REMARKS ON THE PAPER ${ }^{1}$
 "M. KOLIBIAR, ON A CONSTRUCTION OF SEMIGROUPS"

Attila Nagy
Department of Algebra
Budapest University of Technology and Economics
P.O. Box 91
1521 Budapest
Hungary

Abstract

In his paper "On a construction of semigroups", M. Kolibiar gives a construction for a semigroup T (beginning from a semigroup S) which is said to be derived from the semigroup S by a θ-construction. He asserted that every semigroup T can be derived from the factor semigroup $T / \theta(T)$ by a θ-construction, where $\theta(T)$ is the congruence on T defined by: $(a, b) \in$ $\theta(T)$ if and only if $x a=x b$ for all $x \in T$. Unfortunately, the paper contains some incorrect part. In our present paper we give a revision of the paper.

A semigroup S is called a left reductive semigroup ([1], [4]) if, for every $a, b \in S$, whenever $x a=x b$ holds for all $x \in S$ then $a=b$. It is known that, for an arbitrary semigroup S, the relation $\theta(S)$ defined by $(a, b) \in \theta(S)$ for some $a, b \in S$ if and only if $x a=x b$ for all $x \in S$ is a congruence on S. In [3], the author examined this congruence. He defined a sequence $\theta_{n}(n=1,2, \ldots)$ of congruences on an arbitrary semigroup S as follows: $\theta_{1}=\theta(S)$, and if θ_{n} is given, θ_{n+1} is the congruence relation on S, induced by the congruence relation $\theta(S) / \theta_{n}([2])$. In Lemma 2 of [3] it is shown that $(a, b) \in \theta_{n}$ for some $a, b \in S$ if and only if $x a=x b$ for all $x \in S^{n}$.

In Theorem 1 of [3], it is asserted that $\theta^{*}=\cup_{n=1}^{\infty} \theta_{n}$ is the least element in the set of all congruence relations θ on S such that S / θ is a left reductive semigroup. The proof of this theorem is not correct. The author asserts that, from the result $(x a, x b) \in \theta^{*}$ for all $x \in S$, it follows that $t x a=t x b$ for all $x \in S$ and all $t \in S^{k}$ for some $k \in N$ (that is $(x a, x b) \in \theta_{k}$ for all $x \in S$). This is not correct, because $(x a, x b) \in \theta^{*}$ for all $x \in S$ means that, for every $x \in S$, there is a positive n_{x} such that $(x a, x b) \in \theta_{n_{x}}$. From this it does not follow that there is a positive integer k such that $(x a, x b) \in \theta_{k}$ for all $x \in S$.

Theorem 2 of [3] is also incorrect. In part (a) of Theorem 2, the following construction is given: For a semigroup S and each $x \in S$, let $T_{x} \neq \emptyset$ be a set such that $T_{x} \cap T_{y}=\emptyset$ if $x \neq y$. Let a mapping $f_{x}^{y}: T_{x} \mapsto T_{y}$ be given for all couples $x, y \in S$ such that $y=x u$ (in the paper $y=u x$, but it is a missprint) for some $u \in S$. Suppose further $f_{y}^{z} \circ f_{x}^{y}=f_{x}^{z}$. Given $a, b \in \cup_{x \in S} T_{x}=T$, set $a \circ b=f_{x}^{x y}(a)$, where $a \in T_{x}, b \in T_{y}$. Then $(T ; \circ)$ is a semigroup (this semigroup

[^0]is said to be derived from S by a θ-construction), and each set T_{x} is contained in a θ-class of T. If S is left reductive then the θ-classes of T are exactly the sets $T_{x}(x \in S)$. The assertions of this part of the theorem is correct. In part (b) of Theorem 2 , it is asserted that, for an arbitrary semigroup T, if S denotes the factor semigroup $T / \theta(T)$ and $T_{[x] \theta}$ denotes the $\theta(T)$-class $[x] \theta$ of T containing x, then $f_{[x] \theta}^{[x y] \theta}: a \mapsto a b(a \in[x] \theta, b \in[y] \theta)$ is a mapping on $[x] \theta$ to $[x y] \theta$ and, for all $c, d \in T, c d=f_{[c] \theta}^{[c d] \theta}(c)$. This last equation means that $c d=c \circ d$ for all $c, d \in S$. The next example shows that the assertion $c d=f_{[c] \theta}^{[c d] \theta}(c)$ for all $c, d \in T$ is not correct.

Example 1 Let $T=\{e, a, u, v, 0\}$ be a semigroup defined by Table 1 .

\cdot	e	a	u	v	0
e	e	a	0	0	0
a	a	e	0	0	0
u	u	v	0	0	0
v	v	u	0	0	0
0	0	0	0	0	0

Table 1:

Let θ denote the congruence $\theta(T)$. It is easy to see that the factor semigroup $S=T / \theta$ is a left reductive semigroup. We note that S is a semigroup which can be obtained from a two-element group $\{[e] \theta,[a] \theta\}$ by adjunction the zero $[0] \theta$.

Consider the semigroup $(T ; \circ)$ which is derived from T / θ by a θ-construction (see (b) of Theorem 2 of [3]). As $[0] \theta=[0] \theta[0] \theta,[0] \theta=[0] \theta[e] \theta,[0] \theta=[0] \theta[a] \theta$, we have three possibility to define a mapping $f_{[0] \theta}^{[0] \theta}$ from $[0] \theta$ into $[0] \theta$.

In case $f_{[0] \theta}^{[0] \theta} x \mapsto x \cdot 0=0$ for all $x \in[0] \theta$, we have

$$
u \circ e=f_{[u] \theta}^{[u \cdot e] \theta}(u)=f_{[0] \theta}^{[0] \theta}(u)=0 \neq u=u \cdot e
$$

In case $f_{[0] \theta}^{[0] \theta} x \mapsto x \cdot e$ for all $x \in[0] \theta$, we get

$$
u \circ a=f_{[u] \theta}^{[u \cdot a] \theta}(u)=f_{[0] \theta}^{[0] \theta}(u)=u \cdot e=u \neq v=u \cdot a .
$$

In case $f_{[0] \theta}^{[0] \theta} x \mapsto x \cdot a$ for all $x \in[0] \theta$, we have

$$
u \circ e=f_{[u] \theta}^{[u \cdot e] \theta}(u)=f_{[0] \theta}^{[0] \theta}(u)=u \cdot a=v \neq u=u \cdot e
$$

Under any possible choosing of the mapping $f_{[0] \theta}^{[0] \theta}$ we have a contradiction. Thus T can not be derived from T / θ by a θ-construction.

In the next we formulate a new and correct version of Theorem 2 of [3].

Theorem 2 (a) Let S be a semigroup. For each $x \in S$, associate a set $T_{x} \neq$ \emptyset. Assume that $T_{x} \cap T_{y}=\emptyset$ for all $x \neq y$. Assume that, for each triple $(x, y, x y) \in S \times S \times S$ is associated a mapping $f_{(x, y, x y)}$ of T_{x} into $T_{x y}$ acting on the left. Suppose further $f_{(x y, z, x y z)} \circ f_{(x, y, x y)}=f_{(x, y z, x y z)}$ for all triples $(x, y, z) \in S \times S \times S$. Given $a, b \in \cup_{x \in S} T_{x}=T$, set $a \circ b=f_{(x, y, x y)}(a)$, where $a \in T_{x}$ and $b \in T_{y}$. Then $(T ; \circ)$ is a semigroup, and each set T_{x} is contained in a $\theta(T)$-class of T. If S is left reductive then the $\theta(T)$-classes of the semigroup T are exactly the sets $T_{x}(x \in S)$.
(b) Let $(T ; \cdot)$ be a semigroup. Let θ denote the congruence $\theta(T)$, and let $S=T / \theta$. For an element $[x] \theta \in S$, let $T_{[x] \theta}$ be the θ-class $[x] \theta$ of T. For arbitrary triple $([x] \theta,[y] \theta,[x \cdot y] \theta) \in S \times S \times S$, let $f_{([x] \theta,[y] \theta,[x \cdot y] \theta)}: a \mapsto a \cdot b$ ($a \in[x] \theta$), where b is an arbitrary element of $[y] \theta$. (We note that $a \cdot b=$ $a \cdot[b] \theta$ for all $a, b \in T$. We also note that we consider all of the mappings $f_{([x] \theta,[z] \theta,[x \cdot z] \theta)}$, where $[z] \theta \in S$ satisfies $[x] \theta[y] \theta=[x] \theta[z] \theta$.) For all $c, d \in T$, let $c \circ d=f_{([c] \theta,[d] \theta,[c \cdot d] \theta)}(c)$. Then $(T ; \circ)$ is a semigroup which is isomorphic to the semigroup $(T ; \cdot)$. Consequently, every semigroup $(T ; \cdot)$ is isomorphic to a semigroup derived from the semigroup $S=T / \theta$ using the construction in part (a) of the theorem.

Proof. (a): Let $(x, y, z) \in S \times S \times S$ be an arbitrary triple and let $a \in T_{x}$, $b \in T_{y}, c \in T_{z}$ be arbitrary elements. Then

$$
\begin{gathered}
a \circ(b \circ c)= \\
=a \circ f_{(y, z, y z)}(b)=f_{(x, y z, x y z)}(a)=\left(f_{(x y, z, x y z)} \circ f_{(x, y, x y)}\right)(a)=\left(f_{(x, y, x y)}(a)\right) \circ c= \\
=(a \circ b) \circ c .
\end{gathered}
$$

Thus $(T ; \circ)$ is a semigroup. Let $x \in S$ be arbitrary. We show that T_{x} is in a $\theta(T)$-class of T. If $a, b \in T_{x}$ are arbitrary elements then, for every $y \in S$ and for all $t \in T_{y}$,

$$
t \circ a=f_{(y, x, y x)}(t)=t \circ b
$$

which implies that $(a, b) \in \theta(T)$.
Assume that S is left reductive. Let T_{x} and T_{y} be sets such that they are in the same $\theta(T)$-class of T. Let $a \in T_{x}$ and $b \in T_{y}$ be arbitrary elements. Then, for every $z \in S$ and $t \in T_{z}, t \circ a=t \circ b \in T_{z x} \cap T_{z y}$. Thus $z x=z y$ for every $z \in S$. As S is left reductive, we get $x=y$. Hence the $\theta(T)$-classes of T are exactly the sets $T_{x}(x \in S)$.
(b): It is clear that, for every $x, y \in T, f_{([x] \theta,[y] \theta,[x \cdot y] \theta)}$ maps $[x] \theta=T_{[x] \theta}$ into $T_{[x \cdot y] \theta}=[x \cdot y] \theta$. For every $(x, y, z) \in T \times T \times T$ and $a \in[x] \theta$,

$$
\begin{aligned}
& \left(f_{([x \cdot y] \theta,[z] \theta,[x \cdot y \cdot z] \theta)} \circ f_{([x] \theta,[y] \theta,[x \cdot y] \theta)}\right)(a)= \\
= & (a \cdot y) \cdot z=a \cdot(y \cdot z)=f_{([x] \theta,[y \cdot z] \theta,[x \cdot y \cdot z] \theta)}(a) .
\end{aligned}
$$

Thus $(T ; \circ)$ is a semigroup by part (a) of the theorem.
For every $x, y \in T$ and every $a \in[x] \theta, b \in[y] \theta$,

$$
a \circ b=f_{([x] \theta,[y] \theta,[x \cdot y] \theta)}(a)=a \cdot b
$$

Thus $(T ; \cdot)$ is isomophic to the semigroup $(T ; \circ)$.

Example 3 Let T be the semigroup defined in Example 1. Let θ denote the congruence $\theta(T)$. Then $S=T / \theta$ is a semigroup which can be obtained from a two-element group by adjunction of a zero. Let $e, a, 0$ denote the θ-classes $[e] \theta=\{a\},[a] \theta=\{a\},[0] \theta=\{0, u, v\}$ of T, respectively. Then the Cayley-table of S is

	e	a	0
e	e	a	0
a	a	e	0
0	0	0	0

Table 2:

Apply our construction when the beginning semigroup is S. The sets T_{x} $(x \in S)$ are $T_{e}=\{e\}, T_{a}=\{a\}, T_{0}=\{0, u, v\}$. The mappings (see (b) of Theorem 2) are: $f_{(e, e, e)}: e \mapsto e, f_{(e, a, a)}: \quad e \mapsto a, f_{(e, 0,0)}: \quad e \mapsto 0$, $f_{(a, e, a)}: a \mapsto a, f_{(a, a, e)}: a \mapsto e, f_{(a, 0,0)}: a \mapsto 0, f_{(0, e, 0)}: x \mapsto x \cdot e$ for every $x \in[0] \theta, f_{(0, a, 0)}: x \mapsto x \cdot a$ for every $x \in[0] \theta, f_{(0,0,0)}: x \mapsto 0$ for every $x \in[0] \theta$. It is easy to see that the semigroup T is isomorphic to the semigroup ($T ;$ o) derived from S by applying our construction in Theorem 2.

We formulate the new version of Theorem 3 of [3].
Theorem 4 Let S be a semigroup whose congruence relations satisfy the ascending chain condition. Then there are semigroups $S_{0}=S, S_{1}, \ldots S_{n}$ such that S_{n} is left reductive, and each S_{i-1} can be derived from $S_{i}(i=1, \ldots, n)$ by the construction defined in (a) of Theorem 2.

Proof. Let S be a semigroup. For a congruence ϱ on S, consider the congruence ϱ^{*} defined by $(a, b) \in \varrho^{*}$ for some $a, b \in S$ if and only if $(x a, x b) \in \varrho$ for all $x \in S$. (see [5]). Let

$$
\varrho^{(0)} \subseteq \varrho^{(1)} \subseteq \cdots \subseteq \varrho^{(n)} \subseteq \ldots
$$

be a sequence of congruences on S defined by $\varrho^{(0)}=\varrho$ and, for every nonnegative integer i, let $\varrho^{(i+1)}=\left(\varrho^{(i)}\right)^{*}\left(\right.$ see [5]). By Lemma 2 of [3], $\iota_{S}^{(i)}=\theta_{i}$ for every positive integer i, where ι_{S} denotes the identity relation on S and θ_{i} are the congruences examined above. As the congruence relations on S satisfy the ascending chain condition, there is a (least) nonegative integer n such that $\iota_{S}^{(n)}=\iota_{S}^{(n+1)}=\cdots$. Let $S_{i}=S / \iota_{S}^{(i)}$ for every $i=0,1, \ldots, n$. Thus $S=S_{0}$. By Theorem 1 of [5], $\iota_{S}^{(n)}=\theta_{n}$ is a left reductive congruence which means that the factor semigroup $S_{n}=S / \theta_{n}$ is left reductive. For every $i=1, \ldots, n$,
$S_{i}=S / \iota_{S}^{(i)} \cong\left(S / \iota_{S}^{i-1}\right) /\left(\iota_{S}^{(i)} / \iota_{S}^{(i-1)}\right) \cong S_{i-1} /\left(\iota_{S}^{(i)} / \iota_{S}^{i-1)}\right) \cong S_{i-1} /\left(\left(\iota_{S}^{(i-1)}\right)^{*} / \iota_{S}^{(i-1)}\right)$
using also Theorem 5.6 of [2]. By Lemma 7 of [5],

$$
\left(\iota_{S}^{(i-1)}\right)^{*} / \iota_{S}^{(i-1)}=\left(\iota_{S_{i-1}}\right)^{*}=\theta\left(S_{i-1}\right)
$$

Thus

$$
S_{i} \cong S_{i-1} / \theta\left(S_{i-1}\right)
$$

for every $i=1, \ldots, n$. By (b) of Theorem 2, the semigroup $S_{i-1}(i=1, \ldots, n)$ can be derived from S_{i} by the construction in (a) of Theorem 2 .

An addendum: It may be that the semigroup $S_{n}=S / \theta_{n}$ in Theorem 4 has only one element, that is, θ_{n} is the universal relation ω_{S} on S. The next theorem is about this case.

Theorem 5 For a semigroup $S, \theta_{n}=\omega_{S}$ for some positive integer n if and only if S is an ideal extension of a left zero semigroup by a nilpotent semigroup.

Proof. Let ι_{S} denote the identity relation on a semigroup S. By Theorem 5 of [5], $\iota_{S}^{(n)}=\omega_{S}$ for some non-negative integer n if and only if S is an ideal extension of a left zero semigroup by a nilpotent semigroup. As $\theta(S)=\iota_{S}^{(1)}$, our assertion is a consequence of Theorem 5 of [5].

References

[1] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups I, American Mathematical Society, Providence, R. I., 1961
[2] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976
[3] M. Kolibiar, On a construction of semigroups, Scripta Fac. Sci. Nat. Ujep Brunensis, Arch. Math., 22:99-100, 1971
[4] A. Nagy, Special Classes of Semigroups, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001
[5] A. Nagy, Left reductive congruences on semigroups, Semigroup Forum, 87:129-148, 2013

[^0]: ${ }^{1}$ This version differs from the published one that we clarified some part of the proof of Theorem 2, and corrected the typing errors. Key words: semigroups, left reductive semigroups, congruences; AMS Classification: 20M10; e-mail: nagyat@math.bme.hu

