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Research Highlights 

In the lecture planned for the Colloquium a finite element method (FEM) model of a slender, 4.3m 

stalagmite located in Plavecka Priepast cave (Figures 1 and 2) will be analyzed in detail with respect to its 

dynamic modal properties and seismic fragility. The main reason of this study is to gain long-term seismic 
hazard information for the surroundings of the investigated cave. A robust FEM model of the stalagmite will 

be presented and results of its modal properties and seismic response will be discussed as well. 

Introduction 

Typical fragile geological features (FGFs) are precariously balanced rocks studied in numerous papers (e.g., 

Brune, 2002, 1996, 1999; Ludwig et al., 2015) or speleothems which represent separate branch of 
paleoseismology (e.g., Becker et al., 2006; Ferranti et al., 2019; Gribovszki et al., 2018, 2017; Lacave et al., 

2004; Pace et al., 2020; Paskaleva et al., 2006) or serve other scientific studies (e.g., Engel et al., 2020; 

Moseley et al., 2014). Although the role of speleothems in calibrating seismic hazard is not straightforward 

(Gilli, 2005; Lacave et al., 2004), their unique fragility is used in many papers aiming at verifying seismic 
hazard and, in particular, to put constraints on predicted Peak Ground Accelerations (PGA) of seismic hazard 

studies so that the observed speleothem was not damaged. This way the long-term seismic hazard studies for 

monumental structures like large dams or nuclear power plants can be better validated.   

Typically, they are modeled as single-degree-of-freedom systems or other models of the simple, uniform 

vertical cantilever beams or other oscillating systems behaving like inverse pendulums. From a mechanical 
point of view, these models are very simplistic, while some of the fragile geological features are rather 

complicated in their size and shape. Besides, PGA is relatively a simple measure of seismic intensity because 

also other ground motion parameters may influence damage of the speleothems. Namely, these could be 
strong motion duration and spectral content of the seismic ground motion.   
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Figure 1. Location of the “Plavecká Priepast” stalagmite. 

 

So far, there were only very few attempts to apply more detailed modeling methodologies to study the 
seismic motion of FGFs, particularly to use the FEM. The first such paper can probably be attributed to Hall 

(1996), who used 2D finite element stress modeling of statical equilibrium of six rock columns located in the 

Chiricahua Mountains, Arizona.   

Recently Martin et al. (2020) carried out an analysis of ambient vibrations of so-called ―Minaret‖ stalagmite 

4.5 m high and with approximately 17-20 cm width, from Han-sur-Lesse cave located 80 meters 
underground in Wallonia, Belgium. The Authors used ultra-sensitive geophones to collect peaks values of 

amplitudes of extremely small ambient vibrations in three directions at the ground surface, at the stalagmite 

base, and at the height of 2.52 m.  

Description of the FEM model and its calibration 

In a recent paper (Zembaty et al., 2023) a 3D FEM model of the 4.3m stalagmite measured in Plavecka 
Priepast cave (Figure 2) is presented. Results of its modal analyses based on data acquired using a 1-D, 

velocity sensor attached to that stalagmite at a height of 1.5 m are given in detail. The stalagmite is shown in 

Figure 2 together with a frame of Cartesian reference system and directions of applied seismic excitations.  

 

 

 

Figure 2. Photograph of 4.3m stalagmite in Plavecká Priepast cave and system of geometric axes applied in its 

analysis (X-EW, Y-SN, Z-UP) and its seismic accelerations (aUX, aUY, aUZ). 

 

The model consisted of 600 025 finite elements which generated 2 835 879 dynamic degrees of freedom and 

was used to compute seismic response to a selected, underground time history seismic record (for details see 

Zembaty et al., 2023). In Figure 3 a fragment of the FEM mesh of the stalagmite is shown in detail. The 
whole view of the FEM model is also available at this link:  

https://z.zembaty.po.opole.pl/SupplementaryStalagmite.html 
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Figure 3. Details of Finite Element Method mesh of the modeled stalagmite in Plavecka Priepast cave 

 

Results and conclusions 

An analysis of the eigenproblem of the FEM model and subsequent Hilbert-Huang modal extraction 

(Zembaty et al., 2023) gave natural frequencies and modal damping ratios presented in Table 1. Dynamic 

analyses of cantilever beams modeled as 3-dimensional bodies lead to conclusion that the natural frequencies 
of slender stalagmites will appear clustered in pairs. For these reasons the results of modal analyses are 

shown in Table 1 as ―lower‖ and ―upper‖ modes. Not all respective damping ratios could effectively be 

extracted, yet their extremely low values, well below 1% can easily be noted. The FEM model of the 
stalagmite was applied in seismic response analyses which led to a conclusion that the stalagmite may 

withstand seismic excitations with the ultimate horizontal peak ground velocity of 3.4 mm/s which is not far 

from the value obtained by Bottelin et al. (2020) for other slender speleothems (2.4 mm/s). For details of the 

seismic response analyses of the ―Plavecka Priepast‖ stalamite see: Zembaty et al. (2023). 

 

Table 1. Modal parameters of the “Plavecká Priepast” stalagmite. 

 

Mode of vibration Natural frequency ξ 

mode 1low 2.96 Hz - 

mode 1up 3.19 Hz 0.11 % 

mode 2low 14.50 Hz 0.14 % 

mode 2up 16.13 Hz 0.20 % 

mode 3low 35.72 Hz 0.20 % 

mode 3up 40.51 Hz 0.52 % 

 

 

In May 2023 the Plavecka Priepast cave was revisited with an aim to improve the 3D vibration data 
acquisition of this and other stalagmites in this cave. The measurements were carried out simultaneously in 

two perpendicular planes using very accurate laser vibrometer (Polytec VibroGo). During the 8ICHISTEQ 

updated results of measurements of these stalagmites and their numerical analyses will be reported. 
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