MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 26/1982

ON SOME STIELTJES INTEGRAL INEQUALITIES

ISTVÁN GYŐRI

Computing Center of the Szeged University of Medical Sciences

LAJOS PINTÉR

Bolyai Institute of the Jozsef Attila University

Szeged

In the theory of the differential and integral equations the famous Bellman-Gronwall inequality, its generalizations and similar inequalities have several applications.

Usually these inequalities are of the following form: Under suitable assumptions from

 $x(t) \leq F(t, \int_{a}^{t} g(t, s, x(s)) ds)$ we come to the inequality

$$x(t) \leq F_{1}(t, \int_{a}^{t} h(t,s)ds).$$

Recently in some papers we find the problem whether these inequalities are valid also for Stieltjes integrals (see e.g. P.G. Das - R.R. Sharma, Some Stieltjes integral inequalities, Journal of Math. Anal. and Appl. 73(1980), 423-433 and its references). In these papers special inequalities are investigated.

Naturally it arises the question to find a method which can be applied on several known inequalities to extend them to the Stieltjes integral case.

We tried the method sketched briefly in the following (here we use Riemann - Stieltjes integral):

Suppose that
$$x(t) \leq F(t, \int_{a}^{t} g(t,s,x(s))d\phi(s))$$
, where

 $\phi: [a, b] \rightarrow R$ is monotone. Assume that we have a sequence of continuously differentiable monotone functions $\{\phi_n\}$ with the property: $\phi_n(x) \rightarrow \phi(x)$, for $x \in [a, b]$, n = 1, 2,

Hence we obtain

$$x(t) \leq F(t, \int_{a}^{t} g(t,s,x(s)) d\phi(s)) = F(t, \int_{a}^{t} g(t,s,x(s)) d\phi_{n}(s) + a$$

 $+ \int_{a}^{t} g(t,s,x(s))d(\phi(s) - \phi_{n}(s))) \leq F(t, \int_{a}^{t} g(t,s,x(s))\phi_{n}^{*}(s)ds +$

+ $\varepsilon_n(t)$).

If $\varepsilon_n(t) \leq 0$ and F is an increasing function in its second variable then

$$x(t) \leq F(t, \int_{a}^{t} g(t,s,x(s)) \phi_{n}^{*}(s) ds$$

hence

$$x(t) \leq F_1(t, \int_{\alpha}^{t} h_1(t, s, \phi'_n(s)) ds).$$

If the right hand side may be written in the form

$$F_1(t, \int_a^t h_2(t,s)\phi'_n(s)ds) \quad \text{or} \quad F_1(t, \int_a^t h_2(t,s)d\phi_n(s)),$$

then applying the Helly-Bray theorem we have

- 80 -

$$x(t) \leq F_{1}(t, \int_{a}^{t} h_{1}(t,s)d\phi(s)).$$

 $\varepsilon_n(t) \leq 0$ is not true in general. It is valid e.g. if $g(u,v,w) \geq 0$ and $\phi - \phi_n$ is a monotone decreasing function, $n = 1, 2, \ldots$, (But using Fubini's theorem we obtain that a singular monotone function can't be a limit of continuously differentiable monotone functions with $\phi_n'(x) \geq \phi_{n+1}'(x)$.)

The wanted sequence $\{\phi_n\}$ may be constructed from polynomials too. We use S.W. Young's theorem (Bull. Amer. Math. Soc. (73(1967), 642-643.).

Suppose that *n* is a positive integer, $x_{i-1} < x_i$ and $y_{i-1} < y_i$, i=1,...,n, then there exists a polynomial *P* such that $P(x_i) = y_i$, i=0,1,...,n, and *P* is monotone in each of the intervals $[x_{i-1},x_i]$, i=1,...,n.

By the aid of this theorem we sketch our construction. For the sake of simplicity suppose that ϕ is a continuous and strictly monotone increasing function.

Divide the interval [a,b] into equal parts:

 $a = x_0 < x_1 < \ldots < x_{2^n} = b. \text{ Put } y_k = \phi(x_{k-1}) \text{ if } k=1,2,\ldots,2^n$ and choose $y_{0n} < \phi(x_0)$. Then $y_{0n} < y_1 < \ldots < y_{2^n}$. From the above mentioned theorem we come to a polynomial ϕ_n with $\phi_n(x_k) = y_k, \quad k = 1,2,\ldots,2^n, \quad \phi_n(x_0) = y_{0n} \text{ and as } \phi_n$ increases on every interval $[x_{i-1}, x_i], \text{ it_is increasing on}$ [a, b].

- 81 -

Constructing these polynomials on n = 1, 2, ..., k, ... it is clear that $\phi_n(x) < \phi(x)$ and $\phi_n(x) \rightarrow \phi(x)$ if $n \rightarrow \infty$ and $y_{on} \rightarrow \phi(a)$. (With a slight modification of the construction we can obtain a sequence of polynomials having the property $\phi_n(x) \leq \phi_{n+1}(x)$ too.)

It is easy to see that the construction goes also if ϕ is monotone nondecreasing and continuous from the left. (One can construct such sequence $\{\phi_n\}$ in another way too.)

As an application let us have an inequality of Deo (1971): If the functions x, a, k are defined on $J = [\alpha, \beta], k(t) \ge 0$, the function $g : I \rightarrow R$ is monotone nondecreasing positive subadditive and submultiplicative, $x(J) \subseteq I$; the function h is defined on an interval Δ , $0 \in \Delta$, $h(\Delta) \subseteq I$, and his monotone nondecreasing.

Suppose further that

 $x(t) \leq a(t) + b(t)h \left(\int_{\alpha}^{t} k(s)g(x(s)) ds \right) \text{ for } t \in \mathcal{J} \text{ then } \alpha$

 $x(t) \leq a(t) + b(t)h \{G^{-1}[f k(s)g(b(s))ds + \alpha\}$

+ $G(\int_{\alpha}^{t} k(s)g(a(s))ds)$], where $G(u) = \int_{u}^{u} \frac{ds}{g(s)}$, $u \in \Delta$.

By the above sketched method this inequality is valid for Stieltjes integrals too with function ϕ which is monotone nondecreasing and continuous from the left:

$$x(t) \leq a(t) + b(t)h \left(\int_{\alpha}^{t} k(s)g(x(s))d \phi(s) \right) = a(t) + a(t)$$

+ $b(t)h \begin{pmatrix} t \\ f \\ \alpha \end{pmatrix} g(x(s))d(\phi(s)-\phi_n(s)) + \begin{pmatrix} t \\ f \\ \alpha \end{pmatrix} k(s)g(x(s))d\phi_n(s)) \leq \frac{t}{\alpha}$

- 82 -

$$\leq a(t) + b(t)h(\int_{\alpha}^{t} k(s)g(x(s))d(\phi(s) - \phi_n(s))) + a$$

+
$$b(t)h$$
 ($\int_{\alpha}^{b} k(s)g(x(s))d\phi_n(s)$) $\leq a(t) + A + a$

+
$$b(t)h(\int_{a}^{b}k(s)g(x(s))\phi'_{n}(s)ds),$$

 $A \ge 0$ fixed number, $n \ge N(A)$.

Therefore

$$x(t) \leq a(t) + A + b(t)h \{G^{-1} \sqsubset \int_{\alpha}^{t} k(s)g(b(s))d \phi(s) + \alpha \}$$

+ $G(\int_{\alpha}^{t} k(s)g(\alpha(s) + A)d \phi(s))]$.

Since this is true for every $A \ge 0$, we obtain

$$x(t) \leq a(t) + b(t)h \{G^{-1}[\int_{a}^{t} k(s)g(b(s))d \phi(s) + f(s)\} \}$$

+
$$G(\int_{\alpha}^{t} k(s)g(a(s))d\phi(s))]$$
 }.

There are problems if the function ϕ'_n appears repeatedly in the obtained inequality. For example the following inequality was published by Gamidov in 1969.

If a, v_i, φ_i are continuous positive functions on [a, b] and

$$x(t) \leq a(t) + \sum_{i=1}^{k} v_i(t) \int_{\alpha} \phi_i(s)x(s)ds, \quad \text{then}$$

where
$$v(t) = \sup_{\substack{1 \leq i \leq k}} v_i(t)$$
.

In this case applying our method we come to the inequality:

$$x(t) \leq a(t) + v(t) \int_{\alpha}^{t} \sum_{i=1}^{k} \varphi_{i}(s)a(s) \exp(\int_{\alpha}^{t} \sum_{i=1}^{k} \varphi_{i}(u)d\varphi_{n}(u))d\varphi_{n}(s) ,$$

and the problem is whether the right-hand side tends to

 $a(t) + v(t) \int_{\alpha}^{t} \sum_{i=1}^{k} \varphi_{i}(s)a(s) \exp(\int_{\alpha}^{t} \sum_{i=1}^{k} \varphi_{i}(u)d\phi(u))d\phi(s)$

or not.

In this and in similar cases the Lebesgue-Stieltjes or more general integral may be useful but this question will be treated in another note.