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Abstract. We consider Gaussian states of fermionic systems and study the action

of the partial transposition on the density matrix. It is shown that, with a suitable

choice of basis, these states are transformed into a linear combination of two Gaussian

operators that are uniquely defined in terms of the covariance matrix of the original

state. In case of a reflection symmetric geometry, this result can be used to efficiently

calculate a lower bound for a well-known entanglement measure, the logarithmic

negativity. Furthermore, exact expressions can be derived for traces involving integer

powers of the partial transpose. The method can also be applied to the quantum Ising

chain and the results show perfect agreement with the predictions of conformal field

theory.
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1. Introduction

Entanglement plays a key role in the study of quantum many-body systems [1, 2].

Considering a pure state of a composite system, a simple measure of the entanglement

between two complementary parts is given by the von Neumann (or entanglement)

entropy. Particularly interesting is the case of pure ground states where, in great

generality, an area law for the entanglement emerges [3]. The most well established

exceptions are one-dimensional quantum chains at criticality, where the entanglement

entropy shows a universal logarithmic scaling [4] which can be fully understood with the

help of conformal field theory (CFT) [5]. The predictions of CFT have been confirmed

on a variety of lattice models, among which a distinguished role is played by free-particle

Hamiltonians. The ground states of these systems are given by bosonic/fermionic

Gaussian states where the full entanglement spectrum is easily accessible [6].

The characterization of entanglement for mixed states is, however, far less obvious

since, in contrast to the pure-state scenario, there is no unique way of defining a well-

behaved measure. Among the numerous proposals for entanglement measures [7], a

large family is based on a convex-roof extension of the von Neumann entropy. The

drawback of these constructions is that they are essentially uncomputable already for

systems of relatively small size. A viable alternative is based on an entirely different

approach, making use of a special property of the partial transposition. Namely, the

spectrum of the partial transpose of a density matrix may contain negative eigenvalues,

only if the state is entangled [8, 9]. In turn, a measure called logarithmic negativity [10]

can be introduced, which quantifies how much the partial transpose of a state fails to

be positive, and can be shown to fulfill all the requirements of an entanglement measure

[11].

Although being a computable measure, the evaluation of logarithmic negativity

might still pose a significant challenge in extended quantum systems. A notable

exception is the case of bosonic systems, where the effect of partial transposition is

equivalent to a partial time-reversal of the momenta in the corresponding subsystem [12].

Furthermore, the partial transpose of bosonic Gaussian states remains to be Gaussian

and, in turn, one has a simple formula to compute the logarithmic negativity via the

covariance matrix [13]. Remarkably, the analogue statement does not hold for fermionic

Gaussian states.

The early studies of logarithmic negativity in lattice systems were conducted for

the harmonic oscillator chain [13, 14, 15, 16, 17, 18] using the covariance matrix

technique, and for spin chain models [19, 20] via density matrix renormalization group

calculations. In contrast, exact analytical results were found only for a few simple

spin models [21, 22]. A renewed interest in the problem was triggered recently, after a

systematic approach within CFT was introduced [23]. This method could be applied to

calculate the entanglement negativity for various geometries in ground [24, 25] or thermal

states [26, 27] of one-dimensional systems, as well as in out-of-equilibrium situations

[27, 28, 29, 30].



On the partial transpose of fermionic Gaussian states 3

Even though the predictions of CFT can be routinely tested on harmonic chains,

calculating the logarithmic negativity in fermionic or spin systems remains to be

more difficult. Recent studies employed a tensor-network representation of the partial

transposition to calculate entanglement negativity for the transverse Ising chain [31].

Alternatively, Monte Carlo techniques were applied to calculate higher moments of the

partial transpose [32, 33]. However, even for the simplest case of fermionic Gaussian

states, a method which could compete with the computational simplicity of the bosonic

case has so far been unknown.

Here we show that, with a suitable choice of basis, the partial transpose of

fermionic Gaussian states can be cast in a particularly simple form. Namely, it

can be written as the linear combination of only two Gaussian operators, uniquely

defined by corresponding covariance matrices which can be found explicitly. Under

further assumption of a reflection symmetric geometry, this construction can be used

to calculate a lower bound for the logarithmic negativity via the covariance matrix

spectrum. For critical systems, the scaling behaviour of this bound shows remarkable

similarities to that of the entanglement negativity. Furthermore, the higher moments of

the partial transpose can be exactly evaluated through simple trace formulas, providing

a way to test the universal CFT predictions on fermionic Gaussian states with minimal

computational costs.

In Section 2 we define fermionic Gaussian states and introduce the specific models

in consideration. The partial transposition transformation for fermions is discussed in

Sec. 3, focusing on a particular choice of basis which leads directly to our main result.

Sec. 4 is devoted to the construction of a lower bound for the logarithmic negativity,

and its numerical investigation for the quantum Ising chain. Trace formulas for integer

powers of the partial transpose of the reduced density matrix are presented in Sec. 5.

The paper concludes in Sec. 6 with a short discussion of the results and their possible

extensions. Various details of analytical calculations are included in three Appendices.

2. Model and definitions

We consider quantum systems associated to free-fermion Hamiltonians

H =

N
∑

m,n=1

[

Amnc
†
mcn +

1

2
Bmnc

†
mc

†
n −

1

2
B∗

mncmcn

]

, (1)

where the matrices A and B are Hermitian and antisymmetric, respectively.

The fermionic creation/annihilation operators, c†m and cm, satisfy the canonical

anticommutation relations
{

c†m, cn
}

= δmn. For our purposes, it will sometimes be

more convenient to work with Majorana fermions defined as

a2m−1 = cm + c†m, a2m = i(cm − c†m), (2)

satisfying the relations {ak, al} = 2δkl. In terms of Majorana operators, the Hamiltonian

of Eq. (1) with real A and B can be rewritten as H = i
∑2N

m,n=1 Tm,naman, where

T2m,2n−1=−T2n−1,2m=
1
4
(Amn+Bmn) and T2m,2n=T2m−1,2n−1=0. The product of all
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Majorana operators define the parity operator, P = iN
∏2N

n=1 an, which plays an

important role in fermionic systems. According to the parity superselection rule, only

density matrices that commute with P correspond to physical states [34, 35, 36].

The states we are going to study in this paper are the so-called Gaussian states.

These describe the ground and Gibbs states of quadratic Hamiltonians, and play a

prominent role in quantum information theory [37, 38, 39]. A state ρ is Gaussian if it

can be written as

ρ =
1

Z
exp(

∑

k,l

Wklakal/4) , (3)

whereW is a purely imaginary antisymmetric matrix (with the possibility of |Wkl| → ∞
allowed) and Z is the normalization factor. A Gaussian state can also be characterized

uniquely by its covariance matrix Γkl = 〈[ak, al]〉/2 via

tanh
W

2
= Γ. (4)

Using the covariance matrix, one can express the expectation value of any Majorana

monomial through the Wick expansion

Tr(ρ an1an2 . . . an2ℓ
) =

∑

π

sgn (π)
ℓ
∏

k=1

Γnπ(2k−1),nπ(2k)
, (5)

where all the indices are different, the sum runs over all pairings π, and sgn (π) denotes

the sign of π ‡. Let us note, that similarly to Gaussian states, one can introduce general

Gaussian operators which are also defined through Eq. (3), however, without requiring

that the spectrum of W is real. The Wick expansion, i.e. Eq. (5), holds for these

operators, as well.

We will also study spin chain models that are related to free-fermion Hamiltonians

through the Jordan-Wigner transformation [40]

a2m−1 =

m−1
∏

k=1

σz
k σ

x
m, a2m =

m−1
∏

k=1

σz
k σ

y
m, (6)

where σα
m (with α = x, y, z) denote the Pauli matrices acting on sitem. The prototypical

example is the transverse field Ising (TI) chain,

HTI = −1

2

∑

m

(

σx
mσ

x
m+1 + hσz

m

)

, (7)

where a chain of length N with open boundary conditions is considered. Applying the

Jordan-Wigner transformation, the TI Hamiltonian (7) takes the form of Eq. (1) with

Amn =
1

2
(δm,n−1 + δm,n+1)− hδm,n, Bmn =

1

2
(δm,n−1 − δm,n+1). (8)

‡ A pairing π over a set {1, 2, . . . , 2ℓ} is a permutation of the 2ℓ elements which satisfies π(2k − 1) <

π(2k) and π(2k − 1) < π(2k + 1) for any 1 ≤ k ≤ ℓ. Any pairing can be decomposed into an M

number of transpositions (simple exchange of only two indices), and the sign of the pairing is defined

as sgn (π) = (−1)M .
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Such a quadratic Hamiltonian can be diagonalized by a canonical transformation,

ηk =

N
∑

m=1

1

2
[φk(m) a2m−1 − iψk(m) a2m] , (9)

and brought into the standard form

H =
N
∑

k=1

Λkη
†
kηk + const. (10)

The spectrum Λk and the vectors φk, ψk in Eq. (9) follow from the eigenvalue equations

(A− B)(A+B)φk = Λ2
kφk, (11)

(A+B)(A− B)ψk = Λ2
kψk. (12)

With the full solution of the problem at hand, one can directly write down the covariance

matrix for a Gibbs state, with inverse temperature β, of the open TI chain as

Γ =













Π11 Π12 · · · Π1N

Π21 Π22
...

...
. . .

...

ΠN1 · · · · · · ΠNN













, Πmn =

(

0 −ignm
igmn 0

)

, (13)

with matrix elements given by

gmn =
∑

k

ψk(m)φk(n) tanh
βΛk

2
. (14)

In our studies we will also be interested in the periodic TI chain, given by a

Hamiltonian as in Eq. (7) with the sum running up to L and boundary condition

σx
L+1 = σx

1 . Note that, for clear distinction, we will use L instead of N for the length of

the periodic chain. It is well known, that its ground state is the same as for the fermionic

model with matrices as in (8) but with antiperiodic boundary conditions. The solutions

of the system (11) and (12) are plane waves, φk(m) ∼ eipkm and ψk(m) ∼ eiθkeipkm, with

the Bogoliubov angles and eigenvalues given by

eiθk =
h− eipk

Λk
, Λk =

√

1 + h2 − 2h cos pk, (15)

and the allowed values of the momenta are pk = (2k−1)π/L with k = −L/2+1, . . . , L/2.

One can also work directly in the thermodynamic limit, L → ∞, where the momenta

become continuous and the sum in Eq. (14) for the matrix elements gmn is replaced with

an integral.

3. Partial transpose for free fermions

As discussed in the Introduction, the partial transposition plays an important role in

quantum information theory. In the context of entanglement theory, it was first studied

for qubit and qudit systems [8, 9], but later also bosonic [12, 41, 42, 43] and fermionic

models [34, 35, 44, 45] were investigated. An important result coming from these
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studies was that the partial transpose of a bosonic Gaussian state is again a Gaussian

operator; this simplifies the calculation of the negativity [13, 46]. The analogous result

for fermionic Gaussian states does not hold, which can already be demonstrated by

2-site systems, see Appendix A.

This section is devoted to the derivation of a weaker, but still useful, result for the

fermionic case. After recalling the notion of the partial transpose for spin systems and

the corresponding definition for fermions in Section 3.1, we show in Section 3.2 that the

partial transpose of a Gaussian state (in a particular basis) can always be decomposed

as a sum of two Gaussian operators. This decomposition lies at the heart of all the

results in the further sections.

3.1. Definition of the partial transpose

B B

(a)

B BA

(b)

1 2A A1 2AB

Figure 1. Two possible partitioning of a spin/fermionic chain into subsystems A1,

A2, and B, as described in the text.

Consider a general tripartition of a chain of qubits into disjoint sets A1, A2 and

B, e.g. as in Fig. 1. Let ρ denote the density matrix of the whole composite system.

Defining A = A1 ∪ A2, the reduced density matrix (RDM) of subsystem A is given by

ρA = TrB ρ. The partial transpose of the RDM, ρT2
A , with respect to the subsystem A2

is defined by its matrix elements as

〈e(1)i e
(2)
j |ρT2

A |e(1)k e
(2)
l 〉 = 〈e(1)i e

(2)
l |ρA|e(1)k e

(2)
j 〉, (16)

where {|e(1)i 〉} and {|e(2)j 〉} denote complete bases on the Hilbert spaces H1 and H2

pertaining to the subsets A1 and A2. The definition of ρT2
A is basis dependent. However,

one can easily characterize the set of transpositions on the operators acting on H2 as

those non-degenerate linear transformations that satisfy

R(M1M2) = R(M2)R(M1) , (17)

for any two operators M1 and M2 acting on H2. Since any two partial transpositions

can be connected by a unitary conjugation, the eigenvalues of ρT2
A are independent of

the choice of basis. Moreover, it was shown that the partial transpose of the density

matrix can only have negative eigenvalues if the corresponding state is entangled [8, 9].

In a similar way, one can define the partial transpose for fermionic states. Consider a

tripartition of a system withN fermionic modes, e.g. as in Fig. 1 . Let {m1, m2, . . . , m2k}
and {n1, n2, . . . , n2ℓ} denote the indices of the Majorana operators belonging to the

subsystems A1 and A2, respectively. Let us introduce the notation a0x = 1l and a1x = ax.

A general fermionic state on A = A1 ∪A2 can be written as

ρA =
∑

κ,τ

wκ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
, (18)
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where the variables κ = (κ1, . . . κ2k) and τ = (τ1, . . . , τ2ℓ) in the summation run over all

bit-strings of length 2k and 2ℓ, respectively. Note that since physical fermionic states

must commute with the parity operator, as discussed in Section 2, one has wκ,τ=0 when
∑2k

i=1 κi +
∑2ℓ

j=1 τj is odd.

The partial transpose of ρA is simply a transformation that leaves the A1 Majorana

modes invariant and acts as a transposition on the operators built up from modes of

A2, i.e.

ρT2
A =

∑

κ,τ

wκ,τ a
κ1
m1
. . . aκ2k

m2k
R(aτ1n1

. . . aτ2ℓn2ℓ
) , (19)

where R satisfies Eq. (17). Since also in the fermionic case all the transpositions are

connected by a unitary conjugation, the eigenvalues of ρT2
A will be independent of which

R we choose. It will be useful to consider the following particular transposition which

is defined by

R(aτ1n1
. . . aτ2ℓn2ℓ

) = (−1)f(τ)aτ1n1
. . . aτ2ℓn2ℓ

, where f(τ) =

{

0 if |τ | mod 4 ∈ {0, 3},
1 if |τ | mod 4 ∈ {1, 2},

(20)

where |τ | =∑2ℓ
i=1 τi. In other words, a Majorana monomial is mapped by R to itself if

it is of length 4n or 4n+3, and otherwise it is multiplied by a −1 sign. Note that a very

similar transposition in fermionic systems was already considered in Ref. [47]. Although

the definition of entanglement in fermionic systems is somewhat different from the case

of spin systems, it has been proven that ρT2
A can only have negative eigenvalues if ρA is

entangled also in the fermionic case [34, 35].

Finally, let us shortly discuss the connection between reduced density matrices of

fermionic and spin models that are connected by the Jordan-Wigner transformation. As

this transformation is non-local, it has been shown that the reduced density matrices

corresponding to a region A1 ∪ A2 in a spin chain model and its fermionic counterpart

are usually not equivalent (not isospectral), unless A1 and A2 are adjacent intervals, as

depicted in Fig. 1(b) [48, 49]. Since the same holds also for the transposed density ma-

trices, when treating spin models we will only consider the adjacent interval geometry.

For the case of fermionic systems, our results are valid for arbitrary geometries.

3.2. The Gaussian case

Consider a Gaussian state ρA on the system A = A1 ∪ A2 with a covariance matrix

ΓA =

(

Γ11 Γ12

Γ21 Γ22

)

, (21)

where Γ11 and Γ22 denote the reduced covariance matrices of subsystems A1 and A2,

respectively; while Γ12 and Γ21 contain the expectation values of mixed quadratic

terms. Let P2 be the parity operator on subsystem A2, and define the operators
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ρ+ = 1
2
(ρA+P2ρAP2) and ρ− = 1

2
(ρA−P2ρAP2). By definition, we have that ρA = ρ++ρ−.

Using the notation of Section 3.1, ρ+ and ρ− can be expanded as

ρ+ =
∑

κ,τ
|τ | even

wκ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
,

ρ− =
∑

κ,τ
|τ | odd

wκ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
,

(22)

where the coefficients wκ,τ can be obtained from ΓA using the Wick rule, Eq. (5). By

linearity of the partial transpose, ρT2
A = ρT2

+ + ρT2
− follows, and ρT2

± can be obtained using

Eq. (20):

ρT2
+ =

∑

κ,τ
|τ | even

(−1)|τ |/2wκ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
,

ρT2
− =

∑

κ,τ
|τ | odd

(−1)(|τ |−1)/2wκ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
.

(23)

Let us introduce the generalized Gaussian operators O+ and O−, with covariance

matrices

Γ+ =

(

Γ11 iΓ12

iΓ21 −Γ22

)

, Γ− =

(

Γ11 −iΓ12

−iΓ21 −Γ22

)

, (24)

and consider the Majorana monomial expansion of these operators,

O± =
∑

κ,τ

o±κ,τ a
κ1
m1
. . . aκ2k

m2k
aτ1n1

. . . aτ2ℓn2ℓ
. (25)

Since O+ and O− are Gaussian operators, one can again obtain o±κ,τ from Γ± using

Eq. (5). Connecting the Wick-expansion form of wκ,τ with that of o±κ,τ , using the relation

between ΓA and Γ±, one can deduce that

o±κ,τ =

{

±i(−1)(|τ |−1)/2wκ,τ when |τ | odd,
(−1)|τ |/2wκ,τ when |τ | even.

(26)

Comparing this with Eq. (23) it immediately follows that ρT2
+ = 1

2
(O+ + O−) and

ρT2
− = i

2
(O− − O+). Thus, we obtain the decomposition

ρT2
A =

1− i

2
O+ +

1 + i

2
O− , (27)

which is, from a conceptual point of view, the main result of the paper.

4. Partial transpose and logarithmic negativity

In the previous section, we have shown that the partial transpose of a Gaussian RDM

can be written as a linear combination of only two Gaussian operators, which is the

simplest possible form for a non-Gaussian operator. However, since O+ and O− do not

commute in general, Eq. (27) can not be rewritten for the eigenvalues, and thus one
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does not have a direct access to the full spectrum of ρT2
A . Nevertheless, there are a

number of important properties which can be deduced by a direct investigation of the

covariance matrices Γ±. A particularly interesting quantity that we will study is the

logarithmic negativity [10], which can be used as a measure of entanglement.

In the following we thoroughly investigate three special cases. First, we consider the

partial transpose for bipartite pure states which, although the results being well-known,

turns out to be very instructive in understanding the implications of the decomposition

in Eq. (27). We proceed with the study of thermal mixed states in a reflection symmetric

bipartite geometry, which allows us to define and calculate a lower bound for the

logarithmic negativity. Finally, we report our findings for a genuine tripartite geometry.

In each of the following subsections, the validity of formula (27) was checked against

exact numerical calculations for the TI chain, Eq. (7), with a small number of spins.

4.1. Bipartite pure states

We first consider the simplest case with B = ∅ and a pure state on A = A1 ∪ A2 given

by ρ = |φ〉〈φ|. Since for any pure Gaussian fermionic state Γ2 = 1l is satisfied, it follows

that [Γ+,Γ−]=0, which implies that O+ and O− commute as well. Furthermore, since

their eigenvalues are connected by a complex conjugation, the spectrum of ρT2 is simply

given as the sum of the real and imaginary parts of the O+ eigenvalues. Now, since O+

is also Gaussian, its spectrum is uniquely determined through the eigenvalues of Γ+. To

obtain them, we first assume without loss of generality that |A1| ≤ |A2|. Furthermore,

for notational simplicity we also assume that |A| is even, however, the results for the odd
case follow trivially. Let ±µk denote the eigenvalues of the reduced covariance matrix

Γ11 with k = 1, . . . , |A1| and µk ≥ 0. As shown in Appendix B, the eigenvalues ±ν±k of

Γ+ can then be given as

ν±k =







µk ± i
√

1− µ2
k when k = 1, . . . , |A1|,

1 when k = |A1|+1, . . . , |A|/2.
(28)

The canonical diagonalised form of the Gaussian operator O+ reads

O+ =

|A|/2
∏

k=1

∏

σk=±

1l + iνσk

k bσk

2k−1b
σk

k

2
, (29)

where b±j are Majorana operators obtained from aj via the orthogonal transformation

which diagonalizes Γ+. The eigenvalues of O+ can be obtained according to the following

rules. First, we shall consider the various combinations of the conjugate eigenvalue pairs

for each k = 1, . . . , |A1| as

ω
σkσ

′

k

k =
1 + σkν

+
k

2

1 + σ′
kν

−
k

2
, (30)

with σk = ± and σ′
k = ±. Using Eq. (28) this yields

ω++
k =

1 + µk

2
, ω−−

k =
1− µk

2
, ω+−

k = −ω−+
k =

i

2

√

1− µ2
k, (31)
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where we used the property ν+k ν
−
k = 1. The nonzero eigenvalues of O+ can then be

written down as

Ωσ σ′ =

|A1|
∏

k=1

ω
σkσ

′

k

k =
∏

σk=σ′

k

1 + σkµk

2

∏

σk=−σ′

k

σki
√

1− µ2
k

2
, (32)

where σ and σ′ are the signature arrays corresponding to the eigenvalue. Note that the

additional ν±k = 1 in Eq. (28) lead to further eigenvalues of O+ that are all equal to

zero.

The products in Eq. (32) are either real or purely imaginary and the eigenvalues of

ρT2 thus follow as ReΩσ σ′ or ImΩσ σ′ , respectively. It is instructive, however, to derive

the same spectrum using the Schmidt decomposition of |φ〉. Dividing the Hilbert space

H = H1 ⊗H2 into two parts §, one has

|φ〉 =
∑

i

√

λi|φ1
i 〉|φ2

i 〉, (33)

with the RDM eigenvalues λi of subsystem A1. Clearly, the state is supported on a

smaller Hilbert space H1 ⊗ H1 and is invariant under the action of a flip operation

defined by |φ1
i 〉|φ2

j〉 → |φ1
j〉|φ2

i 〉. The partial transpose of ρ,

ρT2 = (|φ〉〈φ|)T2 =
∑

i,j

√

λiλj|φ1
i 〉〈φ1

j | ⊗ |φ2
j〉〈φ2

i |, (34)

commutes also with the flip operator. Furthermore, it is easy to check that the

eigenvalues and vectors are

ρT2 |φ1
i 〉|φ2

i 〉 = λi|φ1
i 〉|φ2

i 〉, ρT2 |φ±
ij〉 = ±

√

λiλj|φ±
ij〉, (35)

where we introduced the notation

|φ±
ij〉 =

1√
2
(|φ1

i 〉|φ2
j〉 ± |φ1

j〉|φ2
i 〉) i 6= j. (36)

Note that all the positive (negative) eigenvalues correspond to even (odd) eigenvectors

with respect to the flip operation. Moreover, since ρ is Gaussian, one can immediately

write down the products of eigenvalues as

√

λσλσ′ =
∏

σk=σ′

k

1 + σkµk

2

∏

σk=−σ′

k

√

1− µ2
k

2
, (37)

where the signature σ has again components σk = ±. Comparing Eq. (37) to Eq. (32),

one indeed recognizes Ωσ σ′ up to the factors of i.

Owing to the simple product structure of the eigenvalues in Eq. (37) and, in

particular, to the fact that all the negative eigenvalues are located in the odd subspace,

one has

Tr |ρT2 | = 1− 2Tro ρ
T2 =

∏

k

(

1 +
√

1− µ2
k

)

, (38)

§ When considering a tensor product structure, we always refer to a partition of the spin chain system

constructed through the Jordan-Wigner transformation.
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where we introduced the notation Tre/o for traces taken over the even/odd subspace.

Thus, the pure-state logarithmic negativity is given by the simple formula

E = lnTr |ρT2 | =
∑

k

ln

(

1 +
√

1− µ2
k

)

. (39)

Considering also the expression of the Rényi entropy for fermionic Gaussian states,

Sn =
1

1− n

∑

k

ln

[(

1 + µk

2

)n

+

(

1− µk

2

)n]

, (40)

the well-known equality E = S1/2 for pure states can be confirmed directly.

4.2. Thermal states in a bipartite geometry

The simplicity of the pure-state scenario relies essentially on the property of the Schmidt

decomposition, which is automatically symmetric under the flip operation defined

previously. Due to this, the partial transposed state is block diagonal wrt the splitting

into even and odd subspaces. Such a structure is missing for general bipartite mixed

states, unless the system has a flip-type symmetry a priori. In this respect, a natural

scenario would be to consider intervals of equal length |A1| = |A2| = N/2 and states

that are reflection symmetric. To analyse such a situation, we shall consider Gibbs

states of the open TI chain, Eq. (7), with a symmetric bipartitioning, these being the

simplest mixed Gaussian states where we hope to get further insight into the structure

of the partial transpose.

Considering a covariance matrix of the form (13), the spectrum of Γ+ is invariant

with respect to a sign change and complex conjugation, hence the eigenvalues can be

collected into two families of quadruplets

{zk, z∗k,−zk,−z∗k} , k ∈ (I) {iuk,−ivk,−iuk, ivk} , k ∈ (II) (41)

where in family (I) we choose Re zk > 0 and Im zk > 0, whereas uk > vk in family

(II). Note that the eigenvalues in the second family are purely imaginary and thus their

complex conjugate are automatically contained in the spectrum of a skew-symmetric

matrix, hence uk 6= vk. Although one could, in general, have an arbitrary number of

type (II) quadruplets, from the numerics we observe that in the Ising case they are either

absent or a single one appears. Moreover, this only happens in the symmetry-broken

phase, i.e., when h < 1 in Eq. (7).

Analogously to the pure case in Eq. (30), we first assign the factors

ω
σkσ

′

k

k =















1 + |zk|2 + σk2Re zk
4

, σk = σ′
k

1− |zk|2 + σk2iIm zk
4

, σk = −σ′
k

, k ∈ (I)

ω
σkσ

′

k

k =











1 + ukvk + σki(u− v)

4
, σk = σ′

k

1− ukvk + σki(u+ v)

4
, σk = −σ′

k

, k ∈ (II)

(42)
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within each quadruplet, and the eigenvalues Ωσ σ′ of O+ are again given in the factorized

form of Eq. (32). Although the spectrum of the operator O− is identical to that of O+,

they do not commute in general and thus one has no direct access to the eigenvalues

of ρT2 . Nevertheless, the information about the even/odd parity of the eigenvectors is

retained. In fact, the reflection operator R, which defines the even/odd subspaces in

our case, acts on the spin operators as Rσα
nR

† = σα
N−n (with α = x, y, z), implying the

action Rc†nR
† = Pc†N−n on the creation operators, where P is the parity operator. Using

this, it follows that the sign factor associated to an eigenvector of O+ reads

Sσ σ′ = Re
∏

k

sσkσ
′

k
+Im

∏

k

sσkσ
′

k
, sσkσ

′

k
=

{

1, if σk = σ′
k,

σki, if σk = −σ′
k,

(43)

which can also be verified by considering the pure state limit. The parity of the O−

eigenvectors are simply obtained through the factors s∗σkσ
′

k

.

With the knowledge of Sσ σ′ , we are now able to carry out signed traces of the form

TreO+ − TroO+ =
∑

σ,σ′

Sσ σ′Ωσ σ′ . (44)

Note that the terms in the sum of Eq. (44) completely factorize in the quadruplet

index k. Furthermore, using the fact that Tre/oO− = (Tre/oO+)
∗ and thus Tre/o ρ

T2 =

ReTre/oO+ + ImTre/oO+, a simple calculation leads to

1− 2Tro ρ
T2 = Tre ρ

T2 − Tro ρ
T2 =

∏

k∈(I)

1 + |zk|2 + 2Im zk
2

∏

k∈(II)

1 + ukvk + uk + vk
2

. (45)

Finally, we define the quantity

Eo = lnmax(1− 2Tro ρ
T2 , 1), (46)

which clearly gives a lower bound for the logarithmic negativity, E ≥ Eo, with strict

equality if all the negative eigenvalues reside in the odd sector and their number is equal

to the dimension of that subspace. This is true for pure states and one expects it to be

valid for thermal states in a finite regime of temperatures above the ground state. For

general bipartite states, however, the dimension of the negative subspace can be much

larger [50, 51].

To test the bound Eo against the exact value of the logarithmic negativity, we

considered small TI chains with N ≤ 10 and obtained E via exact diagonalisation of

ρT2 . This is shown on Fig. 2, as a function of the temperature (left) as well as of the

magnetic field (right). We find that, for low enough temperatures, Eo indeed exactly

coincides with E . For larger temperatures, however, some of the negative eigenvalues in

the odd sector become positive or, vice versa, even eigenvectors could attain negative

eigenvalues, with both of these processes increasing the difference E − Eo. Nevertheless,
for the small system sizes considered, it appears that Eo gives a very good approximation

up to temperatures T ≈ 1/N , above which it starts to deviate significantly.
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Figure 2. Logarithmic negativity E (symbols) vs. Eo (lines) between two halves of

a small Ising chain with Hamiltonian (7) in a Gibbs state. Left: as a function of the

inverse temperature β with h = 1 and various number of spins N . The curves E and

Eo start to deviate around β ≈ N . Right: as a function of h for various β and N = 8.

Minor deviations between E and Eo are only visible for β = 10.

4.3. Ground states in a tripartite geometry

So far we have only considered bipartite geometries. Another interesting setting we are

able to deal with is a pure state with the symmetric tripartite geometry, depicted on

Fig. 1(b). In this case, the reduced state ρA after tracing out the sites of B is a mixed

Gaussian state, associated to the reduced covariance matrix ΓA, with indices running

over sites in A [52].

The logarithmic negativity for the tripartite case can be obtained with CFT

methods [23]. For two intervals of the same size ℓ embedded in a system of length

L with periodic boundary conditions, the calculation yields [24]

E(ℓ, L) = c

4
ln

[

L

π

sin2
(

πℓ
L

)

sin
(

2πℓ
L

)

]

+ const. , (47)

with the central charge c and a non-universal constant. However, subtracting the value

at ℓ = L/4 one obtains a universal scaling function

ǫ(z) = E(ℓ, L)− E(L/4, L) = 1

8
ln [tan(πz)] , (48)

where z = ℓ/L and we have set c = 1/2 corresponding to the TI chain. The formula

was tested using tensor network methods for the calculation of the partial transpose,

and a very good agreement was found [31].

It is interesting to check the behaviour of the lower bound, defined in Eq. (46), for

the geometry at hand. In fact, since reflection symmetry is fulfilled, all the arguments

of the previous section, leading to Eq. (45), apply and Eo is given by the same formula

in terms of the eigenvalues of Γ+. However, there is an important difference compared

to the bipartite thermal case, which is apparent from the numerical investigation of

small systems. Namely, the number of negative eigenvalues of ρT2
A is always less then the

dimension of the odd subspace and, moreover, some of the corresponding eigenvectors
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are even. Thus, by tracing out the sites of B, the partial transpose ρT2
A cannot be

smoothly deformed from the pure-state case and, consequently, one does not have a

finite regime of parameters where the bound given by Eo is tight.

In spite of the above findings, Eo shows a very interesting behaviour, which is

demonstrated on Fig. 3. First of all, it shows a clear signature of the phase transition

at h = 1, which can be seen when plotting Eo(L/4, L) against h on the left of Fig. 3.

Furthermore, defining the quantity ǫo analogously to Eq. (48), one finds an excellent

data collapse when plotted against the variable z = ℓ/L, see right of Fig. 3. The scaling

function is found to be given by

ǫo(z) = Eo(ℓ, L)− Eo(L/4, L) =
1

16
ln

[

tan(πz)

2 cos2(πz)

]

. (49)

Although the functional form of ǫo(z) was found by trial, one has an excellent match

with the data without any fitting parameters involved. Interestingly, the prefactor of the

logarithm is exactly the half of ǫ(z) in Eq. (48), however, the argument is modified as

well. We also performed a calculation directly in the thermodynamic limit L→ ∞, and

found Eo(ℓ) = 1/16 ln ℓ + const., which is perfectly consistent with the above findings.

Furthermore, one could also consider the simple fermionic hopping chain (or XX chain in

spin language), defined by Bmn = 0 and Amn = 1
2
(δm,n−1+ δm,n+1). In complete analogy

with the result for the bipartite entanglement [53], one finds EXX
o (2ℓ) = 2ETI

o (ℓ) for

h = 1, and thus a doubled prefactor 1/8 with respect to the critical TI chain. Therefore,

even though Eo does not approximate E well, it shows exactly the same universal

behaviour, suggesting it as an entanglement indicator which is extremely simple to

calculate.
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Figure 3. The scaling of Eo(ℓ, L) for two adjacent intervals of equal length ℓ in the

ground state of a periodic Ising chain with L sites and magnetic field h. Left: Eo(L/4, L)
as a function of the magnetic field h for various L. The logarithmic divergence around

h = 1 is clearly seen. Right: Eo(ℓ, L) − Eo(L/4, L) at the critical point h = 1 against

the scaling variable z. The solid line shows the scaling function in Eq. (49).
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5. Trace formulas

Our result for the partial transpose, Eq. (27), can be further tested by looking at traces

of integer powers of the partial transpose ρT2
A which can also be carried out within CFT.

Since the identity Tr(ρT2
A )2 = Tr ρ2A holds for any density matrix, the simplest nontrivial

quantity to check is the trace of the third power. For the geometry of the previous

section, one finds the CFT result [24]

R3(ℓ, L) = lnTr(ρT2
A )3 = −1

9
ln

[

L3

π3
sin2

(

πℓ

L

)

sin

(

2πℓ

L

)]

+ const. (50)

Similarly to Eq. (48), a universal scaling function can be defined as [24]

r3(z) = R3(ℓ, L)−R3(L/4, L) = −1

9
ln
[

2 sin2(πz) sin(2πz)
]

, (51)

which was already tested numerically for the critical TI chain [31, 32]. On the other

hand, one could also consider two adjacent intervals of equal length ℓ, embedded in

an infinite chain which is thermalized at inverse temperature β. Applying a simple

conformal transformation, the corresponding CFT formula follows as

R3(ℓ, β) = −1

9
ln

[

β3

π3
sinh2

(

πℓ

β

)

sinh

(

2πℓ

β

)]

+ const. (52)

We now show how the above traces can be calculated with the covariance matrix

formalism. Expanding the third power of ρT2
A in Eq. (27) and taking the trace one

arrives at

Tr(ρT2
A )3 = −1

2
Tr(O3

+) +
3

2
Tr(O2

+O−), (53)

where we have used that both of the traces on the right hand side are real. In order to

evaluate them, one has to invoke the determinant formulas for the trace of products of

Gaussian operators, which have already been considered in different contexts [48, 54].

The main steps of this calculation are summarized in Appendix C. In turn, one finds

Tr(ρT2
A )3 = ∓1

2

√

det

(

1 + 3Γ2
+

4

)

+
3

2

√

det

(

1 + Γ2
+ + 2Γ+Γ−

4

)

, (54)

where the sign of the first term depends on the spectrum of Γ+, see Eq. (41). Namely,

the + sign applies only if the quadruplet with purely imaginary eigenvalues appears

(see Appendix C for a more detailed discussion). Note that similar sign ambiguities

also appeared in [48]. One should also remark, that traces of higher powers can be

handled in a very similar way, however, the formulas become rather lengthy.

The trace formula (54) can now be compared to the CFT predictions in (51) and (52)

by inserting the corresponding covariance matrices Γ± and evaluating the determinants.

This is shown in Fig. 4 for the ground (left) and thermal states (right), respectively. The

perfect agreement of the curves provides a highly nontrivial check of the CFT results.
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Figure 4. Left: R3(ℓ, L)−R3(L/4, L) as function of z = ℓ/L for two adjacent intervals

of length ℓ in the ground state of the critical TI chain of size L. The solid line shows

the CFT formula (51). Right: R3(ℓ, β) for adjacent intervals of size ℓ in a thermal

state of the infinite chain (h = 1), with inverse temperature β. The inset shows the

rescaled data compared to the CFT prediction (52) on a horizontal log-scale.

6. Discussion

In conclusion, we have shown that the partial transpose of fermionic Gaussian states can

be written as a linear combination of only two Gaussian operators, uniquely determined

by associated covariance matrices Γ±. In the presence of reflection symmetry, this

particular form of the partial transpose allows us to carry out traces over the even/odd

subspaces which, in turn, can be used to construct a lower bound to the logarithmic

negativity. Furthermore, the trace of any integer power of ρT2
A can, in principle, be

calculated as a sum of determinants, each of linear size 2|A|.
There are several open questions left for future research. We did not consider

in detail entanglement detection questions, e.g., providing temperature bounds for

separability of fermion or spin systems in thermal equilibrium. It would be instructive

to compare such results obtained from the negativity lower bound Eo with earlier studies

[55, 56, 57].

Another natural extension of our work would be to consider non-adjacent intervals.

For spin chains, however, it was shown that the spin RDM itself is already a linear

combination of four fermionic RDMs [48]. Although our construction for the partial

transpose could be carried over, it would further double the number of terms in the

linear combination. Thus, the calculation of the traces for such a case is still realisable,

but presumably more tedious.

It would also be interesting to see whether the lower bound Eo could be attainable

within the framework of CFT. This could lead to an analytical understanding of the

scaling function for the critical tripartite case in Eq. (49) and could shed light to the

origin of the prefactor. In fact, one is tempted to guess that this is equal to one-half of

the corresponding prefactor of the logarithmic negativity in a general CFT. From the

free-fermion point of view, our analysis clearly suggests that certain asymptotic relations
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between Eo and E could hold in general. Finding a rigorous form of this relation would

allow for a numerically feasible estimation of the entanglement negativity for fermionic

systems.

Finally, we point out that some specific classes of mixed Gaussian states exist

which allow for an exact calculation of the logarithmic negativity using the methods

introduced here. These are the states for which the relation [Γ+,Γ−] = 0 is satisfied,

an example being the isotropic Gaussian states [44], for which the covariance matrix

satisfies Γ2 = λ21l with some 0 ≤ λ < 1. The situation is then analogous to the pure-

state case and the corresponding calculation can be generalized, which we leave for

future studies.
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Appendix A. The partial transpose of a 2-site RDM

It is instructive to check how the method introduced in Section 3 works for the simplest

case of two consecutive sites. The canonical form of the Gaussian RDM is given by

ρ =
∏

k=1,2

1l + iνkb2k−1b2k
2

, (A.1)

where νk ∈ [0, 1] and the Majorana operators bj are related to aj through an orthogonal

transformation. For simplicity, we will consider only covariance matrices of the form

of Eq. (13), and assume also reflection symmetry. These states are parametrized by a

single angle θ beside the covariance matrix eigenvalues νk.

Using the Jordan-Wigner representation of aj and working in the usual spin basis,

the most general form of the partial transpose is

ρT2 =
1l

4
+
ν1ν2
4
σz
1σ

z
2 +

ν1 + ν2
4











cos 2θ 0

0 sin 2θ

sin 2θ 0

0 − cos 2θ











+
ν1 − ν2

4











0 1

0 0

0 0

1 0











. (A.2)

Note that, besides the diagonals, all matrix elements vanish and are thus not shown. It

is straightforward to obtain the four eigenvalues

λ1,2 =
[

1 + ν1ν2 ±
√

(ν1 + ν2)2 cos2 2θ + (ν1 − ν2)2
]

/4,

λ3,4 = [1− ν1ν2 ± (ν1 + ν2) sin 2θ] /4.
(A.3)
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Using the parity operator P2 = σz
2 , one can also construct ρT2

± = (ρT2 ±P2ρ
T2P2)/2 with

matrix elements

ρT2
+ =

1l

4
+
ν1ν2
4
σz
1σ

z
2 +

ν1 + ν2
4











cos 2θ 0

0 0

0 0

0 − cos 2θ











, (A.4)

ρT2
− =

ν1 + ν2
4











0 0

0 sin 2θ

sin 2θ 0

0 0











+
ν1 − ν2

4











0 1

0 0

0 0

1 0











. (A.5)

The eigenvalues of the operator ρT2
+ + iρT2

− then read

Ω1,2 =
[

1 + ν1ν2 ±
√

(ν1 + ν2)2 cos2 2θ − (ν1 − ν2)2
]

/4,

Ω3,4 = [1− ν1ν2 ± i(ν1 + ν2) sin 2θ] /4.
(A.6)

Note that we have λ3,4 = ReΩ3,4 + ImΩ3,4 which simply follows from the fact that

ρT2
+ and ρT2

− commute on the corresponding subspace, including the odd eigenvector.

Unfortunately, this property does not generalize to symmetrically bipartitioned intervals

with more than two spins.

We will now show that the Gaussian operator O+ with covariance matrix Γ+ has

indeed eigenvalues given by Eq. (A.6). The covariance matrix Γ for the Gaussian state

(A.1) and the associated Γ+ have the form

Γ = i











0 c 0 s−
−c 0 s+ 0

0 −s+ 0 c

−s− 0 −c 0











, Γ+ = i











0 c 0 is−
−c 0 is+ 0

0 −is+ 0 −c
−is− 0 c 0











, (A.7)

with the shorthand notation

c =
ν1 + ν2

2
cos 2θ, s± =

ν1 + ν2
2

sin 2θ ± ν1 − ν2
2

. (A.8)

The four eigenvalues ±ν± of Γ+ can be computed with

ν± =

√

c2 −
(

s+ − s−
2

)2

± i
s+ + s−

2
. (A.9)

If the operator O+ is Gaussian, its eigenvalues must have the form

Ω++ =
1 + ν+

2

1 + ν−
2

, Ω−− =
1− ν+

2

1− ν−
2

,

Ω+− =
1 + ν+

2

1− ν−
2

, Ω−+ =
1− ν+

2

1 + ν−
2

.
(A.10)

Substituting (A.8) and (A.9) into (A.10), we indeed recover the values in (A.6).

Finally, let us shortly discuss the non-Gaussian character of ρT2 . comparing the

expectation values Tr(ρT2aman), wherem,n=1, . . ., 4, with Tr(ρT2a1a2a3a4), one observes

that the Wick expansion, Eq. (5), does not hold, unless c2 = ν1ν2. This remains true

whatever basis we choose for the partial transpose. Thus, the partial transpose of a

fermionic Gaussian state is usually not a Gaussian operator.
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Appendix B. Eigenvalues of Γ± for pure states

Here we consider the eigenvalue problem of the modified covariance matrices Γ±, that

are associated to a pure-state covariance matrix Γ of the form (13). The RDMs for

subsystems A1 and A2 are determined via the reduced covariance matrices Γ11 and

Γ22. Since they split into two submatrices, one could equivalently consider the squared

eigenvalue problem of the matrices

Gαα
mn =

∑

l∈α

gmlgnl =
∑

p,q

Mα
pqψ

α
p (m)ψα

q (n), ψα
q (m) =

{

ψq(m) m ∈ Aα,

0 m /∈ Aα,
(B.1)

with nonzero matrix elements only within m,n ∈ Aα, α = 1, 2. The overlap matrices

Mα have matrix elements

Mα
pq =

∑

l

φα
p (l)φ

α
q (l), φα

q (l) =

{

φq(l) l ∈ Aα,

0 l /∈ Aα.
(B.2)

Note that both G11 and G22 have the same eigenvalues µ2
k ≤ 1 with k =

1, . . . ,min(|A1|, |A2|), whereas µ2
k = 1 for the remaining eigenvalues of the larger matrix.

We also introduce the block-diagonal matrix

G =

(

G11 0

0 G22

)

, (B.3)

with all the nontrivial eigenvalues being doubly degenerate.

The matrix elements of the covariance matrices Γ± in Eq. (24) are determined

through

g±mn =
∑

q

ψ±
q (m)φ±

q (n), (B.4)

with the vectors

φ±
q (l) = φ1

q(l)± iφ2
q(l), ψ±

q (l) = ψ1
q (l)± iψ2

q (l) . (B.5)

Thus the spectrum of Γ± follows from the eigenvalues of the squared matrix

G±
mn =

∑

p,q

(M1
pq −M2

pq)ψ
±
p (m)ψ±

q (n) . (B.6)

Inserting (B.5) and using the completeness property M1
pq +M2

pq = δpq, the matrices G±

have the block form

G± =

(

2G11 − 1l ±2iF

±2iF T 2G22 − 1l

)

, (B.7)

with

Fmn =
∑

p,q

M1
pqψ

1
p(m)ψ2

q (n). (B.8)

It is easy to check that F satisfies

FF T = G11(1l−G11), F TF = G22(1l−G22), (B.9)
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and thus the following matrix identity holds

(G± − 2G+ 1l)2 = −4G(1l−G). (B.10)

Rewriting in terms of the eigenvalues (ν±k )
2 and µ2

k of G
± and G, respectively, one arrives

at

(ν±k )
2 = 2µ2

k − 1± 2iµk

√

1− µ2
k =

(

µk ± i
√

1− µ2
k

)2

. (B.11)

Appendix C. Determinant formulas

Let us consider the Gaussian operators O± corresponding to the generalized covariance

matrices Γ± = tanh(W±/2). With a denoting the vector of Majorana operators, we

introduce

O (W±) = exp

(

aW±a

4

)

, Z(W±) = Tr exp

(

aW±a

4

)

, (C.1)

and thus O± = O (W±) /Z(W±) Our aim is to calculate various traces of the form

Tr(Om
+O

n
−) with some integersm and n. Following the lines of Ref. [48], we first introduce

the notation

{W1,W2} = Tr [O (W1)O (W2)] . (C.2)

We also note the simple fact that Om (W±) = O (mW±). Hence, the traces we consider

can be written in the form

Tr(Om
+ ) =

Z(mW+)

Zm(W+)
, Tr(Om

+O
n
−) =

{mW+, nW−}
Zm(W+)Zn(W−)

. (C.3)

They can be evaluated in terms of determinant formulas [48]

Z(W ) = (±)

√

det

(

2 cosh
W

2

)

, {W1,W2} = (±)
√

det(1 + eW1eW2), (C.4)

where the ± in parentheses symbolise the eventual sign ambiguity. The square root

(and hence the sign ambiguity) indicates that the pairs of eigenvalues of the skew-

symmetric matrices must be taken into account with halved degeneracy [48]. Note

that, for Gaussian states commuting with the particle number operator (i.e., when the

exponent can be written with a Hermitian matrix in terms of the fermion operators

instead of Majoranas), similar trace formulas apply without square roots and sign

ambiguity [58].

In Section 5 we need the traces of operators O3
+ and O2

+O−, respectively. Applying

Eqs. (C.3) and (C.4), using hyperbolic identities for multiple arguments, one observes

that the formulas can be expressed solely in terms of Γ± with the result

Tr(O3
+) = ±

√

det

(

1 + 3Γ2
+

4

)

, Tr(O2
+O−) =

√

det

(

1 + Γ2
+ + 2Γ+Γ−

4

)

. (C.5)

The sign ambiguity can be fixed by comparing to exact calculations of the traces. We find

that the negative sign in the first trace of Eq. (C.5) is needed only in case Γ+ contains a
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quadruplet of purely imaginary eigenvalues. For the Ising chain, this can happen only in

the symmetry-broken phase, h < 1. The numerics for small chains shows that, gradually

decreasing the value of h, the appearance of this quadruplet exactly coincides with the

vanishing of the first determinant. Interestingly, the second determinant in Eq. (C.5)

always remains positive and thus no sign ambiguity appears there.
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[34] Bañuls M C, Cirac J I and Wolf M M 2007 Phys. Rev. A 76 022311
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