
MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 26/1982
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ABSTRACT. Convergence results and error analysis are given for 
the families of one-step methods.

1. INTRODUCTION
It is well-known fact, that we have no "all-round" methods in 
the numerical solution of ordinary differential equations of 
the form

(О yf = ; &(£0) - y_0 (fee (it о , ы  * Rm , Rm ) ) .

The effective solution of different groups of practical problems 
needs numerical methods with slightly different or contrasted 
structures. This situation also holds for one Cauchy-problem, 
if the exact solution quickly varies in character over a long 
computational interval.

In order to obtain more effective numerical processes, 
the families of numerical methods were introduced and proposed 
instead of single approximate methods. The most famous complex 
method and its FORTRAN program (DIFSUB) was developed by Gear 
in 1971 (see C3H), which have several variants, e.g. GEAR, 
EPISODE, DESOL (see lk3 ) . Gear's process consists of several 
BDF's and Adams-methods and different decision functions for 
the choice of stepsize, the formula and the order. The conver-
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qence of such processes was proven by Gear, Tu and Watanabe in 
1974.

There are also attempts to develop similar families from 
one-step methods. The studies in this direction are mainly 
experimental (see e.g. E5H — СбИ) . In this paper we report some 
results concerning the convergence and error analysis of the 
families of one-step methods.

2 , RESULTS ON CONVERGENCE
We suppose the existence of a constant L >_ 0 such that

(2 ) ||/(t,£)- £ ( t 3y*) II £ L \\у_-ц*\\ (teito,bl;y_;ii*eRrn) .

Moreover it is assumed that for all t*GZt ,bl and for all
* m °y__ e R the Cauchy-problem

(3) - £(*.»&.) ■>' 2/(£*) - к*

has exactly one solution with domain it ,bl 
be an arbitrary but fixed point and let Д
It such that Д„:t < t, ... < t„ = x.о N о 1 N

the set of all grids Д^ of the interval
of Д„ 6 tt is defined by 11Д 11 - maxN X "  I f "  — * V. Л7 1

. Let t  <  X  <  b  о —
N be a grid over 

Denote by тг
X

I t  , x l .  The norm o3

where h. - t. -,-t . is the ith steplength. At the pointг г + 1 ъ

t e Д„ an approximate solution of the Cauchv-problem isn N

denoted by г/̂  .
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Let W = {1,2,...^*} be finite and for each index 
w 6 W the one-step method defined by

(4) y - V - h ¥ (w 11 ,y }y .uh.') *-n + l *-n n 1 n —n —n+l n (t ^  e д Л7)n+l N

must be convergent in the sense of Henrici (see [2D). Thus we 
suppose that for all w e W the increment function
4 4 m | 6 C(\Lto,bl*Rm *Rm *lOib-tol,Rm ),

(5) \\'Hw\tiy_3z3h) ~ 'Hw\t,y_ „£ ,h)Il < Kw {\\y_ - y_ !|t||s_-3 II

holds with a suitable constant K > 0  for every t в It 3bl ;w — о

h e L03b-t D; 6 Rm as well as

(6 ) Ч' (w I t3y_3y_3 0) = f(.t3y) (t 6 itQ3blj у e Rm ).

Definition 1. Let I = I (Д ) : {03 13 . . . л N-1} -t W be arbitrary
index function. Then the triple (V 3 W31) is said to be a family 
of one-step methods, if the approximate solution y_n (n=03 13 ... 3 N) 
is computed by the recursion

(7) '-n + l Zn - h V (I (n)\t 3y ,n3h ) n n —n+l n (t , G Дл;) . n+ 2  Л/ * * *

This definition means that in each step of the computation 
the indexfunction I choses the formula actually used. At the 
same time the stepsize hn may change arbitrarily and in
dependently of I(n).
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Using the works Cl],:2: we can prove

Theorem 1. The family (¥лW3I) of one-steo methods is 
convergent for all index set W and indexfunction I, i.e.

(8) Urn max \\u - y_(t ) || = 0
N + +œ o<n<N

is satisfied for every {V N=1C  Vx (||A^||-0).

For the estimation of the speed of convergence we need

Définition 2. Denote by Y.:Lt 3bl+Rm the exact solution of the 
— 1-----------  -3 o’ ,
perturbed Cauchy-problem

(9) IL* - * (V  = \L. U = 0 ,1 3

The local truncation error of the family (V3W3I) at the point 
with respect to the Cauchy-problem (9) is defined byt ел..n N

(10) T.(J(n) It 3h ) -7 . ( t )+h Y(I(n)| t 3Y.(t )3Y .(t .)3h )~Y.(t
4 7 л  1 И  n -C n' n ' 1 nJ—j y n/J—j' n+1 n  — J  И + 1

***

In case j=0 we use simply the notation 7(J(n)l^nJ^n) since 
Yq (*) = y_(t) .

Using the discrete version of the Gronwall-Bellman lemma we 
can also prove the two-sided error bound

к
(11) c- max H  Z  T(I(n) \t 3h ) \\ < max \\y_ - y_(t ) || <

0<k<N n=o 0<n<N

к
<_ c max H Z T(I (n) 11 , h ) || ,

0<n<N n=o
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where в j3 > 0 are given constants depending on

max{Kw \w 6 W}. This inequality also implies the convergence and
that the speed of convergence is determined by the method of 
minimum order among that are used in the computation over 

6 тг̂ . Thus the change of order (formula) is advantageous

only if the additional error component decreases substantially 
or the structure of the exact solution strongly varies, e.g. 
in case of stiff differential systems.

3, ERROR ANALYSIS

In general the problem (1) is solved numerically, if for the
Г iNsequence {y } the condition“-n n=o

(1 2) Win - H-I e* (tn 6 V

holds, where e > 0 is the requested accuracy.

The checking of this condition is usually made by the 
estimation of the local truncation errors

(13) Tn (I(n)\tn,hn) (п=0лI,...,N-l)

and the control of the relations

(14) \\Tn(I(n)\tn3hn)\\ < ohn г* L\\Tn{I{n)\tn3hn)\\<o

where a > 0  Се(Д^) >01 depends on the problem (1 ) and the
family (4!3W,I). The hypothesis, that (12) follows from (14) 
is called the local error estimation principle (see Cl] , C23).

>
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It is noted that for explicit methods T„(I(n)|t ,h ) is identi-. n 4 ' 7 1 n n
cal with the local error =■ y - Y (t

The theoretical base of the above principle is qiven in 
Theorem 2, If for the local truncation error of the family
(Ÿj VjI) and for the grid A^ 6 (ЦДдоП.5 / 1 ) the condition

(15) llr (J(n)|t 3h ) Il < h e cllr (J(n)lfc ) Il < e3 4 11 n 1 n n 11 — и 11 n 1 n n 11 —

(п=0л13 ...3N-1) is satisfied, then

06) wax ||y - y_(t ) I] f c  e
0<n<tf

holds with a suitable constant e^=a2 (f)>0 La^-o^ £, A^) > 01.

#$*

In the first case of (15) the constant o_ is independentó
of the grid in the other case is of order 0(N). If
the stepsizes satisfy the relation 0<Ah<_hn <_Bh (ji=03l3 ... 3N-1) 
and e = hp (p > D  then relation (16) changes to

'î7) max И V - y_(t ) ||< c hP~2
0<n<N n n

in the second case of (15).

For a given class of Cauchy-problems of the form (1) and a 
given family (4!3W3I) the constant a^ and the constant о 
in (14) can be estimated analitically. However the constant 
ű is chosen experimentally in qeneral. Practically, condition
(14) is checked for the estimated value of ||T (J(n)|t ,h ) || ,4 7  n n n



- 67 -

but the study of this case can be reduced to the investigation 
of the applied error estimation processes. Thus one can find 
concrete effectivity theorems of the type due to .T.E. Hull.

For a single one-step method (f/-{2}) the step-halving (or 
step-doubling) error estimation is optimal in some sense 
(see 121) and it can be also proven that the use of this error 
estimation process doesn't modify the previously proven form of 
the local error estimation principle ( C 2 H ) . Latter result also 
holds for the families of one-step methods.

Assume that y has been computed and let t ,, - t + h,—n n + l n

t „ - t + 2h. We also suppose that I (n) = I(n+1) = Ç in the
Yl~r Z Yl

computation of y y Denote y the approximated value2-n + l “-n + Z ^n + 2

of y_^n + 2  ̂ computed by

i.e. 'd-n + 2 is comPuteci from whith double steplength

2h. If / and the increment functions ¥ in (4) are suffi
ciently differentiable then we can prove

Theorem 3. If the indexfunction I of the family

(18)

satisfies the order condition Р_г(г) —  (г=0,1, . . . ,n-l)

and Л.. 6 it , Il Д J| < h*, then we haveN X " N 1 — '

and
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(20) W I(n) bn + V h) = T t H n )n t ,h)n 0(||Д
p r + 2

N

The proof of this result essentially is the same as in C21.
It is also noted that the accuracy of the error estimation deter
mined by the minimum order p^ corresponds to the bound (1 1 ).

Ц. REMARKS
The main problem in the construction of any family 

of one-step methods is the choice of basic formulas (Y,W) and 
the indexfunction J. Concerning the choice1 of (У, W) there are 
several interesting results (see e.g. С5П,:бЗ). The structure 
of the indexfunction I may be similar to that used in DIFSUB, 
but its cost is more expensive for the usually applied one-step 
methods. In a comparison with the Gear-type processes (see C3U, 
Cl:) any family of one-step methods is more stable and more 
flexible with respect to the choice of stepsize and the formula.

At last we mention
Theorem 4. For the class of differential equations of the form

(21) - A y_ ; ÿ_(.t0) = H0 A (m * m constant
matrix),

'.'here A is negative definite and hermitian, any infinite class 
Ox implicit Runge-Kutta methods related to the Padé-approximants
rb (s) of ez (к 6 (sjS+I.s+Sj^s > 1) with arbitrary un-К. j 3

bounded indexfunction I is convergent for every

<V»=JC\ (l|4ffll - 0). * * *
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This result has an interesting contrast with the result of 
A.G. Werschulz on the optimal order of one-step methods ( [ 7  D ) .
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