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In the theory of the differential and integral equations 
the famous Bellman-Gronwall inequality, its generalizations 
and similar inequalities have several applications^

Usually these inequalities are of the following form: 
Under suitable assumptions from

t
x(t) £ F{t, / g (t3 s3x (s)) ds) we come to the inequality

t
x (t) £ Fj{tt f h(tjS)ds).

Recently in some papers we find the problem whether these 
inequalities are valid also for Stieltjes integrals (see e.g 
P.G. Das - R.R. Sharma, Some Stieltjes integral inequalities 
journal of Math. Anal, and Appl. 73(1980), 423-433 and its 
references). In these papers special inequalities are in
vestigated .

Naturally it arises the question to find a method which 
can be applied on several known inequalities to extend them
to the Stieltjes integral case.

We tried the method sketched briefly in the following 
(here we use Riemann - Stieltjes integral) :
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t
Suppose that x (t) F (t, f g (t, s, x (s) )d<t> (s) ) , where

a

<J>;[a,bl -> R is monotone. Assume that we have a sequence of 
continuously differentiable monotone functions {ф^} with the 
property: ф^(х) ф(х), for x 6 Za3bl> n - 2,2,...

Hence we obtain

t £
x(t) £ / g (t> SjX(s))d(t> (s)) = F (t, / g (t,s3x(s))dфr (s) +

a a

t t
+ / g(tJs}x(s))d (4<s) - Фп (s) ) ) < F(t, f g(t3s,x(s))<$>’n (s)ds + 

a a

+ e (£)).n

If e^(t) £ 0 and F is an increasing function in its 

second variable then

t
x(t) £ Fit; f g (ty s,x (s) ) ф* n (s)ds 

a

hence
t

x(t) £ Fj(tj / hjit, в3ф* n (s))ds) .
a

If the right hand side may be written in the form

t t
Fj(t, / h2(t,s)ф’n (s)ds) or Fj(t, f h£ (t3 s)dфn (s))л

a a

then applying the Helly-Bray theorem we have
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t
x(t) £ f h j (t 3 s)d<p (s) ).

a

e^(£) £ 0 is not true in general. It is valid e.g. if
g(u3v3w) 0 and ф - фп is a monotone decreasing func
tion, n - 1,2,..., . (But using Fubini's theorem we obtain 
that a singular monotone function can't be a limit of con
tinuously differentiable monotone functions with
<f>J (я) > фл 7 (x) . )n = n + l

The wanted sequence {ф^} таУ be constructed from poly
nomials too. We use S.W. Young's theorem (Bull. Amer. Math. 
Soc. (73(1967), 642-643.).

Suppose that n is a positive integer, x . 7 < x. and1s -L 1s

Уг-1 < У <-=!> • • • >n3 then there exists a polynomial P
such that P(x.) - у .3Is Is -L=03 13 . . f 3n3 and P is monotone in
each of the intervals Ex . „ x  .], г=1..... n .г-1 г 1

By the aid of this theorem we sketch our construction.
For the sake of simplicity suppose that ф is a continuous 
and strictly monotone increasing function.

Divide the interval Ea3bl into equal parts:

Yl
a - x < x n<. . . <x = b. Put у ь = ф(х, if k=l323...32

о 1 2n k—i
and choose у < ф (x ). Then у < у. < ... < у . From ̂on о on wl 2n

the above mentioned theorem we come to a polynomial Фп with
YLф (x, ) - у,, к = 1.2. ... .2 , ф (x ) = у and as ф„yn к ак3 n о а on Yn

increases on every interval Ex. l3x.l, it_is increasing on
E а, Ы  .
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Constructing these polynomials on n = 1,2,...3k3 . .. it 
is clear that ф^(х) < Ф(я) and ф^(я) Ф(х ) if « -»• °° 
and У on "*■ Ф(а). (With a slight modification of the construc
tion we can obtain a sequence of polynomials having the 
property Фп (х) < Фп+](ж) too.)

It is easy to see that the construction goes also if ф 
is monotone nondecreasing and continuous from the left. (One 
can consttuct such sequence {ф^} in another way too.)

As an application let us have an inequality of Deo (1971): 
If the functions x,a3k are defined on J - Caj'Bl., fc(t) ^ 03 
the function g : I -*■ R is monotone nondecreasing positive 
subadditive and submultiplicative, x(J)ci; the function 
h is defined on an interval A, 0 6 A, 7z(A)G Tj and h 
is monotone nondecreasing.

Suppose further that
t

x(t) £ a(t) + b(t)h ( / k(s)g (x(s)) ds) for t G J then
a

t
x (Ф) £ a(t)+b(t)h {G~^lf к (s)g (b(s))ds +

a

t u и
+ G( J k(s)g(a(s))ds)l}, where G(u)~ / -ß u 6 A.

о

By the above sketched method this inequality is valid 
for Stieltjes integrals too with function ф which is 
monotone nondecreasing and continuous from the left:

t
x(t) < a(t) + b(t)h ( / k(s)g (x(s))d ф(в)) - a (t) +

a

t t
+ b (t)h (/ к (s)g (x (s) )d (<p (s) -ф (s) ) + / k(s)g(x(s))d ф (s))< 

a a
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t
£ <2 (t) + b(t)h( f k(s)g(x(s))d (ф(в) - ф^(в)))

а

t
+ b (t)h ( / k(s)g(x(s))d<pn (s)) £ a(t) + A + 

a

t
+ b(t)h ( / к (s) g (x (s) ) ф'^( s)ds),

а

4 _> 0 fixed number, n >_ N (Л) .

+

Therefore

x(t) £ a(t) + A + b(t)h {G ^C / k(s)g(b(s))d ф (s) +
а

t
+ G( f k(s)g (a(s) + A)d ф(в))3}.

а

Since this is true for every A £ 0, we obtain

a:(t) £ a(£) + b(t)h {G * C / k(s)g (b(s))d ф (s) +
а

t
+ G( f к (s) g (a (s) )с?ф (s) ) 3 }. 

a

There are problems if the function ф ’̂  appears 
repeatedly in the obtained inequality. For example the 
following inequality was published by Gamidov in 1969.

If ûjU.jcp. are continuous positive functions on"Z' “Т*
La3bl and



then
к

X (t) £  a (t) + Z V .(t)•_-* гг-1

t
/ ф . (s)x(s)ds jгa

X  ( t )  <_ a ( t )

t к 
+ v(t) f  Z 

a г- 1

t
Ф .(s)a(s) exp( f ф . (и) V (u) düäs , г гs

where г>(£) - sup v.(t').
1<г<к г

In this case applying our method we come to the inequal
ity :

t
X  (t) £ a(t) + v(t) f

à
к t
Z <P.(s)a(s) exp(f •_-t гг-i s

к
Z ф . (и)с1ф (u))d ф (s) „
• _  -J O' ri / tг-1

and the problem is whether the right-hand side tends to

t
a(t) + V (t) f

a
к t
Z Ф .(s)a(s) exp (/• _ -» 'Isг=1 s

к
Z ф . (м)б?ф (u))d$ (s) 

г= 1  г

or not.

In this and in similar cases the Lebesgue-Stieltjes or 
more general integral may be useful but this question will 
be treated in another note.
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