SOME APPLICATIONS OF QUADRATIC LYAPUNOV FUNCTIONS

VIKTOR KERTÉSZ

Budapest University of Technology

1. INTRODUCTION

Consider the linear differential equation:

$$\dot{x} = A(t)x \tag{1}$$

where A(t) is an $n \times n$ continuous matrix function. The object of this study is the stability of the trivial solution.

For the estimate of the solutions, W.A. Coppel gave the formula:

where

$$\mu(A) = \lim_{h \to +0} \frac{|I - hA| - 1}{h}$$

Note:

$$\mu(A) = \sup_{|x|=1} Re x^* VAx$$
 if

$$|x| = \sqrt{x^* Vx}$$

where

V is positive definite Hermetian and

 $x^* = x^T$ the conjugate transposed of x.

Example 1 Let be

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

In this case, of course, $\lim_{t\to\infty} |x(t)| = 0$ which can be prooved

with Coppel's estimate too because $\mu(A) = -1$.

Example 2 Let be

$$A = \begin{bmatrix} -1 & 0 \\ 4 & -2 \end{bmatrix}, \text{ then}$$

 $\lim_{t\to\infty} |x(t)| = 0$ nevertheless $\mu(A) > 0$.

Coppel's estimate is, generally, not good enough. This is the problem I am going to treat.

2. ONE SOLUTION OF THE PROBLEM

I have found that transforming the variable $\,x\,$ the estimate can be improved.

Suppose the system (1) is asymptotically stable.

Let be V(t) a continuously differentiable, positive definite, Hermitian matrix function and v(t,x) a Lyapunov function such that

$$v(t,x) = x^* V(t)x$$
,
 $\alpha^2 |x|^2 \le v(t,x) \le \beta^2 |x|^2$,
 $\dot{v}_{(1)}(t,x) \le -\gamma^2 |x|^2$.

Now we choose a continuously differentiable regular matrix function such that

$$V = W^* W.$$

<u>Note:</u> $|W^{-1}(t)|$ is bounded.

The transformation

$$y = W(t) x$$

carries (1) into a new system:

$$\dot{y} = C(t) y$$

and applying Coppel's formula for this case:

$$|W(t)^{-1}||W(t_o)^{-1}|^{-1} e^{\int \mu(-C(\tau)d\tau) d\tau} \leq \frac{|x(t)|}{|x(t_o)|} \leq |W(t_o)||W^{-1}(t)| \cdot e^{\int \mu(C(\tau)d\tau) d\tau}$$

(2)

where

$$\mu(C(t)) \leq -\frac{1}{2} \frac{\gamma^2}{\beta^2}$$

if in the definition of μ we use the Euclidean norm. (Inversely: from a proper transformation matrix W(t) we can get a positive definite quadratic Lyapunov function $v(t,x) = x^* \ W^* \ Wx$, the derivative of which alonge the solution of (1) is negative definite.)

3. FURTHER IMPROVEMENT OF THE METHOD

The transformation matrix can be restricted to a part of the unterval $[t_o,\infty]$ and a countable set of transformation matrices can be chosen in the following way:

$$t_o < t_1 < t_2 < \dots < t_i$$
,

 $I_i = [t_{i-1}, t_i]$,

$$\Delta t_i = t_i - t_{i-1}$$
,

 $y = W_i(t) x \text{ if } t \in I_i$,

where $W_{i}(t)$ is continuously differentiable, regular in I_{i} .

This kind of transformation has proved to be more efficient than applying only one continuously differentiable, regular imatrix function W(t) in the whole interval $[t_o,\infty)$.

Example 3

Let be
$$A(t) = \begin{bmatrix} 0 & 1 \\ -1 & -p(t) \end{bmatrix}, \quad t \ge 0,$$

 $p(t) \ge 0$; p(t) is continuous.

For lower estimate Coppel's formula is very good.

$$-\mu(-A(t)) = -p(t).$$

If
$$\int_{0}^{\infty} p(t)dt < \infty$$
 then $\lim_{t \to \infty} |x(t)| > 0$.

For upper estimate the formula is very rough:

$$\mu(A(t)) = 0$$

and so the only fact what can be stated is that $|x(t)|^{\circ} \leq |x(t_{o})| \quad \text{for} \quad t \geq t_{o}.$

With proper transformations (see below) I could prove the following

Theorem:

Let be $0 < \delta_i < 1$ and $0 < \epsilon_i$ some constants such that

$$0 \le p(t) \le \frac{1}{\delta_i}$$
 if $t \in I_i$, and $\delta_i \le p(t) \le \frac{1}{\delta_i}$ if $t \in I_{io}$

where
$$\mathbf{I}_{io} = \mathbf{I}_i \bigvee_{j=1}^{k_i} \mathbf{I}_{ij}$$

$$I_{i,j} \cap I_{i,\ell} = \emptyset$$
 if $j \neq \ell$

$$I_{ij} = [\tau_{ij_1}; \tau_{ij_2}] \subset I_i$$

then

$$\Delta t_{io} > 4 + \frac{4\varepsilon_i}{\delta_i}$$

implies

$$\frac{|x(t_i)|}{|x(t_{i-1})|} < e^{-\varepsilon_i}$$

where

$$\Delta t_{io} = \Delta t_i - 3 \sum_{j=1}^{k_i} \Delta \tau_{ij} > 0$$

and

$$t_{i}^{-t}_{i-1} > \Delta \tau_{ij} = \tau_{ij} - \tau_{ij} \geq 0.$$

Corollary

The asymptotical stability holds if

$$\frac{1}{t} \le p(t) \le t$$
 for $1 \le t_0 \le t$.

For proving the theorem I applied the following matrices:

$$W_i = D_i M_i$$

where

$$D_{i} = \begin{bmatrix} \sqrt{\lambda_{1i}} & 0 \\ 0 & \sqrt{\lambda_{2i}} \end{bmatrix} ,$$

$$M_{i} = \frac{1}{\sqrt{1+q_{i}^{2}}} \qquad \begin{bmatrix} q_{i} & 1 \\ -1 & q_{i} \end{bmatrix}$$

$$q_i = \frac{2}{\delta_i} - \lambda_{1i}$$
,

$$\lambda_{1i} = \frac{\delta_i}{2} + \frac{2}{\delta_i} + \sqrt{1 + \frac{\delta_i^2}{4}} ,$$

$$\lambda_{2i} = \frac{\delta_i}{2} + \frac{2}{\delta_i} - \sqrt{1 + \frac{\delta_i}{4}}$$

With these:

$$|W_{i}||W_{i}^{-1}| = -q_{i}$$
 and

$$\mu(W_i \ A(t) \ W_i^{-1}) < -\frac{\delta_i}{4}$$
 if

$$\delta_i \leq p(t) \leq \frac{1}{\delta_i}$$
 or

$$\mu(W_iA(t)W_i^{-1}) \leq \frac{\delta_i}{2}$$
 if

$$0 \leq p(t) < \delta_i$$
.

Applying (2) (considering that in this case $C(t) = W_i A(t) W_i^{-1}$) we have the proof of the theorem.

For proving the corollary we need only to choose I_i in the following way:

$$t_i > \frac{t_{i-1} + 4}{1 - 4\varepsilon}$$

where $0 < \epsilon < 1/4$ is arbitrary and $\epsilon_i = \epsilon$ for every i.