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Preallocation-Based Combinatorial Auction for
Efficient Fair Channel Assignments in

Multi-Connectivity Networks
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Abstract— We consider a general multi-connectivity frame-
work, intended for ultra-reliable low-latency communications
(URLLC) services, and propose a novel, preallocation-based
combinatorial auction approach for the efficient allocation of
channels. We compare the performance of the proposed method
with several other state-of-the-art and alternative channel-
allocation algorithms. The two proposed performance metrics
are the capacity-based and the utility-based context. In the first
case, every unit of additional capacity is regarded as beneficial
for any tenant, independent of the already allocated quantity,
and the main measure is the total throughput of the system.
In the second case, we assume a minimal and maximal required
capacity value for each tenant, and consider the implied utility
values accordingly. In addition to the total system performance,
we also analyze fairness and computational requirements in
both contexts. We conclude that at the cost of higher but
still plausible computational time, the fairness-enhanced version
of the proposed preallocation based combinatorial auction
algorithm outperforms every other considered method when one
considers total system performance and fairness simultaneously,
and performs especially well in the utility context. Therefore,
the proposed algorithm may be regarded as candidate scheme
for URLLC channel allocation problems, where minimal and
maximal capacity requirements have to be considered.

Index Terms— Wireless communication, multi-connectivity,
auction algorithm, resource allocation.

I. INTRODUCTION

ULTRA-RELIABLE low-latency communications
(URLLC) is defined as one of the fundamental
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requirements in the case of emerging fifth generation (5G)
and beyond mobile wireless communications systems [1].
Enabling URLLC is essential in mission-critical applications,
like wireless factory automation, coordination of vehicles
and real-time remote control applications in the internet of
things [2].

The current 5G New Radio (NR) is the first wireless
standard designed to natively support multi-service commu-
nications. In addition to serving conventional HTC through
the enhanced mobile broadband (eMBB) service class, 5G
NR supports MTC through the newly introduced URLLC and
massive MTC (mMTC) service classes. Among the three 5G
NR service classes, URLLC is arguably the most challenging.
In 5G NR, this challenge is mainly addressed by a new
5G numerology, i.e., differentiated parameter choices for the
orthogonal frequency division multiplex (OFDM) access [3].
As outlined in the conclusions of [3], the reliability needs
further improvements which cannot be realized by the new
numerology alone.

A. State of the Art

As the redundancy of communication channels improves
the reliability of the communication architecture, using
multiple paths at once for communicating objects (tenants
in the following) is a potential tool to achieve URLLC
requirements [4]. However, as the resources are finite,
the allocation of channels to individual tenants poses a
challenge in such multi-connective, multi-user environments.
Furthermore, the computational complexity of the underlying
assignment problem is growing with the number of tenants
as well as the number of communication paths [5]. Therefore,
deep learning methods are proposed to solve these challenging
resource allocation problems [6].

In addition to machine learning, game-theory based
algorithms are discussed for resource allocation in 6G [7].
Using game theoretic approaches for resource allocation
problems in wireless systems has an extensive literature (for
a review see [8]). Most of these approaches are based on
the framework and tools of non-cooperative game theory [9],
using its relatively widely known concepts as the Nash-
equilibrium [10] or the subgame-perfect equilibrium [11]. One
may find also examples of cooperative [12], [13] and division-
theory based game-theoretic applications as well [14].
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Algorithmic game theory [15], [16] studies the concepts
of the previously mentioned branches of game theory in an
algorithmic context, and analyzes algorithm-focussed social
choice and economic problems like the stable marriage prob-
lem [17], the house-allocation problem [18] or the problems
related to the design of auctions and mechanisms [19].

The channel allocation problem may be regarded as a
special case of spectrum sharing, where we assume that prior
defined, indivisible resources (channels) have to be allocated
to tenants. The assumption of indivisibility may be relaxed
if we consider time-sharing, but we do not focus on such
cases in the current paper. In the multi-connective case, the
number of channels assigned to a particular tenant may also
vary. Methods related to the field of algorithmic game theory,
like the Gale-Shapley (GS) or delayed acceptance algorithm
have been already proposed to similar problems [20], [21].

The allocation of multiple sub-channels for the link from
one base station (BS) to a tenant leads to diversity (in
space, time, frequency) to combat the small-scale fading.
However, it cannot combat shadowing and large scale fading
because all sub-channels to one BS will be blocked if the
link is hindered by an obstacle. Then, multi-connectivity,
i.e., assigning multiple channels to different BS, can improve
the reliability and robustness. In this paper, we model the
intermittent connectivity as well as the small-scale fading and
distinguish between diversity and multi-connectivity.

B. Contributions and Outline

The major contributions of our work are summarized as:
• We propose two novel channel allocation methods for

multi-connectivity networks, based on the principles of
the combinatorial auction (CA) problem [22], one with
enhanced fairness properties.

• In order to achieve computational feasibility, we apply a
preallocation step for the CA.

• We compare various algorithmic game theory-based
channel assignment algorithms with respect to capacity
and utility performance. Thereby, we develop a descrip-
tive framework, in which the different channel allocation
methods are evaluated and consider the special case of
URLLC multi-connectivity.

The structure of the paper is as follows: Section II
of the paper describes the system model and the used
evaluation metrics as well as the problem statement, Section III
introduces the analyzed channel assignment algorithms,
and introduces the proposed solution method, Section IV
summarizes the numerical simulation results, Section V
provides additional discussion of the results and Section VI
concludes. The extended version of the paper, containing
additional details is available on ArXive [23].

II. CONNECTIVITY MODEL AND PROBLEM STATEMENT

A. General Setting of the Multi-Connectivity Channel
Assignment Problem

The key assumptions of our modelling framework are the
following. In the modelled area a finite number of BSs is
present, each providing a finite number of available channels.

We denote the j-th channel of BS i by chi,j , and the set of all
channels by CH . 1 If we consider a general subset of channels
(S), where the individual channels not necessarily belong to
the same BS, we index the channels by m. ni

ch denotes the
number of channels offered by BS i, while nch denotes the
total number of channels (i.e.

∑
i ni

ch = nch).
We assume that the receiver has perfect instantaneous

channel state information (CSIR), obtained from pilot-
based channel estimation, while the transmitter only knows
the channel statistics, i.e., statistical CSIT. Only the long-term
channel statistics are used in the channel assignments. The
assignment of channels to tenants should be valid for longer
time periods and there should not depend on the small-scale
fading parameters.

A finite number of tenants is present in the modelled area.
Tenant k is denoted by Tk. nT denotes the number of tenants.
Channels may be assigned to tenants. In the multi-connective
framework, each channel may be assigned to maximum one
tenant, but one tenant may hold multiple channels. This refers
to many-to-one matching market.2 Let us introduce the binary
assignment matrix A ∈ BnT×nch . A(k,m) = 1 iff chm is
assigned to Tk, else A(k,m) = 0. Let us note, that the columns
of A may be grouped according to the relevant BS of the
actual channel. The row k of A determines the set of channels
assigned to Tk, denoted by Sk.

The set of assigned channels explicitly determines the
(bit)rate of any tenant, and this rate does not depends on
the channel assignment of other tenants. This assumption is
related to the phenomenon of co-channel interference. In the
context of the current paper we do not assume that co-
channel interference is neglected, but we model the signal to
interference ratio statistically following the approach from [21]
and compute the so called ϵ-outage capacity. The detailed
model are described in the next subsection.

The connectivity function3 of tenant k is denoted by
ρk : 2CH → R. ρk(Sk) describes the resulting rate of
tenant k if the subset Sk of all channels is assigned to it.
The assumption is that the value of ρk(Sk) depends only
on Sk and not on other Sp-s, where p ̸= m. In other
words, interference phenomena caused by the allocation of
other available channels to tenants within the same BS is
neglected. Considering the beamforming features allowed
by novel massive MIMO techniques, such as zero-forcing
beamforming, [26], [27], this assumption may be regarded as
plausible in the current technological environment.

Intra-cell interference is avoided by either orthogonal
channel allocation in frequency or time domain or if the same
time-frequency resource is assigned to two users, modern
spatial signal processing techniques such as spatial division
multiple access (SDMA) or massive MIMO transmissions are
applied.

1The cardinality of CH is denoted by |CH|, and the set of all subsets of
CH is denoted by 2CH .

2We restrict the model to exclusive assignments of channels to tenants.
Note, that it might be also possible to support time-sharing where a channel
is partly used by multiple tenants.

3Not to be confused with the connectivity function used in discrete
mathematics [24], [25].
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The concept of the connectivity function allows us to
use a modular model structure. As we define each channel
assignment algorithm based on ρ, it is possible to modify
the underlying connectivity model (including e.g. the signal
propagation model), and use the same algorithms without
modification. In the following, we discuss the details, based on
which the particular connectivity function used in this study
may be derived.

B. SIR-Based Connectivity Function

The connectivity function used in this paper is derived
following the principles of the URLLC framework described
in [21]. The model is based on the following assumptions.

1) Single Connectivity: Let us first discuss the special case,
when the tenant in question is connected only to a single
channel of a particular BS. We denote the local mean signal-
to-interference ratio (SIR) in dB of tenant k operating using
the j-th channel of BS i with γ̄(k,i,j) (Sk = chi,j). This
quantity may be calculated as γ̄(k,i,j) = PR

(k,i,j)−P I
k,j , where

P I
k,j corresponds to the co-channel interference of channel j

observed at tenant k and PR
(k,i,j) denotes the received power,

which may derived as

PR
(k,i,j) = PT

i,j − PL(dk,i). (1)

PT
i,j in (1) denotes the transmission power of BS i on

channel j, while PL(dk,i) is the path loss in dB, assuming
the distance dk,i between the tenant k and BS i. Here, it is
assumed that one BS serves at most one user on channel j.
The path loss PL(dk,i) is calculated as follows PL(dk,i) =
PL(d0) + 10δ log10

(
dk,i

d0

)
, where δ denotes the path loss

exponent, and PL(d0) stands for the reference path loss, valid
in the case of the reference distance d0.

In addition, we can compute that the instantaneous channel
capacity (C) achieved by tenant k on channel j with BS i, as

Ck,j,i = B · log2(1 + γk,i,j), (2)

where B denotes the bandwidth, and γk,i,j is the random
instantaneous SIR. If we consider a slow fading channel,
an outage event occurs, when the required data rate Rk of
tenant k exceeds the capacity P out

k,j,i = Pr[Ck,j,i < Rk] =
Pr[γk,j,i < γth

k ].
A typical measure applied by operators is the so called

outage capacity, i.e. the highest possible transmission rate,
which keeps the outage probability below a certain value ε,
i.e., for tenant k scheduled on channel j at BS i, it reads
ρk,j,i = Cε

k,j,i = max{Rk : P out
k,j,i < ε}.

Based on the formulation of the outage probability and
the SINR, different performance criteria and connectivity
functions can be developed depending on the scenario. In this
work, we choose the ε-outage capacity with a statistical
SIR-based model explained below. In scenarios, where the
blocklength of the codewords is the limiting factor, the finite-
blocklength second-order capacity [28], [29] could be applied,
too. However, in the case of fading channels with interference,
the expression for the rates are not closed-form and need
numerical evaluation. Furthermore, the second-order capacity

expressions omit third and higher order terms that affect
reliability. Therefore, we have decided to apply the ε-outage
capacity approach with Shannon rates.

According to [30], assuming Rician/Rayleigh fading
environment and a single interferer, the outage probability of
channel m may be calculated as

P out
k,j,i =

γth
k

γth
k + γ̄(k,j,i)

exp
(
−

Kk,iγ̄(k,j,i)

γth
k + γ̄(k,j,i)

)
, (3)

where the Rician factor Kk,i characterizes the ratio between
the power in the dominant path of the desired signal and the
power in the scattered paths of the interferer, regarding the
tenant-BS pair (k, i).

2) Multi-Connectivity: Let us extend this to the case where
tenant k is assigned a set of channels, denoted by Sk, we obtain
the resulting ε-outage capacity as connectivity function

ρk(Sk) := Cε
Sk

= max {Rk : P out
Sk

< ε}. (4)

In order to compute (4), we need a model for the outage
probability of assigned a set of channels to one tenant. The
resulting outage probability depends on the combining scheme
and the joint distribution of the underlying fading processes
of the channels. Potential combining schemes are maximum
ratio combining, equal gain combining or selection combining.
While our proposed framework is able to support all of
them, we consider here selection combing. The proposed
framework can handle general joint distributions, here
we assume statistically independent Rician/Rayleigh fading
channels. We chose selection combining and independent
Ricean/Rayleigh fading, in order to focus on the diversity
effect of multi-connectivity.

The outage probability considering a subset Sk of channels
(potentially belonging to different BSs), is described in (5)
under the assumption that they are statistically independent.

P out
k =

∏
(j,i)∈Sk

P out
k,j,i

=
∏

(j,i)∈Sk

γth
k

γth
k + γ̄k,j,i

exp
(
− Kk,iγ̄k,j,i

γth
k + γ̄k,j,i

)
. (5)

Following these principles, ρk(Sk) is determined as
follows. We consider equation (5) and (taking into account
the respective γ̄k,j,i parameters) numerically determine the
maximal value of γth for which the inequality described in
(4) for fixed ϵ holds. Formally, this corresponds to finding the
inverse function of the outage probability which can be written
as an explicit function of the rate Rk, i.e., solve P out

k (R) = ε

for Rk: ρk(Sk) = (P out
k )−1 (ε). The invariant parameters

of the used model are described in IV-A. As we consider
ε = 10−9 in all simulations, the upper index ε is omitted
in the notation in the following.

On the other hand, the following model parameters are
varied during the simulation scenarios. (1) number and
geometric position of tenants, (2) number, geometric position,
transmit power of base stations (= PT

i for BS i) and (3)
number of channels available per base station.



8410 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

III. THE CHANNEL ASSIGNMENT PROBLEM AND
ASSIGNMENT ALGORITHMS

A. Capacity Versus Utility-Based Assignment

As described in Subsection II-B, in the basic setup, ρk(Sk)
equals to the resulting channel capacity value C, assuming that
the set Sk of channels is assigned to tenant k. Considering
only the capacity of a given allocation as a guideline for
the assignment, or considering the total resulting capacity of
the system as a sole measure of performance neglects some
aspects of URLLC wireless communications.

The first aspect is the potential minimal capacity require-
ment of tenants, the so-called Quality of Service (QoS)
requirements. In the case of practical applications like real time
control or factory automation, the assumption of a minimal rate
required for standard operation is straightforward. This aspect
is connected to the fairness of the channel allocation, namely
that while we maximize the system performance in the terms
of total capacity, some tenants may remain without assigned
channels, or with low resulting capacity. The topic is already
discussed in the literature, see e.g. the papers [21], [31] related
to URLLC modelling frameworks. The second aspect to be
considered is the dual of the first. It is plausible to assume
that after a certain level, additional units of capacity do not
bring benefits to any tenant. The usual traffic in the case of
e.g. factory automation applications, does not exceeds a certain
limit, thus too high capacities will be potentially left unused.

To address these two considerations, we use the concept of
the utility function. The utility function of tenant k, denoted
by Uk(Ck) : R+ → [0, 1] assigns a normalized utility
value, depending on the actual capacity value of the tenant
k, defined by the current channel allocation (Ck = ρk(Sk)).
It is furthermore plausible to assume that such utility functions
are monotone increasing.

The paper [32] introduces various utility functions for the
description of network users based on the nature of the
user. The ‘TCP interactive user’ profile, described by eq. (6)
defined in this paper matches our above assumptions in the
sense that the resulting utility is considered as 0 below a
minimal capacity value (Cmin

k ) of the user k, and shows
a monotone concave increase between the minimal and the
maximal (Cmax

k ) capacity value. Above the maximal capacity
value, the function saturates and additional capacity does not
bring additional benefits.

Uk(Ck)

=


log(Ck/Cmin

k )
log(Cmax

k /Cmin
k )

sgn(Ck − Cmin
k ) + 1

2
if Ck ≤ Cmax

k

1 if Ck > Cmax
k

(6)

During the simulation of the algorithms we will analyze
their performance in capacity or utility context. In the former
case we will assume that the decisions of the participants
and the outcome of algorithms are determined according
to the respective values of the connectivity function, while
in the latter case the implied utility values will serve as
basis for the preferences, evaluations and decisions during the
assignment process.

As it has been discussed earlier, in the utility context,
the implied utility values serve as basis for preferences,
evaluations and decisions. However, most of the allocation
methods is based on preference lists of tenants over single
channels. In the proposed simulation setup discussed later, the
allocation of a single channel usually does not provide enough
capacity for the tenant to reach the Cmin

k value, thus if we
evaluate the utility implied simply by the single connectivity
capacity values, comparison, and thus setting up preference list
may be problematic (as lots of the values are 0). To resolve
this issue we use the following approach. If preferences over
single channels are to set up in the utility context, and a tenant
receives its first channel, we evaluate the utility improvement
implied by the capacity ensured by the respective channel,
using Cmin

k as reference. In other words, if channel m ensures
Cm,k capacity for tenant k in the case of single-connectivity
(if no other channel is used), the value serving as basis for
comparison is ρk(Cmin

k + Cm,k). If preferences over single
channels are evaluated, but the tenant already has one or more
channels allocated (such scenarios arise in the case of weakest
selects (WS), ORR, MRM and MRGS), the preferences are set
up based on the utility improvement implied by the potential
additional channel.

B. The Channel Assignment Problem

According to the above considerations, the general channel
assignment problem may be described as an optimization
problem formulated in eq. (7), where the aim is to maximize
the overall capacity or total utility of the system (depending
on the actual context).

max
A

nT∑
k=1

ρk(Sk) or max
A

nT∑
k=1

Uk(ρk(Sk))

s.t.
∑

k

A(k,m) ≤ 1 ∀m (1 ≤ m ≤ nch) (7)

In this formulation, the k-th row of A may be considered
as the membership function of the set Sk: A(k, m) == 1 iff
chm is assigned to Tk, i.e. iff chm ∈ Sk. The formulation (7)
defines an integer programming problem (or a combinatorial
optimization problem, since the space of the possible solutions
is finite), where the objective function is nonlinear.

In the case of realistic applications where the number of
tenants and channels is medium or high (e.g. above 5 tenants
and 15 channels), the combinatorial explosion of the search
space practically makes the problem (7) computationally
impossible to solve analytically. The general approach to
overcome this obstacle is to use heuristic based algorithms
for the channel assignment procedure, like the WS [33] or
the ORR [34], [35] method, or to adapt matching algorithms
originally designed for different context (like the famous Gale-
Shapley method [17]) for the problem.

These heuristics and adaptations may be evaluated against
each other according to the objective function of the
formulation (7), which is related to the overall performance
of the system, and to different other aspects like fairness,
starvation rate, and similar measures.
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Note that time sharing between different assignment
strategies could relax the programming problem in (7). Since
we consider non-elastic low latency traffic, we do not consider
time sharing as an option in this work.

In the following we describe the assignment methods, which
will be compared against each other in this work. Table I
summarizes the considered algorithms.

Randomized methods described in subsection III-C, and
selection based algorithms detailed in subsection III-D are
long since used in telecommunication resource allocation
problems. Assignment algorithms based on the Gale-Shapley
algorithm discussed in subsection III-E for such applications
have also been published recently. While the TTC method
described in subsection III-F is long known in the liter-
ature of housing markets, and it is also used in kidney
exchange programs [36], we are not aware of any of its
telecommunication applications. CA based methods discussed
in subsection III-G have been recently already applied for
telecommunication related resource allocation problems, but
not for channels assignment problems of the size considered in
this work. The proposed paradigm of preallocation described
in subsection III-G.1 allows the application of CA for such
problems. In addition, the fairness-enhanced version of CA
described in subsection III-G.4 is also an original contribution
of the current article.

C. Randomized Assignment Methods

These methods do not consider the values of the
connectivity function in the assignment process.

1) Random Assignment (R): This very simple assignment
method described in algorithm 1 is used as a dummy reference
case. As an input of the algorithm, a maximal possible channel
number per tenant, denoted by n̄ch is defined.

Algorithm 1 Random Assignment (R)
Data: n̄ch

Result: A
A← 0nT×nch ; for i = 1 : nch do

kR ← RI(1, nT ) ; /* A random integer
between 1 and nT is generated */

if
∑

m A(kR, m) < n̄ch then
A(kR, i)← 1

end
end

2) Distance Based Semi-Random Assignment (SR1): This
method is a slightly improved version of the R method,
in the sense that to potentially avoid extremely inefficient
assignment setups, channels are assigned to closer tenants
with higher probability.4 More precisely, the probability of
assignment is proportional to 1/d, where d denotes the
distance between the relevant tenant-BS pair. This method still
does not consider any preferences, shadowing objects or tenant
capacity requirements explicitly.

4Note that the concept of using channel quality to influence the probability
of access was proposed for channel-aware medium access control protocols
before [37].

3) Single-Connectivity Value Based Semi-Random Assign-
ment (SR2): The method is a straightforward modification
of the SR1, but in this case not the respective Tenant-
BS distances are used as reference for the assignment, but
the respective capacity values, resulting from the single
connectivity scenarios. In contrast to the SR1, this method
also implicitly considers the effect of the potentially various
transmission power values (PT ) of base stations, and the actual
Rician factors for the BS-tenant pairs (Kk,i).

D. Selection Based Algorithms

These algorithms allow tenants to choose from the available
channels, according to the improvement implied by the
increase in the value of the connectivity function or the implied
utility (depending on context) for each alternative. The
difference between these algorithms is the order, according
to which we let the tenants choose from the still available
channels.

a) Random tie-breaking: In the case of selection based
algorithms, tenants usually set up preferences over the
available channels (and in some cases vice versa as well).

As we assume BSs potentially with multiple identical
channels, the the problem of tie-breaking arises. In other
words, if a BS offers multiple channels, with uniform
parameters, the tenants don’t have any reason to prefer any
of them more than any other. In such cases, we apply random
tie-breaking: If two ore more channels/tenants are preferred
at the same level according to quantitative indicators by
tenants/channels (capacity/utility improvement ensured by the
channel), the preference ordering of the respective items will
be set up randomly.

1) Weakest Selects Algorithm (WS): This method, proposed
in [33], and summarized in algorithm 2 already takes into
account ρk(Sk) or Uk(ρk(Sk)) in the allocation process. The
method implements a simple iterative process, in which in each
step the tenant with the lowest capacity (or utility, depending
on the context) value chooses the channel, which ensures the
most capacity (utility) improvement for it.

Algorithm 2 Weakest Selects (WS) (in Capacity Context)
Data: ρ (connectivity function)
Result: A
A← 0nT×nch

facp ← 1 ; /* Flag: Active if least one
available channel is present */

while facp ̸= 0 do
Determine the sets Sk based on A for each k, and
determine the ρk(Sk) values for each k.

Find the tenant(s) with minimal ρk value. If multiple such
tenants are present, choose one at random (Tw)

Find the most preferred channel (m) of Tw.
(A channel denoted by chm is regarded as most preferred
if ρk(Sk

⋃
chl) ≤ ρk(Sk

⋃
chm) ∀l. If multiple such

channels are present choose one at random) A(w, m)←
1

Update facp

end
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TABLE I
ALGORITHMS CONSIDERED IN THE STUDY, AND THEIR ABBREVIATIONS USED

2) Opportunistic Round Robin Algorithm (ORR): This
method is very similar to the WS, the only difference is
that instead of looking always for the ‘weakest’ tenant, the
tenants choose in a random order in each round. If there
are still available channels after the actual round is finished,
an additional round follows. The principle of the method has
been proposed in the case of time-slot scheduling in [34]
and [35].

E. Methods Based on the Gale-Shapley Algorithm

The Gale-Shapley (GS), or ‘delayed acceptance’ algo-
rithm [17] has been originally proposed for the stable marriage
problem, and assumes that the elements of two disjoint sets
(man and woman) have preferences defined over the elements
of the other set. The algorithm pairs men with women via
the following simple iterative method (we consider the ‘men
propose’ version here).

1) Every man proposes to the most preferred woman, who
has not yet rejected him.

2) Considering the incoming offers, every woman chooses
the most preferred men, puts him on hold, and rejects
the rest.

If the number of men and women are equal, and each
participant has a full preference list, the algorithm stops, when
each women has exactly one offer. This will result in a stable
matching, which means that considering the resulting pairs,
no man and woman may be found, who are not paired together,
but prefer each other more compared to their actual partner
(i.e. no blocking pair is present).

A straightforward generalization of the problem and the
algorithm is the many-to-one case, which corresponds to e.g.
college admission problems. The role of the ‘men’ set here
is played by the students, who apply for admission (in this
case each student applies to one college), and the set of
colleges play the role of the ‘women’ set, but with quotas. The
difference to the basic algorithm is, that each college i puts
the qi most preferred student on hold en each step, and rejects
the rest (where qi is the quota of collage i). The pseudo code
of the many-to-one case may be found in [21]. The problem
may be generalized even further, the many-to-many case is
described in [38].

Let us emphasize here, that while the GS method has
been adapted to various resource allocation problems (see
the references later), the principle of the algorithm is based
on the concept of the preference lists. In other words, these

approaches assume that individual indivisible resources are
compared with each other, and bundles of these resources are
not evaluated. In other words, we may know for example that
the preference of a tenant over 4 channels, which are allocated
simultaneously is ch1 ≻ ch2 ≻ ch3 ≻ ch4, but we do not
know if the tenant values the bundle {ch1, ch4} or {ch2, ch3}
more. In multi-connective environments, where the value of
the connectivity function ρk is determined based on the actual
subset of assigned channels (Sk), this aspect arises as a clear
limitation of the method. An other limitation of the method is
that the preference lists are not quantitative. It not considered
e.g. how much ch1 is preferred to ch2 compared to the relation
between ch2 and ch3 (although ρ quantifies this numerically).

Stability of the resulting matching is a critical and central
aspect in the original problem, and the most significant virtue
of the GS is that it results in a stable matching. While in
general a stable matching is not unique (see e.g. [39]), there
are special cases, when uniqueness holds [40]. For example,
it has been shown that there is a unique stable matching if the
sets of men and women can each be ordered so that any man
and woman with the same rank prefer each other above any
other partner with a lower rank [41]. Capacity values resulting
from single connectivity may serve as basis for such symmetric
ranking, which already guarantees the uniqueness of stable
matching.

Regarding wireless applications, stability of the matching
may be important in decentralized allocation methods [42].
In the current work, we assume that the notion of stability
is not an explicit requirement, but it leads to fair outcomes
of the assignment process [43]. Therefore, we apply the GS
algorithm as a candidate approach.

Examples of GS (or delayed acceptance)-based applications
in wireless resource sharing may be found in [20], [44], [45],
[46], [47], and [48], while GS approaches for the the channel
allocation problem in URLLC context are described in [21],
[31], and [49]. In this paper, we consider 3 versions of the GS
for the channel allocation problem. In all cases, the preferences
of the channels over tenants and tenants over channels are
set up according to the capacity or utility values which are
provided by single channels (single-connectivity values).

1) Basic Gale-Shapley (GS): Here we consider the many-
to-one case. Channels are corresponding to men, and tenants
correspond to woman, who have a quota greater than 1.

2) Minimum-Rate Matching (MRM): According to the
principle of the method proposed in [21], a minimum rate or
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utility value is defined for each tenant. Until the capacity/utility
of any tenant is below this minimum rate, the WS algorithm
is applied, with the modification that in each round the
tenant with the highest capacity/utility deficit chooses its most
preferred channel. If the minimum values are achieved in the
case of every tenant, the remaining channels are allocated via
the GS.

3) Multi-Round Gale-Shapley (MRGS): It is also possible
to apply the GS in an iterative manner. In this version, multiple
rounds are performed, and each BS offers only one channel in
each round. If a BS runs out of channels, it does not participate
in the following rounds. This method, similar to the MRM,
may be regarded also as a fairness enhanced-version of the
GS, since as long as the total number of offered channels
(equal to nBS) is at least equal to nT , every tenant receives
exactly one channel in each round (not allocated channels are
offered in the next round).

In addition, tenants update their preferences over channels
after each round in this method, according to the additional
benefit the individual additional channels would bring. In the
utility context this may e.g. imply that tenants who are already
close to Cmax

k may be equally satisfied with any additional
channel. A similar approach is applied in [50].

F. Method of the Top Trading Cycles (TTC)

The method of the top trading cycles (TTC) has been
proposed originally for the housing market [18]. In this case
we assume n owners, each owing a ‘starting’ house, and
having a preference list over houses. In the first step of the
algorithm, each owner selects the house most preferred by
him/her. This way a directed graph is defined, where the out-
degree of every node is 1. Such graphs always hold at least
one circle (loop edges are possible, and regarded as circles
here). In the second step, we exchange the houses along the
circles, and following this we remove the owners and houses
included in the exchange transactions. We repeat this process,
until each house is allocated.

The method may be applied to the channel allocation
problem in a way similar to the MRGS algorithm. In each
round we consider a set of channels to be allocated, with
cardinality equal to the number of tenants (preferably by
different BSs). Initially, we distribute these channels among
tenants by random, and we perform the TTC to get the
resulting allocation of the actual round. In the next round we
consider a set from the remaining channels and so on, until
each channel is allocated.

G. Methods Based on Combinatorial Auction

As described in [22], the principle of CA is that every
participant may place bids for multiple (or in the original
formulation all) subsets of the auctioned goods – in our case,
channels. It is important to emphasize here that in contrast to
the previously mentioned approaches, which are based on the
evaluation of single channels, this approach already considers
the explicit evaluation of bundles of channels by tenants.

Following [22], we formulate the CA problem as follows.
The bid announced by player (tenant) k for the bundle S of

channels is denoted by bk(S). In our case, this value will
be determined either by ρk(S) or Uk(ρk(S)), depending on
the actual context (capacity or utility). y(S, k) denotes the
acceptance indicator of the bundle S for the participant k,
i.e. y(S, k) = 1 if the bundle S is assigned to player k,
and 0 otherwise. Let us now consider the integer optimization
problem described by eq. (8).

max
∑

k

∑
S⊆CH

bk(S)y(S, k)

s.t.
∑
S∋m

∑
k

y(S, k) ≤ 1 ∀m ∈ CH,∑
S⊆CH

y(S, k) ≤ 1 ∀k (8)

The first constraint of eq. (8) ensures that overlapping goods
are never assigned, while the second constraint ensures that
no bidder receives more than one bundle.

CA-based methods have been already proposed for
telecommunication resource sharing problems. While [51] uses
the CA principle for a scheduling problem, [52] describes a
reverse CA game to allocate downlink resources in a cellular
environment. Finally [53] uses CA in a device-to-device (D2D)
setup, where channels and power are jointly allocated.

Regarding the application of CA for channel allocation
in multi-connective environments, even with a relative small
number of channels (e.g. 10), the cardinality of the set
containing all subsets of CH is very high, which makes the
execution of the algorithm infeasible. On the the hand, if the
channel number allows, the CA problem described in eq. (8)
boils down to brute-force optimization and determines the
global optima of (7).

In the general case, when the number of channels does not
allow the ‘full’ optimization via CA, our proposed approach
is the preallocation of channels to tenats. Following this
preallocation, tenants will formulate bids for the possible
subsets of the channels preallocated to them, significantly
decreasing the number of bids, if the number of the
preallocated channels is low enough. The set of channels
relevant for tenant k will be denoted by CHk. Let us
emphasize that this preallocation of channels is not exclusive
in the sense, that typically a channel is assigned to multiple
tenants during the preallocation process (otherwise the CA
would make no sense, and every tenant would receive the full
bundle of preallocated channels, since nobody else would bid
on any of them).

1) Preallocation of Channels: This preallocation of
channels is carried out in the proposed method via the
many-to-many version of the GS, where the preferences
are set up based on the single-connectivity capacity/utility
values. The single-connectivity values are calculated for each
tenant-channel pair according to the principles described in
subsection II-B. Tenant k (Tk) prefers channel m1 to channel
m2 if the single-connectivity capacity/utility value resulting
from ρk(Sk)|Sk={m1} exceeds the single-connectivity capac-
ity/utility value resulting from ρk(Sk)|Sk={m2}. Vice versa,
the channel m prefers tenant T1 to tenant T2 if the single-
connectivity capacity/utility value resulting from ρ1(Sk)|Sk=m
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exceeds the single-connectivity capacity/utility value resulting
from ρ2(Sk)|Sk=m. In this version of the GS, both the
channels and the tenants are characterized by a quota, denoted
respectively by qch and qt (qch > 1 allows the non-excluive
assignment of channels). In the first step of the process, each
channel proposes to the most preferred qch tenant, and each
tenant puts the most preferred qt proposals on hold, and rejects
the rest. The following steps are the same as in the case of
the basic GS. The algorithm stops, if there are no rejected
proposals. In the final state, a potentially nonempty subset
of channels will be allocated to multiple tenants. Sets of
channels allocated to tenants constitute the CHk sets, which
are potentially overlapping.

Let us note that as the many-to-many version of the GS does
not guarantee in general that every channel will be preallocated
(this depends on the exact value of the quotas of channels
and tenants). In such cases, we preallocate the remaining
channels at random (to multiple tenants) to avoid the presence
of unused resources. In the current study we performed this
step considering the constraint, that every tenant may have at
most 8 preallocated channels (qt = 8). This constraint was
based on the consideration that a high number of preallocated
channels implies a very high number of bids in the CA method
(the number of submitted bids grows exponentially with the
number of preallocated channels).

2) Determination of Bids: In the proposed framework, the
value of bids is equal to the capacity or utility value implied
by the actual subset of channels. Bidding information may be
easily summarize by the so-called bid matrix, the structure of
which is detailed in [23].

3) Basic Combinatorial Auction Method (CA): The CA
algorithm is executed as a linear integer optimization problem,
where the variables are the (binary) acceptance indicators of
single bids. The objective is to maximize the total value of the
accepted bids, while the constraints ensure that (1) For each
bidder, maximum one bundle may be assigned, and (2) each
item (channel) may be assigned to maximum one bidder.

4) Fairness-Enhanced Combinatorial Auction Method
(FECA): The standard CA method optimizes the total value
of accepted bids, but does not guarantee any minimum value
for any participant. To make the method more fair, the CA
formulation may be straightforwardly extended to include
(linear) constraints, which describe a minimum resulting
value for each player. In the current study, in case of capacity
context, we assume that this minimum value is equal to
the Cmin

k parameter of the utility function for each player,
while in the utility-based case, we assume that this required
minimum value is equal to 1/3. However, in contrast to the
basic CA method, which always has a feasible solution (e.g.
the trivial solution, when no channels are assigned to any
tenant), in the case of FECA, it is possible that adding the
minimum value constraints for the participants makes the
optimization problem infeasible. In this case, we iteratively
decrease the required minimum values for all tenants by a
factor of 0.5, until the problem becomes feasible.

Algorithm 3 describes the process of the FECA in the
capacity context (the utility context is analogue). Let us

furthermore note that the CA may be considered as a special
case of the FECA, where Cmin

k / Umin
k = 0.

Algorithm 3 Fairness-Enhanced Combinatorial Auction
(FECA) (in Capacity Context). qp

T and qp
ch Denote the Quotas

for the GS-Based Preallocation Procedure
Data: ρ, qp

T , qp
ch, Cmin

k / Umin
k

Result: A
A← 0nT×nch

Perform the many-to-many GS preallocation procedure, based
on the preferences defined by single-connectivity values,
Cmin

k / Umin
k and on qp

T and qp
ch, thus determine Apre, which

describes a non-exclusive assignment of channels.
Determine the bk(Sk) bids for each tenant, for each subset of
the channels preallocated to him/her (described by Apre)

ff ← 0 (feasibility flag)
while ff = 0 do

Execute the mixed-integer linear optimization problem
(MILP) of the CA described by eq. (8), considering the
bk(Sk) bids and the constraints implied by the Cmin

k

vector, to determine A.
if The MILP is solvable then

ff = 1
end
Cmin

k ← 0.5 Cmin
k

end

IV. RESULTS

A. Simulation Setup

We considered a 100 × 50 m rectangular area, with 8 BSs
located on the walls at random positions. Regarding the
connectivity model described in subsection II-A, the invariant
parameters were the following. The channel bandwidth (B)
was considered with the value of 20 MHz, the reference
value for the Rician Factor (Kref ) was 14.1 dB, while the
reference distance (d0) was assumed to be equal to 15m.
The interference power (PI ) has been taken into account
with the value of -50 dBm, while the reference path loss
(PL(d0)) was 70.28 dB. The path loss exponent (δ) was
2. As mentioned earlier, we assumed an outage probability
threshold ε = 10−9. The transmit power (PT ) of each BS was
randomly chosen from the interval [15], [25] dBm, assuming
uniform distribution. Each BS offers 1, 2, or 3 channels
(with equal probability), but the total number of channels was
limited to 20.

We assumed 6 tenants, located at random positions. In order
to model heterogeneous service requirements of the tenants,
the parameters Cmin

k and Cmax
k have been chosen randomly

from the intervals [0.1 0.2] and [15], [25] respectively both
according to uniform distribution. In the case of the R, SR1
and SR2 methods we assumed n̄ch = 4. In the case of GS,
we assumed a quota of 4 for each tenant, while in the case of
the CA and FECA methods, we assumed a quota of 6 for both
the tenants and the channels during the preallocation process.
The minimal capacity defined in the FECA was equal to Cmin

k

for each tenant k in the capacity context and the minimal utility
was set to 1/3 in the utility context.
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To test the robustness of the analyzed allocation algorithms,
we considered an obstacle-free case (case I) as reference, when
Kk,i = Kref ∀ (k, i), and two perturbed cases, in which we
assume that obstacles are negatively affecting the connectivity
between certain BS-tenant pairs (in other words, we assume
channel outages). In case II, the Kk,i values have been reduced
to 0 for the 25% of the possible BS-tenant pairs, while in
case III, the Kk,i values have been reduced to 0 for the 50%
of the possible BS-tenant pairs. The exact pairs, for which the
Kk,i values have been reduced have been chosen at random
in each scenario. 10000 scenarios have been simulated. For
the fundamentally non-deterministic methods (R, SR1 and
SR2), 10 runs have been performed and the average resulting
values have been considered as results for each scenario. The
simulations have been performed on a desktop computer, with
an Intel core i5 processor @2.9 GHz and 16GB of RAM, using
64 bit Windows and MATLAB.

B. Total Throughput / Total Utility

The most straightforward measure of overall system
performance is the total resulting value of the quantity, which
we aim to maximize, namely the total allocated capacity (TC)
– or total throughput – in the capacity context, or the total
resulting utility (TU ) in the utility context. Figure 1 depict the
results in cases I, II and III in the capacity and in the utility
context. Figures 1a - 1f clearly show that as the resources
become more scarce, the performance of the algorithms is
(not surprisingly) decreased. In the box plots, the central mark
is the median, while the edges of the box are the 25th and
75th percentiles respectively. The whiskers extend to the most
extreme data points which are considered not to be outliers,
and the outliers are plotted individually with red crosses.
Tables IV and V in Appendix C of [23] summarize the median
and mean values of total allocated capacity and utility in the
case of various allocation methods.

C. Fairness

The second important aspect is the fairness of the resulting
allocation.

Fairness may be measured through different quantities.
Here, as a primary measure for fairness, we used the quantities
defined as follows

FC(A) =
nT∏
i=1

Ck, FU (A) =
nT∏
i=1

Uk(Ck) (9)

We interpret FC(A) and FU (A) as dimensionless quantities.
Figure 2 depict the results in cases I, II and III in the

capacity and in the utility context. Tables VI and VII in
Appendix C of [23] summarize the median and mean values
of fairness results.

In addition to the fairness measure defined by eq. (9),
we may also look at the resulting capacity/utility values of
‘worst case’ tenants with minimal capacity/utility values. The
average minimal capacity/utility values in the case of various
allocation methods are summarized in table II. Table II clearly
shows, that as resource scarcity arises (cases II and III),

the minimal allocated capacity and utility values are also
decreased.

Figure 6 in Appendix C in [23] includes the box-plots
depicting the resulting minimal capacity values in the case
of various allocation methods.

As a further measure corresponding to the topic of fairness,
the number of outage events may be regarded as an important
indicator. In the current simulation framework, an outage
event happens, if the resulting allocated capacity of a tenant
is less than the required minimal capacity value (Ck <
Cmin

k → Uk(Ck) = 0). Table III summarizes the number
of outage events (nOE) for various allocation methods, and
various levels of resource scarcity (Cases I, II and III). In this
table, one may see that on the one hand, the nOE increases
in the case of resource scarcity (cases II and III), and on the
other hand, the values are practically the same, independent
of the nature of allocation (capacity-based or utility based).

Regarding Table III, let us note that an outage event our case
means that a tenant does not receive enough ‘ultra reliable’
capacity, in the sense, that ultra-reliability criteria has been
already taken into account in the capacity calculations (see the
eqs. in subsection II-B), assuming the probability threshold
ε = 10−9 defined in subsection IV-A. We deliberately used
such a ‘strict’ definition of outage event to make the methods
comparable according to this dimension as well.

D. Computational Time

The required computational time (t) is also an important
aspect of the applied algorithms. Table IV summarizes the
required computational time of the algorithms in the case of
the various setups. As this table shows, the computational time
does not depend on the nature of allocation (capacity-based
or utility based), and in most of the cases it is unaffected
by resource scarcity as well. However in the case of CA
and FECA, the computational time decreases as resources
become more scarce. The explanation for this phenomena
is the following. As described in subsection III-G.1, in the
case of the CA-based methods, bids are generated for all
possible subsets of the preallocated channels. If some of the
preallocated channels are in outage for the tenant in question
(the respective Kk,i value is zero), the bid value for all
of the combinations of these channels is zero. As the rows
corresponding bids with 0 value (thus e.g. such bids) are
removed from the bid matrix before the MILP calculation
described in e.q. (8), thus the number of variables is decreased.
Naturally, as resources become more scarce, the chance for
such bids is increased. As described in subsection III-G.1,
in the current setup all tenants may have maximum
8 preallocated channels. As in case III 50 percent of the
BS-tenant pairs are in outage, it may easily happen that
one or more tenants have 4 (or more) preallocated channels
providing 0 capacity. Furthermore, as Cmin must be exceeded
to provide nonzero utility, these channels even combined with
any working channel provide typically still 0 utility, thus
0 valued bids, which are removed from the bid matrix during
the computations. Figure 8 in Appendix C in [23] includes the
box-plots corresponding to these results.
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Fig. 1. Overall total performance of the system in capacity (a,c,e) and utility (b,d,f) context in cases I (a,b), II (c,d) and III (e,f).

V. DISCUSSION

A. Performance of Random Assignment Methods

While the purely random assignment (R) is used as
a ‘dummy’ reference case and basis for comparison, the
distance-based (SR1) and single-connectivity value-based
(SR2) semi-random assignment methods are computationally
still very simple methods with computational need of
milliseconds in the analyzed scenarios (see table IV). It is

remarkable that in some cases, SR2 shows comparable
performance with other more sophisticated methods. Figure 1,
clearly shows that if no resource scarcity is present (Case I),
the performance of SR1 and SR2 is similar. In contrast,
in cases II and III, the performance of SR2 is (not surprisingly)
significantly better compared to SR1 (since even channels
of close BSs may be in outage). Comparing the capacity
and utility contexts, one may notice that compared to other
methods (like WS and ORR), SR1 (and in case I also SR
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Fig. 2. Resulting values of the FC and FU in the case of capacity (a,c,e) and utility (b,d,f) -based allocation in cases I (a,b), II (c,d) and III (e,f). Outliers
are not depicted for better visibility.

2) performs worse in the utility context as in the capacity-
based allocation scenario. This may be explained by the fact
that in the case of random assignment methods, the capacity
requirements of tenants are not considered (only a maximum
number of 4 channels is taken into account for each tenant).
Let us note furthermore that SR2 performs surprisingly well
in the terms of total throughput/utility in case III, under heavy
resource scarcity. On the other hand, regarding fairness, R,
SR1 and SR2 result in very low values (see figure 2).

B. Performance of Selection-Based Methods

Selection based methods (WS, ORR and partially the
MRM) allow tenants to choose from the available channels,
without evaluating the actual channel from the perspective
of other tenants or BSs. This basic principle is the flaw of
these algorithms. A channel which could provide very high
capacity for one or more tenants may be easily assigned to
any other tenant (for which it provides much less value),
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TABLE II
AVERAGE VALUES OF MINIMUM ALLOCATED CAPACITY (MC) AND UTILITY (MU ) IN CASES I, II AND III. MC VALUES CORRESPOND

TO CAPACITY-BASED ALLOCATION, WHILE THE MU VALUES CORRESPOND TO UTILITY-BASED ALLOCATION.
MAXIMAL VALUES ARE EMPHASIZED WITH BOLD TYPEFACE

TABLE III
AVERAGE NUMBER OF OUTAGE EVENTS (NOE) IN THE CASE OF CAPACITY-BASED ALLOCATION (CBA) AND UTILITY-BASED

ALLOCATION (UBA) FOR THE VARIOUS ALLOCATION METHODS IN CASES I, II AND III

TABLE IV
AVERAGE COMPUTATIONAL TIME (t) IN [S] IN THE CASE OF CAPACITY-BASED ALLOCATION (CBA) AND UTILITY-BASED

ALLOCATION (UBA) FOR THE VARIOUS ALLOCATION METHODS IN CASES I, II AND III

if it turns out to be its actual best choice. As shown in
figure 2, if resources are not scarce, this ensures relatively
high values of FC and FU (since every badly supported
tenant is always able to choose some channels appropriate
for it). These methods are performed in multiple rounds, and
between rounds the potential gain of each (still available)
channel is re-evaluated. As shown in figure 2b, this results in
high values of total utility, if no resource scarcity is present.
Figure 1 however shows, that as resource scarcity arises,
the performance of these algorithms degrades both in the
capacity and in the utility context. Figure 6 in Appendix C
in [23] furthermore shows that the WS algorithm performs
well in the context of average minimal capacity/utility values,
especially in cases I and II. As detailed in table IV, the
average computational time of these algorithms compared to
randomized methods is higher by one order of magnitude, but

is still in the range of 10-20 ms in the case of the simulated
scenarios.

C. Performance of the GS and GS-Based Methods

In accordance with literature results, which analyzed the
GS method in the terms of total system throughput [21] (in
capacity context in our terminology), the performance of the
GS method is very good compared to randomized or selection-
based methods, and it requires very low computational
effort (see table IV). Furthermore, in the terms of total
capacity/utility the GS performs very well, in almost all of the
cases. The only setup, where the GS underperforms compared
to the WS, ORR, MRM and the MRGS is the Case I of
the utility context. The explanation for this phenomena is the
following.
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Fig. 3. Overcapacity [Mbps] in Case I of the utility context.

Selection-based algorithms and other GS-based algorithms
are executed in a multi-round manner, and between the rounds,
the single channels are re-evaluated according to already
allocated utility values of tenants. This means that if a tenant
already allocated enough capacity for itself (close to or over
Cmax

k ), it wont aim for valuable channels anymore. In contrast,
in the case of GS, since the many-to-one algorithm applies,
all channels are allocated in a single round. If a tenant has
good access to multiple (e.g. 5) valuable channels, they will
be of course rated high in the preference list of the tenant,
and if the tenant is the closest one to the BSs providing these
channels, the tenant will be also rated high in the preference
list of the channels. According to the principle of the GS,
4 of these channels will be allocated to the tenant (because
of the quota of 4), even in the case if 3 of these channels (or
maybe two of these channels combined with a weaker third)
could provide the tenant with Cmax capacity, and thus already
maximizing the utility. This can be seen in Figure 3, which
clearly shows that the allocated overcapacity (capacity over
Cmax is the highest in the case of the GS).

The performance of the GS strongly depends on the quota
of the tenants. Typically there is an optimal quota for a setup
(where the setup depends on nch, nT ), see [21]. In the current
paper we used the quota for the GS, which proved to be
optimal in the simulated cases.

In cases II and III, the number of useful channels is
decreased, thus spectrum scarcity arises. As figure 7 in
Appendix C of [23] depicts, the trend is unaffected by the
change, the average overcapacity is always the highest in the
case of the GS. However, the value of the overcapacity is
decreased, and as figures 1d and 1f show, the GS can provide
a good performance in cases II and III also in the utility context
despite of this drawback.

Figure 2 clearly shows that while the GS is a good choice
when one aims to optimize the total performance of the
system, from the fairness perspective, the performance of the
pure GS is poor. This can be seen also in Figure 6 of [23],
depicting the minimal allocated values of capacity and utility.

On the other hand, the MRM, and the MRGS which may
be regarded as fairness-enhanced versions of the GS, provide
good fairness results, while their total performance depicted
in figure 1 (especially of the MRGS) is higher compared to

selection based methods (WS and ORR), which on the other
hand provide also good fairness values (except for case III,
where the resource scarcity becomes more serious, thus all
methods struggle).

D. Performance of the TTC

According to our knowledge, the TTC algorithm has
not been used in channel allocation problems. One aim of
the current study was to analyze its performance in this
framework. In fact, the results show that the TTC provides
a relatively low performance compared to other methods
(although it provides quite acceptable values of FC in the
capacity context). Considering the principles of the algorithm,
this is not surprising, since in TTC, a trade (an exchange of
channels) occurs only if its beneficial to all of the involved
participants. If e.g. a channel exchange between tenant 1 and
tenant 2 would significantly enhance the rate of tenant 1 and
slightly decrease the rate of tenant 2, it will not be performed
in the TTC method. Overall, the simulation results show
that while the method may be applied in a computationally
efficient way (see table IV) the application of TTC must be
reconsidered in the multi-connectivity framework.

E. Performance of the CA and FECA Algorithms

First of all, let us emphasize that as table IV also shows,
the CA and FECA algorithms are the most computationally
complex algorithms analyzed in this study. The required
computational time, which is at least one magnitude higher
compared to other methods (between 0.2 and 0.4 s) is
however still in the range, which could be acceptable for
setups with high performance instruments frequently used
today in industry-automation applications. The sufficiency of
these values naturally depend on the specific application. The
computational needs of the CA and FECA strongly depend
on the number of preallocated channels. In the current study
this number was limited to 8, thus the number of submitted
bids by participants is maximum 28 − 1. As the possible
number of preallocated channels is further increased, this value
increases exponentially, thus the computational performance
is quickly degraded. This points out one important aspect
of the preallocation process: It must restrain the number of
preallocated channels, to keep the required computational time
at feasible levels.

Regarding the complexity of the preallocation process itself,
at is has been described in [38], the many-to-many matching
problem may be solved in O(n2), where n = max{nch, nT }.

In addition, in contrast to other methods, CA and FECA
require the evaluation of channel bundles by tenants as well
(while in the case of other methods, tenants are required only
to evaluate single channels from time to time or once), which
can mean a significant computational burden for tenants in
some applications.

However, the performance of these methods is remarkable
from several aspects. As shown in figure 1, and in
tables IV and V of [23], the CA method, which simply
aims for the highest overall performance (in other words, not
fairness-aware at any level), outperforms every other method,
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especially in the utility context, under all assumed levels of
resource scarcity (i.e. in cases I, II and III). If we look at
figures 2, Fig 6 of [23] and table II, we may see that this
overall overall performance implies a low resulting fairness
in the capacity context. However, in the case of utility-based
allocation, the FU values and resulting minimal utility levels
of the CA are among the best. Let us point out case III, where
the resulting mean minimal utility value of the CA is higher
by one order of magnitude compared to any other method (see
table II), except the fairness-enhanced version of the algorithm
(FECA), while it provides the best total utility in the same
time.

The performance of the FECA allocation mechanism is
even more remarkable. As tables VI and VII of [23]
show, independent of the context (capacity- or utility-based
allocation), and resource scarcity, the mean F values are the
highest in the case of this algorithm. Except for one case
(case I of the capacity context), this is also true for the
median values (as it may be seen in figure 2 as well). The
convincing fairness properties of the FECA method are further
supported by additional fairness-related measures. If we look
at the minimal values summarized in table II, we can see that
regarding the mean minimal utility values (MU ), the FECA
outperforms every other method. Table III furthermore shows,
that in the case of utility-based allocation, it results in a very
low number of outage events, even under resource scarcity
(in case III it provides outstanding results). But the really
remarkable aspect of the results is that, as it is shown in tables
IV, V of [23] and figure 1, the FECA algorithm is able to
provide these very good fairness measures simultaneously with
high system throughput/total utility. In contrast to selection
based algorithms (including MRM) and MRGS, which are
able to provide good fairness results if enough resources are
available, but are not among the best performers when it
comes to total system performance, the FECA gives a robust
performance in both contexts.

F. Summary From a Multi-Objective Viewpoint

We may summarize the most important points of the
simulation results as follows (let us focus on the utility context,
because taking into consideration minimal and maximal
capacity values means a harder problem). Figure 4 depicts the
utility context simulation results in the space of total allocated
utility and fairness. We can see that the CA-based algorithms
perform well in this multi-objective context, thus they are
able to provide high fairness values with high total throughput
simultaneously, even when resource scarcity arises.

G. Additional Implementation Aspects

Every model necessarily involves simplifications. Up to this
point we did not discuss where the proposed algorithms take
place, and how they receive all the inputs needed, although this
problem unavoidably emerges in the case of implementation.
In the following, we shortly discuss some aspects, which may
be relevant in the implementation process of the proposed
algorithms.

Fig. 4. Total allocated utility versus fairness in the case of the various
algorithms in the utility context (the low performance algorithms R, SR1, and
TTC are not included for better visibility. C1, C2 and C3 refer to cases I,
II and III respectively).

We assume that the receiver (in downlink transmission
the tenant) has perfect instantaneous CSIR, obtained from
pilot-based channel estimation, while the transmitter only
knows the channel statistics. As randomized assignment
methods do not require any form of active participation by
tenants, it is plausible to assume that these methods are
implemented in a centralized way. While the R algorithm
does not need any inputs (except n̄ch), the SR1 and SR2
algorithms require tenant-BS distances or single connectivity
values respectively. Regarding the former case (SR1), it is
possible that this information is already available at the central
unit (CU) of the system (e.g. in the case of factory-automation
applications using positioning systems, so no additional action
is needed. In the case of SR2 however, it is essential that
all tenants communicate the single-connectivity values of
channels towards the CU, for these are required to determine
the appropriate weights.)

In contrast to randomized methods, selection-based and
GS-like algorithms are (partially) based on choices and
decisions of tenants. These methods may be implemented
via both centralized or decentralized solutions. In the
former case, tenants provide their preferences and potential
additional parameters to the CU, which simulates the iterative
offers and reactions of channels and tenants according to
their preferences, and determines the resulting allocation.
Additional parameters in this context mean connectivity values
(and not only single-connectivity values), which allow the
CU to determine whether minimum requirements are met,
or which tenant is actually the ‘weakest’. In the latter case,
the offers and reactions of e.g. the GS algorithm physically
take place as packet exchanges between the tenants and the
CU (via BS’s). The benefit of this solution is that preference
data does not have to be transferred between units, while the
drawback is that one the one hand the process requires strict
synchronization and on the other hand, the number of steps,
which are required to determine the final allocation may be
high, and each step (each offer and response) requires physical
communication (i.e. iterative signaling) thus a finite nonzero
time frame as well.
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The final stage of the CA-based methods (the solution of the
MILP) essentially calls for centralized implementation, which
requires the bids of the participants to be available at the CU.
This means that all tenants have to provide their evaluations
for all the subsets of the preallocated channels. This, compared
to providing only single-connectivity values, implies a much
higher rate of data transfer, which on the other hand may be
limited by the qt and qch values. In other words, if the data
quantity transferred in this step applies as a bottleneck, the
algorithm may be tuned to reduce the necessary amount of
transmission (at the price of fewer alternatives per tenant, thus
potentially worse performance). Regarding the preallocation
method of the channels, the above discussed points related to
the GS-based methods apply.

VI. CONCLUSION AND FUTURE WORK

Overall, we have shown that in the case when the number
of channels and tenants is not too high, but already makes
the brute-force combinatorial optimization impossible, and
one has to consider fairness and minimum/maximum user
communication rate requirements as well, the proposed FECA
algorithm shows a significant potential compared to other
methods. Regarding the total system throughput/total allocated
utility, the CA also results in high values, but this simpler
version is not able to ensure the appropriate fairness aspects.

As it has been discussed in subsection III-G.4, the basic
optimization problem of FECA may be infeasible. In this study
we used the approach of iteratively relaxing all constraints
describing the minimal resulting values. Instead of this simple
method, more sophisticated algorithms may increase the
performance of FECA even further.
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