposes a methodology to compute control laws for nonlinear polynomial-
type systems. Using the so-called behavioural framework, which is a data-driven method
proposed in [96], state and output feedback stabilization and linear quadratic regulation
(LQR) problems are studied in [97]. Based on the same behavioural idea, the problem
is extended to stabilizing polynomial-type systems [98], switched linear systems [99], and
linear time-varying systems [100].

Barrier-based data-driven techniques, in which barrier functions are constructed di-
rectly from data, have also been investigated recently. In this respect, the result in [101]
offers a data-driven verification strategy via barrier functions for stochastic systems with
unknown dynamics as well as a probabilistic confidence over the verification. The extension
of [101] from verification to synthesis of safety controllers is proposed in [102]. Under a
certain rank condition, [103] provides a data-driven controller synthesis methodology for
continuous-time nonlinear polynomial-type systems based on a single trajectory acquired
from the system.

6.1.2 Contribution

The contents of this chapter have been published in the IFAC World Congress [104].
It is a joint work with Prof. Majid Zamani. The author of the thesis has established the
results and written the draft. Majid Zamani supervised the work.

The main contribution of this chapter is to provide a data-driven framework for the
synthesis of safety controllers for partially-observable continuous-time polynomial-type sys-
tems with unknown models. Given an appropriate estimator with a known estimation ac-
curacy, we provide sufficient conditions for so-called control barrier functions under which
the safety of the unknown system can be guaranteed. The control barrier function and its
corresponding polynomial-type safety controller are constructed purely from data. Under
a certain rank condition, which is linked to the condition of persistency of excitation [105],
only a single state trajectory from the estimator and a single input-output trajectory from
the system over a finite time horizon are needed in our setting. We illustrated our proposed
results on a partially-observable jet engine example.
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6.2 Preliminaries and Problem Definition

For the PO-ct-PS SP as in (2.3.3), we assume matrices A,B, and C are unknown and
we employ the term unknown model to refer to this type of system. Furthermore, we raise
the following assumption on the existence of an estimator that can estimate the states of
SP with an upper bound on the estimation accuracy.

Assumption 8. Consider a PO-ct-PS SP as in (2.3.3). States of SP can be estimated by

a proper estimator ŜP represented as:

ŜP :

{
˙̂x = AM(x̂) + Bu+K

(
CM(x)− CM(x̂)

)
,

ŷ = CM(x̂),
(6.2.1)

with x̂ ∈ X̂ and ŷ ∈ Ŷ , where X̂ ⊂ Rn and Ŷ ⊂ Rp are the estimator’s state and output
set, respectively. Furthermore, X ⊆ X̂ and Y ⊆ Ŷ . The matrix K ∈ Rn×p is the known
estimator gain, and A,B, and C are the unknown matrices as in SP . Moreover, in this
chapter, we consider a guaranteed upper bound on the estimation accuracy as:

∥x(t)− x̂(t)∥ ≤ ϵ, ∀t ∈ R≥0, (6.2.2)

where ϵ ∈ R>0 is a known constant.

Now we can formally define the main synthesis problem that we are interested in solving
in this chapter.

Problem 57. Consider a PO-ct-PS SP as in (2.3.3) with unknown matrices A,B, and C ,
its estimator ŜP as in (6.2.1) with the estimation accuracy ϵ as in (6.2.2). Let X0, X1 ⊂ X
represent initial and unsafe sets for SP , respectively. Synthesize a polynomial-type safety
controller using which the trajectories of SP starting from initial set X0 never reach the
unsafe set X1.

To synthesize a controller for Problem 57, we utilize a notion of control barrier functions,
introduced in the next section.

6.3 Control Barrier Functions

In this section, we define a notion of control barrier functions (CBFs), adopted from
[15], as formalized in the following definition.

Definition 58. Consider a PO-ct-PS SP as in (2.3.3), its estimator ŜP as in (6.2.1)

together with an estimation accuracy ϵ as in (6.2.2), and X0, X1 ⊂ X⊆ X̂ as initial and

unsafe sets of SP , respectively. Let us define Xϵ
1⊂ X̂ as an ϵ-inflated version of X1. A

function B : X̂ → R is called a control barrier function for ŜP if there exists constants
β0, β1 ∈ R, with β0 < β1, such that
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• ∀x̂ ∈ X0,

B(x̂) ≤ β0, (6.3.1)

• ∀x̂ ∈ Xϵ
1,

B(x̂) ≥ β1, (6.3.2)

• ∀x̂ ∈ X̂,∃u ∈ U , such that ∀x ∈ X,

LB(x, x̂, u) ≤ 0, (6.3.3)

where LB is the Lie derivative of B with respect to the dynamic of the estimator, which is
defined as

LB(x, x̂, u) := ∂B(x̂)
∂x̂

(
AM(x̂) + Bu+K

(
CM(x)− CM(x̂)

))
. (6.3.4)

The above definition implicitly associates a controller to a CBF according to the exis-
tential quantifier over the input for any x̂ ∈ X̂.

Remark 59. Note that X0 and Xϵ
1 should not intersect in order to enforce the safety

property in Definition 58. This condition is implicitly enforced by imposing β0 < β1.

The next theorem shows how CBFs can be used in order to make sure that the unknown
PO-ct-PS SP in (2.3.3) is safe in the sense that its trajectories starting from X0 never reach
X1.

Theorem 60. Let SP be a PO-ct-PS as in (2.3.3) and ŜP be its corresponding estimator

as in (6.2.1) with the estimation accuracy ϵ as in (6.2.2). Suppose B is a CBF for ŜP as
in Definition 58. Then, one gets xx0υ(t) ̸∈ X1 for any x0 ∈ X0 and any t ∈ R≥0, where the
control input u is chosen in such a way that (6.3.3) holds.

Proof. Since LB(x, x̂, u) is non-positive, one can infer that if B(x̂(0)) ≤ β0, ∀x̂(0) ∈ X0, then
B(x̂(t)) ≤ β0,∀t ∈ R>0. Now since β0 < β1, one can readily conclude that B(x̂(t)) < β1.
From (6.3.2), one gets x̂x̂0υ(t) ̸∈ Xϵ

1,∀x̂0 ∈ X0 and ∀t ∈ R≥0. Now, by utilizing the fact
that x̂ estimates x with an upper bound on the estimation accuracy ϵ as in (6.2.2), and
since Xϵ

1 is an ϵ-inflated version of X1, one gets xx0υ(t) ̸∈ X1,∀x0 ∈ X0 and ∀t ∈ R≥0,
which concludes the proof.

In the next section, we propose a data-driven approach in order to construct control
barrier functions for unknown PO-ct-PSs as in (2.3.3).
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6.4 Data-Driven Controller Synthesis via CBFs

We now provide our data-driven approach in order to synthesize safety controllers for
the unknown PO-ct-PS SP in (2.3.3) using its estimator ŜP in (6.2.1). To do so, we first

collect input-output data from the unknown PO-ct-PS SP and its estimator ŜP over the
time interval [t0, t0+(Ts−1)∆t], where ∆t is the sampling time, and Ts ∈ N>0 is the number
of collected samples. Then, using the collected data from SP , we collect input-output data
from the estimator ŜP . The collected samples are denoted as follows:

U0,Ts :=
[
u(t0), u(t0 +∆t), · · · , u(t0 + (Ts − 1)∆t)

]
,

Y0,Ts :=
[
y(t0), y(t0 +∆t), · · · , y(t0 + (Ts − 1)∆t)

]
,

X̂0,Ts :=
[
x̂(t0), x̂(t0 +∆t), · · · , x̂(t0 + (Ts − 1)∆t)

]
,

X̂1,Ts :=
[
˙̂x(t0), ˙̂x(t0 +∆t), · · · , ˙̂x(t0 + (Ts − 1)∆t)

]
.

(6.4.1)

Remark 61. Observe that in order to construct X̂1,Ts, one needs to have access to the
derivatives of the states of the estimator at sampling times. Since this data is generally
not available via measurements, proposed results in the relevant literature can be utilized in
order to approximate derivatives using some filters (cf. [106, 107, 108]). Although a small
numerical error gets introduced from approximating the derivatives, we do not consider this
error in our analysis.

Next, we use the results of [95] in order to provide a data-based representation of the

closed-loop estimator ŜP in (6.2.1) using a polynomial-type safety controller of the form
u = Z(x̂)M(x̂), where the matrix polynomial Z(x̂) is to be synthesized.

Lemma 62. Let F (x̂) be a (Ts ×N) matrix polynomial such that

IN = M̂0,TsF (x̂),

where M̂0,Ts is an (N × Ts) full row-rank matrix constructed from the vector M(x̂) and

samples X̂0,Ts as follows

M̂0,Ts =
[
M
(
x̂(t0)

)
, · · · ,M

(
x̂(t0 + (Ts − 1)∆t)

)]
.

If the controller is set to be as u = Z(x̂)M(x̂) = U0,TsF (x̂)M(x̂), then the data-based
representation of the closed loop estimator ˙̂x = AM(x̂) + Bu+K

(
CM(x)− CM(x̂)

)
is as

follows:
˙̂x =

(
X̂1,Ts −KY0,Ts

)
F (x̂)M(x̂) +KY0,TsF (x)M(x),

or equivalently,

A + BZ(x̂)−KC = (X̂1,Ts −KY0,Ts)F (x̂),

and KC = KY0,TsF (x).
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Proof. Since IN = M̂0,TsF (x̂), then

C = CM̂0,TsF (x̂) = Ŷ0,TsF (x̂),

and, accordingly, C = Y0,TsF (x). Since Z(x̂) = U0,TsF (x̂), the closed loop estimator ŜP

can be written as

˙̂x =
(

A + BZ(x̂)−KC
)
M(x̂) +KCM(x)

=
(

AM̂0,Ts + BU0,Ts −KŶ0,Ts

)
F (x̂)M(x̂)

+KY0,TsF (x)M(x) =
(
X̂1,Ts −KY0,Ts

)
F (x̂)M(x̂)

+KY0,TsF (x)M(x),

with X̂1,Ts = AM̂0,Ts +BU0,Ts +K
(
Y0,Ts −Ŷ0,Ts

)
. Hence, ˙̂x =

(
X̂1,Ts −KŶ0,Ts

)
F (x̂)M(x̂)+

KY0,TsF (x)M(x), equivalently, A + BZ(x̂) − KC = (X̂1,Ts − KY0,Ts)F (x̂) and KC =

KY0,TsF (x), is the data-based representation of the closed-loop estimator ŜP , which com-
pletes the proof.

Remark 63. Note that the number of samples Ts should be at least N in order for M̂0,Ts

to have full row rank.

The following theorem, inspired by [103, Theorem 8], shows the usefulness of CBFs
in order to solve Problem 57. To do so, we construct the CBF from data and use the
data-based representation in Lemma 62 in order to synthesize the controller gain Z(x̂),
such that u = Z(x̂)M(x̂) makes the unknown PO-ct-PS (2.3.3) safe.

Theorem 64. Let SP be a PO-ct-PS in (2.3.3) and ŜP be its estimator in (6.2.1) to-
gether with an estimation accuracy ϵ as in (6.2.2). Suppose there exists a matrix poly-

nomial H(x̂) ∈ RTs×N such that M̂0,TsH(x̂) = P−1, ∀x̂ ∈ X̂, with P ≻ 0. If condi-

tions (6.4.2)-(6.4.4) are satisfied, then B(x̂) = M(x̂)⊤[M̂0,TsH(x̂)]−1M(x̂) is a CBF and

u = U0,TsH(x̂)
(
M̂0,TsH(x̂)

)−1M(x̂) is its corresponding safety controller which makes the
unknown PO-ct-PS SP safe:

• ∀x̂ ∈ X0,

M(x̂)⊤[M̂0,TsH(x̂)]−1M(x̂) ≤ β0, (6.4.2)

• ∀x̂ ∈ Xϵ
1,

M(x̂)⊤[M̂0,TsH(x̂)]−1M(x̂) ≥ β1, (6.4.3)

• ∀x̂ ∈ X̂,
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M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,Ts −KY0,Ts)H(x̂) +H(x̂)⊤(X̂1,Ts −KY0,Ts)

⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂)

+M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TsH(x)

]
PM(x)

+M(x)⊤P
[
H(x)⊤(KY0,Ts)

⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂)≤0,

(6.4.4)
where β0 < β1, β0, β1 ∈ R.
Proof. Since B(x̂) = M(x̂)⊤PM(x̂) and P−1 = M̂0,TsH(x̂), it is straightforward that
conditions (6.4.2) and (6.4.3) indicate (6.3.1) and (6.3.2), respectively. Now, we show that
condition (6.3.3) holds as well. Considering the Lie derivative associated with the estimator

ŜP , one has

LB(x, x̂, u) = M(x̂)⊤P ∂M(x̂)

∂x̂

(
(A + BZ(x̂)−KC)M(x̂) +KCM(x)

)
+
(
M(x)⊤(KC)⊤ +M(x̂)⊤(A + BZ(x̂)−KC)⊤

)
(
∂M(x̂)

∂x̂
)⊤PM(x̂)

= M(x̂)⊤P
[∂M(x̂)

∂x̂
(A + BZ(x̂)−KC)P−1 + P−1(A + BZ(x̂)−KC)⊤(

∂M(x̂)

∂x̂
)⊤
]
PM(x̂)

+M(x̂)⊤P
[∂M(x̂)

∂x̂
KCP−1

]
PM(x) +M(x)⊤P

[
P−1(KC)⊤(

∂M(x̂)

∂x̂
)⊤
]
PM(x̂).

Since P−1 = M̂0,TsH(x̂), then P−1P = IN = M̂0,TsH(x̂)P . Since IN = M̂0,TsF (x̂), then
F (x̂) = H(x̂)P and, therefore, F (x̂)P−1 = H(x̂). Accordingly, one has F (x)P−1 = H(x).
Then,

(A + BZ(x̂)−KC)P−1 = (X̂1,Ts −KY0,Ts)F (x̂)P−1 = (X̂1,Ts −KY0,Ts)H(x̂),

and
KCP−1 = KY0,TsF (x)P−1 = KY0,TsH(x).

Hence,

LB(x, x̂, u) = M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,Ts −KY0,Ts)H(x̂)

+H(x̂)⊤(X̂1,Ts −KY0,Ts)
⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂) +M(x̂)⊤P

[∂M(x̂)

∂x̂
KY0,TsH(x)

]
PM(x)

+M(x)⊤P
[
H(x)⊤(KY0,Ts)

⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂).

Thus, if (6.4.4) holds, condition (6.3.3) is satisfied. Consequently,

B(x̂) = M(x̂)
[
M̂0,TsH(x̂)

]−1M(x̂),

is a CBF and

u = U0,TsF (x̂)M(x̂) = U0,TsH(x̂)
[
M̂0,TsH(x̂)

]−1M(x̂),

is the corresponding safety controller for the PO-ct-PS SP , which completes the proof.

In the next section, we discuss the computation of the CBF defined in Definition 58.
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6.5 Computation of CBFs

In this section, we provide a systematic approach to implement Theorem 64 and search
for CBFs and their corresponding controllers. The proposed method is based on a sum-of-
square (SOS) optimization problem [88]. To do so, we consider the state set of the system

and the estimator X, X̂, the initial set X0, and the unsafe set Xϵ
1 as

X =
nx⋃
i=1

Xi, Xi :=
{
x ∈ Rn |gij(x) ≥ 0, j = 1, . . . ,ℓ

}
, (6.5.1)

X̂ =

nx̂⋃
i=1

X̂i, X̂i :=
{
x̂ ∈ Rn | ĝij(x̂) ≥ 0, j = 1, . . . ,ℓ̂

}
, (6.5.2)

X0 =

nx1⋃
i=1

X0i, X0i :=
{
x̂ ∈ Rn |g1ij(x̂) ≥ 0, j = 1,. . .,ℓ1

}
, (6.5.3)

Xϵ
1 =

nx2⋃
i=1

Xϵ
1i, X

ϵ
1i :=

{
x̂ ∈ Rn |g2ij(x̂) ≥ 0, j = 1,. . .,ℓ2

}
, (6.5.4)

where nx, nx̂, nx1 , and nx2 are the number of regions in X, X̂,X0, and Xϵ
1, respectively.

Furthermore, gij, ĝij, g
1
ij, and g2ij are polynomial functions, with ℓ, ℓ̂, ℓ1, and ℓ2 being the

number of polynomials required to characterize each region. The input set U is defined as

U :=
{
u ∈ Rm | b⊤uj

u ≤ 1, with j = 1, . . . , ℓu
}
, (6.5.5)

where buj
∈ Rm are some constant vectors. We now present the SOS formulations in the

following corollary.

Corollary 65. Consider a PO-ct-PS SP in (2.3.3) and its estimator ŜP in (6.2.1) together

with an estimation accuracy ϵ as in (6.2.2). Let X, X̂,X0, and X
ϵ
1 be as in (6.5.1)-(6.5.4),

respectively, the input set U be as in (6.5.5), and data U0,Ts ,Y0,Ts , X̂1,Ts, and M̂0,Ts be as
in (6.4.1) and in Lemma 62, respectively. If there exist a positive definite matrix P ∈ Rn×n,
a matrix polynomial H(x̂) ∈ RTs×N , and β0, β1 ∈ R, with β0 < β1, such that the following
expressions are SOS polynomials

−M(x̂)⊤PM(x̂)−
ℓ1∑
j=1

h1ij(x̂)g
1
ij(x̂)+β0,∀i ∈{1,. . ., nx1}, (6.5.6)

M(x̂)⊤PM(x̂)−
ℓ2∑
j=1

h2ij(x̂)g
2
ij(x̂)− β1,∀i ∈{1,. . . ,nx2}, (6.5.7)



6.5 Computation of CBFs 69

−M(x̂)⊤P
[∂M(x̂)

∂x̂
(X̂1,Ts −KY0,Ts)H(x̂)−H(x̂)⊤(X̂1,Ts −KY0,Ts)

⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂)

−M(x̂)⊤P
[∂M(x̂)

∂x̂
KY0,TsH(x)

]
PM(x)−M(x)⊤P

[
H(x)⊤(KY0,Ts)

⊤(
∂M(x̂)

∂x̂
)⊤
]
PM(x̂)

−
ℓ̂∑

j=1

ĥîj(x̂)ĝîj(x̂)−
ℓ∑

j=1

hij(x)gij(x),∀i ∈ {1, . . . , nx},∀î ∈ {1, . . . , nx̂},

(6.5.8)

1−b⊤uj
U0,TsH(x̂)PM(x̂)−hu(x̂)

(
β0 −M(x̂)⊤PM(x̂)

)
,∀j ∈ {1, . . . ℓu}, (6.5.9)

with h1ij(x̂), h
2
ij(x̂), ĥîj(x̂), hij(x), and hu(x̂) being SOS polynomials of appropriate dimen-

sions, then B(x̂) = M(x̂)⊤PM(x̂) is a CBF for ŜP , and u = U0,TsH(x̂)PM(x̂) is a safety
controller for SP .

Proof. It can be readily verified that if (6.5.6) holds, then one obtains

M(x̂)⊤PM(x̂) +

ℓ1∑
j=1

h1ij(x̂)g
1
ij(x̂) ≤ β0, ∀i ∈ {1, . . . , n1}.

Since g1ij(x̂) is non-negative by the definition of X0 in (6.5.3), and ĥij(x̂) is SOS polynomial,

then
∑ℓ1

j=1 h
1
ij(x̂)g

1
ij(x̂) is also non-negative. Thus, ∀x̂ ∈ X0, one has M(x̂)⊤PM(x̂) ≤ β0,

and (6.4.2) is satisfied with P =
[
M̂0,TsH(x̂)

]−1

. In a similar way, (6.5.7) and (6.5.8),

respectively, imply that (6.4.3) and (6.4.4) hold with P =
[
M̂0,TsH(x̂)

]−1

. Finally, we

show that (6.5.9) ensures that u = U0,TsH(x̂)PM(x̂) ∈ U , ∀x̂ ∈ X̂β0 with X̂β0 :=
{
x̂ ∈

Rn | M(x̂)⊤PM(x̂) ≤ β0
}
. Note that since LB(x, x̂, u) is non-positive, the trajectories of

the estimator stay inside the set X̂β0 and, therefore, one only needs to consider the set X̂β0

instead of the whole state set X̂. The definition of U in (6.5.5) requires

b⊤uj
U0,TsH(x̂)PM(x̂) ≤ 1,∀j ∈ {1, . . . , ℓu},∀x̂ ∈ X̂β0 . (6.5.10)

Since (6.5.9) implies

b⊤uj
U0,TsH(x̂)PM(x̂)+hu(x̂)

(
β0−M(x̂)⊤PM(x̂)

)
≤ 1,∀j ∈ {1, . . . ℓu},

and hu(x̂) is SOS polynomial, thus (6.5.10) holds. This completes the proof.

Remark 66. Note that in order to search for the matrix polynomial H(·) and matrix P
fulfilling conditions (6.5.6)-(6.5.9), one can employ existing software tools in the relevant
literature such as SOSTOOLS [63], in conjunction with a semidefinite programming solver,
such as SeDuMi [64].
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Remark 67. Observe that in condition (6.5.9) there exists a bilinearity between decision
matrices P and H(·). In order to tackle this bilinear matrix inequality (BMI), one can first
acquire a candidate for P derived from (6.5.6) and (6.5.7), and then attempt to obtain an
appropriate candidate for H(·) based on (6.5.8) and (6.5.9). Another approach to resolve
this problem is to utilize the proposed method in [109] in order to locally solve the BMI by
linearizing it via a first-order perturbation approximation. Then, the problem reduces to
solving the linearized version.

6.6 Case Study

Here, we consider a nonlinear Moore-Greitzer jet engine model in no-stall mode [65]
given by:

SP :


ẋ1 = −x2 − 3

2
x21 − 1

2
x31,

ẋ2 = x1 − u,

y = x2,

(6.6.1)

where x = [x1;x2], x1 = Φ− 1, x2 = Ψ− ϕc − 2, Φ is the mass flow, Ψ is the pressure rise,
and ϕc is a constant. System SP in (6.6.1) is in the form of the PO-ct-PS in (2.3.3), with

A =

[
0 −1 −3

2
−1

2

1 0 0 0

]
,M(x) =


x1
x2
x21
x31

 ,

B =

[
0
−1

]
, C =

[
0 1 0 0

]
.

We assume that matrices A,B, and C are all unknown and treat the system as a black-box.
Here, we consider the state set X = [−5, 5]× [−5, 5], the initial set X0 = [−1, 1]× [−1, 1],
the unsafe set X1 = [−4.7, 4.7]× [2, 4.7], and the input set U = [−5, 5]. Here, we consider a
partially-unknown estimator as in (6.2.1) with unknown A,B, and C matrices and a known
gain matrix asK = [0.06738; 0.09959]. Note that we are not providing the design procedure
of the estimator. Furthermore, we compute the estimator’s accuracy empirically using the
results of [110] and a sufficiently large amount of data. Now with the estimator’s state set

as X̂ = X and an estimation accuracy as ϵ = 0.3, we illustrate the results in Theorem 64.
To do so, we collect data in the form of (6.4.1), with a sampling time of ∆t = 0.01s, and
the number of samples as Ts = 10. With the help of Corollary 65, we obtain

P =


1.212 0 0 0
0 141.5 −1.067 0
0 −1.067 2.511 0
0 0 0 2.172× 10−9

 ,
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Figure 6.1: Input trajectories of the system starting from different initial conditions.

Figure 6.2: A few closed-loop state trajectories starting from different initial conditions in
X0 under controller (6.6.2).

with β0 = 150, β1 = 400, and the safety controller as follows:

u =0.0011x̂31x̂2−0.0211x̂31+0.00011x̂21x̂
2
2−0.0007x̂21x̂2 − 0.0610x̂1x̂

2
2

− 0.0006x̂1x̂2 + 0.0943x̂1 − 0.0075x̂32 + 0.0083x̂2.
(6.6.2)

For the simulation results, we initialized the system and the estimator with 100 random
initial states from the initial state set and simulated the closed-loop system under the
controller (6.6.2). The input and state trajectories of the system are illustrated in Figure 6.1
and Figure 6.2, respectively.
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6.7 Summary

In this chapter, we established a data-driven method for the synthesis of safety con-
trollers for partially-observable continuous-time polynomial-type systems with unknown
models. Given a partially-unknown polynomial-type estimator with an upper bound on
the estimation accuracy, control barrier functions were utilized in order to synthesize safety
controllers. The controller associated with the control barrier function (if existing) makes
the system safe. Our proposed framework only requires a single state trajectory collected
from the estimator and a single output trajectory of the system, given that a specified
rank condition is met. Finally, we used a case study to demonstrate the effectiveness of
our proposed results.



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this thesis, we discussed the synthesis of controllers for various classes of partially-
observable cyber-physical systems. Using control barrier functions, we tackled the chal-
lenges that arise in synthesizing CPSs when full state information is not available. We
conclude the thesis by reviewing the results presented in the previous chapters.

In Chapter 3, we synthesized controllers for partially-observable continuous-time stochas-
tic control systems subjected to noisy measurements. This was accomplished through the
utilization of control barrier functions. Given an estimator with a probabilistic guarantee
on the accuracy of the estimation, we outlined an approach to synthesize a controller that
provides a lower bound on the probability that the trajectories of the partially-observable
stochastic control system remain safe over a finite time-horizon. Additionally, stochastic
simulation functions were utilized to obtain the probability bound for the accuracy of the
estimation.

In Chapter 4, we focused on the formal synthesis of controllers for partially-observable
continuous-time jump-diffusion systems against complex logic specifications. Given a state
estimator, control barrier functions were utilized in order to compute a controller together
with a lower bound on the probability of satisfying complex logic specifications encoded as
deterministic finite automata. By constructing control barrier functions over an augmented
system consisting of the system and the estimator, the approach presented in Chapter 4
does not require prior knowledge of the estimation accuracy, which is a requirement in the
results proposed in Chapter 3.

To mitigate the computational burden associated with implementing the findings pre-
sented in the preceding chapters, Chapter 5 proposed a compositional approach to syn-
thesize networks of partially-observable discrete-time stochastic control systems. It should
be noted that while the barrier-based approaches outlined in Chapters 3 and 4 demon-
strate great potential, difficulties arise when attempting to apply these methods to larger
partially-observable systems. In Chapter 5, we provided a compositional approach based
on control barrier functions for the synthesis of safety controllers for networks of partially-
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observable Markov decision processes (POMDPs) by utilizing a small-gain type reasoning.
This approach involved breaking down the partially-observable large-scale interconnected
stochastic control system into smaller subsystems and computing so-called local control
barrier functions for subsystems. Then, the control barrier function for the interconnected
system was constructed by composing the local control barrier functions. The proposed
scheme provided an upper bound on the probability of the interconnected system reaching
an unsafe region within a finite-time horizon. Two approaches, based on the findings in
Chapters 3 and 4, were employed to construct local control barrier functions. In the first
method, local control barrier functions were defined over an augmented system consisting of
the subsystems and their estimators. This approach allowed for the search of local control
barrier functions without prior knowledge of the estimation accuracy. The second method
focused on formulating local control barrier functions solely over the estimator’s dynamics,
utilizing a given probability bound on the estimation accuracy, which was computed via
stochastic simulation functions.

The approaches discussed in Chapters 3-5 require precise mathematical models of the
systems. Therefore, it is not possible to synthesize controllers for complex systems with
unknown models using these model-based methodologies. Motivated by the fact that ob-
taining an accurate model for many physical systems can be very challenging and com-
putationally expensive, a data-driven scheme was proposed in Chapter 6 to synthesize
safety controllers for partially-observable continuous-time polynomial-type systems with
unknown dynamics. In particular, utilizing a continuous-time polynomial-type estimator
with a partially-unknown dynamic and a known upper bound on estimation accuracy,
Chapter 6 provided a data-driven method to compute a polynomial-type controller that
guarantees the safety of the system. The proposed framework relied on control barrier
functions and required only a single output trajectory from the system and a single state
trajectory from its estimator.

7.2 Future Directions

In this section, we explore interesting topics that could be considered as potential future
research directions.

• Synthesis against more complex specifications. In this thesis, our focus
primarily revolved around safety specifications. Given initial and unsafe sets for
partially-observable CPSs, we computed controllers ensuring that the trajectories
of the systems, starting from the initial region under the synthesized controllers,
will never reach the unsafe region. For stochastic systems, we also provided lower
bounds on the probabilities of safety over finite time-horizons. As a potential fu-
ture direction, it would be worthwhile to investigate more complex properties, such
as reachability, reach-avoidance, and temporal logic specifications, in the context of
partially-observable systems.
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• Neural network control barrier functions. Another promising future direction
is to explore the use of neural networks to learn control barrier functions and their
corresponding controllers. Particularly, in the case of partially-observable systems,
estimators can also be implemented as neural networks. This integrated approach
leverages the representational power of neural networks to simultaneously learn con-
trol barrier functions, controllers, and estimators. Furthermore, the data-driven na-
ture of neural network training can make it particularly suitable for implementing
this method in the context of partially-observable systems with known mathematical
models.

• New compositionality conditions. In Chapter 5, we utilized small-gain type rea-
soning to compositionally construct control barrier functions for networks of POMDPs
using local control barrier functions computed for subsystems. Another possible av-
enue for expansion entails the development of dissipativity-type compositional con-
ditions to construct control barrier functions for partially-observable interconnected
systems based on local control barrier functions of subsystems. The utilization of the
dissipativity-type compositional approach offers advantages in terms of leveraging
the structure of the interconnection topology and potentially eliminating the need
for imposing constraints on the gains of the subsystems [111].

• Data-driven synthesis in other classes of partially-observable CPSs. In
Chapter 6, we presented a data-driven framework aimed at synthesizing safety con-
trollers for partially-observable polynomial-type systems with unknown dynamics.
Specifically, our approach focused on systems where the polynomial coefficients were
unknown parameters. The framework relied on estimators with partially unknown
dynamics, assuming knowledge of the estimator’s gain. Under suitable conditions,
we provided sufficient conditions for control barrier functions to ensure the safety of
the unknown system. It would be interesting to investigate the synthesis problem for
a broader class of partially-observable systems with unknown models. Particularly,
considering scenarios where both the system model and the estimator are unknown
would be of great interest. In such cases, the challenge lies in developing methodolo-
gies that can effectively synthesize controllers without relying on prior knowledge of
the underlying system dynamics or the estimator model.



76 7. Conclusions and Future Directions



Bibliography

[1] Niloofar Jahanshahi, Nader Meskin, Farzaneh Abdollahi, and Wassim M Haddad. An
adaptive sliding mode observer for linear systems under malicious attack. In 2016
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
001437–001442. IEEE, 2016.

[2] Paul Bogdan and Radu Marculescu. Towards a science of cyber-physical systems de-
sign. In 2011 IEEE/ACM Second international conference on cyber-physical systems,
pages 99–108. IEEE, 2011.

[3] Dimitrios Serpanos. The cyber-physical systems revolution. Computer, 51(3):70–73,
2018.

[4] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

[5] Vittorio De Iuliis, Giovanni Domenico Di Girolamo, Francesco Smarra, and Alessan-
dro D’Innocenzo. A comparison of classical identification and learning-based tech-
niques for cyber-physical systems. In 2021 29th Mediterranean conference on control
and automation (MED), pages 179–185. IEEE, 2021.

[6] Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media, 2009.

[7] C. Belta, B. Yordanov, and E. A. Gol. Formal methods for discrete-time dynamical
systems, volume 89. Springer, 2017.

[8] John Lygeros et al. Hierarchical, hybrid control of large scale systems. PhD thesis,
Citeseer, 1996.

[9] S. Soudjani, A. Abate, and R. Majumdar. Dynamic Bayesian networks for formal
verification of structured stochastic processes. Acta Informatica, 54(2):217–242, 2017.

[10] A. Lavaei, S. Soudjani, and M. Zamani. Compositional construction of infinite ab-
stractions for networks of stochastic control systems. Automatica, 107:125–137, 2019.

[11] Abdalla Swikir and Majid Zamani. Compositional synthesis of finite abstractions for
networks of systems: A small-gain approach. Automatica, 107:551–561, 2019.



78 BIBLIOGRAPHY

[12] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE Transactions on
Automatic Control, 62(8):3861–3876, 2016.

[13] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Formal synthesis of stochastic
systems via control barrier certificates. arXiv preprint arXiv:1905.04585, 2019.

[14] Pushpak Jagtap, Abdalla Swikir, and Majid Zamani. Compositional construction of
control barrier functions for interconnected control systems. In Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control, pages
1–11, 2020.

[15] Stephen Prajna, Ali Jadbabaie, and George J Pappas. A framework for worst-case
and stochastic safety verification using barrier certificates. IEEE Transactions on
Automatic Control, 52(8):1415–1428, 2007.

[16] Andrew Clark. Control barrier functions for complete and incomplete information
stochastic systems. In 2019 American Control Conference (ACC), pages 2928–2935.
IEEE, 2019.

[17] Andrew Clark. Control barrier functions for stochastic systems. Automatica,
130:109688, 2021.

[18] B Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer-Verlag, Berlin, 2000.

[19] I Karatzsas and Steven E Shreve. Brownian motion and stochastic calculus. Graduate
texts in Mathematics, 113, 1991.

[20] Bernt Øksendal and Agnes Sulem. Applied stochastic control of jump diffusions.
Springer Science & Business Media, 2007.

[21] Richard Serfozo. Basics of applied stochastic processes. Springer Science & Business
Media, 2009.
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