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We study the nonlinear response of a driven cavity QED system in the extreme strong coupling
regime where the saturation photon number is below one by many orders of magnitude. In this
regime, multi-photon resonances within the Jaynes–Cummings spectrum up to high order can be
resolved. We identify an intensity and frequency range of the external coherent drive for which the
system exhibits bistability instead of resonant multi-photon transitions. The cavity field evolves
into a mixture of the vacuum and another quasi-classical state well separated in phase space. The
corresponding time evolution of the outgoing intensity is a telegraph signal alternating between two
attractors.

PACS numbers: 42.50.Pq, 42.50.Hz, 42.50.Lc

I. INTRODUCTION

Optical bistability is a benchmark of nonlinear light-
matter interaction. Initially, many decades ago, it has
been demonstrated for a macroscopic nonlinear medium,
typically a saturable absorber or a Kerr-type dispersive
medium, in a Fabry–Pérot-type optical resonator [1].
The effect consists in the multi-valued solution and hys-
teresis in the transmitted output mean-field intensity for
a certain range of the input power and frequency. Subse-
quently, owing to the development of high-finesse optical
microresonators, the bistability effect could be observed
at much lower light excitation level, with the medium
size also reduced to hundreds of atoms [2–4]. Optical
bistability can be theoretically described in the frame of
a semiclassical mean-field approach based on the lossy
and driven Jaynes–Cummings model.

With the advent of the strong coupling regime of cav-
ity quantum electrodynamics (QED), however, a much
more refined picture of the non-linearity in the matter-
light coupling must be conceived. The figure of merit
is the saturation photon number nsat which defines that
intracavity intensity where the atomic response to excita-
tion becomes nonlinear according to the classical theory.
Today, cavity QED extends to the range of nsat < 1
which indicates an obviously quantum regime in the
light-matter interaction. Interestingly, some remnants of
semiclassical bistability could be observed in a strong-
coupling cavity QED system with only a few degrees of
freedom and operated in the regime of nsat . 1 [5, 6].
However, more generally, the nonlinear input-output re-
lation is manifested beyond the mean-field level. Dra-
matic effects can occur in the quantum statistics of the
output field intensity and it can give insight directly to
the anharmonic energy spectrum of the coupled atom-
field system [7]. Provided the low-lying excitation levels
are spectrally resolved, various quantum applications can
be envisaged. A prominent example is the photon block-
ade [8], i.e., when a single-photon pulse can be transmit-
ted through the cavity but not a two-photon or higher

one [9–11]. Another useful application is squeezed-light
generation by a single atom [12]. Ultimately, stationary
photon number states can also be prepared in the cavity
[13, 14].

Microwave circuit QED systems reached an unprece-
dented strong coupling regime of cavity QED, with sat-
uration photon number nsat � 1. The ratio of g (cou-
pling parameter between a single mode of the stripline
resonator and the artificial atom) to the loss rates is far
larger than in atomic cavity QED realizations: typically
γ, κ . g/100, where κ is the cavity mode linewidth, and
γ is the characteristic decay rate of the electronic dipole
system [15]. This is the regime which we refer to as ‘ex-
treme’ strong in the title. Here, the formal semiclassical
mean-field solution is expected to be invalid in general.
An exception is the special case of very large detuning be-
tween the mode and the resonance of the artificial atom
[16] since the large detuning reduces the effective cou-
pling between the two quantum systems. In this case,
dispersive bistability can be expected and interpreted
semiclassically [17–19], which is used, for example, for
high-fidelity qubit readout [20, 21].

In this paper, we explore the nonlinear input-output
relation of a resonator-driven circuit or cavity QED sys-
tem in a broad frequency and intensity range of the
driving. The resonator mode and the artificial atomic
systems are assumed to be resonant. Two distinct fre-
quency domains of the driving field can be identified:
(1) For large detuning from the resonator mode, resolved
multi-photon transitions in the low-excitation part of the
Jaynes–Cummings ladder appear; (2) By tuning the ex-
ternal drive closer to resonance with the mode, the sys-
tem evolves into a bistability-like steady-state. It is a
mixture of two ‘semiclassical’ states, represented by a
two-peaked Wigner quasi-distribution function in phase
space. This is an unexpected result since the robust semi-
classical bistable state is generated by a single atom. This
solution is not connected by any limiting procedure to the
result that could be obtained from an ab initio semiclassi-
cal description. Moreover, the bimodal Wigner function
is not present in the case of exact resonance, as opposed
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FIG. 1. Schematic representation of the driven cavity QED
system. The upper panel shows an atomic cavity QED sys-
tem, i.e., atoms in a driven Fabry–Pérot-type cavity. The
input field is the pump with effective amplitude η and fre-
quency ω, the output field is generated by the field leaking
out from the cavity at a rate 2κ. The bottom panel rep-
resents the microwave circuit QED realization of the same
Jaynes–Cummings model system. The single-mode field of
the stripline resonator is coupled in and out by capacitive
coupling to the transmission lines separated by the gaps in
the middle line. The mode is resonant with artificial atoms
that can be considered two-level electric dipole systems.

to the familiar case of semiclassical absorptive bistability.
The paper is structured as follows. In Section II, we

introduce the model and present the semiclassical mean-
field solution for later reference. Section III is devoted to
the nonlinear features appearing in the mean-field cav-
ity transmission as the pump intensity and frequency are
tuned. We show that for pump intensities beyond the lin-
ear response regime, multi-photon resonances appear in
contrast to the semiclassically expected dispersive bista-
bility. As the main result of this paper, in Section IV,
we present a bistability solution emerging in a frequency
range where the multi-photon transitions are of very high
order and cannot be excited at the given pump intensity.
We present the phase-space distribution of the steady
state, which clearly manifests the mixture of states with
confined fluctuations both in intensity and phase. We
also give a time-resolved picture which exhibits a tele-
graph signal of the average intensity of the field. Section
V consists of our conclusions.

II. MODEL

We consider a fixed number N of identical two-level
systems (atoms or artificial atoms) with resonance fre-
quency ωA coupled to a single mode of a high-finesse
resonator with frequency ωM , as schematically shown in
Fig. 1. The coupling to the mode is assumed to be uni-
form with strength g. The cavity is coherently driven
with amplitude η at a pump frequency ω, the detunings

from the cavity mode and from the atoms are denoted by
∆M = ω−ωM and ∆A = ω−ωA, respectively. The system
can be described by the Jaynes–Cummings Hamiltonian,
which reads (~ = 1)

H = −∆M a†a−∆A

N∑
i=1

σ†i σi + ig

N∑
i=1

(
a† σi − σ†i a

)
+ iη

(
a† − a

)
. (1)

The bosonic annihilation and creation operators a and a†

describe the radiation field mode, σi and σ†i denote the
lowering and raising operators for the two-level systems
(indexed by i = 1 . . . N). These latter complemented by

the population inversion σz,i = σ†iσi − 1
2 and the unit

operator form a complete set. The algebra is equivalent
to that of Pauli operators of a spin- 12 particle, and we
will refer to the atoms or artificial atoms as qubits.

The system is dissipative and couples to the environ-
ment through several channels. We have cavity-photon
loss due mainly to the photon outcoupling to propagat-
ing modes, and characterized by a rate 2κ. The qubit,
in general, can have population and polarization damp-
ing with rates γ‖ and γ⊥, respectively. We assume zero-
temperature reservoirs. The corresponding Master equa-
tion in Lindblad form reads

ρ̇ = −i [H, ρ] + κ
(
2aρa† − a†aρ− ρa†a

)
+ γ‖

N∑
i=1

(
2σiρσ

†
i − σ†iσiρ− ρσ†iσi

)
+ 2γ⊥

N∑
i=1

(
σziρσzi −

ρ

4

)
. (2)

Solid-state realizations of coupled matter and radiation
modes give an experimental context for this model. One
such system is in circuit-QED [15], where it is possible to
couple several qubits to a single microwave cavity mode.
The number of qubits can be varied by selectively detun-
ing the resonance frequencies of certain qubits from the
mode frequency [22]. The parameters of our quantum
simulations were modeled after one circuit-QED realiza-
tion [23], where the single qubit-photon couplings of three
superconducting transmon qubits were g ' 2π×55 MHz,
the cavity decay rate is κ = 2π × 0.47 MHz, and for the
qubit damping rates γ‖, γ⊥ . κ.

It is important to note that the decay of the two-level
systems is considered individually for each qubit, elud-
ing the collective decay effect observed in Ref. [23]. Al-
though the coupling of the qubits to the cavity mode is
symmetric, the qubit ensemble cannot be replaced by a
large collective spin because the spin decay will drive the
system out of the subspace of states symmetric under
permutation of the atoms.

Concerning the calculation method, we will unravel the
full quantum Master equation defined by Eqs. (1) and (2)
into quantum trajectories by means of the Monte Carlo
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wave-function method [24]. The trajectories can be per-
ceived as single experimental realizations of the dynamics
and steady-state averages can be calculated by time av-
eraging over a long trajectory. The actual simulations
were performed using the C++QED framework [25–27],
which is a generic open-source C++/Python application-
programming framework for efficient simulations of open
quantum dynamics of interacting quantum system.

The results of the full quantum calculation can be con-
fronted with those originating from an ab initio semi-
classical mean-field model which we briefly recall here.

Upon introducing the total spin operators Σ =
∑N
i=1 σi,

Σz =
∑N
i=1 σz,i, a closed system of equations is ob-

tained for the scaled mean field variables α = 〈a〉 /
√
N ,

S = 〈Σ〉 /N , and Sz = 〈Σz〉 /N , which reads

α̇ = (i∆M − κ)α+
√
Ng S +

η√
N
,

Ṡ =
(
i∆A − γ⊥ − γ‖

)
S + 2

√
Ng Sz α,

Ṡz = −2γ‖

(
Sz +

1

2

)
−
√
Ng (S∗ α+ α∗ S) . (3)

The steady-state solution of these equations for the in-
tracavity intensity can be written as

|η|2
N

= |α|2
([

∆M −∆A
Ng2

∆2
A + γ2⊥ (1 + |α|2/nsat)

]2
+

[
κ+ γ⊥

Ng2

∆2
A + γ2⊥ (1 + |α|2/nsat)

]2)
. (4)

This is an implicit equation for the mean intracavity in-
tensity |α|2 as a function of the pump intensity, propor-
tional to |η|2, and frequency, included in ∆M and ∆A.
We will refer to this solution as the semiclassical one. It
clearly manifests that the nonlinearity scales with the sat-
uration photon number nsat =

γ‖γ⊥
4Ng2 . On the one hand,

for intensities well below the saturation photon number,
|α|2 � nsat, the spectrum of two coupled oscillators is re-
covered with a linear input-output relation (|α|2 ∝ |η|2).
On the other hand, if |α|2 � nsat, then the transmitted
power tends to that of an empty resonator with the same
Lorentzian spectrum.

The semiclassical solution (4) has a simple scaling for
the number of atoms N . The solution for |α|2 remains
invariant if Ng2 and |η|2/N is kept constant. That is,
the same steady-state solution can be obtained with a
single atom and large coupling strength as that for a
large atomic ensemble with small coupling g. It has been
shown that a low number of atoms in the range of 5-8 suf-
fices to well reproduce the semiclassical phase transition
of absorptive bistability [28], which is a phase transition
in the corresponding macroscopic system. In this paper,
we will restrict the quantum calculations to the case of
N = 1.

An interesting regime occurs in the very strong cou-
pling regime where nsat � 1, which allows for preserving

the nonlinearity of the above equation with a mean in-
tensity below or around |α|2 . 1. Such a tiny value is
expected to invalidate the semiclassical description and
the solution in Eq. (4). It is exactly this regime we will
study in the following.

III. FROM RABI SPLITTING TO
MULTI-PHOTON RESONANCE PEAKS

Atomic cavity QED systems at present [29] can re-
alize couplings κ ∼ g/10. In circuit QED, the regime
κ, γ⊥, γ‖ . g/100 is reached. For both cases, the satura-
tion photon number is many orders of magnitude below
1. Specifically, for the parameter set characteristic of the
experiment [23], the saturation photon number amounts
to nsat = 6×10−7 for a single atom. We consider a single
atom contained in the cavity mode.

We begin with surveying the mean-field manifestations
of the nonlinear response of a driven cavity QED system
in this extreme strong coupling regime. To this end, we
present the mean intracavity intensity 〈a†a〉 as a func-
tion of the frequency of the monochromatic driving for
a large range of driving intensity (or amplitude). We
will refer to this as transmission spectrum, although in
fact, the field intensity coupled out from the cavity and
directed onto the photodetector is proportional to the in-
tracavity photon number with a transmission coefficient
which, in order to simplify the notation, we omit here[?
]. We assume resonance between the atoms and the mode
(ωM = ωA), hence the pump frequency can be expressed
simply by the detuning ∆M = ω − ωM . Transmission
spectra as a function of ∆M are presented in Figure 2(a)
for various selected values of the driving amplitude η.
The dramatic variation of the spectrum lines when scan-
ning the pump amplitude over three orders of magnitude
(η = 0.1 . . . 80) clearly evidences a strong non-linearity
on such a large pump intensity scale (the intensity varies
then six orders of magnitude).

For sufficiently low excitation level, the cavity QED
system can be seen as a system of coupled linear oscil-
lators. This is represented by the first spectrum line in
the figure corresponding to η = 0.1µs−1. For a linear sys-
tem, this spectrum is just the resolved vacuum Rabi split-
ting (only the negative detuning part is shown) which is
the defining trait of strong coupling in the single atom –
single cavity mode system. The expected spectrum is two
Lorentzian peaks centered at ∆M = ±g. In this case,
there must be a good agreement between the semiclassi-
cal and quantum descriptions even if the system is in the
strong coupling regime of cavity QED. This agreement is
verified in Fig. 2(b) by the closely overlapping solid red
(quantum) and dashed blue (semiclassical) curves, both
being closely Lorentzian.

When the drive amplitude is increased by a factor of
5, cf. Fig. 2(c), the quantum Monte Carlo wave func-
tion calculation leads to a transmission spectrum which
retains the Lorentzian shape with 25-fold higher peak in-
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FIG. 2. (a) Steady-state mean photon number as a function
of the pump laser frequency for various driving strengths in
the driven Jaynes-Cummings model (single atom N = 1).
We see a dramatic change of this spectrum upon increasing
the pump power from the linear response (for η = 0.1µs−1,
magnified in panel (b), and for η = 0.5µs−1, panel (c)), to
multiple resolved resonance peaks corresponding to multi-
photon transitions (for η = 80µs−1, panel (d), MP indicates
schematically the domain of multi-photon resonances). The
additional peak outside the multi-photon resonance struc-
ture close to ∆M ≈ −0.15g is due to the quantum bista-
bility effect (this domain is indicated by QB in the panels
(d) and (e)). Dashed blue line represents the semiclassical
solution. Panel (e) shows the atomic saturation exhibiting
a very low value in the significant regime −0.2 g < ∆M , at
variance with the semiclassical expectation. Loss rates are
γ‖ = 2.95µs−1, γ⊥ = 0.1µs−1, κ = 2.95µs−1, the coupling

strength is g = 348µs−1. Atoms and the mode are resonant:
ωA = ωM , which implies ∆A = ∆M .

tensity. This result reflects a system still in the linear
operation regime. At variance, the ab initio semiclas-
sical solution is a strongly distorted peak with multiple
solutions in a given frequency range. In other words, the
semiclassical description predicts a dispersive bistability
at this driving strength for the given set of system param-
eters. For weak coupling cavity QED systems with many
randomly positioned atoms, such a dispersive bistability
has been verified experimentally [30]. It is not surpris-

FIG. 3. Schematic representation of the multi-photon transi-
tions in the single-atom Jaynes–Cummings model. The two-
level systems and the boson mode are in resonance (ωA =
ωM ), which is the case throughout this paper. Green, blue
and orange arrows mark the expected one-, two-, and three-
photon transitions, respectively.

ing to find a significantly different behaviour in this ex-
tremely strong coupling regime. The photon number is
in the range of 10−3 (cf. Figure), where the validity of
the semiclassical description is not granted.

The transmission spectrum for the next higher driving
strength η = 20µs−1 exhibits two peaks, cf. Fig. 2(a).
The one corresponding to the Rabi split resonance at
∆M = −g is significantly broadened. In fact, this is
the photon blockade regime, where the stronger pumping
does not amount to more transmission. The eigenstates
involving two or more photon numbers are far detuned
due to the nonlinearity of the Jaynes–Cummings ladder.
The system is effectively confined into the Hilbert space
spanned by the ground state |g, 0〉 and the lowest dressed
state |−, 0〉. The driven two-level system is saturated,
hence the broadening of this peak. At the same time, a
new peak appears at ∆M = −g/

√
2 corresponding to the

two-photon transition to the higher dressed state |−, 1〉.
The low-lying multi-photon transitions in the Jaynes–
Cummings ladder are schematically shown in Fig. 3.

The next spectrum lines corresponding to η = 40, 60,
80 µs−1, respectively, show the appearance of resolved
resonances corresponding to multi-photon transitions to
higher and higher lying dressed states, see Fig. 3. Such
frequency dependence of the mean intensity was pre-
sented for the strong coupling regime in Ref. [31] and
have been observed experimentally in circuit QED sys-
tems [32–34]. The resonance frequencies reflect the an-
harmonic Jaynes–Cummings spectrum [35]-[? ] Simi-
larly to the case of the one-photon transition, all the
higher-order resonance lines undergo power broadening.
Therefore, the resonances tend to merge into a broad
structure, as can be clearly seen from the surface plots
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in Fig. 2(a). The multi-photon transitions arise from the
strong driving of an effectively two-level system, only the
decay processes, of course, lead out from the two-state
subspace.

The multi-photon resonances are visible up to 10-
photon transitions in this structure for the largest driv-
ing strength η = 80µs−1 considered, shown also sepa-
rately in Fig. 2(d). When the detuning is decreased below
|∆M | . 0.35g the mean transmitted intensity is reduced.
In this small detuning range, resonance could occur only
with very high-order transitions, for which the driving
intensity η = 80µs−1 is not strong enough. This cutoff
limits the multi-photon resonance regime which is indi-
cated schematically by MP in Fig. 2(d).

It can be thus well understood that the multi-photon
resonance peaks are suppressed as the detuning ∆M

tends to 0. Therefore it comes as a surprise that an-
other significant peak emerges in the detuning range
−0.2g < ∆M < −0.1g, indicated by QB in Fig. 2(d).
The main result of this paper is the observation of this
peak and its interpretation as a quantum bistability (QB)
effect.

Let us first discuss if the presence of this peak can
be explained by the semiclassical approach. On the ris-
ing slope of the peak (−0.2g . ∆M ), cf. Fig. 2(d), the
numerical points fit nicely to the dashed blue curve repre-
senting the semiclassical solution. It can be immediately
clarified that this fit does not signify any justification
of the semiclassical picture. The bistability regime ac-
cording to the solution Eq. (4) is limited to the range
η ≤ 20µs−1. For such a strong driving as we have here
(η = 80µs−1), the atomic system inside the cavity would
be completely saturated within the semiclassical picture
and the transmission would be that of an empty cavity
(no atoms inside). As a sharp distinction, the saturation
in the quantum model is found to be very low in the QB
domain, as shown in panel (e) of Fig. 2. In the next sec-
tion, we will see that the photon number distribution is
also significantly different from that of a driven empty
cavity. To this end, we need to go beyond studying only
the mean intensity of the mode.

IV. QUANTUM BISTABILITY

The full description of the steady state of the cavity
mode can be provided in terms of the Wigner quasi-
distribution function in phase space. This is displayed
in Fig. 4(a) for the detuning indicated by ‘I’ in Fig. 2(d).
The Wigner function exhibits two peaks localized both in
radial (photon-number distribution) and angular (phase
distribution) directions in phase space. Each of these
peaks can be considered quasi-classical states. Since
there is no negative part of the Wigner function, the re-
duced density operator of the mode is a mixture of the
two quasi-classical states which correspond to the two at-
tractors of the bistability. One of them is the vacuum,
the other one is a slightly distorted coherent state. For
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FIG. 4. Wigner functions for the mode in steady-state, with
the same parameters as in Fig. 2(d). For the plots in (a) the
detuning is ∆M = −0.17g, indicated by I in Fig. 2(d), which
is in the bistability domain. The plots in (b) correspond to
neighboring detuning values ∆M + 0.006g. The insets zoom
into the region indicated by the red box in the main panels,
and a different color code scale is used in order to make the
peak here visible. In (c) we use the same ∆M as for (a), but
the phase of the drive amplitude is shifted by π/4. The quasi-
classical component is consequently rotated by the same angle
in phase space.

the given set of parameters, the second peak is centered
on the real axis at about -4, that is, this attractor is well
separated from the vacuum. The character of this solu-
tion is robust and quite independent of the fine tuning
of the driving frequency and strength in a broad range.
This we intend to illustrate with the Wigner function in
Fig. 4(b) obtained for a slightly different detuning. We
will show below that the dependence of the state on de-
tuning is smooth in the quantum bistability range, which
is at variance with the resonance-like behavior in the MP
range.

The excited quasi-classical component in the mixed
steady-state originates from a high-order process. How-
ever, unlike the multi-photon resonances, here the exci-
tation at a given drive detuning is not confined into a
two-state subspace. For large number of n, the neigh-
boring n-photon and (n + 1)-photon transitions to the
|n,−〉 and |n + 1,−〉 states, respectively, are not far in
frequency. The difference is 1/

√
n−1/

√
n+ 1 ≈ 1/2n3/2,

which vanishes for increasing n. Therefore, the highly
excited part of the Jaynes–Cummings spectrum is close
to an equidistant ladder. The relevant part of the spec-
trum for this driving frequency can be seen as that of a
normal harmonic oscillator with the low-lying steps re-
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moved. More precisely, the low lying number states in
the anharmonic part of the spectrum are shifted into non-
resonant positions and cannot be populated. Although
the intermediate steps are ‘missing’, the high-lying har-
monic part of the spectrum can be excited via high-order
processes. This numerically found result is somewhat
surprising since the given strength of the pump is not
enough to induce multi-photon processes when tuned at
resonance to lower states |n,−〉. The essential difference
is that here, in the range ‘QB’, the transitions to the full
ladder of the high-lying harmonic part of the spectrum
have to be summed up whereas in the range ‘MP’ the
coherent driving is confined into a two-level space. For
MP resonances, a spontaneous decay process leads out
from the two-state subspace to lower lying levels and the
drive cannot re-excite the system, because of the large
frequency mismatch, until it reaches the ground state by
decay. By contrast, in the QB domain, once the system is
prepared in the almost equidistant spectrum part, the de-
cay is continuously balanced by the drive, just like in the
case of a driven and lossy harmonic oscillator. The cal-
culated Wigner function reveals that these high number-
state components form almost a coherent state; the no-
ticeable elongation along the angular direction can be
attributed to the residual anharmonicity. This analogy
to coherent driving of a harmonic oscillator is further
supported by Fig. 4(c), in which we show that the ex-
cited quasi-classical component inherits the phase of the
driving η.

The steady-state can be characterized by the photon
number distribution, since the two peaks in the Wigner
function appear along the radial direction. Fig. 5 shows
how the distribution depends on the detuning ∆M in
the QB domain. The detuning ∆M = −0.3g leads to
a photon number distribution which is simply peaked
at n = 0. This detuning corresponds to the dip be-
tween the multi-photon resonance and quantum bista-
bility domains. When |∆M | is decreased, there appears
a secondary peak which corresponds to the excited quasi-
classical component revealed by the Wigner function.
The excited quasi-classical component appears only with
a small probability, of course, most of the population re-
mains in the ground state. Even higher-order peaks can
be recognized in the photon number distribution as ∆M

goes towards −0.1g, that, however, cannot be resolved in
the Wigner function representation.

The photon number corresponding to the center of
the secondary peak moves away from n = 0 towards
higher values when the detuning is decreased, as shown
in Fig. 5(b). Apart from the numerical noise, this curve
is smooth and demonstrates that the bistability solution
is not resonance-like and is independent of the fine tuning
of the driving field.

The total population in the photon number states be-
longing to the secondary peak decreases. This can be
ascertained indirectly, from the plot Fig. 5(c) showing
the population in the zero photon state |0〉. This pop-
ulation is monotonously growing in the detuning range
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FIG. 5. (a) Steady-state photon number distribution for var-
ious detunings in the quantum bistability domain. These dis-
tributions are at the origin of the mean photon numbers on
the curve associated with η = 80µs−1 in Fig. 2. In the main
panel the vertical range is adjusted in order to see the large
photon number part and thus the distribution for small pho-
ton numbers is cut off. The inset presents the full range of
the distribution for ∆M = −0.3g, which is single-peaked at
vacuum. In (b), the distance of the upper peak of the bimodal
distribution from the vacuum is shown to increase nonlinearly
as a function of ∆M . Panel (c) shows the photon number
probability for n = 0, 1, 2, 3 in the full range of the detuning.
Depletion dips of the ground state population accompanied by
peaks in the n = 1, 2, 3 populations reflect the resonance-like
multi-photon transitions for large detuning |∆|M & −0.35g.
In the quantum bistability range near ∆M = 0, the system is
mostly in the ground state .

out of the multi-photon transitions (|∆|M . −0.35g, dis-
regarding the small wiggles of numerical origin). The de-
creasing weight and the increasing photon number of the
secondary peak are the two competing tendencies which
govern the variation of the mean photon number. It is in-
teresting that the combination of small photon numbers
with large weight and larger photon numbers with small
weight in the mixed steady-state density matrix amounts
to the same mean photon number as the one derived from
the ab initio semiclassical theory on the rising slope of
the peak, cf. the agreement with the semiclassical dashed
blue curve in the range −0.2g . ∆M . −0.15g in Figs. 2.
Note that the semiclassical solution in this range is sim-
ply that of an driven cavity without atoms. Although the
mean field description accidentally yields a correct mean
intensity in this limited range of detuning, it does not
account for the highly non-trivial photon number distri-
bution.

The bistability associated with such a two-peaked Wig-
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FIG. 6. Fluctuations of the instantaneous quantum average
of the photon number operator along simulated quantum tra-
jectories during a period of 30µs. The telegraph signal is the
temporal behavior in the bistability domain. Parameters are
the same as in Fig. 2(d), the given value of detuning is marked
by the vertical dashed line on those figures as I, ∆M = −0.17
in units of g.

ner function can be easily seized in the temporal be-
haviour. We plot the time evolution of the instanta-
neous quantum average of the photon number operator
along the simulated quantum state trajectory. This is
presented in Fig. 6. An arbitrary period of 30µs long
after the initial transient is displayed for the detuning
marked by I in 2(d). The quantum trajectory of the aver-
age intensity shows the alternation of periods with finite
photon number around 〈a†a〉 ≈ 20 and periods where
the state is close to the ground state. The evolution is
reminiscent of a telegraph signal exhibiting a long time
scale associated with the switching time between the two
attractors. One can distinguish the fluctuations induced
by quantum jumps, i.e., the small wiggling of the mean
intensity plateau at about 〈a†a〉 ≈ 20, from the sharp
upsurges associated with switching. Fluctuations are due
to the dissipative processes, whereas the switching origi-
nates from a highly nonlinear dynamics.

The emergence of the characteristic switching time ex-
plains the vanishing of the mean photon number in Figs. 2
when the detuning reaches the close vicinity of ∆M = 0.
The systematic variation of the steady-state photon num-
ber distribution with the two peaks as described above in
connection with Fig. 5, is not expected to change at this
detuning range. However, as the secondary peak moves
away and the separation of the attractors increases, the
switching time diverges and the steady state cannot be
reached within the finite duration of the numerical simu-
lation. This statistical effect explains also why the quan-
tum bistability peak in Fig. 2 is quite noisy: it takes

very long time to accumulate a sufficiently good statis-
tics. The suppression of the mean photon number at
∆M = 0 is thus simply a finite-time effect. It has a re-
markable consequence: the bistability feature at exact
resonance ∆M = ∆A = 0, i.e., absorptive bistability can-
not be observed in reasonable time.

V. CONCLUSIONS

Circuit QED setups represent systems reaching hith-
erto unexplored regimes of the Jaynes-Cummings model.
The qubit-photon coupling is so strong that the satura-
tion photon number is tiny. The so-called optical bista-
bility effect, which relies on the nonlinearity of the atom-
light interaction, vanishes and there is no quantum limit
of this effect for such a fractional saturation photon num-
ber. On one hand, the nonlinear response of the cou-
pled qubit-photon system can directly reflect the anhar-
monic spectrum of the driven Jaynes-Cummings model.
This response is dramatically nonlinear, since it involves
multi-photon resonances. On the other hand, we identi-
fied a detuning range without multi-photon resonances in
which the quantum system evolves into a bistability-like
steady-state. The system sporadically flips between the
ground state and a highly excited quasi-classical state
with well-defined phase and amplitude. This solution
with amplitude bimodality, obtained at finite detuning
between the drive and the cavity mode frequencies, is
markedly different from the spontaneous dressed-state
polarization that has been predicted for the resonant case
and γ � κ [38, 39]. Further work is needed to clarify the
relation of these two solutions, e.g., to investigate the ef-
fect of gradually increasing γ from zero. In the present
work we performed numerical simulations at the borders
of current possibilities. In other words, these phenomena
are at the limit where the deeper insight into Jaynes-
Cummings physics calls for experimental approach and
veritable quantum simulation.
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