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Abstract

The effects of local electronic interactions and finite temperatures upon the transmission across

the Cu4CoCu4 metallic heterostructure are studied in a combined density functional and dynamical

mean field theory. It is shown that, as the electronic correlations are taken into account via a local

but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in

the minority spin channel), whereby the spin polarization of the transmission increases. The latter

is due to a more significant d-electrons contribution, as compared to the non-correlated case in

which the transport is dominated by s and p electrons.
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I. INTRODUCTION

The design of multi-layered heterostructures composed of alternating magnetic and non-

magnetic metals offers large flexibility in tailoring spin-sensitive electron transport properties

of devices in which the current flow is perpendicular to the planes. In the framework of ballis-

tic transport, the spin-polarized conductance and the giant magnetoresistance effect (GMR)

depends on the mismatch between the electronic bands of the concerned metals near the

Fermi level [1, 2]. In order to maximize the spin polarization of current and hence the GMR,

heterostructures including half-metallic materials [3–5] seem to be the materials of choice.

In practice, however, the spin-polarization is never complete due to the presence of defects,

and/or due to intrinsic limitations caused by spin-contamination and spin-orbit coupling [5].

Owing to the technological relevance, considerable progress has been achieved in the com-

putational description of multilayered heterostructures. In particular, the ballistic transport

properties have been addressed by considering the Landauer-Büttiker formalism [6–9], where

the conductance is determined by the electron transmission probability through the device

region, which is placed between two semi-infinite electrodes. The transmission probability

can be then computed with different electronic structure approaches, such as the tight-

binding [10–13] or the first-principles density functional theory (DFT) ones [14–16]. Various

implementations exist, based on transfer matrix [17, 18], layer-Korringa–Kohn–Rostoker

(KKR) [19, 20], or non-equilibrium Green’s function (NEGF) [21] techniques.

In the context of first-principles calculations, it is known that, for systems with moderate

to strong electron correlations, the electronic structure, calculated with the “conventional”

DFT local density approximation (LDA) or its generalized gradient approximation (GGA)

extension, is not accurate enough to account for the observed spectroscopic behavior. A more

adequate description is provided within the dynamical mean field theory (DMFT) [22–24]

built on the LDA framework [25–27]. Since many interesting magnetic materials fall into

this category, the prediction of their electron transport properties, obtained by combining

the Landauer-Büttiker formalism with DFT [21, 28, 29], is expected to equally suffer from

an insufficient treatement of correlation effects, which would be captured by adding DMFT.

However, the full incorporation of correlation effects at the DMFT level into the transport

calculations is not straightforward, not only because of technical reasons, such as large sys-

tem size and lack of corresponding algorithms, but also because of conceptual difficulties in
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the development of many-body solvers in the out-of-equilibrium regime [30]. Attempts to

close this gap include the use of combined techniques, in which equilibrium-DMFT calcula-

tions are performed in order to obtain the Landauer conductance of atomic contacts made

of transition metals [31, 32].

In this work, we investigate the linear-response transport through a prototypical Cu-

Co-Cu heterostructure by accounting for strong electron correlation effects in the electronic

structure of the Co monolayer. The attention to this system is drawn by a significant density

of states that develops in the Co layer, in the vicinity of the Fermi level, in one spin channel

only (the minority-spin one), whereas the Cu layers contribute with states at higher binding

energies. We use a “two-step” approach, in which the Landauer transmission probability is

calculated within the smeagol NEGF based electron transport code [21, 28, 29] whereby the

Hamiltonian is obtained from DFT [33]. The many-body corrections to the Green’s function

are evaluated using DMFT in an exact muffin-tin orbitals (EMTO)-based package [34–36],

which uses a screened KKR approach [37]. These corrections are then passed to smeagol

for the calculation of the transport properties.

The article is organized as follows. We start with a general description of the transport

problem in the presence of electronic correlations (Sec. IIA). Then the computational details

are outlined in Sec. II B, and the geometry of the system considered in our simulations is

descried in Sec. IIC. Finally, Sec. III presents the main results, and Sec. IV summarizes and

concludes. The appendices deal with technical implementation and various tests, notably

App. B explains porting the results from EMTO into smeagol, and discusses a model

two-orbital system of cubic symmetry.

II. METHODS

A. Transport properties in the presence of electronic correlations

The electronic transport through a device can be addressed using the Kubo approach,

where the central quantity is the conductivity, and the electrical current is the result of

the linear response of the system to an applied electric field [38]. Alternatively, in the

Landauer-Büttiker formulation [6–9], the current flow through a device is considered as a

transmission process across a finite-sized scattering region placed between two semi-infinite
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leads, connected at infinity to charge reservoirs. The quantity of interest is the conductance,

which, within linear response, is given by:

G =
e2

h

1

ΩBZ

∑

σ=↑,↓

∫

BZ

dk‖Tσ(k‖, EF ), (1)

where −e is the electron charge, h the Planck constant, and e2/h half the quantum of

conductance. Tσ(k‖, EF ) is the spin-dependent transmission probability from one lead to the

other for electrons at the Fermi energy and with the transverse wave-vector k‖ perpendicular

to the current flow (here we assume that the two spin-components do not mix). The integral

over k‖ goes over the Brillouin zone (BZ) perpendicular to the transport direction, and ΩBZ is

the area of the BZ. In the case when the interaction between electrons involved in transport

is completely neglected, the transmission for a given energy, E, of the incident electrons can

be evaluated as [39]

Tσ(k‖, E) = Tr
[

Γσ
L(k‖, E)Gσ†(k‖, E)Γσ

R(k‖, E)Gσ(k‖, E)
]

, (2)

where Gσ(k‖, E) is the retarded Green’s function of the scattering region coupled to the

leads,

Gσ(k‖, E) =
[

ǫ+S(k‖)−Hσ(k‖)−Σσ
L(k‖, E)−Σσ

R(k‖, E)
]−1

. (3)

All terms presented are matrices [Gσ(k‖, E)]µν , labelled by the global indices µ, ν which run

through the basis functions at all atomic positions in the scattering region. S(k‖) represents

the orbital overlap matrix, and the energy shift into the complex plane, ǫ+ = limδ→0+(E+iδ),

has been introduced to respect causality. Hσ(k‖) is the Hamiltonian of the scattering

region for spin σ; the right and left self-energies Σσ
R(k‖, E) and Σσ

L(k‖, E) describe the

energy-, momentum- and spin-dependent hybridization of the scattering region with the

left and right leads, respectively [29]. Therefore, Gσ(k‖, E) is formally the retarded Green

function associated to the effective, non-hermitian Hamiltonian Hσ
eff(k‖, E) = Hσ(k‖) −

Σσ
L(k‖, E)−Σσ

R(k‖, E), in which the self-energies act as external energy-, momentum- and

spin-dependent potentials. In Eq. (2), Γσ
L(R)(k‖, E) = i

[

Σσ
L(R)(k‖, E) − Σ

σ†
L(R)(k‖, E)

]

is

the so-called left (right) broadening matrix that accounts for the hybridization-induced

broadening of the single-particle energy levels of the scattering region. Importantly, for

non-interacting electrons, it has been proved that the Landauer and the Kubo approaches

are equivalent [40], so that the linear-response transport properties of a system can be com-

puted with either formalism. During the last few years, the Landauer approach has been
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systematically applied in conjunction with DFT in order to perform calculations of the con-

ductance of different classes of real nano-devices [41]. In this combination the DFT provides a

single-particle theory in which the Kohn-Sham eigenstates are interpreted as single-particle

excitations. Although this approach is only valid approximatively, DFT-based transport

studies have provided insightful results concerning the role of the band-structure in the

electron transport process through layered heterostructures [1, 2, 42–44].

With the effect of the electron-electron interaction beyond the DFT explicitly considered,

the retarded Green’s function of Eq. (3) is replaced by the following one, carrying the

subscript “MB” for “many-body”:

Gσ
MB(k‖, E) =

[

ǫ+S(k‖)−Hσ(k‖)−Σσ
L(k‖, E)−Σσ

R(k‖, E)−Σσ
MB(k‖, E)

]−1
. (4)

Here, Σσ
MB(k‖, E) is the many-body self-energy defined through the Dyson equation

Σσ
MB(k‖, E) = Gσ(k‖, E)−1 − Gσ

MB(k‖, E)−1 [38]. This accounts for all electron-electron

interaction effects neglected in Gσ(k‖, E). The self-energy acts as a spin-, momentum-

and energy-dependent potential, whose imaginary part produces a broadening of the single-

particle states due to finite electron-electron lifetime. In this work, the many-body self-

energy is computed at the DMFT level, meaning that Σσ
MB(k‖, E) is approximated by a k-

independent quantity Σσ
MB(E), i.e., a spatially local but energy-dependent potential. Then,

as suggested by Jacob et al. [31, 32], the conductance and the transmission probability

are obtained within the Landauer approach by using Eqs. (1) and (2), where one replaces

Gσ(k‖, E) by Gσ
MB(k‖, E). This is an approximation, since it neglects vertex corrections due

to in-scattering processes [45, 46], which in general increases the conductivity. But we are

not aware of any established method to compute those vertex corrections to linear-response

transport within the considered framework. In our approach the Landauer transmission

is calculated using the improved DMFT electronic structure, rather than the DFT one.

Note that the DMFT provides the single-particle excitations of the system, whereas the

Kohn-Sham DFT eigenvalues formally do not reveal such quasiparticle states.

B. DMFT-based computational approach

The transport calculations are performed according to the Green’s function scheme pre-

sented above by using the DFT-based transport code smeagol [21, 28, 29]. The many-body
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self-energy entering in Eq. (4) is calculated using the EMTO-DMFT method [34–36, 47]

within a screened KKR [37] approach. In both codes the Perdew-Burke-Ernzerhof (PBE)

GGA [48] for the exchange-correlation density functional is used. Self-consistent DFT cal-

culations are performed separately in smeagol and in the EMTO-code. The many-body

self-energy is then evaluated after self-consistency in the EMTO-code, and passed to the

smeagol Green’s function to compute the transmission along Eq. (2). The smeagol im-

ports the DFT Hamiltonian from the siesta code [33], which uses pseudopotentials and

expands the wave functions of valence electrons over the basis of numerical atomic orbitals

(NAOs). The EMTO code, in its turn, uses the muffin-tin construction; we present a de-

tailed description of the projection of quantities such as the many-body self-energy from the

EMTO basis set into the NAO basis set (smeagol/siesta) in the Appendix.

For the EMTO-DMFT calculations, the following multi-orbital on-site in-

teraction term is added to the GGA Hamiltonian in the EMTO basis:

1
2

∑

i{m,σ} Umm′m′′m′′′c†imσc
†
im′σ′cim′′′σ′cim′′σ. Here, cimσ(c

†
imσ) destroys (creates) an elec-

tron with spin σ on orbital m at the site i. The Coulomb matrix elements Umm′m′′m′′′

are expressed in the standard way [49] in terms of three Kanamori parameters U , U ′ and

J . Then, within DMFT the many-body system is mapped onto a multi-orbital quantum

impurity problem, which corresponds to a set of local degrees of freedom connected to a bath

and obeys a self-consistently condition [23, 24]. In the present work the impurity problem

is solved with a spin-polarized T -matrix fluctuation exchange (SPTF) method [26, 50].

This method was first proposed by Bickers and Scalapino [51] in the context of lattice

models. In practice, it is a perturbative expansion of the self-energy in powers of U ,

with a resummation of a specific classes of diagrams, such as ring diagrams and ladder

diagrams. The expansion remains reliable when the strength of interaction U is smaller

than the bandwidth of the bath, which is fulfilled in the case of Cu-Co-Cu heterostructures

and for the considered values of the Coulomb parameters. The impurity solver we use

is multi-orbital, fully rotationally invariant, and moreover computationally fast, since it

involves matrix operations like inversions and multiplications. The perturbation theory

can be performed either self-consistently, in terms of the fully dressed Green’s function,

or non-self-consistently, as was done in the initial implementations [47, 52]. When the

interaction is small with respect to the bandwidth, no appreciable difference exists between

the non-self-consistent and self-consistent results [53, 54]. This has to be distinguished from
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the DMFT self-consistency, which is employed in both cases. In the present calculation,

we use non-dressed Green’s functions to perform these infinite summation of diagrams.

Moreover, we consider a different treatment of particle-hole (PH) and particle-particle (PP)

channels. The particle-particle (PP) channel is described by the T -matrix approach [55]

which yields renormalization of the effective interaction. This effective interaction is used

explicitly in the particle-hole channel; details of this scheme can be found in Ref. [50]. The

particle-particle contribution to the self-energy is combined with the Hartree-Fock and the

second-order contributions [56]. The many-body self-energy is computed at Matsubara

frequencies ωn = (2n + 1)π/β, where n = 0, 1, 2, ... and β is the inverse temperature. The

Padé [57] analytical continuation is employed to map the self-energies from the Matsubara

frequencies onto real energies, as required in the transmission calculation. Note that

since some parts of the correlation effects are already included in the GGA, the double

counting of some terms has to be corrected. To this end, we start with the GGA electronic

structure and replace the obtained Σσ
MB(E) by Σσ

MB(E) − Σσ
MB(0) in all equations of the

GGA+DMFT method [58], the energy E here being relative to the Fermi energy. This is a

common double-counting correction for treating metals; a more detailed description can be

found in [59].

C. Cu-Co-Cu heterostructure setup

The basis set used in the siesta and smeagol calculations is of “double-zeta with

polarization” (DZP) quality. In the “standard” Siesta basis construction algorithm, there

is an “energy shift” parameter which allows to control the extent of basis functions on

different atoms in a multi-element system in a balanced way; in our case this parameter was

taken to be 350 meV, resulting in basis functions extending to 6.17 a0 (Cu4s), 3.39 a0 (Cu3d),

and 6.31 a0. (Co4s). For Co3d states, a smaller basis function localization was intentionally

imposed, corresponding to the extention of 4.61 a0, where a0 is the Bohr radius. The basis

functions are usually freely chosen and not subject to optimization; however, in view of their

quite restricted number in Siesta, it often makes sense to look at resulting ground-state

properties of materials as a benchmark for the validity, or sufficiency, of a basis. With the

above settings, the relaxed lattice parameters of pure constituents were found to be a =

3.65 Å (fcc Cu, 1% larger than the experimental value) and a = 2.52 Å, c = 4.06 Å (hcp
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Co, both within 0.5% of experimental values). Moreover the magnetic moment per Co atom

was 1.65 µB (equal to experiment).

In order to calculate the transport properties, semi-infinite leads are attached on both

sides of the scattering region. We consider Cu(111)-cut leads, characterized by the ABCABC

atomic plane repetition into the leads, i.e., along the transport direction henceforth referred

to as z. It is assumed that the ABCABC layer sequence is smoothly continued throughout

the scattering region, including the Co monolayer (see Fig. 1). To model the scattering

region the sequence is repeated and the Co layer is considered to replace the Cu layer.

In smeagol the Hamiltonian of the scattering region is matched to that of the leads at

the boundary of the scattering region, thus implying that whatever perturbation is induced

by a scatterer it has to be confined witin the scattering region. In other words, the simulation

cell needs to contain enough Cu layers on each side of the Co layer to “screen” it completely.

We verified that using seven layers on each side provides a good agreement between the

potential at the boundaries of our setup with the one from the periodic Cu leads calculation.

The resulting cell geometry is shown in Fig. 1: the “Lead”+“Scattering region”+“Lead”

composes the smeagol cell, merging on its two ends with the unperturbed semi-infinite Cu

electrodes. A restricted spatial relaxation within the scattering region was done by Siesta,

whereby the total thickness of this region varied in small steps, and the z-positions of Cu2,

Cu3 and Cu4 layers between the limiting Cu1 and the central Co layer were adjusted till the

forces fell below 0.01 eV/Å. This resulted in interlayer distances of 2.119 Å (Cu1-Cu2 and

Cu2-Cu3), 2.118 Å (Cu3-Cu4) and 2.104 Å (Cu4-Co). The length for the supercell along

the z-direction resulting from the minimization of the cell total energy was 31.619 Å. The

relaxed structural parameters obtained within the GGA were then used in the GGA+DMFT

calculation, and no additional structure relaxation was attempted at the GGA+DMFT level.

III. RESULTS

In this section we discuss the changes in the electronic structure and in the conductance

of a single Co layer sandwiched between semi-infinite Cu electrodes caused by the inclusion

of the Coulomb interaction at the GGA+DMFT level. The chosen values for Coulomb

and exchange parameters for the 3d-Co orbitals are U = 3 eV and J = 0.9 eV, while

no interaction beyond GGA is considered for the 3d-Cu states neither in the scattering
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FIG. 1: (color online) Schematic representation of the supercell used in calculations. The length

of the cell and the distances between Cu1, Cu2, Cu3, Cu4 and Co are given in the text. The unit

cell dimensions of the leads are kept at the relaxed bulk value 3.65 Å.

region nor in the leads. The values of U and J are sometimes used as fitting parameters,

although it is possible, in principle, to compute the dynamic electron-electron interaction

matrix elements with good accuracy [60]. The static limit of the energy-dependent screened

Coulomb interaction leads to a U parameter in the energy range between 2 and 4 eV for all

3d transition metals, with substantial variations related to the choice of the local orbitals

[61]. As the J parameter is not affected by screening it can be calculated directly within

LSDA; it turns out to be about the same for all 3d elements, J ≈ 0.9 eV [49]. The sensitivity

of results to U and J will be briefly addressed towards the end of this section. As regards the

temperature, two values T = 80 K and 200 K are addressed. Smaller temperatures could be

considered; however, this would strongly increase the computational efforts connected with

the analytical continuation of the data onto the real axis.

A. Electronic structure calculations

The total density of states (DOS) for the Cu-Co-Cu heterostructure is shown in Fig. 2(a).

The Co contribution to the total DOS, attributed to the atomic sphere radius of 2.69 a0,

is presented in Fig. 2(b). For comparison we plot in Fig. 2(c) the Co DOS in the bulk fcc

structure, with the same atomic sphere radius.

We start with discussing the features of the electronic structure of bulk Co. For the

majority-spin electrons, the GGA DOS (Fig. 2c) is fully occupied. In the minority spin-

channel, the Fermi level falls between two pronounced peaks at ∼ EF±1 eV. The orbital

occupations are shown in Tab. I. According to the GGA results the majority spin-up channel
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FIG. 2: (Color online) Densities of states calculated by EMTO in relaxed geometries. Dashed black

lines: GGA results; solid red lines: GGA+DMFT results. (a) Total DOS per scattered region; (b)

local DOS per central Co atom of the heterostructure; (c) local DOS per atomic sphere of the same

size in pure fcc bulk cobalt. The values of total and local Co magnetic moments for the scattered

region are indicated in (a).

has a nominal d-occupation of 4.70 while for minority electrons the occupation amounts to

2.87. The s-electrons carry a negligible polarization, while p-electrons are slightly spin-

polarized with a sign opposite to the main d-polarization which establishes a magnetic

moment of 1.74 µB. As a consequence of the local Coulomb interactions parameterized by

U and J within DMFT, the DOS distribution changes considerably. The overall broadening

is strongly modified by the imaginary part of the self-energy. The top of the occupied d-band

in the majority spin channel is shifted closer to the Fermi level, and some redistribution of

the spectral weight occurs. These changes do not noticeably affect the occupation of s-

orbitals, however, the magnetic moment, mostly due to d electrons, is significantly reduced

from 1.74 µB to 1.41 µB.

Essentially the correlation effects are determined not only by the magnitude of the local

Coulomb parameters (U, J), but also by the orbital occupations. It was argued [62, 63]

that electronic interactions may lead to the creation of either a majority-spin or a minority-

spin hole. As the majority-spin channel is essentially full, there is effectively no space for
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TABLE I: Orbital occupations and magnetic moments for the Cu-Co-Cu heterostructure and bulk

Co-fcc. The DMFT calculations have been performed for T = 200 K, U = 3 eV, J = 0.9 eV.

nGGA MGGA nDMFT MDMFT

Atom s(↓/↑) p(↓/↑) d(↓/↑) (µB) s(↓/↑) p(↓/↑) d(↓/↑) (µB)

Co bulk-fcc:

Co: (0.34/0.33) (0.39/0.31) (2.87/4.70) 1.74 (0.34/0.33) (0.38/0.35) (3.04/4.50) 1.41

Cu4CoCu4 scattering region:

Cu1-3: (0.36/0.36) (0.33/0.33) (4.78/4.78) 0.00 (0.39/0.39) (0.45/0.45) (4.72/4.72) 0.00

Cu4: (0.36/0.36) (0.36/0.33) (4.76/4.79) 0.00 (0.38/0.37) (0.42/0.39) (4.58/4.65) 0.02

Co: (0.33/0.32) (0.33/0.31) (2.96/4.63) 1.63 (0.32/0.33) (0.33/0.37) (2.70/4.13) 1.48

excitations just across the Fermi level. On the contrary, in the minority-spin channel one

finds a high density of electrons which can be immediately excited, leaving back holes. Such

an occupation asymmetry has consequences concerning possible interaction channels in the

multi-orbital Hubbard model: A majority-spin hole can only scatter with opposite-spin

particles, which would cost an effective interaction U , while a minority-spin hole may also

scatter with parallel-spin particles with the effective interaction U − J < U [64]. Therefore

correlation effects are expected to manifest themselves differently for majority- and minority-

spin electrons.

Many DOS features of Co in the heterostructure geometry (Fig. 2b) resemble those of

bulk cobalt (Fig. 2c), the occupation numbers of which are also given in Tab. I. As expected,

the spin polarization in s- and p-channels is very small; moreover it is opposite to the d-

electrons, yielding an overall magnetic moment of 1.63 µB. As compared to the GGA case

for the central Co layer of the heterostructure, in GGA+DMFT the Co s- and p-electron

spin polarization changes sign, and the d-electrons spin splitting decreases. In the Cu-Co-Cu

heterostructure geometry the Co-d orbitals experience hybridization with the neighboring

Cu-d orbitals which leads to a change in the DOS of the Cu-layer in the vicinity of the

Co-layer.

Figure 3 depicts the local DOS of the Cu atom closest to the Co monolayer (indicated

Cu4 in Table I). Even as no on-site interaction terms have been added to the 3d-Cu states,

the Co self-energy has a large impact on the GGA-DMFT density of states. In fact, the 3d-
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FIG. 3: (Color online) Orbital resolved DOS for Cu4 in the Cu4CoCu4 heterostructure computed

within the GGA (black-dashed line) and GGA+DMFT (red solid line) for U = 3 eV and J = 0.9 eV.

Cu4 states are strongly coupled with the correlated 3d-Co states and are dragged towards

the Fermi energy, thus increasing the hybridization with the 4s- and 4p-Cu4 states. In

contrast, the three outmost (from Co) copper layers Cu3, Cu2, Cu1 have very similar orbital

occupations which slightly differ from those of the Cu4. The inclusion of interaction in the

spirit of DMFT has only a slight effect upon the orbital occupations within Cu3, Cu2, and

Cu1 as compared to Cu4 (see Table I). Essentially the 4s- and 4p-Cu4 orbitals slightly

increase in occupation, while 3d-orbitals are depleted accordingly. At the same time, the

minority/majority spin contrast gets enhanced: from 4.76/4.79 in GGA to 4.58/4.65 in

GGA+DMFT. The spectral weight transfer in the Co layer – a consequence of electron

correlations – modifies slightly, through d− d hybridization, the spin asymmetry in d-holes

of the closest copper layer inducing a magnetic moment.

We note that the temperature dependence of the DOS is negligible, and the effectiveness

of electronic correlations is not significantly different in the heterostructure, as compared to

the case of pure-Co fcc bulk.

These changes are typical for correlation effects in transition metals, where the self-

energy near the Fermi level has Fermi-liquid character: for the imaginary part, we have

−ImΣσ
MB,α(E) ∝ E2, whereas the real part has negative slope, ∂ReΣσ

MB,α(E)/∂E < 0. Here

E is the energy relative to the Fermi level, and α numbers the three groups of d states
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TABLE II: Effective mass enhancements (m∗/m)↑,↓ for different bands of d-symmetry, calculated

according to Eq. (5) as a function of the Coulomb and the exchange parameter, U and J .

U (eV) J (eV) xy↓ yz↓ z2↓ xy↑ yz↑ z2↑

1 0.3 1.551 1.703 1.617 1.578 1.737 1.656

2 0.6 1.625 1.797 1.698 1.654 1.837 1.743

3 0.9 1.661 1.791 1.703 1.697 1.856 1.753

in hexagonal symmetry, (z2), (xz, yz) and (x2 − y2, xy). From the self-energy we can also

evaluate the mass enhancement [38], which within DMFT amounts to
(

m∗

mb

)σ

α

= 1− ∂

∂E
Re Σσ,α

MB(E), (5)

where mb represents the band-mass obtained within the GGA calculations.

The values are given in Table II, and we note that the enhancement factors for all orbitals

are similar, in the range of 1.6− 1.8, which indicates that the system is medium-correlated.

B. Transport properties

Turning to transport properties, we display in Fig. 4(a) the total and spin-resolved trans-

mission probabilities computed with GGA and GGA+DMFT. The spin-resolved transmis-

sion probability, Tσ(E), is obtained from the k-dependent transmission, Eq. (2), by integrat-

ing over all k‖-points, so that Tσ(E) = 1
ΩBZ

∫

BZ
dk‖Tσ(k‖, E). By inspecting Fig. 4(a) it can

be seen that the overall transmission is a smooth function of energy, and has a rather large

value of about 0.5 e2/h in both spin channels for most considered energies, which reflects

the fact that we deal with an all-metal junction. In GGA the transport is mainly dominated

by the Cu-4s, -4p states, which are transmitted across the Co layer passing through the

Co 4s states, while the Co 3d states do not contribute significantly to the transmission in

this energy range. The Cu 3d states contribute to the transmission only at energies below

−1.5 eV. Note that the GGA+DMFT transmission is always smaller than the GGA one.

The black arrows in Fig. 4(a) indicate the energies at which a significant departure between

the GGA+DMFT and the GGA transmission is observed. Specifically, the spin down trans-

mission drops at about 0.3 eV below the Fermi level, where the Co 3d DOS is high in the

DMFT results, while the GGA transmission stays rather constant. In contrast, the spin-up
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transmission shows a “bump”, which extends over a region of about 2 eV around the Fermi

level. The slight dip within this bump at about −0.5 eV is at the same energy as the peak

in the Co 3d DOS, and represents a Fano-type reduction of transmission in such a metallic

system due to interference of electrons in different conducting channels [31, 32, 65]. In our

calculations this feature is a consequence of electronic correlations on the Co atom, which

through the d− d hybridization induce spin-polarization of the 3d-Cu4 states and simulta-

neously produce the shift in the DOS of Fig. 3. In general, we note that for such all-metal

systems the relation between DOS and transmission is non-trivial, since interference effects

can lead to enhanced transmission also for energies with low DOS; alternatively, for high

DOS the increased number of pathways for electrons can lead to a decrease of transmission.

From a many-body perspective, the added self-energy contributes in dephasing the elec-

trons during the flow through the scattering region, so that the Landauer transmission

computed with the many-body Green’s function is expected to be reduced in comparison

with the DFT case. In principle, the opposite effect, namely the effective in-flow of elec-

trons from the many-body self-energy “electrode” into the scattering region, would tend to

increase the transmission. However, this in-flow process is not included in our calculations,

as it is related to the vertex corrections [45].

The spin polarization of the transmission is computed according to the formula

p(EF) =
T↑(EF )− T↓(EF )

T↑(EF ) + T↓(EF )
, (6)

for either DFT, or DFT+DMFT, where Tσ=↑,↓ is the transmission for the spin channel σ.

The spin polarization in transmission obtained by GGA yields pGGA(EF ) = 0.18 [see also

Fig. 4(b)], while the GGA+DMFT value reaches 0.33 at the Fermi level, and increases up to

almost 0.8 at slightly lower energies. These results demostrate that electronic correlations

may be decisive and lead to an increase in the spin polarization of transmission. As seen

in Fig. 4(b), the enhancement in the spin polarization with respect to the GGA result

is essentially temperature independent in the energy range of EF ± 0.5eV. Therefore we

conclude that the enhanced spin contrast in transmission is a many-body effect rather than

a temperature fluctuation effect.

Finally, we test how the results for the transmission depend on the strength of the local

Coulomb interaction parameters U and J . The interaction matrix elements Umm′m′′m′′′ are

usually parametrized using Slater integrals (F k) with k = 0, 2, 4 [49]. Accordingly the
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FIG. 4: (Color online) Left: Spin-resolved transmission: majority-spins T↑ (upper panel), mi-

nority spins T↓ (middle panel) and total (lower panel). Black-dashed/red-solid lines are the

GGA/GGA+DMFT results. Right: Transmission spin polarization around the Fermi energy GGA

(black-dashed) and at finite temperatures T=80K (red-dotted-dashed), T = 200 K(blue solid).

The Coulomb and exchange parameters are U = 3 eV, J = 0.9 eV.

Hubbard U parameter is constructed as a simple average over all possible pairs of correlated

orbitals and is identified with the Slater integral U = F 0. The other Slater integrals F 2, F 4

are fitted to the multiplet structure measured in X-ray photoemision [66]. An empiric

relation has been introduced which connects the magnitude of the second and forth order

Slater integrals, F 4/F 2 ≈ 0.625 [67]. The Hund’s exchange J is expressed in terms of F 2 and

F 4 which for the d-shell takes the form J = (F 2+F 4)/14 [68], therefore the knowledge of the

(U, J)-pair allows to compute all the matrix elements Umm′m′′m′′′ . In Fig. 5(a) we plot the

transmission (computed at 200 K) keeping the ratio U/J = 1.0/0.3 constant. While scaling

the ratio α · U/J with α = 1, 2, 3 we observe a monothonic reduction of the transmission

at the Fermi level. This result is expected, as the matrix elements of the interaction are

scalled in magnitude. In the same time, larger mass enhancement factors are obtained as

α increases (see Tab. I). Consequently we may conclude that the heavier the electron is,

the smaller is the transmission at the Fermi level. Within ±0.15 eV of the Fermi level, a

flat region in the transmission can be seen. Beyond these ranges, we note that below the

Fermi level, down to −1 eV from it, the transmission decreases almost indiscriminately for
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FIG. 5: (Color online) Transmission for different values of Coulomb parameters: (a) with a fixed

ratio U/J , (b) fixed J and (c) fixed U , at T = 200 K.

different values of (U, J). In the positive energy range up to roughly +1 eV, on the contrary,

the transmission values differ, with larger (U, J) resulting in lower transmission.

In Fig. 5(b) we display the dependence on parameters differently keeping J = 0.9, eV

constant and varying U . We note that with higher U , the flat region centered at EF shrinks

a bit, which can be traced back to a stronger presence of d orbitals in the correlated trans-

mission. The inset of Fig. 5(b) depicts the “contrast” or spin difference in transmission:

∆T (E) = T↑(E) − T↓(E). The spin contrast changes slope as U varies, from markedly

positive d(∆T )/dE at EF for U = 2 eV to roughly zero for U = 3 eV.

In Fig. 5(c), on the contrary, the U parameter is kept fixed to a “good” (yielding large

flat region) value U = 3 eV, and two different values are taken for the J parameter. On

increasing J , the flat region around EF gets further reduced. Simultaneously (as seen in the

inset and contrary to the behavior depicted in Fig. 5b), ∆T (E) acquires a negative slope.

The change in the slope is potentially an interesting effect to be exploited in thermoelectric

transport.
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IV. CONCLUSION

In this work we studied the effects of local electronic interactions and finite temperatures

upon the transmission across the Cu4CoCu4 metallic heterostructure. Electronic structure

calculations were performed using GGA and GGA+DMFT, assuming a local Coulomb in-

teraction in the Co layer. We used a fully rotationally invariant Coulomb interaction on

cobalt d-orbitals. The effective mass enhancement ratio for all orbitals is in the range of 1.6

to 1.8, suggesting that we deal with medium correlated system. Concerning the density of

states, the presence of Coulomb interactions leads to a shift of the majority-spin channel of

Co d-orbitals towards the Fermi level and to a redistribution of the spectral weights. In the

minority spin-channel, the changes are less pronounced. This difference leads to different

correlation effects for the majority- and minority-spin electrons. All these causes a decrease

of the overall Co magnetic moment (with a predominant d character) from 1.63 µB (GGA)to

1.48 µB (GGA+DMFT).

The transmission probability has been computed combining two different ab-initio codes,

EMTO and Siesta/Smeagol. In order to transfer the many-body self-energy computed

within the EMTO code into Siesta/Smeagol, we used a nearly unitary transformation

which can be determined by requiring that the expectation value of the occupation matrix

should be representation independent. The methodology was illustrated for a two-orbitals

model (see Appendix B) and was carried out numerically for the Cu4CoCu4 heterostructure.

Note that such a transformation is rather general and can be used in transfering quantities

between two different implementations. Several tests confirmed that the proposed method is

robust and numerically stable. With this combination of methods we have studied the trans-

mission as a function of temperature and Coulomb parameters, which reveals the metallic

character of the system considered. Substantial differences in the conducting processes, re-

lated to the presence of local Coulomb interaction in the cobalt layer were observed, due to

changes in the electronic structure. Generally the transmission decreases with interaction,

although the relation between changes in the electronic configuration and the transmission

is highly non-trivial, due to interference effects. With electron correlations properly taken

into account, the total transmission at the Fermi level drops by about 20%, whereas its spin

polarization (spin contrast) increases by about 40%. These effects are entirely a consequence

of the electronic correlation, since the transmission is practically temperature independent
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in the range of EF ± 0.5 eV. This suggest that the enhanced spin contrast in transmission is

fully a many-body effect. In order to quantify the spin polarization effects in the transmis-

sion, we studied the transmission difference ∆T (E). This quantity clearly displays a strong

dependence on the Coulomb parameters.

In conclusion, we have shown that electronic correlations may considerably affect the

transmission and spin filter properties of heterostructures, even though the correlations

would be classified only as “medium” when considering the effective mass enhancement.

Hence results based on studies neglecting electronic correlations, which are numerous, must

be interpreted with caution.
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APPENDIX

Appendix A: SIESTA and EMTO density of states

Inorder to demonstrate the reliability of both codes concerning the electronic structures,

we present below the density of states for the heterostructure (Fig. 6). A rather good

agreement is apparent.
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FIG. 6: (color online) Total (unit cell) and Co density of states computed within the Siesta and

EMTO technique.

Appendix B: Matrix elements of the self-energy in the NAO basis set

The matrix representation of the self-energy operator is determined by the chosen ba-

sis. Within the EMTO basis set it has the form δRR′Σ̃σ
RL,RL′(z). Here R and R′ are site

indices while the L symbol labels the orbital quantum numbers. To compute the transmis-

sion/conductance it is desirable to work within the Siesta/Smeagol basis. We emphasize

that the major part of calculation is done within the Siesta+Smeagol package.

Since significant methodological differences exists between Siesta and EMTO, in the

following we discuss the methodology of data transfer between the two codes. We describe

briefly the most significant differences. The former (Siesta) implementation uses norm-

conserving pseudopotentials, whereas the latter (EMTO) uses an all-electron formulation.

Siesta uses no shape approximation with respect to the potential, whereas EMTO relies

on the muffin-tin concept [34, 36]. Basis functions in Siesta are atom-centered numerical
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functions, whose angular parts are spherical harmonics, and radial parts are strictly confined

numerical functions. A tradition finding its origins in quantum chemistry suggests that, in

order to improve variational freedom of the basis set, more than one radial function is

adopted into the basis for a given angular combination (l, m), referred to as “multiple-ζ”

basis orbitals.

Even as Siesta maintains flexibility in constructing the basis set out of different “zetas”,

possibly including moreover “polarization orbitals” and allowing a variety of schemes to

enforce confinement, we shall stick in the following to the case of just “double-ζ”, i.e.,

2×5 = 10 basis functions, provided to accurately describe the 3d states on each cobalt atom.

We shall fix some notation for further reference. The cumulate index of a basis function

will be µ≡{Ilmζ}, where I indicates the atom carrying the basis function, ζ numbers the

“zeta”s (= 1 or 2 in our case), and the (l, m) is the conventional angular moment index. It

should be noted, however, that Siesta employs real combinations of “standard” spherical

harmonics, so that the indices m = −2 through 2 for l = 2 correspond to xy, yz, 3z2−r2,

xz and x2−y2 d-functions, correspondingly. With the above notation, the ith eigenstate of

the Kohn–Sham Hamiltonian will expand into the basis functions φµ as follows:

Ψi(r) =
∑

µ

cµi φµ(r−RI) , (B1)

and the variational principle yields the expansion coefficients [33]. Within the EMTO, the

d-orbitals manifold is constructed using a basis set with real harmonics (physical orbitals

representation), and the occupation matrix is obtained integrating the complex contour

Green’s function (properly normalized path operator) in terms of the exact muffin-tin orbitals

ΨRL(ǫ, r) corresponding to the energy ǫ [34–36]. On the other hand, in Siesta the numerical

basis set is not restricted to the physical orbitals and allows the definition of simple/double

ζ “atomic-like” representations. Enhancing the numerical atomic orbitals basis vectors does

not affect the dimension of the vector spaces (in both cases the d-subspace), however, it

complicates the algebra for the transformation matrix. The transformation involves the

double zeta basis set, φµ, which for the L(l, m)-manifold contains 2(2l + 1) components

splitted into the first (2l+1)−single-zeta and the second (2l+1)−double-zeta components.

First we write the explicit form for the EMTO orbital in a vector form for the L(l = 2, m =

2l+1) subspace |ΨRL(ǫ, r)〉, and the corresponding Siesta basis vector in the double ζ-basis,

|φRL(r)〉 = (φ1ζ(r), φ2ζ(r)). The general transformation matrix V 1ζ,2ζ
mi,mj

(ǫ) is defined as the
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inner products of ΨR′L′(ǫ, r) with Siesta’s double-ζ basis, and takes the form of a dyadic

product:

V 1ζ,2ζ
mi,mj

(ǫ) = 〈ΨR′L′(ǫ, r)| ⊗ |φRL(r)〉 = |ΨRL(ǫ, r)〉T |φRL(r)〉 (B2)

=





V 1ζ
mi,mj

(ǫ)

V 2ζ
mi,mj

(ǫ)





The definition Eq. (B2) for the V matrix suggests the possibility of an explicit construc-

tion. However, a couple of obvious ambiguities may arise: (i) the transformation carries an

energy dependence originating from the energy dependence of the EMTO orbitals [34–36],

in contrast to the NAO basis set that is energy independent; (ii) normalization of the scat-

tering path operator of EMTO is performed in a particular screened representation [34–36],

a more involved procedure in comparison with the straight normalization of the NAO basis

set.

Moreover, it is important to keep in mind that the closure relations that are typically

used to build the matrix transformations are valid on the Hilbert space spanned by the

eigenvectors of the Hamiltonian. These relations hold exactly for the numerical results of

each code separately; nevertheless, the numerical results produced by different codes are not

identical in the mathematical sense. Small differences between the observables computed

with different codes may exist due to various factors – from unwanted numerical roundoff

errors to incompleteness of the basis sets. This indicates that the closure relation for the

Hilbert space of the EMTO will not be exact (in the mathematical since) when used in

the Hilbert space spanned by the eigenvectors of Siesta. Consequently, we expect that

the transformation matrix will fulfill the usual requirements (i.e., unitarity) only within

numerical inaccuracies.

In view of these formal difficulties in obtaining a basis transformation to match a multiple

scattering method with a Hamiltonian based scheme we propose an approach using the fact

that expectation values should be independent of the specific representation. We apply

this fundamental concept of quantum mechanics to the orbital occupation matrix (density

matrix, nmi,mj
) for the d-manifold (i.e., mi, mj = 1, ..., 5), and we look for a formally similar

matrix transformation W :

(

W 1ζ
mj ,mi

W 2ζ
mj ,mi

)

nEMTO
mimj





W 1ζ
mi,mj

W 2ζ
mi,mj



 = nSIESTA
mi,mj

(B3)
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Equation (B3) provides us with a system of equations to determine the matrix elements

of W numerically. Indeed, by inspecting the diagonal elements of the occupation matrix

for the xy, yz, z2 − r2, xz and x2 − y2 orbitals respectively, we obtained the data shown

in Table III. One should note that in the physical-EMTO basis the occupation matrix is

diagonal. The corresponding Siesta occupation matrix has non-diagonal elements that are

about two orders of magnitude smaller than the diagonal ones. While the symmetry and the

mi = xy yz z2 − r2 zx x2 − y2

nEMTO
mi,mi

↑ 0.629 0.526 0.658 0.526 0.629

↓ 0.922 0.925 0.908 0.925 0.922

nSiesta
mi,mi

↑ 0.639 0.485 0.784 0.485 0.639

↓ 0.935 0.952 0.924 0.952 0.935

TABLE III: Occupation matrix of Co-d orbitals in the Co/Cu heterostructure

qualitative trends in the occupations are the same, the exact numerical values are not. In

other words, Eq. (B3) is an approximative (numerical) relation, however, the resulting W

matrix reflects the symmetry of nmi,mi
. The non-zero elements on the diagonal are close to

1 for the first-ζ block and take small imaginary values for the second-ζ one. The equations

Eq. (C1) and (C4) provide explicit values.

Accordingly, given the matrix elements for the transformation matrix, the self-energy

generated in the EMTO-basis set can be transferred to the double(multiple)-zeta Siesta

basis set according to

ΣSIESTA = WΣEMTOW †. (B4)

In the following, we give simple examples to illustrate the self-energy transformation from

the physical into a numerical double-zeta basis.

1. Example: a two orbital model in the cubic symmetry

We consider a simplified case of a diagonal self-energy corresponding to a two orbital

model in the cubic symmetry. The self-energy and the “occupation” matrix can be written

as:

ΣEMTO(z) =





Σ1 0

0 Σ2



 ; nEMTO =





n1 0

0 n2



 . (B5)
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In such a case all inner products of the type 〈Ψmi
(ǫ, r)|φζ1

mj
(r)〉 are zero unless mi = mj ,

such that the transformation matrix has a generic form:

W 1ζ,2ζ
mi,mi

(ǫ) =















W 1ζ
11 0

0 W 1ζ
22

W 2ζ
11 0

0 W 2ζ
22















. (B6)

Re-writing Eq. (B3):















W 1ζ
11 0

0 W 1ζ
22

W 2ζ
11 0

0 W 2ζ
22















·





n1 0

0 n2



 ·





W 1ζ
11 0 W 2ζ

11 0

0 W 1ζ
22 0 W 2ζ

22



 =















ñ1ζ
1 0 0 0

0 ñ1ζ
2 0 0

0 0 ñ2ζ
1 0

0 0 0 ñ2ζ
2















(B7)

one finds

W 1ζ,2ζ
mi,mi

(ǫ) =

















√
ñ
1ζ
1√

n1
0

0

√
ñ
1ζ
2√

n2√
ñ
2ζ
1√

n1
0

0

√
ñ
2ζ
2√

n2

















, (B8)

and accordingly the self-energy in the NAO basis-set has the form:

Σ =

















Σ1
ñ
1ζ
1

n1
0 Σ1

√
ñ
1ζ
1
ñ
2ζ
1

n1
0

0 Σ2
ñ
1ζ
2

n2
0 Σ2

√
ñ
1ζ
2
ñ
2ζ
2

n2

Σ1

√
ñ
1ζ
1
ñ
2ζ
1

n1
0 Σ1

ñ
2ζ
1

n1
0

0 Σ2

√
ñ
1ζ
2
ñ
2ζ
2

n2
0 Σ2

ñ
2ζ
2

n2

















=





Σ1ζ,1ζ Σ1ζ,2ζ

Σ2ζ,1ζ Σ2ζ,2ζ



 (B9)

in which every Σiζ,jζ is a 2 × 2 block-diagonal matrix. There are a couple of conclusions

to be drawn from the above simplified example: (i) as a consequence of the reduced weight

in the second ζ occupation (at least 10 times smaller that in the single ζ), the magnitude

of the matrix elements of the self-energy in the NAO basis set follow the relation Σ1ζ,1ζ >

Σ1ζ,2ζ > Σ2ζ,2ζ ; (ii) the existence of only-diagonal orbital occupations does not imply the

existence of an unitary transformation, except for the case of numerical identical values

for the occupation matrices in both basis. These observations do not change when the

symmetry is lower than cubic and non-zero matrix elements on the non-diagonal of the

occupation matrix appear.
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Appendix C: Transformation matrix for the Co-d manifold in the Cu-Co-Cu het-

erostructure

This section provides the spin-resolved matrix elements, Wσ=↑,↓, used in the calculation.

W↑ =



















































1.024 0 0 0 0

0 0.987 0 0 0

0 0 1.096 0 0

0 0 0 0.985 0

0 0 0 0 1.024

0.178i 0 0 0 0

0 0.218i 0 0 0

0 0 0 0 0

0 0 0 0.218i 0

0 0 0 0 0.178i



















































. (C1)

The orthogonality can be checked using the following relations:

W †
↑W↑ =





















1.016 0 0 0 0

0 0.922 0 0 0

0 0 1.202 0 0

0 0 0 0.922 0

0 0 0 0 1.016





















(C2)

and

W↑W
†

↑ =



















































1.048 0 0 0 0 0.182i 0 0 0 0

0 0.970 0 0 0 0 0.215i 0 0 0

0 0 1.202 0 0 0 0 0 0 0

0 0 0 0.970 0 0 0 0 0.215i 0

0 0 0 0 1.047 0 0 0 0 0.182i

0.182i 0 0 0 0 −0.032 0 0 0 0

0 0.215i 0 0 0 0 −0.048 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0.215i 0 0 0 0 −0.048 0

0 0 0 0 0.183i 0 0 0 0 −0.032



















































(C3)
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The corresponding transformation matrix for spin-down component reads:

W↓ =



















































0.960 0 0 −0.007 0

0 0.9572 0 0 −0.007

0 0 0.967 0 0

−0.007 0 0 0.957 0

0 −0.007 0 0 0.960

0.304 0 0 −0.002 0

0 0.337 0 0 −0.002

0 0 0.287 0 0

−0.002 0 0 0.337 0

0 −0.002 0 0 0.304



















































(C4)

W †
↓W↓ =





















1.014 0 0 −0.015 0

0 1.029 0 0 −0.015

0 0 1.017 0 0

−0.015 0 0 1.029 0

0 −0.015 0 0 1.014





















(C5)

W↓W
†
↓ =



















































0.922 0 0 −0.014 0 0.292 0 0 0 0

0 0.916 0 0 −0.014 0 0.322 0 0 0

0 0 0.935 0 0 0 0 0.278 0 0

−0.014 0 0 0.916 0 0 0 0 0.322 0

0 −0.014 0 0 0.922 0 0 0 0 0.292

0.297 0 0 0 0 0.092 0 0 0 0

0 0.325 0 0 0 0 0.114 0 0 0

0 0 0.278 0 0 0 0 0.083 0 0

0 0 0 0.325 0 0 0 0 0.114 0

0 0 0 0 0.292 0 0 0 0 0.092



















































(C6)
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Appendix D: Assessment of accuracy

In order to test the effect of the numerical inaccuracies occurring in the transformation

matrix on the final results, we compute the total transmission by using a simplified model

for the transformation matrix:

W 1ζ,2ζ
Model =





W 1ζ

W 2ζ



 , (D1)

where W 1ζ = αI and W 2ζ = βI, where I is the unity matrix. The results for α = 0.9,

β = 0.1; α = 0.5, β = 0.5; and α = 0.1, β = 0.9, respectively are given in Fig. 7. It can be

clearly seen that even for such a crude approximation, the results for the first model (i.e.,

with a significant weight of the self-energy on the first zeta orbital) differ with only a few

percent over large energy domains. For the occupied states, large values for Σ1ζ provide

already a good approximation for the transformation.

-3 -2 -1 0 1 2 3E-E
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 (eV)
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Cu4 Co Cu4

FIG. 7: (color online) Comparison between the transmission functions obtained for different model-

forms of W 1ζ,2ζ .
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[33] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, and P. Ordejón, J. Phys: Condens.

Matter 14, 2745 (2002).

[34] O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000).

[35] L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Comp. Mat. Sci. 18, 24 (2000).

[36] L. Vitos, Phys. Rev. B 64, 014107 (2001).

[37] P. Weinberger, Electron Scattering Theory for Ordered and Disordered Matter (Clarendon

Press, Oxford, 1990).

[38] G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990).

[39] S. Datta, Electronic Transport in Mesoscopic Systems, vol. 3 of Cambridge Studies in Semi-

conductor Physics and Microelectronic Engineering (Cambridge University Press, New York,

1995).

[40] D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

[41] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).

[42] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416

(2001).

[43] I. Rungger, O. Mryasov, and S. Sanvito, Phys. Rev. B 79, 094414 (2009).

[44] N. M. Caffrey, T. Archer, I. Rungger, and S. Sanvito, Phys. Rev. Lett. 109, 226803 (2012).

[45] A. Oguri, J. Phys. Soc. Jpn. 70, 2666 (2001).

[46] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[47] L. Chioncel, L. Vitos, I. A. Abrikosov, J. Kollar, M. I. Katsnelson, and A. I. Lichtenstein,

Phys. Rev. B 67, 235106 (2003).

[48] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[49] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[50] M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B 30, 9 (2002).

[51] N. E. Bickers and D. J. Scalapino, Ann. Phys. (N. Y.) 193, 206 (1989).

28



[52] J. Minár, L. Chioncel, A. Perlov, H. Ebert, M. I. Katsnelson, and A. I. Lichtenstein, Phys.

Rev. B 72, 045125 (2005).

[53] V. Drchal, V. Jani, J. Kudrnovsk, V. S. Oudovenko, X. Dai, K. Haule, and G. Kotliar, J.

Phys.: Condens. Matter 17, 61 (2005).

[54] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti,

Rev. Mod. Phys. 78, 865 (2006).

[55] V. M. Galitski, Zh. Eksper. Teor. Fiz. 34, 1011 (1958).

[56] M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens. Matter 11, 1037 (1999).

[57] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

[58] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001).

[59] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106

(2003).

[60] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein,

Phys. Rev. B 70, 195104 (2004).

[61] T. Miyake and F. Aryasetiawan, Phys. Rev. B 77, 085122 (2008).

[62] S. Monastra, F. Manghi, C. A. Rozzi, C. Arcangeli, E. Wetli, H.-J. Neff, T. Greber, and

J. Osterwalder, Phys. Rev. Lett. 88, 236402 (2002).

[63] A. Grechnev, I. Di Marco, M. I. Katsnelson, A. I. Lichtenstein, J. Wills, and O. Eriksson,

Phys. Rev. B 76, 035107 (2007).

[64] F. Manghi, V. Bellini, J. Osterwalder, T. J. Kreutz, P. Aebi, and C. Arcangeli, Phys. Rev. B

59, R10409 (1999).

[65] M. R. Calvo, J. Fernandez-Rossier, J. J. Palacios, D. J. D. Natelson, and C. Untiedt, Nature

358, 1150 (2009).

[66] V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).

[67] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459

(1990).

[68] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk, and G. A. Sawatzky, Phys. Rev.
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