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Abstract

We continue our investigation of 2 + 1 flavor QCD thermodynamics using dynamical Wilson

fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and

285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or

4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number

susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a

decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-

critical temperature associated with the strange quark number susceptibility or the Polyakov loop

is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum

results obtained in the staggered formulation.
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I. INTRODUCTION

The quantitative description of the quark gluon plasma (QGP) is in the focus of the

heavy ion program at the accelerators RHIC (Brookhaven) and LHC (CERN). At the large

energy densities achieved in these experiments quarks are no longer confined into detectable

particles (hadrons) but form a nearly ideal fluid [1]. The QGP phase is separated from the

hot gas of hadrons by a cross-over [2] at high enough collision energies. This transition

leaves an imprint in the abundance of various particle species that are created at the break-

up of the plasma [3–6] and the transition temperature can be modelled as a function of the

collision energy or baryo-chemical potential [7–11].

Lattice simulations provide an excellent method to solve the underlying quantum field

theory, Quantum Chromodynamics (QCD) in equilibrium [12]. Lattice calculations are valid

and feasible both in the hadronic and in the quark gluon phase, allowing a first principles

description of the transition itself. The appeal of lattices methods includes that no approx-

imation is involved, the complete path integral of the discretized theory is calculated. The

features of the continuum theory can then be obtained through continuum extrapolation

from sufficiently high resolutions.

Contrary to experiments, lattice QCD has the advantage to access many possible theories

with various quark masses [13]. E.g. it has been shown that QCD with infinite quark masses

exhibits a 1st order transition between QGP and the confined phase [14], which is clearly

signalled by the Polyakov loop, the exponentialized single quark free energy: the Polyakov

loop is non-zero only for deconfined quarks. The first order nature persists when quarks

become dynamical but heavy [15]. For very light quarks, the order of the transition depends

on the number of light flavors. The transition is dominated by the restoration of chiral

symmetry, signalled by the vanishing of the chiral condensate. For intermediate masses there

is no real transition and both the Polyakov loop and the chiral condensate are approximate,

remnant order parameters. In this work we will study these for several sets of quark masses,

complemented by a measure of the confinement of the strange quarks, the strange quark

number susceptibility.

Results with physical quark masses are abundant in the staggered formulation. The order

of the transition is cross-over [2] with a chiral transition temperature Tc ∼ 155 MeV [16–19].

The equation of state has been calculated with high precision [20–22], even at small but non-
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vanishing quark densities [23, 24] and there exist predictions for the freeze-out parameters

[25–27] and fluctuations of various conserved charges [28, 29].

Yet it is not certain whether all systematics are controlled in staggered simulations. The

staggered fermion action describes four flavors, which reduces to a single quark flavor by

rooting the fermion sector, thus potentially giving up locality. This conceptually uncertain

step is completely avoided in the Wilson formulation, which we also use in the present work.

The theoretical soundness comes at a price. The Dirac spinor of Wilson fermions have four

components, while the staggered spinor is a single complex field. More importantly chiral

symmetry is explicitly broken at any lattice spacing, it is restored only in the continuum

limit. This leads to a more complicated structure of divergences, and a demand for fine

lattices. The use of a heavier than natural pion mass can significantly reduce the costs of an

individual simulation. Indeed, although there exists zero temperature studies with Wilson

fermions in the physical point [30], the description of the QCD transition with physical

Wilson quarks is still missing.

There are also formulations which maintain a lattice version of chiral symmetry. These

are computationally even more challenging than Wilson fermions. For thermodynamics

results using overlap fermions see Ref. [31]. In the domain wall formulations physical quark

masses have been recently reached, albeit not yet in continuum limit [32, 33].

The aim of thermodynamics studies with Wilson quarks goes beyond the obvious long-

term goal of reaching the physical point. Several groups have already studied the chiral

scaling with two flavors of Wilson quarks [34–39], and also in the twisted mass formulation

[40, 41]. The transition temperature with infinitely heavy strange quarks monotonically

decreases when the pion mass is lowered. Extrapolations to the physical pion mass give a

value around ∼ 170 MeV [36, 37, 40, 41].

Most works with 2+1 flavors of Wilson quarks address the phenomenology of QGP e.g.

the equation of state [42] (using a pion mass of mπ ∼ 550 MeV). For some applications

anisotropic lattices were introduced and the quark number susceptibilities [43] and transport

coefficients [44, 45] have been calculated (mπ ∼ 392 MeV). In [46, 47] we have started a

study of 2 + 1 flavor QCD thermodynamics using the Wilson fermion formulation with a

fixed pion mass of mπ ∼ 545 MeV. A careful continuum extrapolation was performed and

the results were found in agreement with the continuum extrapolated staggered simulations

with equal pion mass. We have worked out the details of the renormalization procedure and
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in this work we reapply these for two new sets of quark masses. In this work we calculate

three quantities of interest, the chiral condensate, strange quark number susceptibility and

the Polyakov loop for 440 and 285 MeV pions. A continuum extrapolation is performed for

both masses.

Similarly to other Nf = 2 studies we observe a monotonic shift in the chiral transition

temperature as the physical point is approached. The pion mass dependence in the strange

quark number susceptibility and the Polyakov loop is significantly milder.

The picture can only be complete if the temperature scans are shown together with data

at the physical point. Such simulations with Wilson quarks are beyond our resources for

now. Thus we use the continuum extrapolations from our staggered program to illustrate

our expectations. This also shows that decreasing the pion mass further towards the physical

point decreases the pseudo-critical temperature associated with the light chiral condensate

whereas it does not substantially effect the pseudo-critical temperature associated with the

strange quark number susceptibility.

The organization of the paper is as follows. In section II we summarize the simulation

setup, parameters and algorithms that were used. In section III the measured observables

are given and their renormalization properties are discussed. In section IV we present the

results of our investigations and we finally conclude in section V.

II. SIMULATION SETUP, LINE OF CONSTANT PHYSICS

The Symanzik tree level improved action [48, 49] is used in the gauge sector while in

the fermionic sector the clover [50] action further improved by six steps of stout smearing

is adopted [51]. The clover coefficient is set to its tree level value cSW = 1 and the stout

smearing parameter is chosen at ̺ = 0.11. For more details see [52, 53] or [47] where the

simulation setup was identical to the current work except for the values of the quark masses.

The light quarks u and d are assumed to be degenerate and a 2 + 1 flavor algorithm is

used. The HMC algorithm [54] is adopted for the light quarks and the RHMC algorithm

[55] for the strange quark. Various algorithmic improvements are applied for speeding up

the simulation: the Sexton-Weingarten multiple time scale integration [56], the Omelyan

integration scheme [57] and even-odd preconditioning [58].

Finite temperature is introduced as a finite Euclidean temporal extent of the lattice. If
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the lattice is isotropic, i.e. the lattice spacing is identical in all directions, the temperature

T = 1/aNt is set by the number of time slices Nt. Leaving the bare parameters unchanged

one can thus vary the temperature by simulating at different values of Nt. To facilitate a

continuum extrapolation three or four sets of bare parameters have to be determined, each

corresponding to a different lattice spacing, but otherwise to the same physics (in terms of

a selection of mass ratios). This is called the fixed-scale approach [59].

An alternative approach (mainly used in quenched and staggered simulations as well as

in studies with exact chiral symmetry) keeps the number of time slices (Nt) constant in a

temperature scan and the lattice spacing is varied continuously through the bare parameters

to tune the temperature.

In the absence of additive divergences in the bare parameters and assuming the feasibility

of the interpolation of various counterterms the latter approach has a clear advantage: the

simulation temperature can be selected without restriction. The somewhat low temperature

resolution of the fixed-scale approach could be trivially improved by anisotropy, but also by

redefining the temporal boundary conditions [60, 61].

In the Wilson formulation the additive divergences prevent the easy interpolation of zero

temperature data. Repeated simulations at zero temperature are costly, (even more so if the

action is anisotropic [62]) and one uses as few sets of bare parameters as possible, leading

to the fixed scale approach, that we also use in this work in an isotropic setting. In many

cases authors even forego the continuum extrapolation to spare the extra effort from the use

of several parameter sets.

In this work we are working with four lattice spacings determined by the inverse gauge

coupling β. As in Ref. [47] we use β = 3.30, 3.57, 3.70 and 3.85 corresponding to lattice

spacings from about 0.13 fm to 0.05 fm. The scale was set by mΩ = 1672 MeV. The

temperature at each fixed bare coupling β is varied in discrete steps by varying Nt.

In our past work [47] the pion mass was relatively heavy, around 545 MeV. Two sets of

simulations were performed in the current work each corresponding to a fixed mπ/mΩ and

mK/mΩ mass ratio. In the first set the quark masses were tuned to mπ/mΩ ≃ 0.26 and

mK/mΩ ≃ 0.34. These correspond to about mπ = 440 MeV and mK = 570 MeV. At this

pion mass the simulations were performed at all 4 lattice spacings. Finite volume effects are

expected to be small since mπL > 7 at each lattice spacing.

In the second set the meson masses were tuned to mπ/mΩ ≃ 0.17 and mK/mΩ ≃ 0.32,
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β amud ams Ns Nt

3.30 -0.1122 -0.0710 32 6 - 16, 32

3.57 -0.0347 -0.0115 48 6 - 16, 64

3.70 -0.0181 0.0 48 8 - 24, 48

3.85 -0.0100 0.0050 64 8 - 36, 64

β amud ams Ns Nt

3.30 -0.1245 -0.0710 32 6 - 16, 32

3.57 -0.0443 -0.0115 48 8 - 24, 64

3.70 -0.0258 0.0 64 8 - 24, 96

TABLE I: Bare parameters for the 440 MeV pion mass (top) and the 285 MeV pion mass (bottom)

simulations. The Nt values used for the finite temperature runs and the values used for the zero

temperature runs are separated by a comma.

corresponding to about mπ = 285 MeV and mK = 525 MeV. At these pion masses the

simulations were performed at 3 lattice spacings and for the finite volume of the system

mπL > 5.4 holds.

At each lattice spacing, i.e. fixed β, the mass of the strange quark ms is fixed at its

physical value across all three pion masses and the physical point would be approached

by changing mud only. Hence as mud is lowered, both mπ and mK decrease towards their

physical values.

A summary of the various pion and kaon masses used in our past and current work is

shown in figure 1. The bare quark masses, spatial and temporal lattice extents are shown in

table I while the measured meson, baryon and PCAC masses are shown in table II. As can

be seen mΩ and hence the lattice spacing depends rather mildly on the light quark masses.

At each finite temperature point around 1000-1500 equilibrated unit length trajectories

were generated while we collected around 1000 trajectories at the zero temperature points.

Autocorrelation times are around 5 - 25 trajectories close to the transition temperature

depending on the quantity, lattice spacing and pion mass.

7



 480

 500

 520

 540

 560

 580

 600

 620

 640

 100  200  300  400  500  600

m
K
 [M

eV
]

mπ [MeV]

mπ = 545 MeV
mπ = 440 MeV
mπ = 285 MeV
physical point

FIG. 1: The various pion and kaon masses used in our past and current work. The heaviest pion

mass is from our past work [47], the 4 red data points correspond to 4 lattice spacings. For the

mπ = 440 MeV point also 4 lattice spacings are used, while for the lightest pion mass, mπ = 285

MeV we have simulated at 3 lattice spacings. The physical point is also shown for comparison.

The scale is set by mΩ = 1672 MeV.

III. OBSERVABLES

The temperature dependencies of three quantities are determined in the current work,

the renormalized light chiral condensate, the strange quark number susceptibility and the

renormalized Polyakov loop.

A. Chiral condensate

The bare light chiral condensate requires both additive and multiplicative renormaliza-

tion. The details of the full renormalization procedure are given in [47] following the refer-

ences [63, 64] and will be summarized below.

Additive renormalization at T > 0 is implemented by the subtraction of T = 0 quantities

as this difference is free from polynomial divergences in the inverse of the lattice spacing.

Multiplicative renormalization is then achieved by the multiplication of the PCAC mass

mPCAC and the finite renormalization constant ZA. The latter were determined in the chiral

limit from 3-flavor simulations in [47] along the lines of [30, 65] and can be taken from there

directly for each β. Finally the Ward identity establishes a relationship [64] between the
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β mπ/mΩ mK/mΩ amPCAC amΩ a [fm]

3.30 0.262(3) 0.340(3) 0.0248(2) 1.11(1) 0.133(1)

3.57 0.270(3) 0.344(3) 0.01710(5) 0.737(7) 0.088(1)

3.70 0.258(4) 0.337(5) 0.01266(3) 0.578(8) 0.069(1)

3.85 0.256(4) 0.343(6) 0.00890(1) 0.446(7) 0.053(1)

β mπ/mΩ mK/mΩ amPCAC amΩ a [fm]

3.30 0.174(4) 0.325(7) 0.0084(2) 0.97(2) 0.117(3)

3.57 0.174(2) 0.311(4) 0.00693(4) 0.723(8) 0.087(1)

3.70 0.170(1) 0.316(5) 0.00481(2) 0.560(9) 0.067(1)

TABLE II: Spectroscopy and physical scale results from zero temperature simulations, top: mπ =

440 MeV, bottom: mπ = 285 MeV. The lattice spacings are set by mΩ = 1672 MeV.

chiral condensate and the integrated pion correlator leading to the final expression for the

fully renormalized condensate at finite temperature,

mR〈ψ̄ψ〉R(T ) = 2Nfm
2

PCACZ
2

A∆PP (T ) , (1)

where,

∆PP (T ) =
∫

d4x〈P0(x)P0(0)〉(T )−
∫

d4x〈P0(x)P0(0)〉(T = 0) (2)

where P0(x) is the bare pseudo-scalar density; for more details see [47]. The final result in

[47] was shown for mR〈ψ̄ψ〉R(T )/m
4

π since this combination is dimensionless. However when

comparing different pion masses as in the current work this normalization is not convenient

because it introduces an artificial pion mass dependence through the 4th power. It turns out

that the normalization mR〈ψ̄ψ〉R(T )/m
2

π/m
2

Ω
is more suitable. This is because according to

the GMOR relation at T = 0, the quark mass times the chiral condensate is proportional to

m2
π to lowest order in chiral perturbation theory. All results related to the chiral condensate

will be presented with the latter normalization and also the final result in [47] will be

converted into it for comparison.
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B. Strange quark number susceptibility

The strange quark number susceptibility χs = T/V ∂2 logZ/∂µ2

s, where µs is the strange

quark chemical potential, can be made dimensionless by considering χs/T
2 and can be im-

proved at tree level by the division of its infinite volume and massless Stefan-Boltzmann limit

at each finite Nt. The Stefan-Boltzmann values for each Nt were listed in [47]. Furthermore

χs/T
2 is a finite quantity in the continuum hence does not require any further renormal-

ization factors. The strange quark number susceptibility is sensitive to the confinement-

deconfinement temperature of the strange quark and as we will see is only mildly dependent

on the pion mass.

C. Polyakov loop

In order to renormalize the Polyakov loop one may use zero temperature quantities sim-

ilarly to our description of the renormalized chiral condensate [16]. However it is more

convenient and less noisy to only use the finite temperature Polyakov loop itself [66].

Our renormalization procedure for the Polyakov loop follows [47]. The additive divergence

of the free energy can be removed by the following renormalization prescription: a fixed value

L∗ can be fixed for the renormalized Polyakov loop at a fixed but arbitrary temperature

T∗ > Tc. This prescription leads to the following renormalized Polyakov loop LR in terms of

the bare quantity L0,

LR(T ) =

(

L∗

L0(T∗)

)
T∗

T

L0(T ) . (3)

We choose T∗ = 0.143 mΩ and L∗ = 1.2 similarly to [47] while other choices would simply

correspond to other renormalization schemes. For instance one may fix T∗ in units of Tc as

well.

IV. RESULTS AND CONTINUUM LIMIT

At the mπ = 440 MeV point the simulations were performed at 4 lattice spacings while

at the mπ = 285 MeV point only at 3. Since the fixed scale approach is used where the

temperature can only be changed by discrete amounts corresponding to the discrete changes
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FIG. 2: The renormalized chiral condensate for mπ = 545 MeV (top, from [47]), mπ = 440 MeV

(middle) and mπ = 285 MeV (bottom). The continuum extrapolated results are also shown by the

solid band.
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FIG. 3: The strange quark number susceptibility for mπ = 545 MeV (top, from [47]), mπ = 440

MeV (middle) and mπ = 285 MeV (bottom). The continuum extrapolated results are also shown
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in Nt at each bare coupling β an interpolation is necessary in order to have a continuous

curve as a function of temperature for each observable. In our previous work in [47] a spline

interpolation was adopted and in the current work we add another method.

The previous method of [47] consists of randomly placing node points for cubic spline

interpolations and the parameters of the spline are continuum extrapolated assuming O(a)

and O(a2) cut-off effects. Each result corresponding to a fixed set of node points is weighted

by its fit quality. The deviation of the two continuum extrapolations as well as the spread

with the various random choices for the nodes allow us to estimate systematic effects coming

from both the continuum extrapolation and the interpolation. For more details see [47].

In the current work we analyzed all of our data using a second method as well. Clearly

the expectation is that all quantities are monotonous functions of the temperature. This

constraint is imposed on our cubic spline fit following the algorithm [67]. Naturally the

statistical uncertainty of our measured data points will lead to a statistical uncertainty for

the interpolated curve. The obtained continuous interpolated curves and their error for each

β can then be used for a continuum extrapolation at each T (note that in the previous

method the interpolation and extrapolation was performed simultaneously in a global fit).

We have performed the continuum extrapolation assuming both O(a) an O(a2) cut-off effects

but the χ2/dof values of the O(a2) were much better hence completely dominate the final

result after performing an AIC weighted averaging [68–71]. The data from [47] is reanalized

in this slightly different way in order to have a consistent analysis for all 3 pion masses and

it is reassuring to see that the final continuum results agree with the previous analysis in

[47].

In order to assess the size of systematic uncertainties we perform all continuum fits

by keeping all 4 lattice spacings for the 2 heavier pion masses and also by dropping the

roughest one, β = 3.30 and hence using only 3. The two continuum results are then weighted

according to [68–71]. The deviation between the two continuum results is taken into account

as a systematic uncertainty.

At the lightest pion mass mπ = 285 MeV we only have data for β = 3.30, 3.57 and 3.70,

i.e. the finest lattice spacing corresponding to β = 3.85 was beyond reach. Unfortunately in

this case it turned out that the β = 3.30 lattice spacing could not be used for the continuum

extrapolation of the chiral condensate and strange quark number susceptibility because the

resulting fits had bad χ2/dof values. Hence at this lightest pion mass point only 2 lattice
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FIG. 4: The renormalized Polyakov loop for mπ = 545 MeV (top, from [47]), mπ = 440 MeV

(middle) and mπ = 285 MeV (bottom) pion masses. The continuum extrapolated results are also
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spacings are used, β = 3.57 and β = 3.70 which of course leads to continuum fits where

the number of data points equals the number of parameters. For this reason our continuum

results for the lightest pion is not fully under control and we call them continuum estimates

only. As we will see from the continuum extrapolation of the Polyakov loop cut-off effects

are very small in this quantity and all 3 lattice spacings can be used for mπ = 285 MeV.

Hence the continuum result for the renormalized Polyakov loop is fully under control.

In order to check the robustness of our results we have reanalyzed the two new data

sets corresponding to mπ = 440 MeV and 285 MeV using the strategy in [47]. There the

systematic uncertainty was quantified by considering randomly chosen nodes for the spline

interpolation as well as performing O(a) and O(a2) fits to the continuum simultaneously.

Comparison of the two methods for all 3 cases is again reassuring and shows that the

statistical and systematic effects have been estimated correctly.

On all figures below the results from the second interpolation/extrapolation method is

used. Note that even though monotonous interpolations are used and the continuum extrap-

olated central values are also monotonous, the errors on the central values are temperature

dependent and may lead to a non-monotonous error band. This does happen in some cases.

The renormalized light chiral condensate is shown in figure 2 for all 3 pion masses and

the strange quark number susceptibility is shown in figure 3 again for all three pion masses

while the renormalized Polyakov loop is shown in figure 4. In each case the solid band shows

the result of our continuum extrapolations.

Once continuum results are obtained at each of the three pion masses these continuum

results can be compared for each observable. Clearly, the pseudo-critical temperature defined

by the chiral condensate is decreasing with decreasing pion mass, see figure 5. The pseudo-

critical temperatures corresponding to the strange quark number susceptibility and Polyakov

loop on the other hand are only mildly sensitive, if at all, to the pion masses, see figure 6

and 7. On these comparison plots we also show the result of past investigations using the

staggered formulation where continuum extrapolated results were possible to obtain at the

physical pion mass [18].

Clearly, the staggered physical and continuum results fit nicely into the trend observed

for the Wilson results: the pseudo-critical temperature corresponding to the light chiral

condensate is decreasing further with decreasing pion mass while the strange quark number

susceptibility shows only mild or no dependence. This is presumably because the strange
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quark in the valence sector is the one dominating the strange quark number susceptibility

and the light quarks enter only through their sea contribution. On the other hand the light

chiral condensate depends on the pion mass through both the sea and valence sectors.

V. SUMMARY AND OUTLOOK

In this paper we continued our program of lattice QCD thermodynamics using the Wilson

fermion formulation. Our previously published results at a relatively heavy pion mass mπ =

545 MeV was extended by including two ligther pions, mπ = 440 MeV and mπ = 285 MeV.

Our main goal was to investigate the pion mass dependence of several observables which

may be used to define a pseudo-critical temperature. The continuum extrapolation was fully

under control for mπ = 440 MeV but since we only used two lattice spacings for mπ = 285

MeV, in the latter case we refer to it as a continuum estimate only (except for the Polyakov

loop where three lattice spacings were used and the result is hence fully under control). In

any case the continuum results support the picture that emerged from staggered simulations:

the pseudo-critical temperature associated with the light quarks is much more sensitive to

the pion mass than the pseudo-critical temperature associated with the strange quark. The

light chiral condensate may be used to define the former and the strange quark number

susceptibility may be used to define the latter. The Polyakov loop which becomes an order

parameter in the infinitely massive quark limit also shows little pion mass dependence.

We see a clear decrease in Tc obtained from the light chiral condensate as the pion mass

decreases and not much sensitivity to the pion mass in Tc obtained from the strange quark.

The physical pion mass is beyond reach for our simulations with Wilson fermions however

with staggered fermions these are readily available. The comparison of our 3 Wilson contin-

uum results corresponding to mπ = 545, 440 and 285 MeV with the staggered continuum

result at physical pions confirm this picture further as the light chiral condensate curve as a

function of temperature moves further to the left asmπ = 285 MeV decreases to the physical

point. However the strange quark number susceptibility as a function of temperature is only

mildly sensitive to the pion mass.

One may attempt to extrapolate the chiral condensate to the physical point but judging

from figure 5 the result will have a rather large uncertainty and therefore will not be very

informative. In order to obtain results with reasonable accuracy at the physical point a
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temperature with decreasing pion masses is clearly visible.
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simulation at at least one lattice spacing directly at the physical point will be needed.
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