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Fundamental limitation of ultrastrong coupling between light and atoms
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In a recent work of ours [1], we generalized the Power–Zineau–Woolley gauge to describe the electro-
dynamics of atoms in an arbitrary confined geometry. Here we complement the theory by proposing
a tractable form of the polarization field to represent atomic material with well-defined intra-atomic
potential. The direct electrostatic dipole-dipole interaction between the atoms is cancelled. This the-
ory yields a suitable framework to determine limitations on the light-matter coupling in quantum
optical models with discernible atoms. We find that the superradiant criticality is at the border of
covalent molecule formation and crystallization.
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I. INTRODUCTION

Ultrastrong coupling between two systems is realized
when the characteristic coupling constant of the interac-
tion is of the same order of magnitude as the bare fre-
quencies of the systems without interaction. Although
this definition is meaningful regardless of the type of in-
teraction, in reality it is only the electromagnetic inter-
action that allows for such level of control on the quan-
tum scale as is necessary for any chance at ultrastrong
coupling. Reaching the ultrastrong-coupling regime is an
outstanding objective in controlled laboratory systems
where confined electromagnetic radiation interacts with
some kind of material degree of freedom [2–11]. It would
mean the realization of hybrid light-matter “molecules”.
On one hand, the essential hybridization of electronic
states by photons leads to fundamental effects, such as
the dynamical Casimir effect [12–14] or quantum critical-
ity [15–18]. On the other hand, the external control over
the properties of such artificial objects opens the way to
novel electro-optical applications where the “light-matter
molecule” serves as a quantum interface between degrees
of freedom of completely different kinds. The possibility
of reaching an interaction of such strength touches un-
avoidably upon the foundations of the electromagnetic
interaction in those system (quantum electrodynamics –
QED). In the present paper, we aim at theoretically clar-
ifying the grounds for ultrastrong coupling of light with
atoms.

In our recent work [1], we generalized the
Power–Zineau–Woolley (PZW) gauge [19–21] (cf.
also Section IV.C in [22]) to arbitrary confined geometry,
which includes any cavity QED situation, and is hence of
fundamental importance for defining single- or few-mode
models that are widely used in quantum optics. We
argued that this picture is better suited as a basis of
such models than the Coulomb gauge, because of the
lack of direct coupling between the modes (which is
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present in the Coulomb gauge through the A-square
term), and the lack of direct, electrostatic atom-atom in-
teractions (which is also present in the Coulomb gauge).
Indeed, a term-by-term correspondence between the full
Hamiltonian in the new picture and standard model
Hamiltonians of quantum optics (Jaynes–Cummings
or Rabi models) was found [23, 24]. An immediate
consequence of using this gauge is that the feasibility
of the superradiant phase transition in the Dicke model
cannot be excluded by the commonly known no-go the-
orem based on the A-square term [25, 26]. However, the
evaluation of the accessible coupling strength requires
the clarification of the polarization field used to describe
the material component in the PZW gauge. This is the
subject of the present paper for the case of a medium
composed of isolated atoms.

The single-atom Hamiltonian in the PZW gauge (also
called multipolar gauge) can be expressed as

HA =
∑

α∈A

p2
α

2mα
+

1

2ε0

∫

supp(PA)

d3rP2
A, (1)

where A denotes a single atom, α labels the constituent
point charges, pα is the momentum of the point charge
in the new picture, and PA is the polarization field as-
sociated with the atom. The second term in this Hamil-
tonian, which can be viewed as the “potential” term, can
be problematic. This is the case for the intuitive choice of
PA, known as the Power form (Section IV.C.1.a in [22]),
which is directly based on the point-charge distribution
within the atom:

PPower,A(r) =
∑

α∈A

qαrα

1∫

0

du δ(r− urα), (2)

where qα is the charge and rα is its position. This form
is a distribution, so that (1) contains a distribution
squared, that is mathematically ill defined. In this paper
we present an alternative definition of the polarization
field which gives a meaningful “potential term” in the
single-atom Hamiltonian and, at the same time, retains
the good property that there is no direct electrostatic
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interaction between different atoms. The proposed defi-
nition allows thus for exploring the limits of ultrastrong
coupling between atomic matter and light.

The discussion is structured in the following way. We
start, in Section II, with pointing out that the defini-
tion of the PZW canonical transformation has a freedom,
namely, the freedom of choosing the transverse part of
the polarization field. We identify the restrictions this
field has to meet. In Section III, using this freedom, we
define the transverse part of the polarization field gener-
ated by spatially distinct, well-localized, neutral charge
clusters (atoms). With the proposed definition, the pas-
sage to the multipolar gauge is in fact a class of trans-
formations parametrized by a single wavenumber-cutoff
parameter. We show how to define bounds for the cut-
off wavenumber on intuitive physical basis. The lower
comes from the requirement of the disappearance of the
A-square term (Section III A), while the upper from that
the potential term in Hamiltonian (1) be only a slightly
perturbed Coulomb potential (Section III B).

With this appropriate choice, in Section IV, we ar-
rive at a picture where the atoms interact exclusively
via the radiation modes of the electromagnetic field by
means of photon emission and absorption processes. Since
the instantaneous electrostatic dipole-dipole Coulomb in-
teraction between spatially distinct atoms is canceled,
the atoms have well-defined resonances regardless of the
presence of other atoms. Thus, the commonly used few-
mode models, such as the Dicke model, can be straight-
forwardly defined. The necessary requirement is that
the atoms do not approach each other within the dis-
tance corresponding to the cutoff, i.e., they all are sur-
rounded by an “intimacy zone”. Therefore, on the other
hand, the proposed gauge is unsuited for describing
molecule formation or solidification. This is to be noted
because our results indicate that the superradiant quan-
tum phase transition accompanied by ferroelectric order-
ing of the atoms in the dipolar Hamiltonian (most simply
in the Dicke model) blends into that commonly observed
phase transition which is solidification. Nevertheless, suf-
ficiently far from the regime of molecule formation, the
proposed gauge can be used to evaluate the limitation of
ultrastrong coupling within the Dicke and related mod-
els.

II. QUANTUM ELECTRODYNAMICS OF

ATOMS IN THE MULTIPOLAR GAUGE

The Hamiltonian in the multipolar gauge reads [1]

H = HEM +Hkin +
1

2ε0

∫
dV P 2 − 1

ε0

∫
dV P ·D, (3)

where HEM is the Hamiltonian of the free electric field,
Hkin is the kinetic energy of the atoms, and D is the
(purely transverse) electric displacement field. P is the
polarization field, which plays a crucial role in this gauge.

This satisfies the relation

∇ ·P = −ρ, (4)

that connects the polarization field to the charges, how-
ever, since ∇ ·P = ∇ ·P‖, it relates only to the longitu-
dinal component of the field [29]. Equivalently:

P‖ = −ε0E
‖, (5)

meaning that the part of the electric field which is at-
tached to the charges and follows their motion instanta-
neously (the so-called “near field”), is incorporated into
the polarization field, that represents the material com-
ponent of the interacting system.

Besides P‖, the other orthogonal component of P is the
transverse component, P⊥. Transverse fields are source-
free and normal to boundaries, that is, they can either
be written as curl of vector fields normal to boundaries,
or are cohomological [1]. We emphasize again that the
transverse component of the polarization field is not de-

termined by the charges in such a direct way as Eq. (4)
for the longitudinal one. Instead, it has to obey a set of
conditions in order that the multipolar gauge be really
useful. The first comes from the requirement of the “elim-
ination of the A-square term” to electric-dipole order (see
Eq. (5c) in Ref. [1]) that we expect from this gauge:

∂

∂rα

∫
dV P⊥ ·A !

= qα A(rA), ∀α ∈ A, (Cond. I)

where rA is the position of that atom A to which the
particle α with position rα and charge qα, belongs. This
makes the kinetic momentum coincide with the canonical
one up to a magnetic term (Röntgen term, cf. Section
IV.C.4.c in [22]), which we neglect here [30].

The next condition is necessary for eliminating the
electrostatic dipole-dipole interaction between the atoms
in this gauge, which means that the medium can be
considered as independent atoms (elimination of cross-
coupling in the P-square term). It requires that PA, the
polarization field corresponding to any single atom A (so
that the full polarization is P =

∑
A PA), have finite

support around the atomic position. The size of the sup-
port can be a parameter that for instance will play an
important role with our choice of P⊥ in Section III. This
fact of finite support we express here with the help of the
“long-wavelength” delta function as:

PA(r) ≃ dAδ<(r− rA). (Cond. II)

Through the example of our choice of P⊥, in Section III
we will discuss why and in what sense the equality is only
approximate here. For the moment it is sufficient that
the field PA should describe a well-localized dipole when
regarded on a lengthscale much larger than the atomic
size.

Under this last condition, and assuming the atoms dis-
tant enough from each other so that the supports of their
respective PA fields do not overlap, the third term of the
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Hamiltonian (3) – the potential term – can be written as
per atom:

U ≡ 1

2ε0

∫
dV P 2 =

1

2ε0

∑

A

∫
dV P 2

A ≡
∑

A

UA, (6)

which means that the only interaction between different
atoms is the indirect one via the displacement field D,
that involves the emission and absorption of photons, in-
cluded in the Hamiltonian (3) by its last term. This leads
us to the final condition that P⊥

A has to satisfy for each
atom A. The potential corresponding to atom A can be
separated into parts generated by the longitudinal and
the transverse part of the polarization field, where the
longitudinal part can be identified (cf. Eq. (5), and Sec-
tion I.B.5.a in [22]) as the Coulomb potential term:

UA =
1

2ε0

∫
dV

(
P

‖
A

)2

+
1

2ε0

∫
dV

(
P⊥
A

)2

≡ UCoul
A +∆UA. (7)

Then, the last condition is that the potential generated
by the transverse part be only a perturbation to the nor-
mal Coulomb potential, because we do not want to upset
atomic physics as it has been worked out over the last
century based in leading order on the electrons experi-
encing the Coulomb potential as they orbit the nucleus.

∆UA is only a perturbation to UCoul
A . (Cond. III)

In Section IV, we show how to proceed under this set
of conditions to the derivation of the standard models of
quantum optics.

III. APPROPRIATE CHOICE OF THE

TRANSVERSE POLARIZATION IN DIPOLE

ORDER

The following form for the transverse part of the polar-
ization field we demonstrate in the following to optimally
fulfill the set conditions:

P⊥
A(r) = δ

⊥
<(r− rA)dA, (8a)

where dA =
∑

α∈A qαrα is the dipole moment of atom
A, and we have used the long-wavelength part of the
transverse delta function, most conveniently defined by
a Lorentzian cutoff in k-space at the cutoff wavenumber
kM:

δ̃
⊥
<(k) =

1

(2π)
3

2

(
idR3 − k ◦ k

k2

)
k2M

k2 + k2M
, (8b)

where we have assumed rA = 0 for the single atom A
that we are going to consider henceforth in this Section.
Using the real-space form of this, we get for r & k−1

M

P⊥
A(r) =

η(r)

4πr3

[
3 (r · dA) r

r2
− dA

]
,

with η(r) = 1−
(
1 + kMr +

k2Mr2

2

)
e−kMr. (8c)

As it is apparent, this is just the electric field of a
dipole, so that this choice of P⊥

A cancels the dipole or-
der of the longitudinal component (5), outside a distance

∼ k−1
M . This makes that the support of PA = P

‖
A+P⊥

A is
indeed finite in dipole order, that is, the atoms interact
only in quadrupole order, which we are neglecting here.
Hence, (Cond. II) is fulfilled up to dipole order, which we
consider sufficient for our purposes here, and is in accor-
dance with the neglect of the Röntgen term above [31].
This is the sense in which the equality in (Cond. II) is ful-
filled only approximately: up to dipole order and without
a region of k−1

M around the atom. This latter is the inti-

macy region of an atom: the interaction between different
atoms simplifies substantially to the indirect interaction
mediated by the radiation field modes only if they do not
penetrate each other’s intimacy region.

This is also a point where our approach manifestly
deviates from the original Power–Zineau–Woolley ap-
proach, since with Power’s original definition of the po-
larization field (2), it exactly vanishes outside of zero-
measure regions within the atom (on the other hand,
(Cond. III) is impossible to fulfill with that choice of the
polarization field).

In our case, the cutoff wavenumber kM is not a renor-
malization parameter, but parametrizes a class of allowed
transformations. In the following, we use the remaining
two conditions (Cond. I) and (Cond. III) to define an in-
terval for kM.

A. Lower limit of cutoff

The lower limit comes from (Cond. I) as follows. Tak-
ing the free-space traveling-wave expansion of the vector
potential A(r) =

∫
d3k

∑
ǫ

[
αǫ(k) e

ik·r + c.c.
]
, and sub-

stituting into the LHS of (Cond. I) with our choice of P⊥

(8a), we obtain

∫
dV

∂P⊥

∂rα
A = qα

∫
d3k

k2M
k2 + k2M

∑

ǫ

[αǫ(k) + c.c.]

≡ qαA<(0). (9)

That is, if αǫ(k) ≈ 0 for k ≥ kM in the course of the
dynamics, so that we can write A<(0) = A(0), then
(Cond. I) is fulfilled. Hence the lower limit for kM:

kM ≫ kradiation, (kM lower limit)

In simple terms, the atom has to be small compared
to the wavelength of populated modes, represented by
k−1
radiation. This is usually termed the dipole approxima-

tion, or, more precisely, the long-wavelength approxima-
tion. In the case of a hydrogen atom and optical fre-
quencies, there are roughly 3 orders of magnitude be-
tween the atomic size and the characteristic wavenumber
of the atomic transitions. This can be seen by expressing
the characteristic transition frequency with fundamental
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constants as ~ωA = 3
8mec

2α2, and using mecα = ~/a0 to
obtain

kA =
3α

8

1

a0
, (10)

where α is the fine-structure constant, and kA determines
the wavenumber of the relevant resonant radiation modes
(kradiation ∼ kA).

The long-wavelength approximation is an elementary
requirement for atom optics, because in this field we need
well-defined atoms with level structures determined by a
static potential, and radiative effects on the atomic scale
are treated as mere perturbations.

B. Upper limit of cutoff

The upper limit comes from (Cond. III) as follows.
With our choice of the transverse polarization field (8a),
we can take the potential resulting from P⊥ seriously as a
physically significant potential. This is in sharp contrast
to Power’s choice, since in that case the “perturbation” is
infinite and calls for renormalization. The finite and regu-
lar potential ∆UA in Eq. (7) resulting from the proposed
polarization field P⊥ is

∆UA =
1

2ε0

∫
d3k

∣∣∣P̃⊥
A

∣∣∣
2

=
k3M

24πε0
d2A. (11)

This potential term manifests that the atom is defined in
the multipolar gauge differently from the one in Coulomb
gauge, i.e., the gauge transformation shifts the boundary
between atom and field.

To keep our discussion as simple as possible, the ef-
fect of this potential will be calculated in the example of
the 1s state of the hydrogen atom by time-independent
perturbation theory. To be able to do quantum physics,
the potential has to be treated as an operator acting on
the Hilbert space of the atom’s constituents. Here, this
consists in considering the positions of the atomic con-
stituents appearing in dA as quantum operators. For the
hydrogen atom, d = e r, where r is the relative coordi-
nate, so that the perturbing potential reads

∆Uhydrogen =
e2k3M
24πε0

r2. (12)

The 1s wave function of the electron reads Ψ1s(r) =

e−r/a0/
(√

πa
3/2
0

)
, where a0 is the Bohr radius. The first-

order perturbation reads:

E
(1)
1s = 〈1s|∆Uhydrogen |1s〉

=
e2k3M

24π2ε0a30

∫
d3r r2e−

2r

a0 =
e2k3Ma20
8πε0

. (13)

Let us compare this energy to the binding energy of the
hydrogen atom, the Rydberg energy. We find the follow-
ing remarkably simple expression:

E
(1)
1s

Ry
= (kMa0)

3
. (14)

Hence (Cond. III) is translated to an upper limit of the
cutoff wavenumber as

k3M ≪ (a0)
−3. (kM upper limit)

The cubic power in this expression makes that e.g. a cut-
off of kM ≈ 1/(2 a0) already gives about 0.1 for the en-
ergy ratio (14). That is, an intimacy region compressed
to nearly the atomic size can be chosen without signifi-
cantly altering the usual Coulomb-potential form of the
atomic Hamilton operator. We note that the Lamb shift
is of the same order of magnitude as ∆UA [19, 27], but
it should be treated separately, since it comes from the
interaction with the vacuum field, that is, the last term
of Hamiltonian (3).

IV. THE LIMITS OF COUPLING STRENGTH

With the transverse polarization fulfilling all the con-
ditions considered above, the Hamiltonian (3) is greatly
simplified in the electric dipole approximation to read

H = HEM +
∑

A

(
HA − dA · D(rA)

ε0

)
,

with HA =
∑

α∈A

p2α
2mα

+ UA, (15)

where the replacement of the interaction term (last term
of Hamiltonian (3)) with the last term of H here is jus-
tified under (Cond. II) in the long-wavelength approxi-
mation for the displacement field equivalent to the one
discussed in Section III A.

The significance of this form is that the standard mod-
els of quantum optics can be derived from here through
two well-established approximations: (i) the single-mode
approximation for the field, when the field is described
as a single harmonic oscillator mode with bosonic opera-
tor a; and (ii) the two-level approximation for the atoms,
when the atomic ensemble can be treated as a spin N/2,
with spin operators S, Sx, etc. This yields models like the
Dicke and (with an additional rotating-wave approxima-
tion) the Tavis–Cummings, whose respective Hamiltoni-
ans correspond term by term to the Hamiltonian (15):

{
HDicke

HTavis–Cummings

}
= ω a†a+ωASz+

{
g√
N

(
a+ a†

)
Sx

g√
N

(
aS† + a† S

)
}
.

(16)
The important point here is that no term of Hamilto-
nian (15) had to be neglected, so that the A-square (di-
rect coupling between the modes) or P-square problems
(direct electrostatic coupling between the atoms) [28] do
not appear in this treatment. This is in sharp contrast to
a treatment based on the Coulomb gauge, where e.g. the
A-square problem initiated an intense debate concerning
the qualitative validity of the Dicke model [1, 23, 25, 26].

We are now in the position of addressing the ques-
tion what is the maximum coupling strength achievable
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between the atomic medium and a radiation field mode.
The limitation arises from the requirement that the inter-
atomic distance in the many-atom ensemble must respect
the intimacy region of the individual atoms.

For the collective coupling of atoms to light in the mod-
els (16), the figure of merit pertaining to ultrastrong cou-
pling is the ratio

F ≡ Ng2

ω ωA

, (17)

where N is the number of atoms, ω is the frequency of a
radiation mode, ωA is the resonance frequency associated
with a relevant electronic transition within an atom, and
g is the electric-dipole coupling constant, cf. Eq. (16).
For example, F = 1 corresponds to the critical point of
the Dicke model, predicting a superradiant phase transi-
tion into such a ground state of the system as features
spontaneous polarization [15, 16]. The coupling g de-
pends on the mode geometry and the oscillator strength
of the atomic transition. In the QED picture used here,
its square can be written the same way as in the electric-
dipole gauge of QED: g2 = ω d2/(2~ε0V ), where V is the
mode volume and d is the dipole moment of the atomic
transition along the mode polarization. Note that the use
of all the microscopic parameters (d, ωA, etc.) is justified
here by the lack of cross-coupling in the “P-square term”
of Eq. (3): without electrostatic atom-atom interaction,
the presence of other atoms does not alter the atomic
level structure.

The figure of merit can be expressed in two instructive
forms. Firstly:

F =
N

V
λ3

A

3

8π2

1

Q
, (18a)

where we use the quality factor of the atomic resonance
Q ≡ ωA/γ with γ being the linewidth (half width at half
maximum) and λA the wavelength. This form expresses
that the density N/V must be large to compensate for the
large quality factor of an atomic resonance in the denom-
inator (for alkali atoms this is ∼ 1.2− 1.5 · 108). In order
to get deeper insight into scaling laws, we consider tran-
sitions between hydrogen-like ground and excited states,
and find the second form:

F =
N

V
16πa30 , (18b)

where a0 is the Bohr radius. That is, in order to have
F ∼ 1, the atomic medium should be so dense that one
atom occurs per about 4 Bohr radius cube.

This density is noticeably close to the limit allowed
by the maximum of the cutoff parameter kM given by
(kM upper limit), i.e., k−1

M = 2 a0, indicating an inter-
atomic distance just around 4 Bohr radius. This means
that we can approach the critical-coupling point in the
ultrastrong regime with an ensemble of independent
atoms, i.e., F . 1. However, this happens at the density
when the intimacy regions of adjacent atoms touch. Fur-
ther increasing the density, the independent-atom model

breaks down and electrostatic interactions become rele-
vant. Moreover, at such a small atomic distance, the over-
lap between the exponentially decaying electron wave-
functions (∝ e−r/a0) belonging to different atoms be-
comes significant. Such a delocalization of electronic or-
bits would lead to covalent bond between atoms, but this
effect is not described by our model, as here the electrons
do not experience the electrostatic potential of other nu-
clei. The role of electron-orbit delocalization at such high
densities can be revealed by comparing the critical den-
sity 7 · 1027/m3 for Rubidium (calculated from Eq. (18a)
by putting F = 1) to the crystalline density 11 ·1027/m3.
We find similar correspondencies also for other species
used in atomic optics experiments. One can thus con-
jecture that the superradiant criticality blends into the
commonly known criticality of solidification [32].

V. CONCLUSIONS

We considered the quantum electrodynamic founda-
tions of the interaction of atoms with light. In particu-
lar, we analysed in detail how the atomic medium can
be defined in terms of a polarization field such that the
atom-atom interactions simplify to an indirect coupling
via the radiation field modes. The main difference of our
approach compared to the usual treatment of the PZW
transformation is that while P‖ is kept exactly to repre-
sent the charge distribution via Eq. (4), we acknowledge
that we have a freedom in choosing the transverse part
of the polarization field. We determined the full set of
conditions (Cond. I – Cond. III) that the transverse po-
larization field in the Power–Zineau–Woolley canonical
transformation has to obey.

With this background, we identified an upper limit on
the coupling between atomic medium and radiation. This
limit comes close to criticality in the ultrastrong coupling
regime, but at this point such physical effects start to
play a role as molecule formation and solidification, that
rule out the treatment of matter as independent electric
dipoles. This also shows that – barring artificial open
systems like circuit cavity QED or such special model
systems of e.g. the Dicke model as in Ref. [3], that is,
systems not based on a gas of dipoles interacting with the
electromagnetic field – the ultrastrong critical coupling
can eventually be reached by such polarizable medium
as is compacted into a solid.

As an outlook, we note that to go beyond the limit
we concluded, one should abandon the isolated-atom pic-
ture, and allow the atoms to penetrate each other’s inti-
macy zone. This situation could be studied by a many-
body model with a hard-core inter-atomic potential. The
determination of the form of this potential and the study
of such a many-body model is currently under way by
the authors.
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