
Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: August 8, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 20–29
DOI: 10.33039/ami.2023.08.002
URL: https://ami.uni-eszterhazy.hu

Evaluation of scalability in the
Fission serverless framework

Balázs Fonyódi, Norbert Pataki, Ádám Révész

Department of Programming Languages and Compilers,
Faculty of Informatics,

Eötvös Loránd University,
Budapest, Hungary

fonyodi1balazs@gmail.com
patakino@elte.hu

reveszadam@gmail.com

Abstract. The efficient code execution often requires concurrency, so many
programming languages, libraries and framework aim at parallelism. Based
on the granularity and abstraction level, many approaches of concurrency are
available. However, concurrency carries difficulties but modern ways try to
make it more convenient.

A rather new solution is cloud computing which enhances the concurrency
in a way that standalone virtual machines utilize the shared hardware. Con-
tainerization takes advantage of lightweight virtual machines called contain-
ers because they use a shared kernel of the operating system. Conteiner or-
chestration (e.g. Kubernetes) enables containerization among multiple hosts.
Serverless programming supports container orchestration for individual func-
tion so every trigerred function may run in a different container which is
inside a cluster of hosts.

In this paper, we briefly present the modern cloud computing ways of
concurrency. This subtle distributed approach requires a comprehensive eval-
uation. We take advantage of the open source Fission serverless framework
and implement some distributed algorithms in this realm using the Python
programming language. For a deeper comprehension, we measure and eval-
uate the scalability of Fission framework and the entire system. We execute
the distributed algorithms with different sizes of input and we fine-tune the
configuration of the Fission framework.
Keywords: Function-as-a-Service, serverless, Fission, distributed algorithms
AMS Subject Classification: 68W15 Distributed algorithms

https://doi.org/10.33039/ami.2023.08.002
https://ami.uni-eszterhazy.hu
mailto:fonyodi1balazs@gmail.com
mailto:patakino@elte.hu
mailto:reveszadam@gmail.com


Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

1. Introduction
Parallelism and concurrency play an important role in high performance comput-
ing. Based on the granularity, one can choose multithreaded, multicore or manycore
solution for a more efficient application [13]. Grid computing and distributed al-
gorithms are also available for a long time. On the other hand, these approaches
inflict many challenges (for instance, race conditions, deadlock, resource guarantees,
etc.) [6]. Programming languages, libraries and frameworks have been proposed,
but the developers are still eager for a convenient, elegant, safe approach which
supports the efficient concurrent execution of the code.

In recent years, cloud native computing became one of the most dominant
paradigms for building applications. This was sped up with Google releasing Ku-
bernetes in 2014, and the Cloud native trend does not seem to slow down any
time soon. In this rapidly evolving landscape, developers continuously seeking
new ways to optimize their infrastructure while reducing the complexity. One of
the newer forms of developing in this environment is called Function-as-a-Service
(FaaS). It is a so called serverless computing model where developers only write
and run individual functions in the cloud. One of the advantages is that to run
these event driven functions, it is not necessary to manage and understand the
underlying infrastructure. Another great thing about FaaS is the scalability and
reliability. Most of the FaaS platforms, such as AWS Lambda, Azure Functions or
even open source providers such as Fission provide automatic scaling capabilities.
They can dynamically allocate and deallocate resources as needed by the number
of incoming requests. These functions run in an isolated environment, meaning
that each function runs in its own container or pod. This means that the functions
cannot interfere with each other and they are not impacted by other processes and
so the risk of failures due to conflicts are reduced. This approach results in a very
sophisticated concurrency model.

The concurrency has some important questions that belong to the performance.
An intriguing one is how efficient to launch a new computation. What is the
cost of triggering a new subcomputation? What is the cost of the communication
between the subcomputations? A distributed algorithm should perform better,
but the algorithm improves the runtime only if these mentioned costs are cheap
enough [14].

In this paper, we take advantage of an open source FaaS platform called Fission.
We evaluate the concurrency aspect of this FaaS platform with the implementation
and the execution of recursive, distributed algorithms. We focus on the scalability
aspect of the performance. The cost of a triggered new subcomputation is based
on boot of a Docker container and communication over HTTP, thus it is valuable
to check.

The rest of this paper is organized as follows. We introduce the cloud-based
approaches from Docker to FaaS in Section 2. We present the environment of the
evalution in Section 3. We present the implementation details of the distributed
algorithms in Section 4. We discuss the result of the evaluation in Section 5.
Finally, this paper is concluded in Section 6.

21



Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

2. Approaches of the cloud computing
Containerization has become an emerging approach in modern software engineering
since it enables the shipping of the software artifacts and products with all required
dependencies in a platform-independent way [2]. Containerization eliminates the
virtualization costs of not used OS services and the kernel itself per container.
Moreover, containerization supports isolation effectively since the containers are
seem to be separate operating systems but they use a shared kernel [10].

The containers are lightweight and they enable the fast and simple deployment
and configurations. However, this approach is limited only one host. Kubernetes
is a container orchestration system which manages Docker containers over multiple
Docker hosts [8].

Function as a Service (FaaS) is a category of cloud computing services that
provides a platform allowing programmers to develop, maintain, operate, scale and
manage application functionalities without the complexity of building and main-
taining the infrastructure typically associated with developing and deploying an
application. This new abstraction approach eliminates further configuration and
deployment cost. Building an application following this model is one way of achiev-
ing a “serverless” architecture [3]. This serverless programming approach provides
the deployment of standalone function without launching any virtual machine or
container [12].

Serverless programming is a rather new approach, however, there are real-world
applications, for instance, Coca-Cola, Santander Bank and Expedia take advantage
of this new paradigm [4].

Many frameworks are available for serverless programming, OpenFaaS, Kube-
less and Fission to name a few open source tools [7]. Earlier, we defined our func-
tional approach for the Kubeless realm [11]. However, it is still an open source ar-
tifact, VMWare has decided to stop driving and updating Kubeless [15]. Moreover,
according to many aspects, Fission was evaluated as the most efficient serverless
framework [9]. Furthermore, it has a wide language support and provides autoscal-
ing which will be useful for measuring the speed of algorithms with different CPU
settings.

3. Environment

3.1. Kubernetes
The environment of this research is created in a Kubernetes cluster. Kubernetes
is the de facto standard in container orchestration systems. This paper might not
be about Kubernetes, but there are some important terms that should be shortly
introduced. Pods are the lowest level abstraction in a Kubernetes cluster. In this
environment, a Docker container basically equals to a pod. It describes one or more
containers in a shared network.

Our research focuses on the scalability of functions. These functions are running

22



Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

in pods and for scaling, we need more of these. Kubernetes has a solution for that.
A ReplicaSet is responsible for managing a set of identical Pods. When one creates
a ReplicaSet, the number of replicas is specified, along with a Pod template. The
template describes the specification of each Pod that the ReplicaSet should create
and manage. A ReplicaSet ensures that a specified number of identical Pods are
running at any given time by creating or deleting Pods as needed.

3.2. Fission
Fission is a Kubernetes native serverless framework. Fission can be deployed to any
Kubernetes cluster whether it is on a private cloud or a private computer. Develop-
ers can write short lived functions in multiple programming languages, such as Go,
Python, Java or NodeJS. These functions can be triggered with HTTP requests or
other event triggers. Functions can be easily deployed using one specific command
and the fast cold-start time ensures that the pods get ready quickly. Another fea-
ture of Fission is automatic scaling by CPU usage. This means that the system can
create or destroy instances when needed, so it does not use unnecessary resources.
Figure 1 is a flowchart that presents how Fission works inside a Kubernetes cluster.

Figure 1. The workflow in our environment.

The router can send a HTTP request to a specific function which forwards to the
Fission service. The service sends the HTTP response back to the router and the
router creates the output.

23



Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

4. Implementation and code overview

4.1. Karatsuba function
Karatsuba’s algorithm is a fast multiplication algorithm which multiplies two num-
bers while reducing the number of recursive calls that is needed for the default mul-
tiplication [5]. This is achieved by splitting the two numbers into smaller ones, thus
reducing them into subproblems in a divide and conquer manner and solving them
recursively. The algorithm has a time complexity of nlog2 3 instead of n2 for the
traditional multiplication algorithm. The libraries needed for this version of code
are Flask and Requests. The request subclass form flask enables the function to ob-
tain the JSON data containing the two numbers, while the requests library allows
the script to send HTTP requests to another instance of the same script to com-
pute subtasks recursively. The function is split into three subfunctions for better
readability. The main function handles the processing for the multiplication. This
function obtains the two numbers with the get_json() from the request object,
extracts the two numbers and passes both to the karatsuba function. The result
from that is returned as a string. The make_request function takes the JSON
data containing the two numbers and sends them to a URL as a post request.
The karatsuba function is the part that handles the multiplication, it receives the
two numbers and a string that represents the current recursion level. At first, the
function checks whether the two numbers are single digit numbers. If they are,
their product is returned, otherwise it computes the lengths of the two numbers,
finds the maximum length, and splits each number into two parts of roughly equal
length. The reason for this is to have three subproblems:

• Compute the product of the two upper halves of the numbers (ac)

• Compute the product of the two lower halves of the numbers (bd)

• Compute the product of the sum of the two halves of each number minus ac
and bd (ac_plus_bd).

The function then returns the sum of the aforementioned subproblems, shifted
accordingly to the required number of digits. The function has three recursive calls,
but instead of handling these locally, each recursive call makes a HTTP request.

4.2. Merge sort algorithm
Merge sort algorithm developed by John von Neumann is a classic algorithm for
sorting. The performance of this algorithm is typically evaluated in different con-
current situations.

This code also starts by importing the required Flask and requests modules.
When the client sends a POST request to the ’/merge’ route, the Flask app receives
it and triggers the main function. The application returns the sorted array as a
JSON response. The sorting is done by sending POST requests to the same Flask

24



Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

app to sort each half of the array in a recursive way, and then merging the sorted
halves using a standard merging algorithm.

The Python source code of the merge sort algorithm:

from flask import Flask, request, jsonify
import requests

app = Flask(__name__)

@app.route(’/merge’, methods=[’POST’])
def main():

data = request.get_json()
array = data[’array’]
call_id = data[’call_id’]
if len(array) > 1:

mid = len(array)
left = array[:mid]
right = array[mid:]
sorted_left = merge_sort_helper(left, f"{call_id}_left")
sorted_right = merge_sort_helper(right, f"{call_id}_right")
return merge(sorted_left, sorted_right)

else:
return jsonify(array)

def merge(sorted_left, sorted_right):
i = j = 0
merged_array = []
while i < len(sorted_left) and j < len(sorted_right):

if sorted_left[i] <= sorted_right[j]:
merged_array.append(sorted_left[i])
i += 1

else:
merged_array.append(sorted_right[j])
j += 1

while i < len(sorted_left):
merged_array.append(sorted_left[i])
i += 1

while j < len(sorted_right):
merged_array.append(sorted_right[j])
j += 1

return jsonify(merged_array)

def merge_sort_helper(array, call_id):
json_data = {’array’: array, "call_id": call_id}
try:

25



Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

headers = {’Content-type’: ’application/json’}
response = requests.post(’http://router.fission.svc/merge’,

json=json_data,
headers=headers)

return response.json()
except requests.exceptions.RequestException as e:

print(e)

if __name__ == ’__main__’:
app.run(debug=True)

5. Evaluation
The test environment was running on a home setup, using Windows with WSL,
Docker, Kubernetes and Fission. As of now, we only measured the runtime of each
function with different sized inputs with the time command. The first number
that is going to be printed out is the moment the user hits the Enter key until the
moment the function is completed.

5.1. Scalability
We have already discussed the concept of ReplicaSets. Fission by default creates
three pods for one function but first we scaled it only to one. The functions were
called different sized inputs, Karatsuba’s algorithm with a digit number of 10, 32,
64, 128 and 256 length numbers and the merge sort with an array size of 10, 64,
128, 256 and 512.

The code was implemented so that every recursive call starts a new instance,
this way, the resources are divided and in theory for very large numbers the runtime
should be faster. However, starting these pods have a cost, referred to as a cold
start which is about 100ms [1]. When a function is triggered, Fission starts the
predefined pods, so that time was not accounted for in the measurements. When a
recursive call happened, a new pod was started. Karatsuba’s algorithm has three
recursive calls, so even for small numbers, at least 4 or 5 pods started running,
which equals to about 0.4-0.5 seconds that was wasted. The bigger the number,
the more recursive calls happened which slowed down the algorithm significantly.
With more Replicas, Fission should share the resources. But because of the nature
of the code, the execution still starts more and more instances, as the size of inputs
increases.

5.2. Measurements and results
Evaluating the performance of merge sort, our theory that dividing functions this
way might not be the best approach on a small scale system, seems to prove us
right. Since merge sort only has two recursive calls, the number of instances being

26



Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

started lowers significantly, thus the runtime of the function does not grow as much
as with Karatsuba’s algorithm.

Figure 2 and Figure 3 show the runtime of the analized functions and their
runtime with different ReplicaSet configurations and with different input sizes.

Figure 2. The runtime of Karatsuba’s algorithm on multiple in-
stances with different amount of data.

Figure 3. The runtime of merge sort on multiple instances with
different amount of data.

An important thing to note is the starting number of the ReplicaSets. One
would think that more ReplicaSets equal faster runtime, since Fission can divide
the function into more resources. This is true until a certain amount of Replicas.
However, from the Figure 2 and Figure 3, it is clearly visible that after a certain

27



Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

number, the runtime does not decrease or might even increase a little bit. This
can occur because it actually takes time to divide the function to these resources.
Interesting to note, that sometimes the more is less. Starting more replicas does
not solve the runtime issue, it can even slow down the function execution a bit.

6. Conclusion
Cloud native computing provides high-level abstractions for concurrency that is
essential for an improved performance. These abstractions assist the developers in
a convenient way. FaaS services allow to deploy, maintain and operate separate
functions in a cloud using containerization and orchestration.

We utilize the Fission serverless programming framework and started to eval-
uate how this granularity of concurrency improves the runtime. We implemented
two classical algorithms (merge sort, Karatsuba’s algorithm) in a recursive manner
using the Python programming language. We measured the runtime with different
sizes of inputs and with different configurations of Fission. However, the compar-
ison and evaluation are not comprehensive, so our future work focuses on a more
detailed analysis. Right now, we found that our cases have a rather high cost of
the new subcomputation’s start and HTTP communication.

References
[1] D. Balla, M. Maliosz, C. Simon: Open Source FaaS Performance Aspects, in: 2020 43rd In-

ternational Conference on Telecommunications and Signal Processing (TSP), 2020, pp. 358–
364, doi: 10.1109/TSP49548.2020.9163456.

[2] D. Bernstein: Containers and Cloud: From LXC to Docker to Kubernetes, IEEE Cloud
Computing 1.3 (2014), pp. 81–84, doi: 10.1109/MCC.2014.51.

[3] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski: Serverless Programming (Function
as a Service), in: 2017 IEEE 37th International Conference on Distributed Computing Sys-
tems (ICDCS), Los Alamitos, CA, USA: IEEE Computer Society, June 2017, pp. 2658–2659,
doi: 10.1109/ICDCS.2017.305.

[4] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski: The Rise of Serverless Computing,
Commun. ACM 62.12 (Nov. 2019), pp. 44–54, issn: 0001-0782, doi: 10.1145/3368454.

[5] X. Fang, L. Li: On Karatsuba Multiplication Algorithm, in: The First International Sym-
posium on Data, Privacy, and E-Commerce (ISDPE 2007), 2007, pp. 274–276, doi: 10.1109
/ISDPE.2007.11.

[6] W.-m. Hwu, K. Keutzer, T. G. Mattson: The Concurrency Challenge, IEEE Design &
Test of Computers 25.4 (2008), pp. 312–320, doi: 10.1109/MDT.2008.110.

[7] K. Kritikos, P. Skrzypek: A Review of Serverless Frameworks, in: 2018 IEEE/ACM Inter-
national Conference on Utility and Cloud Computing Companion (UCC Companion), 2018,
pp. 161–168, doi: 10.1109/UCC-Companion.2018.00051.

[8] V. Medel, O. Rana, J. á. Bañares, U. Arronategui: Modelling Performance & Resource
Management in Kubernetes, in: Proceedings of the 9th International Conference on Utility
and Cloud Computing, UCC ’16, Shanghai, China: Association for Computing Machinery,
2016, pp. 257–262, isbn: 9781450346160, doi: 10.1145/2996890.3007869.

28

https://doi.org/10.1109/TSP49548.2020.9163456
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/ICDCS.2017.305
https://doi.org/10.1145/3368454
https://doi.org/10.1109/ISDPE.2007.11
https://doi.org/10.1109/ISDPE.2007.11
https://doi.org/10.1109/MDT.2008.110
https://doi.org/10.1109/UCC-Companion.2018.00051
https://doi.org/10.1145/2996890.3007869


Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

[9] S. K. Mohanty, G. Premsankar, M. di Francesco: An Evaluation of Open Source Server-
less Computing Frameworks, in: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2018, pp. 115–120, doi: 10.1109/CloudCom2018.2018
.00033.

[10] Á. Révész, N. Pataki: Containerized A/B Testing, in: Proceedings of the Sixth Workshop on
Software Quality Analysis, Monitoring, Improvement, and Applications, ed. by Z. Budimac,
Belgrade, Serbia: CEUR-WS.org, 2017, 14:1–14:8, url: http://ceur-ws.org/Vol-1938/pap
er-rev.pdf.

[11] Á. Révész, N. Pataki: LambdaKube - A Functional Programming Approach in a Dis-
tributed Realm, in: 2021 4th International Conference on Geoinformatics and Data Analysis,
ICGDA 2021, Marseille, France: Association for Computing Machinery, 2021, pp. 67–72,
isbn: 9781450389341, doi: 10.1145/3465222.3465233.

[12] Á. Révész, N. Pataki: Stack Traces in Function as a Service Framework, in: Proceedings of
the 11th International Conference on Applied Informatics (ICAI) (Eger, Hungary, Jan. 29–
31, 2020), ed. by I. Fazekas, G. Kovásznai, T. Tómács, CEUR Workshop Proceedings
2650, Aachen, 2020, pp. 280–287, url: http://ceur-ws.org/Vol-2650/#paper29.

[13] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, B. Esbaugh: Parallelism via
Multithreaded and Multicore CPUs, Computer 43.3 (2010), pp. 24–32, doi: 10.1109/MC.201
0.75.

[14] M. Tóth, I. Bozó, T. Kozsik: Pattern Candidate Discovery and Parallelization Techniques,
in: Proceedings of the 29th Symposium on the Implementation and Application of Functional
Programming Languages, IFL ’17, Bristol, United Kingdom: Association for Computing
Machinery, 2017, isbn: 9781450363433, doi: 10.1145/3205368.3205369.

[15] Q. L. Trieu, B. Javadi, J. Basilakis, A. N. Toosi: Performance Evaluation of Serverless
Edge Computing for Machine Learning Applications, 2022, doi: 10.48550/ARXIV.2210.103
31, url: https://arxiv.org/abs/2210.10331.

29

https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
http://ceur-ws.org/Vol-1938/paper-rev.pdf
http://ceur-ws.org/Vol-1938/paper-rev.pdf
https://doi.org/10.1145/3465222.3465233
http://ceur-ws.org/Vol-2650/#paper29
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1145/3205368.3205369
https://doi.org/10.48550/ARXIV.2210.10331
https://doi.org/10.48550/ARXIV.2210.10331
https://arxiv.org/abs/2210.10331

