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ABSTRACT

While three-dimensional measurement technology is spreading fast, its meaningful application to
sedimentary geology still lacks content. Classical shape descriptors (such as axis ratios, circularity of
projection) were not inherently three-dimensional, because no such technology existed. Recently a new
class of three-dimensional descriptors, collectively referred to as mechanical descriptors, has been
introduced and applied for a broad range of sedimentary particles. First-order mechanical descriptors
(registered for each pebble as a pair {S, U} of integers), refer to the respective numbers of stable and
unstable static equilibria and can be reliably detected by hand experiments. However, they have limited
ability of distinction, as the majority of coastal pebbles fall into primary class fS;Ug ¼ f2; 2g. Higher-
order mechanical descriptors offer a more refined distinction. However, for the extraction of these
descriptors (registered as graphs for each pebble), hand measurements are not an option and even
computer-based extraction from 3D scans offers a formidable challenge. Here we not only describe and
implement an algorithm to perform this task, but also apply it to a collection of 271 pebbles with various
lithologies, illustrating that the application of higher-order descriptors is a viable option for geologists.
We also show that the so-far uncharted connection between the two known secondary descriptors, the
so-called Morse–Smale graph and the Reeb-graph, can be established via a third order descriptor which
we call the master graph.
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INTRODUCTION

The shape of sedimentary particles carries an infinite amount of information and we know
that some portion of this is highly relevant for detecting the provenance of the particle
(Domokos, 2018; Novák-Szabó et al., 2018; Szabó et al., 2015). However, picking this relevant
portion may not always be trivial: this is the observer’s prerogative, manifested in the choice
of shape descriptors. This choice is a trade-off between the observer’s ability to reliably
measure the chosen shape descriptor and the observer’s desire to extract maximal infor-
mation. Classical descriptors, such as axis ratios and the isoperimetric ratio (which we discuss
in subsection “Classical descriptors”) rely on hand measurement and two-dimensional image
analysis. They were picked by geologists in the absence of computerized three-dimensional
tools, based on the mentioned trade-off. One recently introduced set of shape descriptors,
called first-order mechanical descriptors (Domokos et al., 2010; Várkonyi and Domokos,
2006), registered for each particle as a pair of integers, can already be regarded as three-
dimensional descriptors but still rely on hand measurements. First-order mechanical de-
scriptors proved to be particularly informative (Domokos, 2018; Domokos et al. 2012b;
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Novák-Szabó et al., 2018) in describing the provenance of
particles (see subsection “The primary mechanical classifi-
cation”, and see also Fig. 3). Their generalizations, also
known as second-order mechanical descriptors (Domokos
et al., 2016a, 2016b; Ludmány et al., 2021; Nicolaescu, 2008),
registered for each particle as a graph (either a so-called
Morse–Smale graph or a so-called Reeb-graph; see subsec-
tion “Higher-order mechanical classifications”; see also
Fig. 4), also appear to be promising tools in sedimentary
geology. However, they are fully three-dimensional de-
scriptors and their measurement has been prohibitive until
now; they could not be applied in either laboratory or field
studies.

The challenge of measuring second-order mechanical
shape descriptors is three-fold:

1. Mathematical challenge: There exist at least two different
kinds of secondary descriptors: Morse–Smale graphs
(Domokos et al., 2016a, 2016b; Ludmány et al., 2021) and
Reeb-graphs (Nicolaescu, 2008). The connection between
these two secondary descriptors has not been determined
until now: that is, it was not clear how the two classifi-
cation schemes are related, whether one of them may be
regarded as a refinement of the other or not.

2. Algorithmic challenge: The extraction of second-order
descriptors from 3D datasets is far from trivial. While
related problems have been solved in image processing
on surfaces defined in orthogonal coordinates (Edels-
brunner et al., 2003), the spherical version of this method
(to be used on particle surfaces) has not been developed.

3. Technological challenge: Obtaining 3D (scanned) datasets
for sedimentary particles in a rapid and reliable manner
appeared to be, until very recently, quite challenging. 3D-
scanning technologies did not offer the option to measure
an object quickly and reliably on the full spherical horizon.

The last-mentioned (technological) challenge appears to
be resolved: as 3D measurement technology is spreading fast
(Rodriguez et al., 2013; Latham et al., 2008; Sun et al., 2014),
it may also soon become the de-facto standard in sedi-
mentary geology (Steer et al., 2022; Fehér et al., 2022).
Encouraged by these developments, our paper takes aim at
the first two challenges. In particular we offer the following:

1. Mathematical results: In subsections “Master graph” we
introduce a third-order mechanical descriptor which we
call the master graph, which establishes a meaningful
connection between second-order mechanical de-
scriptors, the Reeb-graph and the Morse–Smale graph.
We show that neither of them can be derived from the
other, but both can be derived from the master graph. We
will also give a complete third-order description of the
geologically most relevant primary class fS;Ug ¼ f2; 2g,
containing the majority of all coastal pebbles (see also
Table 1 and Fig. 5). In particular, in subsection “Higher-
order mechanical classifications” we will formulate
Lemma 1, claiming that there exist 3 tertiary classes in
the primary class fS;Ug ¼ f2; 2g; we prove this claim in
Section “Equilibrium classes as shape catalogs”.

2. Algorithmic results and application: In Section “Classifi-
cation of natural shapes” we describe a reliable tool to
determine higher-order mechanical descriptors based on
3D point clouds obtained from scans. Here we will
consider all three relevant types of graphs: Morse–Smale
graphs, Reeb-graphs and the master graph. We illustrate
our algorithm in the Supplementary material where we
show both first, second and third-order mechanical de-
scriptors for 271 scanned pebbles of various lithologies.
On these 271 pebbles we identified 29 primary equilibrium
classes, 69 distinct Reeb-graphs, 62 distinct Morse–Smale
graphs and 115 distinct master graphs. In particular,
despite the fact that over 50 pebbles belong to the primary
class f2; 2g, inside it we only identified one Reeb-graph,
one Morse–Smale graph and one single master graph.

Despite the formidable difficulties of their measurement,
higher-order mechanical descriptors appear to be an inter-
esting and inviting tool for geology: they are naturally
encoded in the pebble shape, that is, when we use them in
the description of the pebble, we do not add any arbitrary,
man-made information. They carry deep, essential infor-
mation on the shape and its evolution and thus they might
help to uncover new, surprising connections between peb-
bles and pebble populations. It is not a coincidence that
these concepts have been applied in image processing and
morphology. In this paper we offer the above-mentioned
results and algorithmic tools as the first step towards the
geologic application of these deep, natural shape descriptors.

The structure of the paper is the following: In Section
“Basic concepts” we give intuitive definitions of the basic
concepts and state the above-mentioned Lemma 1. In Sec-
tion “Classification of smooth, convex shapes” we discuss
the previous concepts more rigorously on smooth, convex
shapes. In Section “Classification of convex polyhedra” we
interpret the same concepts in the context of convex poly-
hedra as models of scanned particles. In Section “Equilib-
rium classes as shape catalogs” we prove Lemma 1 and other
mathematical results. Section “Classification of natural
shapes” describes our algorithmic results; in particular, we
show how we can extract higher-order classes from natural
shapes based on 3D scans.

BASIC CONCEPTS

Shape catalogs

If the value of a shape descriptor may assume an interval of
real numbers (such as the value of roundness), then we refer
to it as a continuous descriptor, whereas if it defines discrete
classes (i.e., its set of values is discrete), then we call it a
shape catalog (Zingg classes, discussed below, are an
example). Catalogs (not necessarily of shapes) are funda-
mental tools of scientific progress and they have been
applied broadly in physics (conductors/semiconductors/in-
sulators), chemistry (periodic table) and biology (taxon-
omy). The main advantage of a shape catalog, compared to a
continuous shape descriptor, is that recorded datasets are
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Table 1. Pebbles used in the experiment. Number of pebbles in each primary equilibrium class (top). A pebble from each class in the
geologically most relevant region (bottom)

S

U

1 2 3 4 5 6 7 Sum

1 0 0 0 0 0 0 0 0
2 0 52 32 7 2 0 0 93
3 0 13 28 10 3 1 0 55
4 0 15 28 19 3 1 0 66
5 0 2 10 10 12 1 1 36
6 0 3 5 2 3 0 0 13
7 0 0 0 3 1 1 1 6
8 0 0 0 0 0 2 0 2
Sum 0 85 103 51 24 6 2 271

U
S 2 3 4 5

2

3

4

5
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exact, unambiguous and can be easily interpreted, compared
and understood. Catalogs may be either natural or artificial,
depending on whether classes are separated based on some
natural or some man-made condition. Catalogs may be,
depending on the number of classes, either finite or infinite.
Catalogs may be either complete or incomplete, depending
on whether each class contains shapes or not. Catalogs may
be either biased or uniform, depending on the statistical
distribution of natural shapes among classes (in biased cat-
alogs this distribution is non-uniform). In the case of shape
catalogs it is easy to see that from the geologic point of view
we seek natural, biased classifications (whether or not they
are complete may be more of mathematical interest).

We have not yet applied higher-order mechanical de-
scriptors in field studies; nevertheless, by relying on a small
laboratory dataset of 52 pebbles we argue that their applica-
tion carries substantial potential for geologic insight, as they
offer biased natural catalogs of sedimentary shapes, meaning
they offer naturally defined, discrete classification schemes
where the majority of natural shapes is contained in very few
classes. Such strong bias can not only motivate the search for
particular (rare) natural shapes; it can also offer clues about
the underlying evolution process. The first such strongly
biased natural catalog is associated with first-order mechan-
ical shape descriptors and led to the discovery of a funda-
mental monotonic trend in natural shape evolution, the
monotonic decrease of static balance points (Domokos, 2018;
Novák-Szabó et al., 2018). Below we briefly review classical
shape descriptors as well as mechanical shape descriptors and
explain the concept of biased catalogs in more detail.

Classical descriptors

The most established shape descriptors are, without doubt,
axis ratios (Zingg, 1935) which, for an ellipsoid with axes
a > b > cmay be written as y1 ¼ c=b; y2 ¼ b=a and for non-
ellipsoidal shapes an approximating ellipsoid is considered.
(Note that in the geologic literature ellipsoids are often
represented by semi-axes, rather than full axes. Here we still
adopt the latter notation, in keeping with the notation used
in Zingg’s original work (Zingg, 1935)). An alternative
geologic shape descriptor is roundness (Krumbein, 1941)
which is commonly measured as the isoperimetric ratio
0≤ I ≤ 1 of the pebble’s contour (Szabó et al., 2015; Novák-
Szabó et al., 2018). We will refer to the axis ratios y1, y2 and
the isoperimetric ratio I as classical descriptors. Classical
descriptors are, by definition, real numbers defined on a
continuous domain, so in the sense defined in subsection
“Shape catalogs”, they are continuous descriptors. Such de-
scriptors admit the comparison of sample averages; however,
they do not immediately provide a classification or catalog
for natural shapes which could be based only on integer-type
descriptors. While we are not aware of any existing catalog
for the isoperimetric ratio I, in the case of axis ratios it is
apparent that there is a need for such catalogs: by intro-
ducing the thresholds at y1 ¼ y2 ¼ 2=3, Zingg (1935)
created the first such system, subdividing all shapes into the
four classes called discs, spheres, blades and rods.

Zingg’s catalog, illustrated in Fig. 1, is finite (it defines 4
classes) and it is complete, as each class contains geometric
shapes (in fact, each class contains ellipsoids). On the other
hand, the Zingg classification is artificial, as the threshold
2/3 is an arbitrary choice. One can, of course, study gener-
alized Zingg catalogs where this threshold is being varied
(Domokos et al., 2010); however, there exist an infinite
amount of generalized Zingg catalogs, and it is not clear
which one should be used. Although artificial, the Zingg
classification still has the advantage of offering some bias: in
coastal environments blades and discs appear to be domi-
nant, admitting conclusions about the effects of friction
(Domokos and Gibbons, 2019). We point out that we also
computed the Zingg classes for the laboratory dataset,
shown in the supplementary material.

Mechanical shape descriptors and natural classes

The primary mechanical classification. The primary me-
chanical classification, introduced in Várkonyi and Domokos
(2006) is based on the number of different types of equilibrium
points, that is, positions where the body is at rest when sup-
ported on a horizontal surface, under gravity. When pushed
gently from any direction, the body sitting on a stable equi-
librium returns to its original position, while it tips over from
an unstable equilibrium. We denote the respective numbers
for stable and unstable equilibria by S and U, and we also note
that 3-dimensional objects also have H saddle-type equilibria,
where the behavior depends on the direction of the push.
The mathematical background of the equilibrium points is
the analysis of the radial distance function rK measured
from the center of gravity o of the body K. For planar objects
this is a function rKðφÞ of the single polar angle f while in

Fig. 1. The Zingg catalog
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3 dimensions we have rKðφ; θÞ depending on two angles.
Stable, unstable and saddle points of the body correspond to
the minima, maxima and saddles of this function, respectively.
These concepts are illustrated in Fig. 2 for an ellipse in two-
dimensions and for an ellipsoid in three-dimensions. For the
latter, with main axes a>b>c we can use the following
parameterization in the orientation depicted in Fig. 1:

xðφ; θÞ ¼ b
2
sinθcosφ

yðφ; θÞ ¼ c
2
sinθsinφ

zðφ; θÞ ¼ a
2
cosθ

where 0≤φ<2π and 0≤ θ≤ π. The distance from the ellip-
soid’s center of gravity o is then the Euclidean distance:

rellðφ; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðφ; θÞ � oxÞ2 þ

�
yðφ; θÞ � oy

�2 þ ðzðφ; θÞ � ozÞ2
q

:

(1)

Following a transformation from the spherical coordinate
system to Cartesian coordinates, the function rell has maxima at�
0; 0;±a

2

�
, saddles at

�
±b
2; 0; 0

�
and minima at

�
0;±c

2; 0
�
. We

will return to this example in subsection “Primary equilibrium
classes”, where we give a more rigorous description of the
equilibria of convex surfaces defined by smooth functions. We
also give a more precise definition of equilibria on convex
polyhedra, another well studied subset of convex bodies, later
in Section “Classification of convex polyhedra”. One can also
see Fig. 11 with the equilibria of a regular tetrahedron marked.

The numbers of different types of equilibria are related by
the Poincaré–Hopf formula Sþ U −H ¼ 2 (Milnor, 1963),
so it is sufficient to record S and U and we call the pair {S, U}
the primary equilibrium class of the body (Várkonyi and

Domokos, 2006; Domokos et al., 2016b; Domokos, 2018).
This means that the ellipsoid described by Equation (1) is in
the primary class {2, 2}. The primary mechanical classification
system is illustrated in Fig. 3.

Unlike the Zingg system, the primary mechanical catalog
is infinite, and it is also natural, since we do not make any
arbitrary choices when assigning the primary class {S, U} to
a particular shape; the class is encoded in the shape itself. We
also know that this catalog is complete, meaning no primary
class is empty (Várkonyi and Domokos, 2006). This math-
ematical fact, however, is not related to the statistical dis-
tribution of natural particles: datasets of beach pebbles
classified according to the primary mechanical catalog show
very strong bias, as approximately 70% of all beach pebbles
appear in class fS;Ug ¼ f2; 2g (Domokos et al., 2010),
making {2, 2} the dominant primary class. This fact, along
with analysis of the statistical distribution is key geologic
evidence supporting the theory that the total number
N ¼ Sþ U þH of equilibria is monotonically decreasing in
natural abrasion (Domokos, 2018).

This bias is also present in the dataset with 271 pebbles
we based our results on. Their distribution in the primary
classes is presented in Table 1. We will place special focus on
the class {2, 2} which contains 52 pebbles in our dataset.

While the strong bias in the primary mechanical classifi-
cation is most telling, it also has the drawback that it does not
offer any clue on shapes inside any of the primary classes,
most notably, inside the dominant class fS;Ug ¼ f2; 2g.

Higher-order mechanical classifications. The trivial draw-
back of catalogs is that they do not distinguish between
shapes in one class. This can be remedied by introducing
finer, higher-order catalogs. In case of mechanical de-
scriptors this idea led us to study, beyond the number, also

Fig. 2. Mechanical equilibria as stationary points of the radial distance function r; a) In two-dimensions we have r ¼ rðφÞ and stable and
unstable equilibria appear alternating, in pairs, so we have S5U; b) In three-dimensions we have r ¼ rðφ; θÞ. The respective numbers S, U,
H for stable, unstable and saddle-type equilibria satisfy the Poincaré–Hopf formula Sþ U −H ¼ 2
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the relative locations of equilibrium points. We have two
alternative approaches to this task: we can either apply a
natural, discrete decomposition to the range of the distance
function r ¼ rðφ; θÞ, or, we can apply a natural, discrete
decomposition of its domain. To decompose the range, we
will use saddle points and to decompose the domain, we will
use isolated integral curves of the gradient. In the first case
we arrive at a graph defining a natural hierarchy among
equilibria, in the second case we arrive at a graph defining a
natural arrangement among equilibria. We describe both
graphs below.

The hierarchy among equilibria is based on the value of
the radial distance function, and this information is carried
by the Reeb-graph R(K) associated with the body K (Arnold,
2007). Each point of an edge in the Reeb-graph R(K) cor-
responds to a connected component of the level set
rK ¼ constant. We will define the Reeb-graph more rigor-
ously for smooth functions in subsection “Reeb-graph”,
where we also show how the ellipsoid of Equation (1) is
degenerate due to its symmetry. A similar issue arises with
the regular tetrahedron, an issue we will discuss in Section
“Classification of convex polyhedra” along with the defini-
tion of the Reeb-graph for polyhedra. Slightly moving the
reference point o off all 3 symmetry planes of the ellipsoid
results in the non-degenerate Reeb-graph shown in Fig. 4a.
However, this is not the only Reeb-graph in the primary
class {2, 2}. The number R(S, U) of distinct Reeb-graphs in
each primary class grows exponentially (Arnold, 2007;
Nicolaescu, 2008). Reeb-graphs define a finite, complete
natural catalog inside any primary equilibrium class and of

course they define an infinite catalog if we consider all pri-
mary classes. We call this the R-secondary mechanical clas-
sification scheme. Whether and to what extent R-secondary
classification is biased, we will discuss below.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

j
i

Fig. 3. The primary mechanical catalog, showing examples of shapes with i stable and j unstable static balance points

A

B

Fig. 4. Secondary mechanical descriptors associated with the tri-
axial ellipsoid given in Equation (1) (a) Reeb-graph with center of
mass o slightly offset from symmetry planes. b) Morse–Smale
graph, center of mass o can be located either at the intersection of
symmetry planes or with small offset
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The information on the spatial arrangement of equilibria
can be described by using the isolated integral curves of
the gradient vector field ∇rK (Guckenheimer and Holmes,
1983), which define, as edges, the so-called Morse–Smale
graph M(K) associated with the body K (Domokos et al.,
2016b). The vertices of the Morse–Smale graph are the static
equilibrium points. Morse–Smale graphs have various
equivalent representations, to which we return in subsection
“Morse–Smale graph” where we define the Morse–Smale
graph for smooth functions. Each of these representations
can be enumerated and thus can be associated with an
integer label, the so-called canonical code (Babai and Luks,
1983). A polyhedral version of the Morse–Smale graph also
exists, which will be discussed in Section “Classification of
convex polyhedra”.

The Morse–Smale graph belonging to the ellipsoid in the
previous example is shown in Fig. 4b. However, this is not
the only possible Morse–Smale graph in the primary class
fS;Ug ¼ f2; 2g. The number M(S, U) of distinct Morse–
Smale graphs in each primary class grows approximately
with the exponent p ¼ Sþ U (Kápolnai et al., 2012). Just as
with Reeb-graphs, Morse–Smale graphs define a finite,
complete natural catalog inside any primary equilibrium
class and they define an infinite catalog if we consider all
primary classes. We call this the M-secondary mechanical
classification scheme. As with Reeb-graphs, we will discuss
whether the M-secondary classification is biased.

These R-secondary and M-secondary classification
schemes are independent in the sense that identifying the
class of a body in one system does not locate it in the other
system. To bridge the gap, we will introduce the master
graph G(K) associated with the body K, which carries in-
formation on both the integral curves and the level sets of
the radial distance function and from which both the
M-secondary and the R-secondary classification can be ob-
tained. The master graph will be defined separately for
smooth surfaces in Section “Classification of smooth, convex
shapes” and for polyhedra in Section “Classification of

convex polyhedra”. We will call the scheme defined by the
master graph the tertiary mechanical classification, defining
up to MðS;UÞ$RðS;UÞ tertiary classes in the primary class
{S, U}. We will denote their exact number by G(S, U). Inside
any primary class {S, U}, the tertiary scheme defines a nat-
ural, finite catalog. However, unlike any previous catalog,
the tertiary classification is incomplete, as there exist pairs
of Reeb-graphs and Morse–Smale graphs in the same pri-
mary class which cannot belong to the same object. We
will illustrate the tertiary classification scheme on the pri-
mary class fS;Ug ¼ f2; 2g and explain its significance.
In particular, in Section “Equilibrium classes as shape
catalogs” we will prove

Lemma 1:

Gð2; 2Þ ¼ 3

For an example, see Fig. 5 showing the possible sec-
ondary and tertiary classes in the primary class with 2 stable
and 2 unstable points. A more detailed view of this primary
class and its higher order subclasses will be presented later in
Table 2.

While these higher order classifications are most prom-
ising, the main obstacle in their application was that they
cannot be reliably identified by hand experiments, and there
was no reliable algorithm and no computer-based tool to
extract them from natural shapes. The first main result
presented in this article is an algorithm computing all three
previously mentioned graphs using the 3D scan of the
particle.

We have investigated the primary class with the highest
number of naturally occurring pebbles, the class of bodies
with 2 stable and 2 unstable points. Every such pebble in our
collection fell into the same tertiary class. This suggests that
the natural abrasion process is heavily skewed towards
certain classes, just like in the case of the primary classes.

Fig. 5. Division of the primary class {2, 2} into higher-order subclasses. The class of the ellipsoid used in previous examples is highlighted
under each classification scheme
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CLASSIFICATION OF SMOOTH, CONVEX
SHAPES

Primary equilibrium classes

In subsection “Mechanical shape descriptors and natural
classes” we have introduced the radial distance function
rKðφ; θÞ : S2 →R, and also stated how its extrema corre-
spond to equilibria of the convex body K. Next, we examine
the case where rK is at least twice continuously differentiable.
In this case the non-degenerate critical point x∈ S2 of the
gradient field ∇rK corresponds to a static equilibrium point

of the body: a minimum, maximum or saddle point corre-
sponds to a stable, unstable or saddle-type equilibrium
point, respectively (Várkonyi and Domokos, 2006). Non-
critical points are called regular. We denote the type of
equilibrium point with a superscript when relevant: xs, xu

and xh ∈ S2 are stable, unstable and saddle points, respec-
tively. The capital letters S, U and H ∈N still represent the
total number of these equilibria for K.

The smooth function rK is called Morse if all its critical
points are non-degenerate. In this case the numbers of
different equilibria are all finite because the function’s
domain is compact. The Poincaré–Hopf theorem establishes
the relationship between these values: H ¼ Sþ U − 2. If the

Table 2. Secondary and tertiary classes in the {2, 2} primary class. Rows correspond to M-secondary classes, columns correspond to
R-secondary classes. Intersection of row i and column j shows the master graph belonging to the i-th M-secondary and j-th R-secondary class
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critical value rKðxÞ for every critical point x is distinct as
well, then the function is called an excellent Morse function
(Nicolaescu, 2008).

For example, let us return to the ellipsoid introduced in
Equation (1). All of its equilibria are non-degenerate, but the
ones of the same type are at equal distances from the center
of gravity. This makes it a Morse function but not an
excellent one. Choosing the value of o such that none of its
coordinates is zero breaks the symmetry, making rell an
excellent Morse function. Figure 6 shows the visible equi-
librium points for o ¼ ð0:2; 0:1; 0:3Þ. An additional mini-
mum, maximum and saddle point is hidden behind the
ellipsoid.

The primary equilibrium class {i, j} (i, j5 0, 1,…) contains
all convex bodies with S 5 i stable equilibria and U 5 j un-
stable equilibria. Bodies with one stable point are calledmono-
stable, bodies with one unstable point are calledmono-unstable
and bodies in the class {1, 1} are called mono-monostatic.
Classifying an object whose radial distance function is Morse
is trivial, but we will show in the next section that primary
equilibrium classes are not limited to these.

Now we define two important tools – introduced in
subsection “Higher-order mechanical classifications” as
second-order mechanical descriptors – for Morse functions
specifically, the Reeb-graph and the Morse–Smale graph.

Reeb-graph

A level set of a real valued function is the set of points where
the function takes on a particular value d∈R. In our case
these are the points at distance d from the point o. A level set
of rK may consist of several closed curves, called contour lines.
Contour lines are unique at regular points. Contour lines at a
stable or an unstable point consist of that single point. We
will call a contour line of rK containing a saddle point xs the
saddle contour line of xs. An excellent Morse function’s saddle
contour lines always contain a single saddle point due to the
critical values being distinct. Therefore, the saddle contour
line of xs has a single self-intersection at xs, as shown in Fig. 7.

The number of contour lines is not constant throughout
the codomain of rK. New contour lines appear at critical

values of minima, disappear at critical values of maxima, and
split or merge at critical values of saddles. To capture this
evolution of level sets, first an equivalence relation ∼ rK is
defined for two points p; q∈ S2 such that p∼ rKq whenever
p and q belong to the same contour line of rK. The Reeb-
graph of rK is then the quotient space S2=∼ rK equipped with
the quotient topology. This graph’s vertices correspond to
the previously-mentioned points of change in the number of
contour lines: every leaf corresponds to a minimum or
maximum, the rest of the vertices correspond to saddles. If
rK is excellent Morse then its Reeb-graph is a tree with inner
vertices of degree 3 (Arnold, 2007). Figure 4a shows the
Reeb-graph of the ellipsoid in Fig. 6.

Due to the one-to-one correspondence from its vertices
to critical points, the Reeb-graph of an object also de-
termines its primary equilibrium class. On the other hand,
two objects in the same primary class might not have
isomorphic Reeb-graphs. For example, see the first row of
Table 2 showing the different Reeb-graphs in the primary
equilibrium class {2, 2}. An R-secondary equilibrium class
contains all convex bodies with isomorphic Reeb-graphs.

Morse–Smale graph

By definition, at any regular point p the gradient vector ∇rK
is non-zero. Following the vector an integral curve c : R→ S2

is traced out, which is the longest possible curve through p
whose derivatives agree with the gradient ∇rK (Edelsbrunner
et al., 2003).

If rK is Morse, then every regular point belongs to one
and only one integral curve; two integral curves are either
disjointed or exactly the same. An integral curve starts at a
critical point and ends at a critical point but does not
contain them. The two critical points at the ends of an in-
tegral curve are distinct because the function’s value is
strictly ascending along the curve. The critical point with
lower critical value is called the origin while the other one
is the destination of the integral curve. The origin and
destination are either minimum–maximum, minimum–
saddle or saddle–maximum. Figure 8 gives an example for
the first one.

Fig. 7. The saddle contour line of xh1Fig. 6. All visible equilibria
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The descending (ascending) manifold of a maximum
(minimum) critical point x is the union of x and all integral
curves with x as their destination (origin). Only minimum–
maximum integral curves belong to both a descending and
an ascending manifold; an integral curve is isolated other-
wise. Every saddle point is the origin of exactly two isolated
integral curves as well as the destination of exactly two
isolated integral curves. Figure 9 shows the isolated integral
curves of the ellipsoid in previous examples.

The cells of the Morse–Smale complex of rK are the
connected components of the intersections between
descending and ascending manifolds. Every cell of a Morse–
Smale complex is a quadrangle bounded by isolated integral
curves connecting critical points in the following order:
saddle, maximum, saddle, minimum (Edelsbrunner et al.,
2003). We call the 1-skeleton of a Morse–Smale complex the
Morse–Smale graph.

The vertices in the Morse–Smale graph of rK correspond
to critical points and the edges correspond to isolated inte-
gral curves. Every vertex corresponding to a saddle is of
degree 4 and it is connected to exactly two vertices corre-
sponding to stable points and two vertices corresponding to
unstable points. There are no edges in the graph other than
these. The Morse–Smale graph is a 3-colored quadrangular

graph. You can see the Morse–Smale graph corresponding
to Fig. 9 in Fig. 4b. The quasi-dual is an alternative, equiv-
alent representation of the Morse–Smale graph, which is
constructed from the original graph by adding stable–un-
stable diagonal edges and removing all saddle-type vertices.
The quasi-dual of the Morse–Smale graph is a two-colored
quadrangular graph (Domokos et al., 2016b). This repre-
sentation has fewer vertices and edges, which makes it more
suitable for visualization. For this reason, we used it in the
pebble catalog published as Supplementary material.

A secondary classification method was introduced in
Domokos et al. (2016b), based on the isomorphism classes of
Morse–Smale graphs – that is, shapes that belong to the
same secondary class are in the same primary class as well.
The authors also proved that for every combinatorically
possible Morse–Smale graph a smooth convex body exists.
The Reeb-graph also has the first property, two shapes with
isomorphic Reeb graphs belong to the same primary class.
On the other hand, the Reeb-graph associated with a func-
tion does not uniquely define the Morse–Smale graph
associated with the same function, or vice versa.

An M-secondary equilibrium class contains all convex
bodies with isomorphic Morse–Smale graphs. Objects in the
same M-secondary class belong to the same primary class.
However, bodies in the same M-secondary class do not
necessarily belong to the same R-secondary class or vice
versa. See Table 2 for examples in the {2, 2} primary class. In
the next section we introduce a tertiary classification scheme
where bodies in the same tertiary class belong to the same
primary, M-secondary and R-secondary class.

Master graph

The Morse–Smale graph encompasses information about
integral curves, the lines of fastest ascent. The Reeb-graph on
the other hand portrays contour lines, the paths of constant
function value. We have introduced the so-called master
graph in subsection “Higher-order mechanical classifica-
tions” that describes both aspects. This subsection will focus
specifically on the master graph of Morse functions. The key
is the relationship between two types of significant curves:
the isolated integral curves and the saddle contour lines.

Definition 1: The intersection point y∈ S2 is a point where
an isolated integral curve of ∇rK and a saddle
contour of rK intersect.

Definition 2: Let x1 and x2 be critical points with an
isolated integral curve c between them. Let
y1; :::; yn be all the intersection points on
c ðrKðy1Þ<$$$<rKðynÞÞ. Since rK is monotonic
along c, the ordering along c will agree with
the ordering by function values. An isolated
set is the ordered set of points x1 − y1 − y2
− $$$− yn−1 − yn − x2. Two adjacent points
in this sequence are called gradient neighbors.

Definition 3: A saddle point xh and an intersection point y
are contour neighbors if there is a saddle
contour line of rK that contains both xh and y.Fig. 9. Isolated integral curves

Fig. 8. One of the integral curves from xs1 to xu1
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Definition 4: In the master graph a vertex corresponds to
every critical point and every intersection
point. Edges run between every gradient
neighbor and every contour neighbor.

We call edges between gradient neighbors, gradient
edges. We call the path corresponding to an isolated set an
isolated path which is made up of gradient edges. We call
edges between contour neighbors contour edges. Figure 10
shows an example.

We may obtain the Morse–Smale complex from the
master graph by removing every contour edge and replacing
isolated paths with single edges. We may obtain the Reeb-
graph by contracting the contour edges and unifying parallel
edges. Figure 4 shows the Morse–Smale complex and Reeb-
graph that belong to the master graph in Fig. 10.

Using the master graph, we can define a third level in our
classification hierarchy.

Definition 5: A tertiary equilibrium class contains all convex
bodies with isomorphic master graphs.

Bodies in the same tertiary class belong to the same
primary, M-secondary and R-secondary classes. Table 2
shows how there could be two different master graphs in the
same M-secondary and R-secondary classes.

CLASSIFICATION OF CONVEX POLYHEDRA

In this section we examine the case where the radial distance
function is not smooth; rather its image is the convex
polyhedron P. Just as introduced in subsection “The primary
mechanical classification”, the value of the function still
measures the distance from the point o, which is usually
chosen as the center of gravity of P. The function is
continuous, just as in the previous section, but the gradient
∇rP exists only in the interior of the faces of P. If the point p
is in the interior of the edge e, then at p only the directional
derivative along e exists. However, for each face adjacent to e
we can obtain the gradient of the function at p that measures
the distance from o for the whole plane of the face. In
Ludmány et al. (2021) we named these vectors candidate
gradients at p if they are tangential to the polyhedron

P. Candidate gradients were defined the same way at vertices
as well. We called points where at least one regular non-zero
candidate gradient exists, and also proved that at these
points there is a unique candidate gradient with maximal
length we called the extended gradient ∇extrP.

The concept of equilibrium points and non-degeneracy of
convex polyhedra are already established in the literature
(Domokos et al., 2020). We say that x∈P is an equilibrium
point of P (with respect to o) if the plane H through x and
perpendicular to ½o; x� supports P at x. In this case x is non-
degenerate ifH∩P is the (unique) face, edge or vertex of P that
contains x in its relative interior. We have shown in Ludmány
et al. (2021) that a point x∈P is an equilibrium point if and
only if there is no candidate gradient at x. The function rP is
polyhedral Morse if all its equilibrium points are non-
degenerate. The function is excellent polyhedral Morse if the
equilibrium points are at distinct distances from o.

Let us take a regular tetrahedron as an example. If we set o
in its center of gravity then it has a stable equilibrium point
on all of its faces, a saddle on all of its edges and an unstable
equilibrium at all of its vertices. All of these are non-degen-
erate, but all equilibria of the same kind have the same dis-
tance from o. As with the previously-described ellipsoid, we
can move o such that the distance from it becomes an
excellent polyhedral Morse function. See Fig. 11 for reference.

An approach to defining critical points directly on
polyhedra already exists in the literature (Banchoff, 1970)
where the function is the distance from a reference plane.
This function is piecewise linear and all of its critical points
fall on vertices. This setup is a good fit for processing all
kinds of datasets from terrains to models for 3D printing,
which makes it widely used. A review of existing algorithms
for computing critical points and the Morse–Smale graph in
such a case is available in De Floriani et al. (2015). These are
not applicable to the not-piecewise-linear radial distance
function rP discussed in the current article but did inspire
aspects of our solution.

Reeb-graph

The definitions in section “Classification of smooth, convex
shapes” of the contour lines and the Reeb-graph apply to rP
as well, but their properties might differ. Contour lines are

Fig. 11. Visible equilibrium points of the example tetrahedron

Fig. 10. A master graph (xu1 ; x
u
2: unstable points, xh1 ; x

h
2: saddle

points, xs1; x
s
2: stable points, orange dots: intersection points, solid

lines: gradient edges and solid lines of the same color constitute an
isolated path, dashed lines: contour edges)
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continuous, closed curves, made up of circular arcs con-
necting at non-differentiable points. Contour lines are
unique at regular points. Contour lines containing a stable or
unstable point do not include other points. If rP is excellent
polyhedral Morse then a saddle contour line contains a
single saddle only. Saddle contour lines containing the non-
degenerate saddle xh on the edge e contain a circular arc
(which might be a complete circle) on each face adjacent to
e, that is tangent to e at xh. See Fig. 12 for an example.

The Reeb-graph of an excellent polyhedral Morse func-
tion rP is a tree; its vertices correspond to equilibrium points.
Leaves correspond to stable and unstable, inner vertices
correspond to saddle points. Inner vertices are of degree 3.

Morse–Smale graph

The other key concept introduced in Ludmány et al. (2021),
beside the extended gradient, was the ascending curve. It
traces out a path following the extended gradient, similarly
to integral curves, but relaxes the requirement on the de-
rivative. An ascending curve through a regular point is the
longest possible curve whose right-hand derivatives agree
with the extended gradient ∇extrP. An ascending curve is a
continuous open polygon. See Fig. 13 for example.

Every regular point belongs to at least one ascending
curve; two ascending curves can merge, but cannot cross or
split. An ascending curve starts at an equilibrium point and
ends at an equilibrium point, containing the latter but not

the first one. The two equilibrium points at the ends of an
ascending curve are distinct because the function’s value is
strictly ascending along the curve. The equilibrium point
with lower critical value is called the origin while the other
one is the destination of the ascending curve. The origin and
destination are either stable–unstable, stable–saddle or sad-
dle–unstable.

The descending (ascending) polyhedral manifold of an
unstable (stable) equilibrium point x is the union of x and all
ascending curves with x as their destination (origin). Only
stable–unstable ascending curves can belong to both a
descending and an ascending polyhedral manifold; other-
wise, an ascending curve is isolated. Every saddle point is the
origin of exactly two isolated ascending curves as well as the
destination of exactly two isolated ascending curves. See
Fig. 14 for an example.

The cells of the Morse–Smale complex of P are the con-
nected components of the intersections between descending
and ascending polyhedral manifolds. Every cell of the Morse–
Smale complex is a quadrangle bounded by isolated integral
curves connecting equilibrium points in the following order:
saddle, unstable, saddle, stable. We call the 1-skeleton of a
Morse–Smale complex the Morse–Smale graph.

The vertices in the Morse–Smale graph of P correspond to
equilibrium points and the edges correspond to isolated
ascending curves. Every vertex corresponding to a saddle is of
degree 4 and it is connected to exactly two vertices corre-
sponding to stable points and two vertices corresponding to
unstable points. There are no edges in the graph other than
these. The Morse–Smale graph is a 3-colored quadrangular
graph.

Master graph

The master graph of a Morse function encompasses the
information of isolated integral curves and saddle contours.
In the polyhedral case discussed in this subsection it de-
scribes the relationship of isolated ascending curves and
saddle contours.

Definition 6: The intersection point y∈ S2 is a point where
an isolated ascending curve of ∇extrP and a
saddle contour of rP intersect.

Fig. 14. Isolated ascending curves

Fig. 12. The saddle contour line of one of the saddle points

Fig. 13. A stable–unstable ascending curve
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Definition 7: Let x1 and x2 be critical points with an
isolated ascending curve a between them.
Let y1; :::; yn be all the intersection points on
a (rPðy1Þ<$$$<rPðynÞ). An isolated set is the
ordered set of points x1 − y1 − y2 −
$$$− yn−1 − yn − x2. Two adjacent points in
this sequence are called gradient neighbors.

Definition 8: A saddle point xh and an intersection point y
are contour neighbors if there is a saddle
contour line that contains both xh and y.

Two isolated ascending curves might have merged at a
point p and both intersect a saddle contour at y (rPðpÞ<rPðyÞ).
We treat these two isolated ascending curves as separate even
if they share some of their points. In the master graph we will
have two separate vertices corresponding to y as well.

Definition 9: An intersection point y is called n-fold if it is
the intersection of n isolated ascending curves
and a saddle contour at the same point.

Definition 10: In the polyhedral master graph, a vertex
corresponds to every critical point and
n vertices correspond to every n-fold
intersection point. Every vertex is connected
to one and only one of the vertices
corresponding to each of its gradient
neighbors. Edges run between contour
neighbors too.

The steps of creating the Reeb-graph and Morse–Smale
graph from the polyhedral master graph are identical to the
smooth case.

EQUILIBRIUM CLASSES AS SHAPE CATALOGS

So far, we have defined the primary, secondary and tertiary
equilibrium classes for both smooth surfaces and polyhedra.
Now we can more clearly formulate the mathematical
challenge outlined in Section “Introduction”. We do this by
exploring more details of the classification system in general.
In subsection “Higher-order mechanical classifications” we
mentioned that GðS;UÞ≤RðS;UÞ$MðS;UÞ for any primary
class {S, U}. For example, the equality holds for trivial cases
like classes {1, 1}, {1, 2} or {2, 1} with a single Reeb-graph, a
single Morse–Smale graph and therefore a single master
graph.

Our goal in this section is to show by proving Lemma 1
that there is at least one primary class where the equality does
not hold. We start by constructing polyhedra in 3 tertiary
classes, providing a lower boundary on their number. First, let
us classify the polyhedron with the lowest possible number
of vertices and faces. A tetrahedron with 2 stable and 2 un-
stable equilibria is presented in Domokos et al. (2020).
We use the following lemma in the classification process.

Lemma 2: A non–monostatic tetrahedron’s radial
distance function cannot have parallel
isolated ascending curves in its Morse–Smale
graph.

Before proving Lemma 2, we provide some necessary
background. In Ludmány et al. (2021) we defined an edge of
a polyhedron as followed, if the extended gradient is parallel
to the edge at every single one of its points, otherwise we
called it crossed. The names come from the behavior of an
ascending curve through interior points of an edge: in the
first case they follow the edge, in the second case they cross
it. We have proven that this behavior is uniform at every
single point of a given edge. In the following we take
advantage of these two observations:

1. Every edge connected to an unstable point is followed.
2. On convex polyhedra, a saddle–stable isolated ascending

curve crosses only crossed edges.

Proof. Consider the tetrahedron with vertices A, B, C
and D.

First, we prove that two isolated ascending curves be-
tween the saddle xh1 and the unstable point xu1 cannot exist.
Let us consider the case where the tetrahedron has one more
unstable point xu2 , and assign them to vertices as xu1 ¼ A and
xu2 ¼ B. The two isolated ascending curves connecting xh1 to
xu1 form a cycle on the tetrahedron. It must be 3 edges long
as any shorter would not be a cycle and any longer would
contain both unstable points, or in other words, the two
isolated ascending curves run along the boundary of a face.
This can only be the face ACD as every other face contains
the other unstable vertex B. According to the quadrangle
lemma (Edelsbrunner et al., 2003), there is a stable point xs1
on the face ACD connected to xh1 by an isolated ascending
curve. The radial distance function is strictly monotone,
ascending from xh1 to x

u
1 along both isolated ascending curves

running along the edges of ACD. However, any face con-
taining a stable point contains at least 2 local minima when
looking at the distance function along its boundary curve.
This contradiction means that parallel xh1 − xu1 isolated
ascending curves cannot exist on tetrahedra with only 2
unstable points in total. The statement holds for 3 or 4
unstable points as well, because every face would contain at
least 2 of them on its boundary, which makes parallel iso-
lated ascending curves impossible.

Next, we prove that two isolated ascending curves be-
tween the saddle xh1 and the stable point xs1 cannot exist either.
Let us consider the case where the tetrahedron has one more
stable point xs2. The parallel isolated ascending curves con-
necting xh1 to xs1 form a cycle and run on all 3 faces of the
tetrahedron other than the one containing xs2. The same logic
applies as previously: a cycle on less faces would not be
possible, a cycle on more faces would have to contain xs2 as
well. The cycle encircles one of the vertices of the tetrahedron
on its own, which must be unstable according to the quad-
rangle lemma. This leads to a contradiction though, because
every edge connected to an unstable vertex must be followed,
but one of the xh1 − xs1 isolated ascending curves also crossed
them. The extension to 3 or 4 stable points is also similar to
the unstable case: adding more of these points would make it
impossible to form a cycle of parallel isolated ascending
curves on the faces of the tetrahedron. □
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As a consequence, the previously cited tetrahedron is in
the first row of Table 2. In the next step we construct
polyhedra for the bottom row of the table. Start with a body
that has parallel isolated ascending curves between one of its
saddles and its single stable point already, the monostable
polyhedron of Conway and Guy (1969). It has 1 stable, 3
saddle and 4 unstable points; see these in Fig. 15.

We merge the two pairs of unstable points and the saddle
between them at both ends of the polyhedron. Next, we raise
the two resulting unstable points above their current plane
by a small amount as shown in Fig. 16. The resulting
polyhedron is in the class {2, 2}. We end up in different cells
of our table depending on how much we move the edge with
the saddle on the bottom. Using the notation of the previous
two figures, if c 5 0, then there are two isolated ascending
curves between the two saddle points, resulting in a degen-
erate master graph. If c is greater than 0 but close to it, then
the polyhedron is in the first column. If c is less than aþb
but close to it, then the body is in the second column. If c is
close to neither 0 nor aþb then one of the stable points
vanishes; the polyhedron leaves the class {2, 2}.

We have seen that in a non-degenerate Reeb-graph,
every saddle point has at least one of its 3 neighbors at
greater distance and at least one at lesser distance from the
center of gravity o. This means that there can only be 2 non-

isomorphic Reeb-graphs in {2, 2}, both shown in Table 2.
The same primary class also has 2 Morse–Smale graphs
(Domokos et al., 2016b). However, the number of master
graphs inside this class is not 4 but only 3.

Proof of Lemma 1. We have shown that Gð2; 2Þ≥ 3 by
providing a polyhedron in 3 of its tertiary classes.

Let us use the notation of Table 2, and assume that there
exists a master graph in the cell at the first row and second
column. According to the Reeb-graph, the saddle contour
through xh1 divides the surface into 3 parts, one containing
the stable point xs2, one containing the unstable point x

u
1 and

one containing the rest. Notice that the other stable point xs1
is in this last part.

Considering the neighbors of the saddle xh1 in the Reeb-
graph, only one of them has a lower value of rK than rKðxh1Þ,
namely the stable point xs2. This means that both stable–
saddle isolated integral curves fall within the same one of the
three previously mentioned parts bounded by the saddle
contour of xh1. Because this part contains x

s
2 only, both curves

are connected to this stable point. These two parallel edges
contradict our assumption on the Morse–Smale graph,
leading to no master graph in the cell at the first row and
second column of Table 2. □

CLASSIFICATION OF NATURAL SHAPES

Our last goal is the classification of natural shapes, which
leads us to the solution of the algorithmic challenge
mentioned in Section “Introduction”. The equilibria of a
pebble can be measured by hand, but this method is highly
dependent on the person’s abilities carrying out the experi-
ment. Their first task is locating every point of the body
where it is at rest. This is an intuitive process, but a new
examiner can quickly gain this intuition by observing the
measurement of a few pebbles carried out by a more expe-
rienced person. The next task is observing how the pebble
resting on an equilibrium point reacts to a slight toss, which
determines if the point is stable, saddle or unstable. Manual
measurement of boulders gets more difficult if not outright
impossible as their size increases. We utilize 3D scanning
technology to achieve consistency in the results and to get
around size limitations.

In such scenarios equilibria appear on two separate
scales: the global value N corresponds to the approximation
of the particle’s convex hull by a sufficiently smooth surface
while the local value N△ corresponds to the polyhedral
approximation (with faces of maximal diameter △) ac-
quired by 3D scanning. The main obstacle is that in general
lim
△→0

N△>N (Domokos et al., 2012a, 2012b).

Local equilibria appear in flocks which are spatially
localized around the locations of global equilibria. This poses
a considerable problem for measurements: while only N△ is
directly available from any 3D scanned dataset, the physi-
cally relevant quantity is N. To obtain N based on N△, one
needs some artificial “blurring” of the data.Fig. 16. Polyhedron with 2 stable and 2 unstable equilibria

Fig. 15. Monostable polyhedron of Conway & Guy. The stable
point is shown in green; saddles are shown in blue, unstable points
are shown in red. The figure is not proportional, for example r 5 1,
a 5 0.1, b 5 30 results in a monostable polyhedron
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Edelsbrunner et al. achieved this by defining a simplifying
operation on the Morse–Smale graph called cancellation,
which eliminates two adjacent critical points (Edelsbrunner
et al., 2003). First, we describe the original operation, then
present our extension of it to the master graph. There are two
possible combinations of critical points to be cancelled: a
minimum and a saddle or a saddle and a maximum, but they
are symmetrical. Let xh be the saddle and xu1 the unstable
vertex of the canceled pair while xu2 the other unstable vertex
connected to xh (xu1 ≠ xu2). The cancellation combines the
three vertices into xu2 by removing every edge connected to xh

and merging the xu1 and xu2 vertices.
The basic idea is the same on the master graph, but only

the two cancelled vertices must be connected directly; the
remaining stable or unstable point can be connected to the
cancelled saddle through an isolated path. This requires
some extra bookkeeping in the following definition to end
up with a valid master graph after cancellation.

Definition 11: Let xh be a saddle and xu1 an unstable point
such that there is an xh − xu1 edge in the
master graph. Let xu2 be the other unstable
point that is connected to xh through an
isolated path (xu1 ≠ xu2), let the intersection
points on this path be y1; :::; yn. The
cancellation of xh merges xu1 and xh into xu2.
The critical value in the remaining vertex is
rKðxu2Þ :¼ maxfrKðxu1Þ; rKðxu2Þg. The steps are
the following:

1. Remove every intersection along the two isolated paths
originating from xh and ending in a stable vertex.

2. Let D be the set of the third-to-last vertices on every
isolated path ending in xu1. Every isolated path ending
in xu1 – except for the x

h − xu1 edge – is at least 3 vertices
long because they originate from a saddle, end in xu1
and intersect the contour line through xh.

3. Remove xu1 and all of its neighbors.
4. Copy the y1; :::; yn vertices and the edges connected to

them jDj− 1 times and connect a unique copy of y1 to
every vertex in D. These new edges are not contour
edges.

Figure 17 shows an example.
Now that we have defined the basic simplification step,

the next question is which of the equilibria we should cancel
and in what order. We draw our inspiration from the same
article as before, where the authors utilized the level set of
the surface. They called a critical point positive if it created a
new contour line and negative if it destroyed one while
ascending in the codomain of the distance function. Minima
are positive, maxima are negative and saddles can be either
positive or negative. Every negative saddle was paired with
the preceding positive minimum and every negative
maximum was paired with the preceding positive saddle.
They defined the persistence of a pair of equilibria as the
difference in function value between the two points. Saddles
were then canceled from lower to higher persistence until
the desired Morse–Smale complex was reached.

These steps are easily adapted to the master graph, as it
contains the necessary information from the level sets of the
surface. At any given point, the saddle with the lowest
persistence is connected directly to a stable or an unstable

A B

C D

Fig. 17. Canceling the saddle xh (a) Part of a master graph. Dashed: contour edge, squiggly: isolated path with internal vertices omitted
(b) The graph after step 1. D ¼ fy02; y*2g (c) The graph after step 3. (d) The resulting graph

172 Central European Geology 65 (2022) 2, 158–177

Brought to you by MTA Könyvtár és Információs Központ olvasók | Unauthenticated | Downloaded 11/30/23 09:54 AM UTC



point. There is always at least one such edge in the graph.
We choose the next equilibria to be canceled by iterating
over all the remaining edges of the graph looking for the
saddle–stable or saddle–unstable edge having the lowest
difference in the value of rK at its vertices. We cancel the
saddles until we get the closest possible to the number of
stable and unstable points measured by hand.

Example on a single pebble

In this section we show the steps the algorithm takes to
classify a single pebble. First it was established via manual
measurements that this pebble has 2 stable and 3 unstable
equilibrium points, placing it in the {2, 3} primary class.
Next the pebble was scanned using a 3D scanner, resulting
in the polyhedron denoted from now on by Pex. Determining
the higher order equilibrium classes consists of three main
steps: 1) constructing the master graph of Pex, 2) sorting the
saddles and canceling them up to the point where the master
graph has only 2 stable and 3 unstable points, 3) creating the
Reeb-graph and Morse–Smale graph from the master graph.
In the rest of this section, we will discuss these steps in detail.
The source code of the algorithm’s implementation is also
available (Ludmány, 2023a).

Construction of the master graph of Pex. In the very first
step the algorithm goes over all the edges of Pex and de-
termines if they contain a saddle point. There are 25 such
edges with saddle points on them in this example. This re-
sults in a list of ðei; xhi Þ pairs where ei is the edge containing
the saddle point xhi and i goes from 1 to 25.

The next step is tracing the saddle contour line con-
taining the saddle xhi for every i∈ ½1; 25�. As established in
Section “Classification of convex polyhedra”, contour lines
are closed, continuous curves made up of circular arcs. Every
arc is either a full circle on a single face or has its endpoints
on edges of Pex. We can therefore trace a contour line in an
iterative fashion by always finding the next arc connected to
one of the endpoints of a partial contour line until the curve
is closed.

We have also established previously that the saddle con-
tour line containing any xhi has an arc on each face adjacent to
ei. Any of these two can be the starting partial contour line
in the previous paragraph’s iterative method. The resulting
saddle contour lines are shown in blue in Fig. 20. You can also
take a closer look at one of the flocks in Fig. 18.

Once we have all the saddle contours, the next step is
tracing the isolated ascending curves. Every saddle point is
the origin of 2 such curves and the destination of 2 such
curves. We start from the point xhi for every i∈ ½1; 25� and
trace all 4 curves with an iterative algorithm, one segment at
a time. One curve is constructed toward each endpoint of ei
in the direction of the extended gradient, and one curve is
constructed toward each face adjacent to ei in the direction
opposite to the extended gradient. For both types of curves,
the last iteration stops at an unstable or stable point,
respectively. The two figures mentioned in the previous
paragraph show these curves as well.

The creation of the master graph starts by adding the
vertices xhi for every i∈ ½1; 25�. We refer to the vertices of the
master graph by the same name we used for their corre-
sponding points on Pex. The graph is extended every time an
isolated ascending curve is traced; take for example the one
between xh1 and xu in Fig. 18. The xh1 − xu curve intersects the
saddle contours of xh2 ; x

h
3 and xh4; therefore, we add inter-

section points denoted by y2; y3 and y4 to the graph. Every
intersection point is then connected to the saddle with the
same index by a contour edge. If this is the first time we
encounter xu, we assign a new vertex to it in the master
graph. The last step is adding gradient edges along the
xh1 − y2 − y3 − y4 − xu path.

Cancellation of saddles. At this point we have the master
graph of the polyhedron Pex with 14 stable and 13 unstable
vertices. We sort the saddles and apply cancellations as
described in Section “Classification of natural shapes” until
we get as close to the hand measurements as possible. In this
particular case we can get a graph exactly in the {2, 3} pri-
mary class. Figure 19a shows the master graph after the
cancellations.

It is important to mention that cancellation works on the
master graph; it does not modify the polyhedron itself. After
any number of cancellations, the contour lines passing through
the remaining saddles can still be visualized on the polyhedron.
On the other hand, there is no one-to-one correspondence
from edges of the master graph to isolated ascending curves on
the surface of Pex anymore. The method we use to circumvent
this issue is as follows (using the notations of Definition 11):
every isolated ascending curve with its destination at the un-
stable point xu1 is extended with the segments of both the
xh − xu1 and the xh − xu2 isolated ascending curves before

Fig. 18. A flock of equilibria. Stable, unstable and saddle points are
represented by green, red and blue dots respectively. Saddle contour
lines are shown in blue, green lines are stable–saddle, red lines are
saddle–unstable ascending curves
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Fig. 19. Graphs of Pex. Vertices in the same position in all 3 subfigures correspond to the same equilibrium point. Stable, saddle, unstable and
intersection points are represented by green, blue, red and orange points, respectively (a) Master graph. Contour edges are in blue, green
edges are on a stable–saddle isolated path, red edges are on a saddle–unstable isolated path (b) Reeb-graph (c) Morse–Smale graph. Green
edges represent stable–saddle isolated integral curves, red edges represent saddle–unstable isolated integral curves

Fig. 20. Saddle contours (blue), saddle–unstable ascending curves (red) and stable–saddle ascending curves (green) of the polyhedron Pex
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cancellation. The resulting curve is not strictly ascending
anymore, but in our experience, it gives a good intuition of
where the corresponding isolated integral curve on the original
body would be. Figure 21 shows this kind of visualization of the
master graph of Pex after the last cancellation.

Creation of the Reeb-graph and Morse–Smale graph. The
steps to get the Reeb-graph and the Morse–Smale graph
from the master graph have already been described in Sec-
tion “Classification of smooth, convex shapes”. The resulting
graphs for Pex can be seen in Fig. 19.

Cataloging a population of pebbles

In the previous example we purposefully selected a pebble
where – after several cancellations – the number of
computed stable and unstable equilibria perfectly matched
the hand measurements. This is not always the case. Take for
instance a pebble that was placed in the class {3, 4}, with its
master graph having 4 stable and 4 unstable vertices at an
intermediate step of the algorithm. The number of stable
points is off by 1, and the next cancellation can either
decrease this or decrease the number of unstable points. In
the first case we get a perfect match, but in the second case
both values would be off by 1, resulting in a worse match.

We have to keep in mind that despite all their best efforts,
the people measuring the pebbles by hand can make mistakes.
Consequently, a perfect match is not inherently possible or
even desirable in every single case. Following the previous
paragraph’s logic, we computed the master graph that is off by
the smallest amount for 271 pebbles in our inventory. More
formally, after every cancellation we calculated the absolute
difference of the manual and the computer measurements in
both the number of stable and the number of unstable points,
and selected the master graph where the sum of these two
absolute differences was the lowest.

A full list of every single pebble with a photo and a host
of manually measured and computed values of both classical
and mechanical shape descriptors is available in the
Supplementary material. The 3D scan of every pebble was
also published in a repository (Ludmány, 2023b) with the
LATEX source code of the aforementioned document and
the scripts compiling it. Be aware that some of the pebbles
could not be photographed or their material could not be
identified; in this case the corresponding field is left empty.
The visual representation of graphs in the document are for
illustration purposes only; our program outputs an alpha-
numerical encoding of every graph which can be used for
actual classification.

Fig. 21. Saddle contours (blue), saddle–unstable ascending curves (red) and stable–saddle ascending curves (green) after cancellations up to
the primary class measured by hand
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Table 3 gives the number of pebbles with a given dif-
ference in the number of computed stable/unstable points
compared to the hand measurements. In 185 out of 271
cases (68.27%) the computed master graph perfectly
matched the measured primary class of the corresponding
pebble. There are no pebbles where both values are positive
because further cancellations always get results closer to the
hand measurements. There are also no cases where both
values are negative because further cancellations would only
increase the sum of their absolute values.

The most important point is that 248 out of 271 pebbles
(92.51%) is off by at most 1 stable or 1 unstable point
compared to the manual measurements. With the primary
classification being this close we are confident in the
computed secondary and tertiary classes as well.

In all 52 cases where the manual measurement put a
pebble in the primary class {2, 2}, the computer did so as
well. Our most important observation is that all of them
belong to the same tertiary – and thus R-secondary and M-
secondary – equilibrium class, namely the one containing all
the tetrahedra inside of this primary class.

Based on the mathematical results presented in Section
“Equilibrium classes as shape catalogs” and the measure-
ment data in this subsection, the higher order mechanical
descriptors give a finite, complete, biased natural catalog
inside the primary class {2, 2}. Two of these adjectives
outline the direction of further research: a) from the math-
ematical point, the completeness of the tertiary classification
is still an open question, b) from the geologic point, the bias
of the higher order classification can be further examined.

SUMMARY

In this paper we showed that higher order mechanical de-
scriptors are a viable option for the description of sedi-
mentary particles. These descriptors, given as graphs, carry
essential, naturally encoded three-dimensional information
on the shape. Despite the fact that their mathematical ex-
istence was known, the challenges connected with their
extraction and identification proved to be, until now,
prohibitive.

First-order mechanical descriptors, defined by the
respective numbers of stable and unstable static balance

points of the scalar, radial distance function r ¼ rðφ; θÞ
measured from the center of mass o, have already proven
their utility in geology. Second-order descriptors carry
deeper information on the relative position of these points by
using natural, discrete decompositions of the radial distance
function r ¼ rðφ; θÞ. The decomposition of its range by
saddle points leads to the concept of Reeb-graphs while the
decomposition of its domain by isolated integral curves of
the gradient leads to the concept of Morse–Smale graphs.
While both second-order descriptors have been discussed
before in the mathematical literature, still, their mutual
relationship remained unclear.

Since 3D measurement technology is becoming
increasingly accessible and standard, obtaining 3D datasets
is not a problem anymore. However, 3D data itself, if not
coupled with geometric ideas, does not solve the basic
question of how to describe shapes. Encouraged by these
technological developments, in this paper we presented the
geometric background of the mentioned second-order de-
scriptors, provided an algorithm to reliably extract them
from scanned 3D point clouds. By introducing a third-order
descriptor, called the master graph, we established the rela-
tionship between Reeb-graphs and Morse–Smale graphs.

To illustrate the feasibility of the application, we created
a catalog of 271 scanned pebbles where we performed these
measurements; we also provided the source code for the
implementation of our algorithm as well as the 3D datasets
of the aforementioned pebbles.

We hope that our paper gives a signal to geologists that
new, geometrically inspired tools for fully three-dimensional
shape analysis are now available and ready to be deployed.
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