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We study the problem of closing the detection loophole in three-qubit Bell tests, the experimentally most
relevant case beyond the usual bipartite scenario, and showthat the minimal detection efficiencies required can
be considerably lowered compared to the two-qubit case. Thelowest reported detection efficiency thresholds
for two and three qubits so far are∼ 66.7% and60%, respectively. Using the three-qubit W state and a 3-
setting Bell inequality, we beat these thresholds and with an 8-setting Bell inequality we reach50.13%. We also
investigate generic three-qubit states which allow us to attain a detection efficiency of50% in a 4-setting Bell
test. We conjecture that the limit of50% is unbeatable using three-qubit states and any number of measurements.

I. INTRODUCTION

One of the most surprising features of quantum mechan-
ics is the prediction that distant parties performing mea-
surements on a shared entangled state are able to gener-
ate correlations which rule out any local hidden variables
explanation. These nonlocal correlations can be witnessed
by the violation of Bell inequalities [1, 2]. By now, many
Bell experiments using various matter systems have been
performed (e.g., recently in [3–8]) providing strong indi-
cation for the existence of nonlocal correlations in nature
[9]. However, imperfections in the technical implementa-
tions of these experiments make it possible to reproduce the
experimental data by local hidden variables model. In or-
der to avoid such a classical explanation, all possible loop-
holes have to be closed simultaneously in a Bell experi-
ment. There are two main technical loopholes, the locality
loophole and the detection loophole. The former one can
be closed if there is space-like separation between the ob-
servers such that no signal can propagate from one observer
to the other. This condition could only be met so far in pho-
tonic experiments [10–12].

In the present paper, we would like to address the lat-
ter one, the so-called detection loophole. This loophole is
most relevant in Bell tests which use photons, in which case
measurements frequently give undetected events. These no-
click events have to be included in the observed data, and
nonlocal correlations are witnessed detection loophole-free
only if there is no local hidden variables model of the full
statistics taking into account the no-click events as well
[13]. The detection loophole has been closed in differ-
ent physical systems such as ions [3], superconductors [4],
atoms [5], and more recently in photonic systems as well
[6, 7].

As we have seen, the only system where both primary
loopholes have been closed are photons, albeit these were
not closed in the same experiment. Though, important steps
have been made both experimentally (see references above)
and both theoretically [14], such a loophole-free violation

of a Bell inequality has not been performed yet. A compre-
hensive review on this subject can be found in Ref. [15].

Let us mention that closing the detection loophole is also
relevant from a practical point of view. The more recent
development of device-independent quantum information
protocols crucially rely on a detection loophole-free vio-
lation of Bell inequalities. In these protocols, there is no
need to assume any knowledge regarding the internal work-
ings of the experimental devices used (see [16] for a recent
review of the field). For instance, it would allow two dis-
tant parties to establish a certified secret key [17], generate
genuinely random numbers [18], or perform black-box state
tomography [19].

In order to close the detection loophole, we construct
Bell inequalities which are suited to reveal nonlocality us-
ing detectors with low efficiencies. We will consider the
relatively unexplored case of three-party Bell inequalities
involving finite detection efficiencies. In particular, we will
focus on the case when each party detects particles with
the sameη detection efficiency. The critical detection ef-
ficiency ηcrit, below which nonlocality cannot be guaran-
teed depends both on the Bell inequality considered and the
quantum state used in the Bell test.

In the two-party case,ηcrit ∼ 66.7% [20] is required to
violate the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [21] with a partially entangled two-qubit state. For two-
qubits, to the best of our knowledge, there is no known Bell
inequality (with possibly more than two settings and more
than two outputs), which would give a lower threshold. Us-
ing 4-dimensional quantum states and a four-setting Bell
inequality, this threshold can be slightly lowered (down to
∼ 61.8% [22]), however, it is still too high when compared
to efficiencies achievable with current technology.

One possible approach to go below these threshold val-
ues is to consider multipartite Bell tests, i.e., more than two
observers. Buhrman et al. [23] and more recently Ref. [24]
have showed that an arbitrarily small efficiencyη can be
tolerated as the number of partiesn and the number of set-
tingsm become large. However, these results are interest-
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ing mainly from a theoretical point of view. Indeed, in the
experimentally more relevant case of small number of set-
tings, the known results are less promising. For instance, if
the number of settings per party is fixed to two (m = 2),
the lowest threshold efficiencies using the Mermin inequal-
ity [25] and its generalized version [26] were shown to ap-
proachηcrit = 50% for largen [27]. The same limit can be
approached if we use the many-site generalization of the
Clauser-Horne inequality [28]. Also, a multipartite two-
setting Bell test based on single-photon entanglement (i.e.,
a W-state shared between multiple parties) was shown to
approachηcrit ≃ 66.7% for largen [29]. These above ex-
amples considered large number of parties and two settings.
There exist other constructions for class of multipartite two-
setting inequalities (e.g., [30, 31]). Note, however, thatdue
to Ref. [32] the critical efficiency for two-setting inequali-
ties cannot be lower thann/(2n− 1). Hence, none of these
inequalities may allow us to go belowηcrit = 60% for three
parties and belowηcrit = 50% for infinite number of par-
ties.

In contrast to two settings and large number of parties,
the case of more than two settings per party and moder-
ate number of parties is much less explored. Indeed, in the
case of three parties (n = 3) and a few number of settings
m, which is the experimentally most interesting setup be-
yond the usual two-party scenario, only a few results are
known. To the best of our knowledge, for three parties the
lowest detection efficiency is attained in Ref. [28] giving
ηcrit = 60% usingm = 2 settings. The aim of this paper
is to go beyond two measurement settings per party, which
opens the door to more efficient multisetting Bell inequali-
ties. In particular, we explore numerically the best detection
efficiencies for the emblematic three-qubit W state [34], and
also perform detailed numerical search when the underly-
ing state is a more general symmetric 3-qubit pure state.
Note that the search for critical detection efficiencies using
the famous Greenberger-Horne-Zeilinger (GHZ) [37] state
was carried out recently in Ref. [24], attaining the lowest
efficiencyηcrit = 12/17 ≃ 70.59% so far usingm = 17
settings per party (for an explicit construction of the Bellin-
equality, please see the website [38]). Before this work the
best bound ofηcrit = 75% for a GHZ state was provided
by Larsson [39] using the Mermin inequality.

Here we report a considerable improvement over the
above values by showing that detection efficiencies as low
as50% can be tolerated in tripartite Bell tests featuring a
reasonable number of measurements. However, our setups
turn out to be very fragile to noise, hence, we believe that
the experimental implementation remains a challenging is-
sue.

II. SETUP

We consider a Bell scenario with three observers (n = 3),
Alice, Bob, and Cecil, who carry out experiments in distant
laboratories. Each observer can choose amongm possi-
ble inputs and receive two possible outcomes. Let us iden-
tify the inputs of the three parties withi, j, k = 1, . . . ,m
which correspond to a set ofm possible measurements
{Ai}, {Bj}, {Ck} for each party. Without loss of gen-
erality, we can label with+1 and −1 the two different
outcomesα, β, andγ for the respective parties. The ex-
periment is fully characterized by the conditional proba-
bilities P (αβγ|AiBjCk). We use the shorthand notation
P (AiBjCk) ≡ P (111|AiBjCk) and similarly for a sub-
set of the parties, such asP (AiBj) ≡ P (11|AiBj) and
P (Ai) ≡ P (1|Ai), etc. It can be seen that these probabili-
ties fully determine the joint distributionP (αβγ|AiBjCk),
hence it is enough to consider them.

Throughout this work we stick to symmetric Bell in-
equalities, that is, inequalities which are symmetric for all
permutations of the parties. In addition, our Bell inequal-
ities will not contain single party marginal terms, they are
built up only by two-particle and three-particle correlation
terms. We will also assume without loss of generality that
the classical bound of the Bell inequalities are zero. The
Bell inequalities considered in Refs. [28], [24] are similarly
restricted. As we will see, this simplification allows us to
treat the problem with the tools of linear programming. We
can write such a Bell inequality as:

m
∑

i,j=1

M
(2)
ij [P (AiBj) + P (AiCj) + P (BiCj)]

+

m
∑

i,j,k=1

M
(3)
ijkP (AiBjCk) ≤ 0, (1)

where

M
(3)
ijk =M

(3)
ikj =M

(3)
jik =M

(3)
jki =M

(3)
kij =M

(3)
kji

M
(2)
ij =M

(2)
ji , (2)

and the Bell coefficientsM (3)
ijk andM (2)

ij are chosen such
that the classical bound is zero.

A. Local bound

Let us first compute the local limit of the above Bell in-
equality (1) allowing any classical mechanism. In order
to do that, it is enough to consider deterministic strategies:
Each of the parametersai, bi andci, wherei runs from 1 to
m, may take the value of either0 or 1, and a deterministic
strategy is defined by a particular choice. This corresponds
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to a definite outcome for each measurement value for each
party. For example,ai = 1 means that the probability for
Alice to get the value+1 for her ith measurement is one,
that isP (Ai) = 1.

To set the classical bound of the Bell inequality (1) to
zero, we must ensure that

m
∑

i,j=1

M
(2)
ij (aibj + aicj + bicj) +

m
∑

i,j,k=1

M
(3)
ijkaibjck ≤ 0

(3)
for all deterministic strategies. Eq. (3) gives23m linear con-
straints for the Bell coefficients. Due to the permutational
symmetry in Eq. (2), two strategies which may be derived
from each other by swapping the strategies of any two par-
ticipants (e.g. by swapping the values ofai and bi) lead
to the same constraint, which makes it possible to reduce
the number of constraints. Also, Eq. (3) is trivially fulfilled
for any strategy assigning nonzero values for only one of
the participants. We note that it follows from Eq. (3) that
M

(2)
ij ≤ 0. We may get this from strategyai = 1, bj = 1,

while all othera andb, and allc values are zero.

B. Quantum bound

Now let us consider the quantum case. The maximum
quantum violation of a two-outcome Bell inequality (i.e.
the one presented in (1)) is always attained by von Neu-
mann measurements [40]. Moreover, it is sufficient to re-
strict ourselves to pure states|ψ〉, that isρ̂ = |ψ〉〈ψ|. Then

P (AiBj) = 〈ψ|Âi ⊗ B̂j ⊗ Î |ψ〉
P (AiCj) = 〈ψ|Âi ⊗ Î ⊗ Ĉj |ψ〉
P (BiCj) = 〈ψ|Î ⊗ B̂i ⊗ Ĉj |ψ〉

P (AiBjCk) = 〈ψ|Âi ⊗ B̂j ⊗ Ĉk|ψ〉, (4)

whereÂi, B̂j andĈk are the measurement operators of Al-
ice, Bob and Cecil, respectively, projecting onto the sub-
space corresponding to outcome+1 in the subspace of the
participant concerned, and̂I is the unity operator in that
subspace. Along this study, we will restrict ourselves to 3-
qubit states, hence the measurement operatorsÂi, B̂j and
Ĉk are in fact projectors in the qubit space.

C. Quantum case with limited detection efficiency

Let us consider the quantum case when all participants
detect their particles with the same limited detection effi-
ciencyη. As a side remark, we note that interesting results
have been obtained in the asymmetric case, that is, when the

parties feature different efficiencies [41] or when measure-
ments corresponding to the same party have different effi-
ciencies [42]. In our symmetric scenario, the participants
agree to output−1 in case of no detection. In this case, we
get the joint probabilities of detecting outcome+1 by two
and by all three participants if we multiply the probabilities
of Eq. (4) byη2 and byη3, respectively, that is by the prob-
ability of the detection of the particles concerned. Then the
condition for the violation of the Bell inequality in Eq. (1)
can be written as:

〈ψ|M̂η|ψ〉 ≡ η2M(2) + η3M(3) > 0, (5)

where

M(2) ≡
m
∑

i,j=1

M
(2)
ij

(

〈ψ|Âi ⊗ B̂j ⊗ Î|ψ〉

+ 〈ψ|Âi ⊗ Î ⊗ Ĉj |ψ〉+ 〈ψ|Î ⊗ B̂j ⊗ Ĉk|ψ〉
)

(6)

M(3) ≡
m
∑

i,j,k=1

M
(3)
ijk〈ψ|Âi ⊗ B̂j ⊗ Ĉk|ψ〉, (7)

andM̂η is the effective Bell operator atη efficiency. As

we have shown earlier,M (2)
ij ≤ 0, thereforeM(2) ≤ 0.

Therefore, ifη is very small, according to Eq. (5), there
is no Bell violation. The critical detector efficiency, above
which the violation may be detected is:

ηcrit = −M(2)

M(3)
. (8)

To find the Bell inequality which minimizesηcrit in case
of a particular choice of the state and the measurement op-
erators is a problem of standard linear programming. To
ensure that the classical bound is zero, the set of linear con-
straints given by Eq. (1) must be satisfied. As the Bell co-
efficients may be multiplied by any positive number, we
may fix the norm by fixing the value ofM(2). We may
choose any negative number. In particular, let us choose
M(2) = −1. This provides an additional linear constraint.
Then we must maximizeM(3), which is a linear expres-
sion for the Bell coefficients. The symmetries according to
Eq. (2) are further linear constraints to be enforced, but in-
stead of doing that, we may restrict ourselves to coefficients
M

(3)
ijk , with i ≤ j ≤ k andM (2)

ij , with i ≤ j, and rewrite
the constraints and the expression to be maximized in terms
of these independent parameters. This way we get a much
smaller problem to solve.

Let the set of measurement operators be the same for all
parties, and let us confine ourselves to real measurement
operators. This particular restriction was also proved to be
useful in other studies for exploring nonlocality of the W
state [33]. In this case the operatorÂi = B̂i = Ĉi can be
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characterized by a single real variableΦi:

Âi|0〉 =
1

2
(1− cosΦi)|0〉 −

1

2
sinΦi|1〉 ≡ c−i |0〉+ si|1〉

Âi|1〉 = −1

2
sinΦi|0〉+

1

2
(1 + cosΦi)|1〉 ≡ si|0〉+ c+i |1〉.

(9)

If Φi = 0, the measurement gives value+1 with probability
one for the|1〉 state.

Let the quantum state be also symmetric in terms of the
permutations of the parties. One such a state is the 3-qubit
GHZ state [37], which case has been already investigated
thoroughly [24, 39]. In this paper our primary concern is
the 3-qubit W state [34] but we also study generic symmet-
ric 3-qubit states. In the following section we focus on the
W state (Sec. III) and then we move on to investigate the
more general case in Sec. IV. Our main results concerning
the found detection efficiency thresholds are summarized in
Table I and Table II for the W state and the generic 3-qubit
states, respectively.

III. DETECTION EFFICIENCIES USING THE W STATE

The W state is defined by [34]:

|W 〉 = 1√
3
(|001〉+ |010〉+ |100〉), (10)

where we have used the shorthand notation:

|αβγ〉 ≡ |α〉 ⊗ |β〉 ⊗ |γ〉. (11)

Now, by using Eqs. (9,10,11), it is straightforward to cal-
culate the quantum conditional probabilities appearing in
Eqs. (6,7):

〈W |Âi ⊗ Âj ⊗ Î|W 〉 = 1

3
(2sisj + c−i c

+
j + c+i c

−

j + c−i c
−

j )

〈W |Âi ⊗ Âj ⊗ Âk|W 〉 = 2

3
(c−i sjsk + sic

−

j sk + sisjc
−

k )

+
1

3
(c−i c

−

j c
+
k + c−i c

+
j c

−

k + c+i c
−

j c
+
k ). (12)

If the number of measurement settings per party is small, we
can scan the space of measurement angles with an even step
size, and solve the linear programming problem for each set
of angles. In each case the optimal Bell inequality we ar-
rive at has to be a tight one in the symmetrized probability
space. We refer to Ref. [35] for the framework of sym-
metric Bell inequalities and to further studies which makes
use of this framework [36] reducing considerably the com-
plexity of the problem. There is a finite number of such
inequalities, so we get the same solution for a whole range
of angles. Therefore, if our step size is not too large, we

will certainly get the Bell inequality that gives the smallest
critical efficiency with the|W 〉 state. Then for the known
inequality we may calculate the optimum measurement an-
gles. Also, due to the tightness, the Bell coefficients can
always be normalized such that they are integer numbers.

Next we list our results for different number of settings,
where the numerical study was carried out up to 8 settings
per party.

A. W state,m = 2

For two measurement settings per party we got the fol-
lowing Bell coefficients:

M
(2)
11 = −1 M

(3)
111 = 2 M

(3)
112 = 1 M

(3)
122 = −1. (13)

Here we only show the values of the independent Bell coef-
ficients, that isM (2)

ij with i ≤ j andM (3)
ijk , with i ≤ j ≤ k.

The values of the coefficients that can not be derived from
the coefficients given above by some permutation of the par-
ties (e. g.M (2)

12 ) are zero. This inequality is equivalent to the
inequality 22 in the list of Sliwa [43]. The optimum angles
for this inequality areΦ1 = 2.28059 andΦ2 = 0.33432,
and the critical efficiency isηcrit = 0.83747. We will see
later that the|W 〉 state is not the best choice for this in-
equality.

B. W state,m = 3, 4, 5

Form = 3 andm = 4 we have got the inequalities with
the smallestηcrit if we have chosen the measurement angles
small. In the case ofm = 3, the nonzero independent Bell
coefficients of this inequality are:

M
(2)
11 = −6 M

(2)
23 = −3 M

(3)
123 = 3 M

(3)
223 = 2

M
(3)
233 = 2, (14)

while form = 4 we have got:

M
(2)
12 = −6 M

(2)
34 = −2 M

(3)
112 = 6 M

(3)
114 = −6

M
(3)
122 = 6 M

(3)
123 = 3 M

(3)
124 = 3 M

(3)
134 = −1

M
(3)
223 = −6 M

(3)
234 = −1 M

(3)
334 = 2 M

(3)
344 = 2,

(15)

For both inequalities the optimal angles for all measurement
settings approach zero near the threshold efficiency. This
observation allows us to make some analytical considera-
tions.

Let x be small, and let us consider the measurement an-
gles proportional to this small number, that isΦi ≡ φix.
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Then, Eq. (12) may be approximated as:

〈W |Âi ⊗ Âj ⊗ Î|W 〉 ≈ 1

6
[1− cosx(φi + φj)] +

x4

48
φ2iφ

2
j

(16)

〈W |Âi ⊗ Âj ⊗ Âk|W 〉 ≈ x4

48
(φiφj + φiφk + φjφk)

2.

(17)

We have neglected terms sixth and higher order inx.
We have used Eq. (9) defining the quantities appearing in
Eq. (12), which may be approximated at leading order as
si ≈ −φix/2, c+i ≈ 1 andc−i ≈ φ2x2/4. Also, it is easy to
see that2sisj+c

−

i c
+
j +c+i c

−

j = [1−cos(Φi+Φj)]/2. Due

to Eq. (17),M(3) (see Eq. (7)) is fourth order inx. Then,
according to Eq. (8), we may only get a finite value forηcrit,
if M(2) defined in Eq. (6) is also fourth order inx. This is
true if whenever theM (2)

ij Bell coefficient is not zero, the
corresponding measurement angles satisfyφi + φj = 0.

We may get the Bell inequalities of Eqs. (14,15) by solv-
ing the linear programming problem using the small an-
gles limit, that is Eqs. (16,17), when calculatingM(2) and
M(3), and dropping the overall factorx4. In case ofm = 3
(Eq. 14), we takeφ1 = 0 andφ2 = −φ3 = 1 (that is we
choosex = Φ2). This way, there are no free parameters

left. With this choiceM (2)
11 andM (2)

23 may take a nonzero
value, asΦ1 = −Φ1 = 0 andΦ2 = −Φ3 = x. Indeed,
these are the nonzeroM (2)

ij coefficients in Eq. (14). Actu-
ally, the solution of the linear programming problem in this
case is not unique, there are other Bell inequalities leading
to the sameηcrit. We have shown the one having the small-
est number of nonzero Bell coefficients. Now, from Eq. (8)
we can easily calculate the value ofηcrit. Using the mea-
surement angles defined above,〈W |Â1 ⊗ Â1 ⊗ Î|W 〉 ≈ 0

and 〈W |Â2 ⊗ Â3 ⊗ Î|W 〉 ≈ x4/48 (see Eq. 16). Fur-
thermore,〈W |Â1 ⊗ Â2 ⊗ Â3|W 〉 ≈ 〈W |Â2 ⊗ Â2 ⊗
Â3|W 〉 = 〈W |Â2 ⊗ Â3 ⊗ Â3|W 〉 ≈ x4/48. Also, due
to the permutational symmetry of the state|W 〉, the ma-
trix elements are the same for all permutations of the op-
erators. Therefore, by substituting the values for the mea-
surement angles and the Bell coefficients into Eq. (6), we
getM(2) = −18x3/48. Similarly, from Eq. (7), we arrive
at M(3) = 30x3/48. Therefore,ηcrit = 3/5 = 0.6. We
have noted that this is not the only Bell inequality with the
same threshold efficiency. The reason is that the quantum
value does not depend onM (2)

11 , M (3)
111, as the matrix ele-

ments they are multiplied with are zero beingΦ1 = 0. The
requirement of zero classical value does not define uniquely
these coefficients.

In the case ofm = 4, similarly to Eq. (14) form = 3,
Eq. (15) can also be derived by using the small angles limit.
Now, we choose the measurement anglesΦ1 = −Φ2 = x
andΦ3 = −Φ4 = λx. Now we have a single parameter
λ. It is enough to consider|λ| ≤ 1. We get the required

inequality if we choose any value forλ between 0.21 and
0.78. We show in the Appendix that the optimum isλ =
0.466715, which is a root of a fifth order equation, and then
ηcrit = 0.509036.

We have also derived the optimalm = 5 Bell inequality
similarly to the smaller ones in section III B, with measure-
ment anglesΦ1 = 0, Φ2 = −Φ3 = x andΦ4 = −Φ5 =
λx. It turned out to be equivalent to them = 4 case, so we
got no improvement on the critical efficiency.

C. W state,mA = 3 andmB = mC = 2

If we do not require permutational symmetry, we may
create a Bell inequality with the sameηcrit = 0.6 as for the
mA = mB = mC = 3 case using the|W 〉 state with only
two measurement settings for Bob and Cecil. As before,
Alice’s measurement settingŝA1, Â2 andÂ3 are character-
ized byΦA

1 = 0, ΦA
2 = x andΦA

3 = −x, respectively.
However, for Bob and Cecil the measurement angles will
be chosen asΦB

1 = 0, ΦB
2 = x andΦC

1 = 0, ΦC
2 = −x,

respectively. Here we used the upper indices to distinguish
between the parties. The asymmetric inequality will have
the same quantum value as the symmetric one for anyη,
if the sum of the Bell coefficients multiplying matrix ele-
ments that have the same numerical value are the same for
both inequalities. At the same time we must ensure that
the classical bound is also the same, that is zero. In the
case of a known symmetric inequality, these requirements
define a set of linear constraints for the coefficients of the
asymmetric one. It is a problem of linear programming to
decide whether these constraints can be satisfied or not. In
the present case the problem is solvable, the simplest Bell
inequality we have got, after dividing each coefficient by a
factor of six is:

S ≡ −P (11|A1B1)− P (11|A1C1)− P (11|B1C1)

−P (11|A3B2)− P (11|A2C2)− P (11|B2C2)

+P (111|A1B2C2) + P (111|A2B1C2) + P (111|A3B2C1)

+P (111|A2B2C2) + P (111|A3B2C2) ≤ 0. (18)

We have also tried to derive asymmetric Bell inequalities
with a smaller number of measurement settings for some of
the parties from them = 4 case given by Eq. (15), and also
from the inequalities we will show later, but we have found
no solution for the problem involved.

D. W state,m ≥ 6

For m = 6, usingΦ1 = −Φ2 = x, Φ3 = −Φ4 =
µx andΦ5 = −Φ6 = νx, we got a new inequality, with
ηcrit = 0.502417, marginally better than before. Now the
optimal choice for the parameters isµ = 0.495815 andν =
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0.295435 (see Appendix). The nonzero independent Bell
coefficients of thism = 6 inequality are:

M
(2)
12 = −18 M

(2)
34 = −18 M

(2)
56 = −18 M

(3)
112 = 18

M
(3)
114 = −18 M

(3)
122 = 18 M

(3)
123 = 9 M

(3)
124 = 9

M
(3)
136 = −9 M

(3)
156 = 8 M

(3)
223 = −18 M

(3)
245 = −9

M
(3)
256 = 4 M

(3)
334 = 18 M

(3)
336 = −18 M

(3)
344 = 18

M
(3)
345 = 9 M

(3)
346 = 9 M

(3)
356 = 1 M

(3)
445 = −18

M
(3)
456 = 5 M

(3)
556 = 4 M

(3)
566 = 8, (19)

Form = 7 we have got no further improvement.
For m = 8 there are three free parameters. The an-

gles are given asΦ1 = −Φ2 = x, Φ3 = −Φ4 = ρx,
Φ5 = −Φ6 = σx andΦ7 = −Φ8 = τx. The optimal
choice of the parameters isρ = 0.498442, σ = 0.306395
andτ = 0.169989. Thenηcrit = 0.501338. The nonzero
independent coefficients are:

M
(2)
12 = −6 M

(2)
34 = −6 M

(2)
56 = −6 M

(2)
78 = −6

M
(3)
112 = 6 M

(3)
114 = −6 M

(3)
122 = 6 M

(3)
123 = 3

M
(3)
124 = 3 M

(3)
136 = −3 M

(3)
223 = −6 M

(3)
245 = −3

M
(3)
334 = 6 M

(3)
336 = −6 M

(3)
344 = 6 M

(3)
345 = 3

M
(3)
346 = 3 M

(3)
358 = −3 M

(3)
378 = 2 M

(3)
445 = −6

M
(3)
467 = −3 M

(3)
478 = 2 M

(3)
556 = 6 M

(3)
558 = −6

M
(3)
566 = 6 M

(3)
567 = 3 M

(3)
568 = 3 M

(3)
578 = 1

M
(3)
667 = −6 M

(3)
678 = 1 M

(3)
778 = 2 M

(3)
788 = 2,

(20)

We have not tried any larger numbers of settings, the
number of constraints are too large. We may have got fur-
ther improvement, but we do not expect we could go below
0.5 with the critical efficiency.

We summarized critical detection efficiencies we found
in this paper for the 3-qubit W state in Table I.

IV. DETECTION EFFICIENCIES FOR SYMMETRIC
3-QUBIT STATES

By considering a more general symmetric state we have
been able to reachηcrit = 0.5 exactly already withm = 4.
But we found improvement even form = 3. The state
considered is:

|ψ〉 = cosα|W 〉+ sinα|111〉. (21)

This state is also symmetric for the permutations of the par-
ties, therefore, the matrix elements of the tensor productsof

settings ηcrit equation
222 0.83747 (13)
223 0.6 (18)
333 0.6 (14)
444 0.509036 (15)
666 0.502417 (19)
888 0.501338 (19)

TABLE I. Table for critical detection efficiencies using theW
state. The numbers in brackets refer to the Bell inequalities. In
the first columnijk refers to the respective number of settingsi,
j, andk for the parties Alice, Bob, and Cecil. Detection efficiency
thresholds are rounded up to five digits.

single party operators will not depend on the order of those
operators. In the above state we find that the weight of|111〉
goes to zero as the threshold efficiency is approached. Like
before, the measurement angles also vanish atηcrit.

Now, besides the matrix elements calculated with the
|W 〉 state (see Eq. (12), and Eqs. (16,17)) for the condi-
tional probabilities of Eq. (4) appearing in Eqs. (6,7) we
also need:

〈W |Âi ⊗ Âj ⊗ Î|111〉 = 1√
3
sisj ≈

x2

4
√
3
φiφj

〈W |Âi ⊗ Âj ⊗ Âk|111〉 =
x2

4
√
3
(c+i sjsk + sic

+
j sk + sisjc

+
k )

≈ x2

4
√
3
(φiφj + φiφk + φjφk)

〈111|Âi ⊗ Âj ⊗ Î|111〉 = c+i c
+
j ≈ 1

〈111|Âi ⊗ Âj ⊗ Âk|111〉 = c+i c
+
j c

+
k ≈ 1. (22)

These matrix elements, including their limits for small
angles, may be calculated similarly to the ones given in
Eqs. (12,16,17). We have also used the same notations.
For small angles we have kept only the leading order terms.
Eq. (22) shows that the matrix elements〈W |M̂η|111〉 and
〈111|M̂η|111〉 of the effective Bell operator (see Eq. (5))
for small measurement angles, that is for smallx, will be
second and zeroth order inx, respectively. With|ψ〉 given
in Eq. (21) we can write:

〈ψ|M̂η|ψ〉 = cos2 α〈W |M̂η|W 〉
+ 2 sinα cosα〈W |M̂η|111〉+ sin2 α〈111|M̂η|111〉.

(23)

Let us make the same restriction as before, namely let
M

(2)
ij = 0, whenever the corresponding measurement an-

gles do not satisfyφ1 + φ2 = 1, which makes sure that
〈w|M̂η|W 〉 fourth order inx. Then 〈ψ|M̂η|ψ〉 is also
fourth order, if the mixing angleα is taken proportional
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with x2, that isα = ax2. For smallx we may write:

〈ψ|M̂η|ψ〉 ≈ 〈W |M̂η|W 〉+ 2x2〈W |M̂η|111〉a
+ x4〈111|M̂η|111〉a2. (24)

With this choice, all matrix elements appearing inM(2) and
M(3) according to Eqs. (6,7) are fourth order inx, and we
may derive the Bell inequalities with the smallest critical
efficiency using linear programming exactly the same way
as we have done with the|W 〉 state. There is one extra pa-
rametera characterizing the mixing angle. From Eq. (24) it
is easy to determine the optimum choice for this parameter.
The equation defines a parabola as a function ofa, and its
maximum value is given as

a = −〈W |M̂η|111〉/x2〈111|M̂η|111〉. (25)

We note that〈111|M̂η|111〉 ≤ 0 for smallx, which follows
from the condition that the classical bound is zero, and that
all values of matrix elements involved are approximately
one (see Eq. (22)). Then the quantum value with the opti-
muma may be written as:

〈ψ|M̂η|ψ〉 ≈ 〈W |M̂η|W 〉 − 〈W |M̂η|111〉
〈111|M̂η|111〉

. (26)

The optimum value ofa depends on the Bell coefficients
to be determined, so what we can do is to try some initial
values fora, determine the Bell inequality with linear pro-
gramming, calculate the optimuma for this inequality, then
repeat these steps until convergency, which typically means
just a few iterations.

Let us first start with the smallest number of settings con-
sidered:

A. Symmetric state,m = 2

Choosing the parametera according to (25) in the state
|ψ〉 in Eq. (21), noting thatα = ax2, we may getηcrit =
0.6 in the limit of small measurement angles withm = 2
measurement settings per party. If we chooseΦ1 = 0 and
Φ2 = x, we get the same Bell inequality as we got with
the |W 〉 state, we have shown in Eq. (13). The marginally
small admixture of the|111〉 state lowered the value ofηcrit
from 0.83747 to 0.6, with considerably different measure-
ment angles. The inequality is the same as the three party
one given by Larssonet al. [28], and which is number 22
on the list of Sliwa [43]. However, in [28] the state they
considered is the|000〉 state with a very small admixture
of the |W 〉 state, that is their state approaches a separable
state at the threshold efficiency. Also, in their case, the sec-
ond measurement angle is zero, and not the first one. Sur-
prisingly, their very different solution does lead to the same

1e-05 0,0001 0,001 0,01 0,1η−η
crit

1e-18
1e-17
1e-16
1e-15
1e-14
1e-13
1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05

0,0001
0,001
0,01
0,1

M
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im
um
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io

la
tio

n

Full basis
Basis: |W>  and  |111> ; Φ1=0
Basis: |000>  and  |W> ; Φ2=0

FIG. 1. The maximum violation as a function of the detector effi-
ciency for the Bell inequality with two settings per party.

ηcrit = 0.6. We have calculated the maximum violation
of the inequality numerically for several detector efficien-
cies aboveηcrit. It turned out that it is always enough to
consider permutationally symmetric real states and to take
the same real measurement operators for each party. There-
fore, the state can be written as a linear combination of
|W 〉, |111〉 and|000〉 (the fourth independent real symmet-
ric state can always be eliminated by an appropriate choice
of the local coordinates).

The maximum violation as a function of the detector
efficiency is shown in Fig. (1). Near the threshold effi-
ciency the maximum violation scales as the third power of
∆η = η − ηcrit. The optimum state approaches the|W 〉
state, while the coefficients of the|111〉 and the|000〉 states
are proportional to∆η and∆η3/2, respectively. If we take
the coefficient of the|000〉 state exactly zero, the maximum
violation remains basically the same. Near the threshold the
difference is negligible, and it is just a little more than3%
aroundη = 0.9. Therefore, the optimum solution may be
reproduced almost exactly with the state we have consid-
ered in the present paper. Nearηcrit the measurement an-
glesΦ1 andΦ2 scale as∆η3/2 and∆η1/2, respectively. It
is the first angle that tends to zero faster. If we take this an-
gle exactly zero, as we have done in this paper, the scaling
behaviour of the maximum violation will not change, but
its value will be smaller by a factor approaching 6.25 near
ηcrit, and by a factor of 1.33 atη = 1 (see Fig. (1)). If we
take the basis used at [28], given by the|000〉 and the|W 〉
states, the threshold efficiency remains0.6, but nearηcrit
we get much smaller violations: it will scale as the fourth
power of∆η. This timeΦ2 goes to zero faster thanΦ1. If
we takeΦ2 = 0, it will hardly affect the violation nearηcrit,
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settings ηcrit equation
222 0.6 (13)
223 0.6 (18)
333 0.51678 (27)
444 0.5 (28)

TABLE II. Table for critical detection efficiencies using symmet-
ric 3-qubit states. The numbers in brackets refer to the Bellin-
equalities. In the first columnijk refers to number ofi,j, andk
settings for the parties Alice, Bob, and Cecil. Detection efficiency
thresholds are rounded up to five digits.

while it will reduce it by about30% at η = 1. The result is
shown in Fig. (1) We may conclude that for this inequality
our solution is much closer to the optimal arrangement than
the one of Larssonet al.[28]. However, their approach may
directly be generalized to a larger number of parties.

B. Symmetric state,m = 3

The independent Bell coefficients we got form = 3 are:

M
(2)
11 = −2 M

(2)
23 = −1 M

(3)
111 = 4 M

(3)
112 = 1

M
(3)
113 = 1 M

(3)
122 = −2 M

(3)
123 = 1 M

(3)
133 = −2

M
(3)
223 = 1 M

(3)
233 = 1, (27)

For this Bell inequalityηcrit = (19 +
√
937)/96 ≈

0.516776 (see Appendix), significantly smaller than the 0.6
value we got with the|W 〉 state form = 3.

C. Symmetric state,m ≥ 4

Form = 4 the coefficients are:

M
(2)
12 = −2 M

(2)
34 = −2 M

(3)
112 = 2 M

(3)
114 = −2

M
(3)
122 = 2 M

(3)
123 = 1 M

(3)
124 = 1 M

(3)
133 = −2

M
(3)
134 = 1 M

(3)
223 = −2 M

(3)
234 = 1 M

(3)
244 = −2

M
(3)
334 = 2 M

(3)
344 = 2. (28)

In the Appendix we show thatηcrit is exactly1/2 for this
inequality. We have triedm = 5 andm = 6, but we have
got no improvement, so for three participants we could not
find a Bell inequality for which the critical efficiency goes
below1/2.

We summarized critical detection efficiencies we found
in this paper for the symmetric 3-qubit states in Table II.

V. SUMMARY

We have shown that the required detection efficiencies to
demonstrate a loophole-free Bell violation can be signifi-
cantly lowered if three parties are involved (instead of the
usual two-party scenario). Before, no practical three-party
Bell tests featuring efficiencies lower than60%were known
to the best of our knowledge. This value has been attained
by Larsson and Semitocolos in 2001 in a three-party two-
setting Bell scenario [28]. We beat this limit using a W state
and three measurements per party. Moreover, for 8 settings
we reach the value of50.13%. On the other hand, using a
coherent mixture of the W state with a product state|111〉
allows us to obtainηcrit = 50% even with 4 settings. We
conjecture thatηcrit = 50% cannot be beaten in either way.

It is left as an open question if one of our inequalities
could be generalized beyond three parties similarly to the
family of Bell inequalities by Larsson et al. [28].
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[22] T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104,

060401 (2010).
[23] H. Buhrman, P. Høyer, S. Massar, and H. Röhrig, Phys. Rev.
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Appendix A: Detailed calculation of critical detection
efficiencies

In the Appendix we calculate the critical detector effi-
ciencies for the Bell inequalities given in the main text. Ac-
cording to Eqs. (5,6,7), and taking into account the permu-
tational symmetry of the states considered, the matrix ele-
ment of the effective Bell operator may be written as:

〈ψ|M̂η|ψ〉 = η2
m
∑

j=1

m
∑

i=j

M
(2)
ij πij0〈ψ|Âi ⊗ B̂j ⊗ Î|ψ〉+

η3
m
∑

k=1

m
∑

j=k

m
∑

i=j

M
(3)
ijkπijk〈ψ|Âi ⊗ B̂j ⊗ Ĉk|ψ〉,

(A1)

whereπijk is the number of permutations of indicesi, j,
andk, that isπijk = 6, if all three are different,πijk = 3 if
two indices agree, andπijk = 1 if i = j = k.

The condition for the violation of the Bell inequality by
the results of the measurements performed on the|W 〉 state
is:

〈W |M̂η|W 〉 > 0, (A2)

and the values of the matrix elements necessary to evalu-
ate〈W |M̂η|W 〉 for small measurement angles are given by
Eqs. (16,17). It makes the calculations simpler if we notice
that these matrix elements do not change if we reverse the
signs of the measurement angles concerned simultaneously.
Also, if one of the measurement angles isΦ and another one
is −Φ, then the three particles matrix element will not de-
pend on the third angle. These statements are also true for
the matrix elements shown in Eq. (22) in the limit of small
angles, which we will need when we consider the state de-
fined by Eq. (21).

http://arxiv.org/abs/1503.07535
http://arxiv.org/abs/1303.3081
http://arxiv.org/abs/1302.6698
http://arxiv.org/abs/quant-ph/0404076
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We have already shown that for them = 3 inequality
given by Eq. (14)ηcrit = 0.6.

Now let us consider them = 4 case given by Eq. (15).
The measurement angles to be taken now areΦi = φix,
with φ1 = −φ2 = 1 and φ3 = −φ4 = λ. By using
Eqs. (A2,A1,16,17), straightforward calculation leads usto:

− 3− λ4 + η[6− 3(1− 2λ)2] > 0 (A3)

for the condition of the quantum violation. Here we have
simplified the expression by a factor ofx2η2/(48 · 12). At
η = ηcrit the l.h.s. of the equation is zero, thereforeηcrit =
3(1 + 4λ − 4λ2)/(3 + λ4). It has its minimum value ifλ
satisfies2λ5 − 3λ4 − λ3 − 6λ + 3 = 0. The appropriate
root calculated numerically isλ = 0.466715, which leads
to ηcrit = 0.509036.

For the them = 6 case shown in Eq. (19) we can follow
the same steps as above. Now the measurement angles are
given byφ1 = −φ2 = 1, φ3 = −φ4 = µ andφ5 = −φ6 =
ν. With these angles we get for the condition of quantum
violation, after a simplification by a factor ofx2η2/(48·36):

−3(1 + µ4 + ν4) + η[6 + 6µ4 + 4ν4 − 3(1− 2µ)2−
3(µ2 − 2µν)2 − 3(µ− ν − µν)2] > 0. (A4)

Again, atη = ηcrit the l.h.s. of the equation is zero, and
we must choose the parametersµ andν such thatηcrit is
minimal. We get three equations for the three unknown
values, and if we solve those equations numerically we get
µ = 0.495815, ν = 0.295435, andηcrit = 0.502417.

For inequality withm = 8 given by Eq. (20) the expres-
sion corresponding to Eq. (A4) is:

−3(1 + ρ4 + σ4 + τ4) + η[6 + 6ρ4 + 6σ4 + 4τ4−
3(1− 2σ)2 − 3(ρ2 − 2ρσ)2 − 3(σ2 − 2στ)2−
3(ρ− σ − ρσ)2 − 3(ρσ − ρτ − στ)2] > 0. (A5)

Here we have followed the same steps as form = 6 taking
measurement anglesφ1 = −φ2 = 1, φ3 = −φ4 = ρ,
φ5 = −φ6 = σ andφ7 = −φ7 = τ . From the equation
we get numericallyηcrit = 0.501338 with ρ = 0.498442,
σ = 0.306395 andτ = 0.169989.

Now let the state be the one shown in Eq (21). From
Eq (26), if we choose the optimal mixing angle, the condi-
tion for quantum violation is:

〈W |M̂η|W 〉 − 〈W |M̂η|111〉
〈111|M̂η|111〉

> 0. (A6)

The matrix elements of the Bell operator may be calculated
from Eq (A1), which is also valid if the state vectors are
different in the bra and the ket positions, provided both are

permutationally symmetric. The matrix elements of the two
and three particle operators appearing in the r.h.s. of the
equation are given in Eqs. (16,17,22). We are concerned
with the small angles limit.

First, let us take them = 2 inequality of Eq (13).
With the choice of φ1 = 0 and φ2 = 1, we
get 〈W |M̂η|W 〉 = −3η3x4/48, 〈W |M̂η|111〉 =

−3η3x2/4
√
3 and 〈111|M̂η|111〉 = −3η2 + 2η3 for the

matrix elements of the effective Bell operator. By substitut-
ing these values into Eq. (A6), and taking into account that
the l.h.s. of the equation is zero atη = ηcrit, it is easy to
see thatηcrit = 3/5 = 0.6.

We may take the same steps form = 3. The inequality is
shown by Eq. (27), and the measurement angles are given
by φ1 = 0, φ2 = 1 andφ3 = −1. Then the matrix el-
ements of the effective Bell operator are〈W |M̂η|W 〉 =

−6η2x4/48, 〈W |M̂η|111〉 = −
√
3η2x2(2η − 1/2) and

〈111|M̂η|111〉 = −η2(12 − 5η). Then the condition that
the l.h.s. of Eq. (A6) is zero atη = ηcrit leads to equa-
tion 48η2crit − 19ηcrit − 3 = 0, whose appropriate root is
ηcrit = (19 +

√
937)/96 ≈ 0.516776.

In the case of them = 4 inequality of Eq. (28) the
measurement angles are given byφ1 = 1, φ2 = −1,
φ3 = λ and φ4 = −λ. From these it follows that
〈W |M̂η|W 〉 = η2x4[−1− λ4 + η(1 + 4λ− 8λ2 − 4λ3 +

λ4)]/4, 〈W |M̂η|111〉 = −
√
3η2x2(1 + λ2)(1 − 3η) and

〈111|M̂η|111〉 = −24η2(1 − η). If we substitute these
values into Eq. (A6), we can get:

η2

8(1− η)

[

r
(

η − 1

2

)2
+ p

(

η − 1

2

)

− q

]

> 0, (A7)

where

r ≡ 4λ4 + 8λ3 + 34λ2 − 8λ+ 7

= 5λ4 + 2(λ+ 1)4 + 6λ2 + 4(2λ− 1)2 + 1 > 0

p ≡ 5λ4 + 6λ2 + 5 > 0

q ≡ (λ2 + 4λ− 1)2

4
≥ 0. (A8)

In Eq. (A7) the prefactor is positive for0 < η < 1. As
r is strictly positive, the inequality is satisfied above the
upper root of the second order expression. Below that the
expression is negative for allη ≥ 0, as one can easily see.
Therefore, we get the critical efficiency as(ηcrit − 1/2) =

(
√

p2 + 4rq − p)/2r. As r > 0, p > 0 andq ≥ 0, the
smallest possible value the r.h.s. may take is zero, when we
chooseλ such thatq = 0, that isλ = −2 ±

√
5. With this

optimal choiceηcrit = 1/2.


