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Abstract

The common sense suggests that networks are not random mazes of purposeless connections,
but that these connections are organised so that networks can perform their functions well. One
function common to many networks is targeted transport or navigation. Using game theory, here
we show that minimalistic networks designed to maximise the navigation efficiency at minimal
cost share basic structural properties with real networks. These idealistic networks are Nash
equilibria of a network construction game whose purpose is to find an optimal trade-off between
the network cost and navigability. We show that these skeletons are present in the Internet,
metabolic, English word, US airport, Hungarian road networks, and in a structural network of
the human brain. The knowledge of these skeletons allows one to identify the minimal number
of edges by altering which one can efficiently improve or paralyse navigation in the network.

Networks are efficient conduits of information and other media. News, ideas, opinions, rumours,
and diseases spread through social networks fast, sometimes becoming viral for reasons that are
often difficult to predict [1, 2, 68, 4–12]. Many biological networks are also paradigmatic examples
of information routing, ranging from information processing and transmission in the brain, to
signalling in gene regulatory networks, metabolic networks, or protein interactions [13–16]. Perhaps
the most basic example is the Internet whose primary function is to route information between
computers. If one is to list some common functions of different networks, then information routing
will likely be close to the top. It is thus not surprising that many networks were found navigable,
meaning that nodes can efficiently route information through the network even though its global
structure is not known to any individual node [17, 18, 69, 20–29].

These findings do not necessarily mean that real networks evolve to become navigable. Navi-
gability can be a by-product of some other evolutionary incentives because different networks have
many other different functions as well. In other words, it remains unclear if ideal networks whose
only purpose is to be maximally navigable at minimal costs have anything in common with real
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networks. Even if they do, then how close are real networks to these ideal maximally navigable
configurations? If they are close but not exactly there, or if their navigability suddenly deteriorates,
possibly signifying an onset of a disease [30], then what can we do to cure the network and boost
its navigability?

Here we show that the ideal maximally navigable networks do share some basic structural
properties with the Internet, E.coli metabolic network, English word network, US airport network,
the Hungarian road network, and a structural network of the human brain. Yet these ideal networks
are not generative models of the real networks, where by generative models we mean function-
agnostic models that simply try to reproduce some structural properties of real networks. Instead
these ideal networks identify minimal sets of edges that are most critical for navigation in the
real network. In other words, they are navigation skeletons or subgraphs of real networks. We
find that the considered real networks contain high percentages, exceeding 90% in certain cases,
of edges from their navigation skeletons, while the probability of such containment in randomized
null models is exponentially small. The knowledge of these skeletons allows us to quantify exactly
what connections the considered real networks lack to be maximally navigable, and which of their
connections are not exactly necessary for that. To define and construct these maximally navigable
network skeletons we employ game theory.

Game theory is a standard tool to study the behaviour of a population with given incentives.
The population members are called players, and their possible actions are strategies, while cost
functions or payoffs express players’ incentives. The purpose of a player is to minimise her costs
(or maximise her payoffs) by adjusting her strategy. A Nash equilibrium is a game state such that
no player can further reduce her costs by altering her strategy unilaterally. Such equilibrium states
are local optima where the game can eventually settle after some transient dynamics. The global
optimum is an optimum where the total cost of all players is minimised. Since the inception of
game theory a broad palette of games has been introduced, modelling diverse properties of real-life
situations [31], Figure 1.

Action

Romantic 3 2

Action

Romantic 

Action

Romantic 

Action

Romantic 

a b

c d

Bob Alice Bob

Bob Bob

Alice

Alice Alice

0

0

0

0

31

Figure 1: Illustration of game theory. Alice and Bob are happy only if they go out to the movies
together, but the level of their happiness depends on what movie they watch. The basic notions of
a game: Players: Alice and Bob; Strategies: Go to see an action or a romantic movie; Payoffs: The
level of happiness 0, 1, 2, 3; Nash equilibria: situations in which the players cannot be happier by
unilaterally modifying their strategies. In the figure, states (a) and (d) are equilibria when Alice
and Bob go together to watch a movie. State (a) is the global optimum since the total happiness
3 + 2 = 5 is maximised.

Here we use game theory to find the structure of networks that are Nash equilibria of a network
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construction game [31–37] with navigability incentives. The concept of Nash equilibrium captures
the idea of self-organisation, i.e., of the emergence of structures from the local interaction of rational
but selfish players, in contrast with global optimisation used in centralised planning of globally
optimal navigable structures [38]. In our Network Navigation Game (NNG), players are network
nodes whose optimal strategy is to set up a minimal number of edges to other nodes ensuring
maximum navigability. That is, the cost function reflects trade-offs between the number of created
edges and navigability. If each node connects to each other node, then this construction is maximally
navigable but maximally expensive, too. If no edges are set up, then the cost is zero, but so is
navigability. There is a sweet spot of the least expensive but still 100%-navigable network, defined
as the network in which all pairs of nodes can successfully communicate using geometric routing [39].
The goal of our game is to find this sweet spot.

Results

The network construction game that we employ is very general and applies to any set of points
in any geometry. The latent geometry of numerous real networks is not Euclidean but hyperbolic
as shown in [78]. Specifically, the model in [78] extends the preferential attachment mechanism of
network growth by observing that in many real networks the probability of establishing a connection
depends not only on popularity of nodes, i.e., their degrees, but also on similarity between nodes.
Similarity is modeled in [78] as a distance between nodes on the simplest compact space, the circle.
The connection probability thus depends both on node degrees (popularity) and on the distance
between nodes on the circle (similarity). The node degrees are then mapped to radial coordinates
of nodes, thus moving nodes from the circle to its interior, the disk. One can then show that
the resulting connection probability depends only on the hyperbolic (versus Euclidean) distance
between nodes on the disk, and that the resulting graphs are random geometric graphs [41] growing
over the hyperbolic plane. As shown in earlier work [42], these graphs are maximally random, i.e.,
maximum-entropy graphs that have power-law degree distributions and strong clustering. In other
words, power-law degree distributions, coupled with strong clustering, are manifestations of latent
hyperbolic geometry in networks. If this geometry is not hyperbolic but Euclidean, then the
resulting random geometric graphs still have strong clustering, but their degree distributions are
Poisson distributions that do not have any fat tails [41]. The model in [78] has been validated
against long histories of growth of several real networks, predicting their growth dynamics with a
remarkable precision. It is then not surprising that as a consequence the same model also reproduces
a long list of structural properties of these networks [78].

Random geometric graphs [41] are defined as sets of points sprinkled uniformly at random over
a (chunk of) geometric space. Every pair of points is then connected if the distance between the
points in the space is below a certain threshold. Given that the latent space of real scale-free
networks is hyperbolic, our starting point is the first part (uniform sprinkling) of the random
geometric graph definition. That is, we first randomly sprinkle a set of points over a hyperbolic
disk. We then do not proceed to the second part of the random geometric graph definition. Instead,
given only the coordinates of sprinkled nodes, we identify the sets of edges, ideal for navigation,
that correspond to the Nash equilibria of our NNGs. We then analyse the structural properties of
the resulting ideal-navigation networks, and find that, surprisingly, they also have power-law degree
distributions and strong clustering. This result invites us to investigate if these navigation-critical
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edges exist in real networks. To check that, we have to know the hyperbolic coordinates of nodes
in these real networks in the first place. We infer these coordinates in the considered collection of
real networks using the deterministic HyperMap algorithm (Methods). Given only these inferred
coordinates, we then construct the ideal-navigation Nash equilibria defined by these coordinates,
and compare, edge by edge, the resulting Nash equilibrium networks against the real networks.
We find that the real networks contain large percentages of edges from their Nash equilibria. This
methodology thus allows us to identify the navigation skeleton of a given real network. We finally
check directly that edges in these skeletons are indeed most critical for navigation by showing that
their alterations affect drastically network navigability.
Game definition.

We start with a set of players u = 1, 2, . . . , N , i.e., N nodes, scattered randomly over a hyperbolic
disk of radius R. The densities of players’ polar coordinates (r, φ), r ∈ [0, R], φ ∈ [0, 2π], are [42]

ρ(r) =
α sinh(αr)

cosh(αR)− 1
, ρ(φ) =

1

2π
, (1)

where α > 1/2 is a parameter controlling the heterogeneity of the layout. If α = 1, the players
are distributed uniformly over the hyperbolic disk because the area element at coordinates (r, φ)
is dA = sinh(r) dr dφ. The desired player scattering is achieved in simulations by placing players u
at polar coordinates ru = (1/α) acosh {1 + [cosh(αR)− 1]U} and φu = 2πU where U for each u is
a random number drawn from the uniform distribution on [0, 1]. The hyperbolic distance between
any two players u and v is

d(u, v) = acosh [cosh ru cosh rv − sinh ru sinh rv cos(φu − φv)] . (2)

In greedy geometric routing, player u routes information to some remote player v by forwarding
the information to its connected neighbour u′ closest to v in the plane according to the distance
above. If u has no neighbour u′ closer to v than uself, then navigation fails, and we say that u
cannot navigate to v. The percentage of pairs of players u, v such that u can successfully navigate
to v is called the success ratio. If this percentage is 100%, we say that the network is maximally
(100%) navigable.

The strategy space of player u is all possible combinations of edges that u can establish to
other players. One extremal strategy is to establish no edges. The other extreme is to connect to
everyone. The total number of possibilities for u is 2N−1. Any combination of strategies that all
players select is a network on N nodes.

The objective of each player u is to set up a minimal number of edges to other players such
that u can still navigate to any other player in the network. Formally, the cost function of player
u that it minimises is cu = ku + nu, where ku is the number of edges that u establishes, and nu is
either zero if u can navigate to everyone, or infinity otherwise. A more formal description of the
strategies and payoffs can be found in Appendix 1.
Nash equilibria of the game.

Given any player u, we call player v’s coverage area the set of all points closer to v than to u,
Figure 2. Trivially v covers itself, since it is closer to itself (d(v, v) = 0) than to u. Therefore if u
connects to all other players, then u trivially covers them all. The optimal strategy for u minimising
u’s costs is thus to connect to a minimal number of players such that the union of their coverage
areas contains all the other players. Indeed, if u does that, and if all other players do the same,
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then the resulting network is 100%-navigable at minimal number of edges. The network is fully
navigable because if u wants to navigate to any remote player w, then by construction there exists
u’s neighbour v that contains w in its coverage area, and u can use v as the next hop towards w. If
v is not directly connected to w, then there exists v’s neighbour v′ that contains w in its coverage
area, so that v can route to v′, and so on until the information reaches destination w lying within the
intersection of all the coverage areas along the path, Figure 2. The problem of finding the optimal
set of edges for u thus reduces to the minimum set cover problem [43]. A formal description of the
equilibrium network and a detailed example (for simplicity in the Euclidean plane) can be found
in Appendix 2.
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Figure 2: Illustration of the network navigation game (NNG). Panel (a) shows the optimal set of
connections (optimal strategy) of node A in a small simulated network. All nodes are distributed
uniformly at random over the hyperbolic disk, and A’s optimal strategy is to connect to the smallest
number of nodes ensuring maximum (100%) navigability. These nodes are B, C, and D because it
is the smallest set of nodes whose coverage areas, shown by the coloured shapes, contain all other
nodes in the network. B’s coverage area for A (red) is defined as a set of points hyperbolically closer
to B than to A, therefore if A is to navigate to any point in this area, A can select B as the next
hop, and the message will eventually reach its destination, as the second panel illustrates. Link
AC (and AD) in panel (a) is also a frame link, because A is the closest node to C, as illustrated
by the hyperbolic disk of radius |AC| centred at C (the line-filled shape), which does not contain
any nodes other than C and A. Therefore to navigate to C, A has no choice other than to connect
directly to C. Panel (b) shows the sequence of shrinking coverage areas along the navigation path
(blue arrows) from D to E. The red curve is the geodesic between D and E in the hyperbolic plane.
The coverage areas are shown by the shapes filled with lines of increasing density. The largest is
A’s coverage for D. The next one is B’s coverage for A. The smallest is E’s coverage for B.
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The Nash equilibrium of this game is not necessarily unique. There can exist different networks
minimising the cost defined above. As specified in Appendix 2, in what follows, among all the
NNG equilibria, we always select the unique one that minimises the sum of distances span by its
edges, thus making the NNG Nash equilibrium network construction deterministic. However there
also exist certain edges, which we call frame edges, necessarily present in any Nash equilibrium.
Edge u → v is a frame edge if u is the closest player to v. In this case u cannot navigate to
v through any other players since there is no one closer to v than uself, so that u must connect
directly to v to reach it, Figure 2. If at least one of such edges is absent, the network is not fully
navigable. The exact definition of the “frame topology” consisting the frame edges can be found
in Appendix 3.

In any Nash equilibrium of this game, each player computes its optimal strategy independently
of others. In game theory such equilibria are called dominant strategy equilibria. Moreover the
equilibrium is also a social optimum since one cannot create a fully navigable network using less
edges.
Structural properties of Nash-equilibrium networks.

Using the trigonometry of overlapping hyperbolic disks, we show in Appendix 4 that if the
node density is uniform (α = 1), then the probability p(d) that two players u and v located at
distance d ≡ d(u, v) are connected in a Nash equilibrium network lies between exp(−8 δ ed/2) and
exp(−2 δ ed/2),

e−8 δ ed/2 ≤ p(d) ≤ e−2 δ ed/2 , (3)

where δ is the average density of players on the disk, that is δ = N/A, where A is the disk area. The
expected degree of player u at polar coordinates (ru, 0)—we can assume that u’s angular coordinate
is φu = 0 without loss of generality—is then k̄(ru) = N

∫
p[d(u, v)] ρ(rv)ρ(φv) drv dφv, where ρ(rv)

and ρ(φv) are the player densities from Eq. (1). We can evaluate this integral to find that the
expected number k̄(r) of connections of a player at radial coordinate r is bounded by (analytically
shown in Appendix 5)

1

2
e(R−r)/2 ≤ k̄(r) ≤ 2 e(R−r)/2 , (4)

where r ≡ ru. It then follows that the average degree of players in the network, given by k̄ =∫ R
0 k̄(r)ρ(r) dr, lies between 1 and 4,

1 ≤ k̄ ≤ 4. (5)

We also see from Eq. (4) that the degree of players decays exponentially as the function of their
radial position, k̄(r) ∼ e−r/2, while their density exponentially increases, ρ(r) ∼ er, Eq. (1). The
combination of these two exponentials yields the power-law degree distribution (see Appendix 6 for
the detailed derivation) in the network [44, 45]

P (k) =
1

k!

∫ R

0
e−k̄(r)[k̄(r)]kρ(r) dr = 2

(
k̄

2

)2
Γ(k − 2, k̄/2)

k!
∼ k−3. (6)

We also show analytically in Appendix 7-8, that the average clustering c̄(k) of players of degree k
decays with k as 1/k, while the average clustering c̄ =

∑
k P (k)c̄(k) in the network is around

0.45, also confirmed in simulations. Clustering does not depend on network size or average degree,
meaning that clustering is a positive constant even in the large graph size limit. Remarkably,
neither degree distribution nor clustering depend on the player density δ.
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For non-uniform node density α 6= 1, we can analytically obtain only the lower bound for k̄(r, α),
which is still proportional e−

r
2 , i.e., independent of α if α > 1/2, Appendix 9. This lower bound

suggests that the degree distribution is a power law P (k) ∼ k−γ with exponent γ = 2α+ 1, which
we confirm in simulations in Appendix 9. Figure 3 shows that the closer the γ to 2, the stronger the
clustering, the cheaper the network, and the more efficient and robust the navigability. The value
of γ = 2 thus appears as the “best choice” for a network—the network is maximally navigable at
the lowest cost. These results complement existing works [46, 23] showing that γ = 2 yields most
navigable networks, by adding that this γ also provides a minimum cost equilibrium topology as
well, explaining the emergence of these networks from the interaction of selfish players.
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Figure 3: Topological properties of NNG equilibrium networks as a function of the power-law
exponent. Panel (a) shows the total cost (number of edges), average clustering c̄, and stretch
in NNG-simulated networks as functions of γ. Stretch (shown in the inset) is the average factor
showing by how much longer the greedy navigation paths are, compared to the shortest paths in
the network. Stretch equal to 1 means that all navigation paths are shortest possible. The plotted
points are mean values while the error bars show minimum and maximum values obtained for the
NNG over 10 random sprinkling of nodes for a given value of γ. Panel (b) shows the success ratio
as a function of the percentage of edges randomly deleted from the network. The smaller the γ,
the more robust the navigability with respect to this network damage.

Figure 4 and Table 1 confirm our analytic results and shows that some basic structural properties
of NNG-simulated networks are similar to some real networks.
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Figure 4: NNG equilibrium networks share basic structural properties with real networks. The
real networks considered are the Internet, metabolic reactions, and the English word network, see
Methods. Panel (a) and (b) shows the degree distribution and the average clustering coefficient
of nodes of a given degree in the real and NNG networks. The dashed black lines are the power
laws with exponents −2 and −1. The power law decay of the clustering coefficient for the NNG is
shown analytically in Appendix 7. The clustering coefficient of a node of degree k is the number of
triangular subgraphs containing the node, divided by the maximum possible such number, which
is k(k − 1)/2. In the NNG network, the disk radius is R = 21.2 and α = 0.5. There are no other
parameters.

Network Inter. Metab. Word NNG

Nodes 23748 602 4065 5000

Edges 58414 2498 38631 7955

Avg. deg. 4.92 8.29 19.01 3.18

Avg. clust. 0.61 0.55 0.45 0.60

Avg. dist. 3.52 3.22 2.43 3.89

Diam. 10 6 6 10

Table 1: Comparison of basic structural properties of real and NNG networks. The average
distance and diameter are the average and maximum hop lengths of the shortest paths in the
network. The average degree in the NNG-simulated network is lower than in the real networks
because the NNG generates navigable networks with minimum numbers of edges. In the NNG
network, the disk radius is R = 21.2 and α = 0.5. There are no other parameters.

Our results also suggest that the incentive for navigability alone may be sufficient to explain
the properties of complex networks to a certain degree. Yet we cannot really make this claim based
only on such large-scale statistical similarities. A more detailed link-by-link comparison between
real and corresponding NNG networks is needed to understand how well the NNG reflects reality.
Network Navigation Game versus real networks.

Figure 5 and Table 2 show the results of this analysis applied to these and other real networks.
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Figure 5: Network Navigation Game (NNG) predicts well links in real networks. Panels (a), (b), and (c)
visualise the Internet, metabolic, and word networks mapped to the hyperbolic plane as described in the
Methods section. The hyperbolic coordinates of nodes are then supplied to the minimum set cover algorithm
that finds a Nash equilibrium of the NNG for each network. Panels (d) and (e) do the same for the US
airport network and for the human brain, except that in the brain the physical coordinates of nodes are
used. The grey edges are present in the real networks but not in the NNG networks. These edges may exist
in real networks for different purposes other than navigation, so that the NNG can say nothing about them.
The false positive turquoise edges are present in the NNG networks but not in the real networks. The true
positive magenta edges are present in both networks. Panels (f) and (g) show the NNG equilibrium network
based on the physical (geographic, versus hyperbolic) coordinates of US airports, and the NNG network for
the Hungarian road network. The NNG networks have the same sets of nodes as the corresponding real
networks, but the sets of edges are different. For visualisation purposes the grey edges are suppressed in the
human brain and Hungarian road networks. The detailed statistics of edges are in Table 2. The cartography
in the background of panels (f) and (g) are licensed as CC BY-SA (see www.openstreetmap.org/copyright
for details).
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Inter. H Metab. H Word H Roads E Airp. S Airp. H Brain E
Nodes 4919 602 4065 3136 283 283 998

Real edges (|R|) 28361 2498 38631 - 1973 1973 17865
NNG edges (|M |) 5490 743 4634 9808 643 328 2591

True positives (|T |) 4556 643 3311 8776 65 277 2306
False positives (|F |) 934 100 1323 1032 578 51 285
Precision (|T |/|M |) 83% 87% 71.5% 89.48% 10.1% 84% 89%
Frame edges (|MF |) 3680 415 3304 3105 199 249 716

Frame true positives (|TF |) 3243 378 2528 2931 15 216 677
Frame prec. (|TF |/|MF |) 88% 91% 77% 94.40% 7.5% 87% 94.6%

Navigation success ratio 87% 85% 81% - 54% 89% 89%

Table 2: The table quantifies the relevant edge statistics in Figure 5, showing the total number of
edges in the real networks |R|, and in their NNG equilibrium networks |M |, the number of true
positive (magenta edges in Figure 5) |T |= |M ∩R|, the number of false positive (turquoise edges in
Figure 5) |F |= |M \R|, and the true positive rate, or precision, defined as |T |/|M |. The precision
statistics is also shown for the frame edges. Capital letters H,E,S after the network names refer
to the embedding geometry: H:hyperbolic, E:Euclidean, S:spherical. The Euclidean coordinates in
the brain are three-dimensional.

We cannot expect real networks to be identical to NNG networks because the latter are
minimum-cost maximum-navigation idealisations, while each individual real network performs
many other functions different from navigation. In particular, since real networks must be error-
tolerant and robust with respect to different types of network damage, we expect the number
of edges in real networks to be noticeably larger than in their minimalistic NNG counterparts—
something we indeed observe in Table 2. Yet if navigation efficiency does matter for real networks,
then we should expect a majority of edges present in these NNG idealisations to be also present in
the corresponding real networks. Table 2 confirms these expectations as well. The NNG precision
in predicting links in real networks, defined as the ratio of NNG true positive links to the total
number of NNG links, exceeds 80% for most networks, while the precision in predicting frame links,
crucial for navigation, exceeds 90% for some networks. In Appendix 10 we juxtapose these numbers
against the corresponding numbers in randomized null models, where they are exponentially small,
upper bounded by 0.1%. We also note that since the real networks have many more links than
NNG networks, their navigability may not suffer much from missing a small percentage of NNG
links, as confirmed by the success ratio results in the same figure.

Of particular interest to us here are networks that are explicitly embedded in the physical space.
In these cases we may not need to embed the network, but use instead the physical coordinates
of its nodes to construct the NNG equilibria. We consider three examples: the Hungarian road
network, the airport network of the United States, and a structural network of the human brain.
In the first network the nodes are the cities, towns, and villages of Hungary, while in the second
network the nodes are US airports. Two nodes are linked if they are connected by a direct road or
flight. In the brain network the nodes are small regions of average size 1.5cm2 covering entirely both
hemispheres of the cerebral cortex, and two regions are connected if a structural connection between
them is detected in diffusion spectrum imaging. We expect the NNG to be particularly accurate in
predicting links in these networks using the physical—instead of hyperbolic—coordinates of nodes.
We note that these physical coordinates are Euclidean in all the three cases. The embedding space
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is two-dimensional Euclidean and spherical space in the road and airport cases, and it is three-
dimensional Euclidean space in the brain case. Our method to construct an NNG equilibrium
applies without change to any set of points in any geometric space, and the analytic results on
the structure of NNG equilibrium networks in Euclidean spaces are in Appendix 11. We apply
our method to find the NNG equilibrium networks using the physical coordinates of nodes in these
three real networks, and then compare them to their NNG equilibria also in Figure 5 and Table 2.

We observe that in the brain and road networks the NNG link prediction accuracy is particularly
high, reaching 89% for all the links and 94-95% for the frame links. For the brain this result implies
that the spatial organisation of the brain is nearly optimal for information transfer, in agreement
with previous results [47–50]. In the Hungarian road network, nearly all frame links, crucial for
efficient navigation using geography, are present. Practically this means that Hungarians have
luxury to go on a road trip without a map since all the major roads required by geographic
navigation are there, albeit the condition of some of those roads is not as luxurious. To put it
simply, there are roads where people with a compass may think they should be.

For the US airport network however, the geographic results are poor. These poor results may be
unexpected at first, but they have a simple explanation in that the geometry of the airport network
is not really Euclidean, as the geometry of the nearly planar road network, but hyperbolic. Indeed,
efficient paths in the airport network optimise not so much the geographic distance travelled, but
the number of connecting flights. As a consequence, most paths go via hubs. As opposed to the
road network, where the number of roads meeting at an intersection does not vary that much
from one intersection to another, the presence of hubs in the airport network makes the network
heterogeneous, i.e., node degrees vary widely. This heterogeneity effectively creates an additional
dimension (the “popularity” dimension in [78]). That is, in addition to their geographic location,
airports also have another important characteristic—the size or degree. This extra dimension makes
the network hyperbolic [42]. The NNG results for the hyperbolic map of the airport network in
Figure 5 are as good as for the other networks.
How to cure or injure a network efficiently.

The knowledge of the NNG equilibrium of a given real network makes it possible to efficiently
identify links that are most critical for navigation in the network. Since NNG equilibrium networks
are maximally navigable networks composed of the smallest number of links, we expect that if we
alter a real network by either adding or removing a relatively small number of links belonging to the
NNG equilibrium of the network, then such network modifications may significantly affect network
navigability.

Figure 6 supports these expectations. In the figure, we take the considered real networks, and
add to them certain numbers of links that are present in the NNG equilibria of the real networks,
but not present in the networks themselves. About 1-2% of added edges, compared to the original
numbers of edges in the networks, increase network navigability significantly, while the addition of
2-5% of edges makes all the networks 100%-navigable. Similarly, the targeted removal of a small
portion (1-5%) of edges belonging both to the NNG equilibria of the networks, and to the network
themselves, degrades network navigability by 10-30%.
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Figure 6
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Figure 6: NNG equilibria of real networks helps to improve or degrade their navigability. The edges
from the NNG equilibria of the considered real networks are first sorted in the decreasing order of
betweenness centrality, and then either added to the real network if not already there (panel (a)),
or removed from the network if present (panel (b)). The x-axis shows the percentage of added or
removed edges compared to the number of edges in the original real network. Navigation success
ratio is computed as the number of node pairs between which geometric routing is successful divided
by the number of all node pairs.

Discussion

We emphasise that the considered Nash equilibrium networks are minimalistic idealisations, con-
cerned only with maximising the efficiency of the navigation function at minimal cost (number
of links). Reality differs from this ideal in many ways. First, real networks must be robust with
respect to noise and random failures. This robustness requirement explains why the considered
real networks have strictly more links that their Nash equilibria. Maximum navigability can ob-
viously be achieved not only at the minimal cost, but also at a higher cost. Second, transport
processes in real networks are also noisy, and can follow not only steepest descent path (greedy
navigation), but also any downstream paths, still achieving 100% reachability. Yet the noisier the
transport process, the less likely it stays to the shortest path, leading to higher stretch and longer
travel times, thus degrading navigation efficiency in terms of these parameters. Third, navigability
does not always have to be maximised as many specific networks perform many specific functions
other than navigation. Our game-theoretic approach can be extended to accommodate some of
these functions, such as error tolerance or policy compliance [51], but not all possible functions of
different real networks can be formalised within this game-theoretic framework. Some networks
are centrally designed to optimise a particular function globally [38]. Game theory is not needed
to formalise such global optimisation strategies. It is more suited for self-organised networks, in
which each node behave selfishly according to its own incentive, independent of other nodes. In
other words, Nash equilibrium networks are structural manifestations of local incentives of nodes
for efficient transport or communication, in contrast with existing generative or optimisation mod-
els of complex networks [52, 53]. Finally, all real networks are dynamic and growing, while Nash
equilibria correspond to static network configurations. However it has been recently shown [54] that
in case of random geometric graphs—to which the considered Nash equilibrium networks effectively
belong according to the results in Appendix 12—one can map an equilibrium network model to an
identical growing one.

Notwithstanding these limitations we have shown that ideal networks designed to be maximally
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navigable at minimal cost share basic structural properties with real networks. Compared to
existing works on navigation-optimal distributions of shortcut edges in Euclidean grids [55–58]
which do not yield realistic network topologies, this result is quite unexpected because there is
absolutely nothing in the definition of these ideal networks that would enforce or even welcome
a formation of any particular network structure. The networks are defined purely in terms of
navigation optimality. The surprising finding that the structure of these ideal networks is similar
to the structure of real networks should not be misinterpreted as if these idealisations are generative
models for real navigable networks. Instead the former are skeletons or subgraphs of the latter.
Since these skeletons consist of the minimum number edges required for 100% navigability, there
is no even a parameter to control the most basic structural network property—the average degree,
which is always controllable in generative models. On the contrary, as follows from Eq. (5), the
average degree in these skeletons is uncontrollable and lies between 1 and 4.

We find that if network geometry is hyperbolic, then our navigation skeletons have power-
law degree distributions and strong clustering. The values of power-law exponent γ close to 2,
observed in many real networks [59, 60], appear as the best possible choice. In this case not
only reachability is 100%, but also the network cost and stretch are minimised and navigability
robustness is maximised, compared to other values of γ in Figure 3.

These results apply to sets of points in hyperbolic space, but the navigation skeleton construction
itself is by no means limited to these hyperbolic settings. It is very general, and applies to any
set of points in any geometric space, as illustrated by the brain and road networks where we have
used the Euclidean 2d and 3d physical coordinates of nodes to construct the navigation skeleton
of the network. Our finding that the brain contains almost fully its navigation skeleton appears
as a mathematically clear and conclusive evidence that the spatial organisation of the brain is
nearly optimal for communication and information transfer, corroborating existing work on the
subject [47–50].

We note that the connection between the structure and function of networks is often studied
in the logically reverse direction: structure→function. That is, first some data about the structure
of real networks is obtained, and then questions concerning how optimal this structure is with re-
spect to a given network function are investigated. This logic does provide some evidence that the
network might have evolved optimising this function, but this evidence is quite indirect and unre-
liable compared to the direct demonstration that functionally optimal networks have the structure
observed in reality: function→structure. The common sense suggests that this causal direction
must reflect reality more adequately since networks, either designed or naturally evolving, do not
have a completely random structure but the structure (effectively) optimising some functions. Yet
studying networks in this direction is much more challenging primarily because of difficulties in for-
malising the constraints that a given function imposes, and deriving the resulting optimal network
structure. Here, with the help of game theory, we have done so for the navigation function that
many real networks (implicitly) perform.

As one would logically expect, the function→structure approach provides a deeper insight into
specific details of network’s structural organisation that are critical for its functional efficiency.
We have confirmed this expectation by demonstrating that our approach can identify links in real
networks that are most critical for navigation. A targeted attack on these critical links degrades
navigability rapidly, while if a real network is not 100%-navigable, our approach finds the minimal
number of not-yet-existing links whose addition to the network boosts up its navigability to 100%.
Therefore our approach can be used to identify real network links that should be protected most in
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a critical network infrastructure. On the other hand, this approach can also help network designers
to prioritise possible link placement options, i.e., pairs of not directly connected nodes, that, if
connected, would maximise navigability improvement.

Finally, all the real networks considered here are expected to be navigable. Indeed, the primary
functions of the Internet, brain, metabolic, or airport and road networks are to transport informa-
tion, energy, or people. Semantic and syntactic navigability of word networks is an established fact
in cognitive science [61–63]. However one cannot expect all real networks to be highly navigable as
navigation is not an important function of every network in the world. In Appendix 13 we consider
one example, a technosocial web of trust, in which nodes are public keys of users of a distributed
cryptosystem, linked by users’ certifications of key-user bindings. There is no reason why this net-
work should be navigable. In agreement with this observation, we then find that this network does
not contain a large percentage of edges from its NNG equilibrium, suggesting that the introduced
methodology can be also used as a litmus test to investigate if navigation is an important function
of a given real network, and if so, then to what degree.

Methods

The real network data. The Internet dataset representing the global Internet structure at the
Autonomous System (AS) level is from [64]. The metabolic network is the post-processed network
of metabolic reactions in E. coli from [78], Snapshot S1 there. The post-processing details can be
found in [78]. The word network is the largest connected component of the network of adjacent
words in Charles Darwin’s “The Origin of Species” from [65]. The airport network was downloaded
from the Bureau of Transportation Statistics http://transtats.bts.gov/ on November 5, 2011.
The structural human brain network and physical coordinates of nodes (regions of interest (ROIs))
in it are the diffusion spectrum imaging (DSI) data from [66].
The hyperbolic maps of real networks. The hyperbolic coordinates of ASes and metabolites
are from [64] and [78]. The hyperbolic coordinates of words and airports are inferred using the
HyperMap algorithm [67]. This algorithm is deterministic, and is based on the growing network
model in [78] used to show that the latent geometry of scale-free strongly clustered real networks
is hyperbolic. Given an adjacency matrix of a real network, the algorithm infers the hyperbolic
coordinates of its nodes by replaying its growth as the model in [78] prescribes. Specifically, the
nodes are first sorted in the order of decreasing degrees, and then, starting with the highest-
degree node, nodes and their edges are added, one node at a time, to a growing network. The
probability, or the likelihood, with which model [78] generates this growing network, depends on
the node coordinates. The coordinate of each added node is set by the HyperMap algorithm to the
coordinate corresponding to the global maximum of this probability.
The Nash equilibrium networks of NNGs. The hyperbolic or physical, in the airport and
brain cases, coordinates are then supplied to the GNU Linear Programming Kit (GLPK) http:

//www.gnu.org/software/glpk/ used to find a solution to the corresponding minimum set cover
problem. To yield acceptable running times of the solver, the Internet and word networks are
reduced in size by extracting their high-degree cores of about 4500 nodes. The Hungarian road
data is processed slightly differently. First the cities in Hungary are mapped to their geographic
coordinates using the database in http://www.kemitenpet.hu/letoltes/tables.helyseg_hu.

xls. Then these coordinates are used in the GLPK to find the NNG equilibrium. Each edge in
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this equilibrium network is then checked for existence in the real road network. To check that, the
GoogleMaps API https://pypi.python.org/pypi/googlemaps/ is used to find the shortest path
between the two cities connected by the edge. The edge is defined to also exist in the real road
network if this shortest path does not go via any other city.
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Appendix 1 - Formal definition of the Network Navigation Game
(NNG)

Strategies. The strategy space for a player u ∈ P is to create some set of arcs to other players in
the network: Su = 2P\{u}. Let s be a strategy vector: s = (s0, s1 . . . sN−1) ∈ (S0, S1 . . . SN−1) and
G(s) be the graph defined by the strategy vector s as G(s) =

⋃N−1
i=0 (i× si).

Payoff. The objective of the players is to minimise their cost which is calculated as:

cu =
∑
∀u6=v

dG(s)(u, v) + |su|, u, v ∈ P (1)

where

dG(s)(u, v) =

{
0 ∃ u→ v greedy path in G(s)
∞ otherwise.

Appendix 2 - NNG equilibrium

The Nash equilibria of the Network Navigation Game can be characterised for each player
independently as follows: take a player u, and for all v ∈ V \ u let Suv = {w|d(v, w) < d(u,w)}.
Trivially Suv ⊂ V and

⋃
v∈V \u Suv = V . The optimal strategy sopt

u of u is the minimal set cover
of V with the sets Suv , independently from the strategies of the other players. This means that
s = (sopt

1 , sopt
2 . . . sopt

N−1) is both a NE and a social optimum.
The Nash equilibrium is not necessarily unique as there can exist different solutions of the above

set cover problem. In our work we concentrate on a specific equilibrium, which besides being a
solution, it also minimises the sum of edge the edge lengths all over the network. This is fully in
line with the edge-locality principle of complex networks [68] [69] [70] which many times accounted
for the high clustering coefficient. More formally, from the strategy vectors constituting a Nash
equilibria si and the corresponding graphs G(si) =

⋃N−1
i=0 (i × si) = (V,Ei) we seek for the one
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minimising
∑

j∈Ei d(Ei(j)).

An example

As an example, let us compute the Nash equilibrium topology for four points in the Euclidean plane
A,B,C,D (see Figure 7). Any node u out of these four needs to have a greedy next hop towards

Figure 7: Network Navigation Game in the Euclidean plane.

any other nodes (to avoid infinite cost), while having its number of edges minimised. Note that
having a greedy next hop is sufficient since all the other nodes will have greedy next hops towards
any other nodes for ensuring cu ≤ ∞. This will imply greedy paths between arbitrary pairs of
nodes.

Let us compute the sets Suv = {w|d(v, w) < d(u,w)} for the nodes, where d(x, y) is the Euclidean
distance and the minimal set covers for each node to get the Nash equilibrium.

• SBA = {w|d(A,w) < d(B,w)} = {A,D}, which means that A is a good greedy next hop
towards A and D for B, similarly SBC = {C,D}, SBD = {D} therefore the minimal cover for B
is {A,C} so B creates two edges to A and C

• SAB = {B,C}, SAC = {C,B,D}, SAD = {D} therefore the minimal cover for A is {C} so A
creates one edge to C

• SCA = {A}, SCB = {B,A}, SCD = {D} therefore the minimal cover for C is {B,D} so C creates
two edges th B and D

• SDA = {A,B,C}, SDB = {B,C,A}, SDC = {C,B,A} therefore the minimal cover for D is for
example {C} (A and B would be also good) so D creates one edge to C

Thus we can construct the graph from these minimal set coverings see Figure 7. This is a Nash
equilibrium and a social optimum as there are no lower cost equilibria or state for this game.
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Appendix 3 - Frame topology

There exists a well defined “frame topology” Gframe with scale-free out-degree distribution which
is present in every Nash equilibrium, or social optimum of the NNG (Gframe ⊂ G(s∗)) and other
possible games having navigation as an incentive (ps = 1). In other words the frame topology serves
as a skeleton of any equilibrium topology emerging from navigational games. The frame topology
is defined as:
Definition 1 (Frame topology) Let Gframe =

⋃N−1
u=0 (u× gu), where gu = {v|v /∈ su ⇒ cu =∞}.

Practically, the arc (u, v) is contained in Gframe if and only if the d(u, v)-disk centred at v does
not contain any player other than u (see Figure 8). This means that u cannot reach v by greedy

O v

u

Tu,v

Figure 8: An edge in the Gframe

routing through any other players then v, and so it must create an arc towards v to avoid of having
infinite cost. Note that the in-degree of each player in Gframe will be exactly one.

Appendix 4 - Connection probability

Here we cast the problem in statistical terms. We estimate the percentage of pairs of nodes
located at a given distance that are connected in the NNG equilibrium. We call this percentage the
effective connection probability. First the connection probability of the Frame Topology is derived.
This connection probability is a lower bound for the connection probability in the NNG equilibrium
network because the Frame Topology is contained in every NNG equilibrium network. A direct
upper bound of the connection probability is also studied. Based on a statistically equivalent lower
bound and the direct upper bound, a general formula for the connection probability is induced, in
which the average degree of the network is implicitly encoded. This makes it possible to approxi-
mate the connection probability (and all other quantities defined by it) using the observed average
degree in the NNG simulation.

Connection probability in the Frame Topology

As presented in Appendix 3 an arc (u, v) in the Frame Topology is established if and only if there
are no other points (players) within the intersection of the v−centred disk with radius d(u, v), and
the original disk with radius R. The probability of this event is(

TR − Tuv
TR

)N−2

≈ e−δTuv (2)
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An approximation for Tuv is as follows: Tuv is apparently equals to 2π(cosh duv−1)(≈ πe duv2 for not
so small duv) when the duv−disk is completely inside the R−disk. On contrary, if R− rv < d(u, v)

(there is real intersection) then much less evidently Tuv is approximately Tuv ≈ 4e
duv
2 e

R−rv
2 . In

Figure 9 two characteristic cases are depicted when there is real intersection of the duv-disk and the
R-disk. Let the polar coordinates of node v be (rv, φv), and of node u be (ru, φu). Let φ = |φu−φv|.

O O
β

γ

α

R
d

β

γ

α

R d

Figure 9: Illustration for Tuv

The area Tuv is the function of ru, rv, φ, and R, and can be calculated as the sum of the two circle
sectors with angle 2α, radius duv and angle 2β radius R, and minus the area of the two triangles
with angles α, β, γ. That is

Tuv = 2β (cosh(R)− 1) + 2α (cosh(duv)− 1)− 2 (π − α− β − γ) . (3)

where the angles and duv are given by the hyperbolic law of cosines, however, here the following
simpler approximations are used (which are accurate enough when ru and duv appear in exponents):

duv ≈ R+ rv + 2 ln
β

2
⇒ β ≈ 2e

duv
2
−R+rv

2 (4)

R ≈ duv + rv + 2 ln
α

2
⇒ α ≈ 2e−

duv
2

+R−rv
2 . (5)

Applying (3) with neglecting the triangle areas, and using cosh(R)−1 ≈ eR/2, cosh(duv)−1 ≈ eduv
2

we get Tuv ≈ 4e
duv
2 e

R−rv
2 .

In summary:

Tuv ≈
{

πeduv , if 0 < duv < R− rv
4e

duv
2 e

R−rv
2 , if duv > R− rv .

(6)

This Tuv approximations are illustrated in Figure 10 for R = 12, rv = 6 and rv = 8. Solid lines
are the exact Tuv calculations based on (3) and exact computations of angles. Note that there is
a sharp change on logarithmic scale between the duv-slope and duv/2-slope around R − rv. The
dashed lines are the Tuv approximations when duv > R− rv.

The calculation of the expected degree of node u requires e−δTuv in the following double inte-
gration:

δ

∫ R

0

∫ 2π

0
e−δTuvdφ sinh(rv)drv . (7)
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Figure 10: Tuv ≈ 4e
duv
2 e

R−rv
2 when there are real intersections (that is when d(u, v) > 6 and 4,

respectively).

Because the joint expansion of the double integral with respect to rv and φ reveals that the dominant
terms will be those in which duv > R− rv

δ

∫ R

0

∫ 2π

0
e−δTuvdφ sinh(rv)drv ≈ δ

∫ R

0

∫ 2π

0
e−δ4e

duv
2 e

R−rv
2 dφ sinh(rv)drv . (8)

Using (4) it can also be shown that

δ

∫ R

0

∫ 2π

0
e−δ4e

duv
2 e

R−rv
2 dφ sinh(rv)drv ≈ δ

∫ R

0

∫ 2π

0
e−δ8e

duv
2 dφ sinh(rv)drv . (9)

Therefore,

p̌(duv) = e−δ8e
duv
2 (10)

can be considered as a statistically equivalent connection probability of the Frame Topology and
as a latent (a statistically equivalent) lower bound of the connection probability of the equilibrium
network of the NNG.

A direct upper bound for the connection probability

An upper bound for connection probability p(duv) can be derived as follows. Let u and v be two
points in the R-disk and let Cu,v = {w|dwv < dwu} denote the area for which v is a good greedy
next hop for u. This area is on the side of v bounded by the perpendicular bisector (Buv) of (u, v),
see Figure 11. (The figure is in the Poincare model).

Let A = {x|Cu,x ⊃ Cu,v}. If there is a node w ∈ A then u does not connect to v since it has
a node w which covers the whole area that v can and some extra portion of the disk. Putting
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Figure 11: Calculation of p(duv)

it differently w can be in the optimal set cover (for u) instead of v. It is easy to see that A is
the intersection of two disks with radii R1 and R2 (the smaller circles on Figure 11). We can

approximate the area of this intersection by the union of two sectors having angles φ1 ≈ 2e
duv
2
−R1

and φ2 ≈ 2e
duv
2
−R2 (by using an approximation on the hyperbolic distance duv ≈ 2Ri + 2 ln φi

2 ) of
the R1 and the R2 disks respectively. Using this the area of A is given by:

TA ≈ φ1(cosh(R1)− 1) + φ2(cosh(R2)− 1) ≈ 2e
duv
2
−R1

eR1

2
+ 2e

duv
2
−R2

eR2

2
, (11)

which further simplifies to:

TA ≈ 2e
duv
2 . (12)

The probability that there is a node in A is:

p(∃w ∈ A) = 1−
(
Tdisk − TA
Tdisk

)N−2

≈ 1− e−δTA , (13)

where N denotes the number of nodes and Tdisk is the area of the R-disk. Trivially p(d) ≤ 1−p(∃w ∈
A) so:

p(duv) ≤ e−δTA . (14)

By substituting TA we get the following upper bound for the connection probability:

p(duv) ≤ e−δTA ≈ e−2δe
duv
2 =: p̂(duv) (15)

A general formula for the connection probability

In the Frame Topology (by definition) every node has exactly one incoming link, hence, the total
number of links are N . From this it immediately follows that the average out-degree of Frame
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Topology is 1. This will also confirmed by the results of the next note (Appendix 5), in which
the conditional expected degree of a node u with radial coordinate ru is calculated and shown by
un-conditioning that the average degree is 1. Regarding the direct upper bound of the connection
probability, consider a network in which links are established by this upper bound probability. Also
the analysis in the next note implies that the average degree of such a network is 4. Based on the
upper (15) and lower (10) bounds and the corresponding average degrees 1 and 4, a general formula
of the connection probability can be induced as

p(duv, δ, k̄) = Exp

(
−8

k̄
δe

duv
2

)
. (16)

It will be shown in the next sections that a network formed by this connection probability has
average degree k̄.

This formula is important because if an empirical average degree (which happens to be 2.27)
can be observed in experiments (simulations) resulting in equilibrium networks of NNG, then not
only upper and lower bounds on the expected degree of a node u and degree distribution, but
analytical approximations of them can also be given with this empirical mean. Figure 12 illustrates
the relation of the upper and lower bounds, and the approximation of the connection probability
to that of simulated NNG.

u

v

Cuv

A

O

R1

R2

R

Buv

Supplementary Figure 5: Calculation of p(duv)
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Supplementary Figure 6: Connection probability as a function of distance in NNG simulations. The figure
shows the analytic upper and lower bounds, as well as the analytic approximation with the empirical mean.
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Figure 12: Connection probability as a function of distance in NNG simulations. The figure shows
the analytic upper and lower bounds, as well as the analytic approximation with the empirical
mean.
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Appendix 5 - Expected degree of a given node

The expected (out-)degree of a node u with radial coordinate ru in a network generated with
the effective connection probability formula is given by the following double integral

kout(ru, k̄, R) = δ

∫ R

0

∫ 2π

0
p(duv, δ, k̄)dφ sinh(rv)drv . (17)

The expected node-degree of the equilibrium network of NNG is lower bounded by kout(ru, 1, R)
(which coincides the expected node-degree of the Frame Topology) whilst kout(ru, 4, R) is the up-
per bound. An analytical approximation with the empirical mean k̄ = 2.27 can be given by
kout(ru, 2.27, R).

In what follows a formula is derived for kout(ru, k̄, R) based on the integral above. Considering
the first integral by φ and applying the approximation (consider the hyperbolic law of cosine for
duv, ru, rv, cosh duv = cosh ru cosh rv − sinh ru sinh rv cosφ )

e
duv
2 ≈ e ru+rv2

√
1− cosφ

2
(18)

we get that the integral can be approximated as

δ

∫ 2π

0
Exp

(
−δ 8

k̄
e
duv
2

)
dφ ≈ 2πδ(I(0, x)− S(0, x)) ≈ 1

2
k̄e−

ru+rv
2 (19)

where x = 8
k̄
δe

ru+rv
2 and the last wave due to that I(0, x)−S(0, x) (difference of the BesselI and the

modified Struve functions) quickly tends to 2
πx
−1 as x increases [71]. Now the second integration

by rv gives the expected degree approximation, that is

kout(ru, k̄, R) ≈
∫ R

0

1

2
k̄e−

ru+rv
2 sinh(rv)drv ≈

1

2
k̄e

R
2 e−

ru
2 . (20)

One can check that the average degree is indeed k̄ with this expected node-degree:∫ R

ru=0

1

2
k̄e

R
2 e−

ru
2

sinh ru
coshR− 1

dru ≈
1

6
k̄ sech2

(
R

4

)(
sinh

(
R

2

)
+ 2 cosh

(
R

2

)
+ 1

)
≈ k̄ . (21)

We have numerically studied the accuracy of the approximations above. We have found that
the exponential decay of the expected degree of nodes (kout(ru)) is a good approximation of the
numerically evaluated expected degree function for a wide range of node density δ ∈ [10−8, 10−2].
For example, consider a Frame Topology (k̄ = 1) with R = 16.5, n = 10000. In this case δ =
2.17 · 10−4. Figure 13 shows how the expected degree decay is matching the exponential decay.
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Figure 13: Exponential decay (C(R)e−
ru
2 , larger blue dots) versus the numerically evaluated exact

decay (smaller red dots) of u’s expected degree as a function of ru (R = 16.5, n = 10000).

We observe that while at smaller ru there are some approximation errors, for larger values of
ru the match is very good. To quantify further, we note that 99.9% of points have ru > 10 (that
is in case of uniformly distributed points on the R(=16.5)-disk, expectedly only about 10 points
of the 10000 is inside the disk with radius 10). If we consider the relative errors of the matching
one can reveal that for ru > 10 it is smaller than 0.15%, that is for 99.9% of points the expected
degree approximation has smaller than 0.15% relative error. To increase the number of points to
n = 30000 and n = 50000 (δ = 6.54 ·10−4, δ = 1.08 ·10−3), the relative error is increasing, especially
for smaller values of ru, but still for 99.9% of the points the relative error smaller than 0.25% and
1%, respectively. If we dramatically decrease the node-density, for example n = 500, the relative
errors also increase (compared to the n = 10000 case), however, it still remains under 0.2% for
99.9% of the points.

Appendix 6 - Degree distribution

Let us recall that in case of uniform distribution of points on an R−disk of the hyperbolic plane,
the density of the radial coordinates of the points is

ρ(r) =
sinh r

coshR− 1
(22)

Note that the expected degree of node u is exponential in the radial coordinate ru as in [72]. Because
of this and the fact that equilibrium network of NNG is also sparse [73] the degree distribution can
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be calculated in the same way as in [72] :

P (k) =

∫ R

0
g(k, kout(ru))ρ(ru)dru =

k̄

2

Γ(k − 2, k̄2 )

k!
(23)

where g(k, kout(ru)) is the conditional distribution of the degree of a node with radial coordinate
u, and it is Poissonian with mean kout(ru) in case of sparse networks. It can also be shown that
for larger k

P (k) ≈ k̄2

2k3
. (24)

The direct derivation of the complement cumulant degree distribution from P (k) seems to be
intangible, however, from its approximation it can be computed as

F̄ (k, k̄) ≈ 1−
(∫

k̄2

2k3
dk + C

)
(25)

where the constant C is 1, and k ≥ 1
2 k̄ (in order to have distribution function), that is

F̄ (k, k̄) ≈ k̄2

4
k−2 , k ≥ 1

2
k̄ . (26)

It is interesting to show that this approximation can also be obtained as the exact ccdf of the
conditional expected node degrees kout(ru). This approximation can be computed as

F̄ (k, k̄) ≈
∫ ru(k)

r=0
ρ(r)dr ≈ eru(k)−R (27)

where ru(k) is the inverse function of kout(ru, k̄, R) w.r.t. ru, i.e.

ru(k) = R− 2 ln
(
2k/k̄

)
. (28)

Applying this one can obtain the same before as

F̄ (k, k̄) ≈ k̄2

4
k−2 , k ≥ 1

2
k̄ . (29)

Note that this yields the average degree equal to k̄ as expected:∫ ∞
k= 1

2
k̄

(
k
∂(1− F̄ (k, k̄))

∂k

)
= k̄. (30)

From this, an analytical approximation of the ccdf of the NNG equilibrium network is F̄ (k, 2.27),
its lower and upper bounds are F̄ (k, 1), F̄ (k, 4), respectively. In Figure 14 these analytical formulae
are drawn also with a completely empirical distribution obtained from NNG simulation.

We also note that the δ-independence of kout(ru) and F̄ (k) is approximate, but it holds with a
high accuracy for δ ∈ [10−8, 10−2], including the frame topology.
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Figure 14: Empirical CCDF of the degree distribution, its analytical upper and lower bounds
F̄ (k, 4), F̄ (k, 1), and analytical approximation with the empirical mean F̄ (k, 2.27).

Appendix 7 - Clustering

Here we analyse local clustering using the effective connection probability (16). By means of
quasi-symbolic calculations we also show that local clustering depends on the expected node degree
k similarly for both lower and upper bounds of the effective connection probability, and that average
clustering does not depend on average degree k̄.

Let the hyperbolic polar coordinates of the point triplet u, v, w be (ru, φu), (rv, φv), (rw, φw) and
φ = φu − φv, ψ = φu − φw. The local clustering coefficient cl(ru) for a given node u is calculated
as the ratio of the expected number of link pairs with common edge u and the expected number
of link triangles with edge u. For calculating these expected numbers, the joint probabilities of the
existence of (u, v) and (u,w) link pair and the existence of the (u, v, w) link triangle are substituted
by p(duv)p(duw) and p(duv)p(duw)p(dvw), respectively. This requires link independence assumption,
which is not true, however, correlations are expectedly diminished due to averaging processes (like
in mean field calculations [74]). In this way, the local clustering coefficient is formulated as

cl(ru) =
δ2
∫ R
rw=0

∫ R
rv=0

∫ 2π
ψ=0

∫ 2π
φ=0 p(duv)p(duw)p(dvw)dφdψ sinh(rv) sinh(rw)drvdrw

δ2
∫ R
rw=0

∫ R
rv=0

∫ 2π
ψ=0

∫ 2π
φ=0 p(duv)p(duw)dφdψ sinh(rv) sinh(rw)drvdrw

. (31)
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For estimating these integrals in the numerator and the denominator the following functions are
defined: ∫ 2π

ψ=0

∫ 2π

φ=0
p(duv)p(duw)p(dvw)dφdψ ≈ (32)

≈
∫ 2π

ψ=0

∫ 2π

φ=0
exp

(
−x sin

φ

2
− y sin

ψ

2
− z sin

|ψ − φ|
2

)
dφdψ =: Nu(x, y, z)

and ∫ 2π

ψ=0

∫ 2π

φ=0
p(duv)p(duw)dφdψ ≈

∫ 2π

ψ=0

∫ 2π

φ=0
exp

(
−x sin

φ

2
− y sin

ψ

2

)
dφdψ =: De(x, y) (33)

where the general connection probability formula (16), the approximation e
duv
2 ≈ e

ru+rv
2

√
1−cosφ

2

are applied and

x =
8

k̄
δe

ru+rv
2 , y =

8

k̄
δe

ru+rw
2 , z =

8

k̄
δe

rv+rw
2 . (34)

Now we apply asymptotic expansions of Nu(x, y, z) and De(x, y) in order to approximate them.
(Asymptotic expansion here means that x, y, z are large parameters and we are interested in the
asymptotic behaviour of these integrals as {x, y, z} → ∞). Note that De(x, y) is simply the product
of two integrals which reads as

De(x, y) :=

∫ 2π

ψ=0
exp

(
−y sin

ψ

2

)
dψ

∫ 2π

φ=0
exp

(
−x sin

φ

2

)
dφ

= 4π2(I(0, x)− S(0, x))(I(0, y)− S(0, y)) ≈ 16

xy
(35)

due to that I(0, x)-S(0, x) ≈ 2
πx
−1 based on its asymptotic expansion [71] .

For approximating Nu(x, y, z) we use Laplace’s [75] method to generate first orders of the
asymptotic expansion with respect to x, y and z. For this we take the first order Taylor series
expansion of the sinus functions around 0 and 2π where the integral is dominant for larger x, y, z.
Performing the double integral (32) with these series and erasing the exponentially small terms, we
get the following four terms with respect to that x is in the neighbourhood of 0 or 2π and y is in
the neighbourhood of 0 or 2π :

Nu(x, y, z) ≈ 2
4(x+ y + 2z)

(x+ y)(x+ z)(y + z)
+ 2

4

(x+ z)(y + z)
=

16(x+ y + z)

(x+ y)(x+ z)(y + z)
. (36)

Now the clustering coefficient can be written as

cl(ru) ≈
δ2

2

∫ R
rw=0

∫ R
rv=0 Nu(x, y, z) sinh(rv) sinh(rw)drvdrw

δ2

2

∫ R
rw=0

∫ R
rv=0 De(x, y, z) sinh(rv) sinh(rw)drvdrw

≈

≈
∫ R
rw=0

∫ R
rv=0

16(x+y+z)
(x+y)(x+z)(y+z) sinh(rv) sinh(rw)drvdrw∫ R

rw=0

∫ R
rv=0

16
xy sinh(rv) sinh(rw)drvdrw

(37)

Based on this it can be seen that cl(ru) does NOT depend on the density parameter δ, and depends
on the average degree k̄ only through ru(k, k̄) (see equation (20) ) because all the x, y, z terms
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contain a 8
k̄
δ factor. In this way both integrals in the numerator and denominator posses a 1

δ2

factor. (Note, that both the numerator and denominator are independent from δ).
In what follows we explore how the local clustering coefficient of a node is depending on the

expected degree k. This is possible to perform through the inverse function of k̄(ru) (based on
(20)) which is ru(k) = R− 2 ln

(
2k/k̄

)
. First the denominator is calculated which is possible in a

parametric way.∫ R

rw=0

∫ R

rv=0

16

xy
sinh(rv) sinh(rw)drvdrw =

1

9
e−4R(1− 4e3R/2 + 3e2R)2k2 ≈ k2 (38)

with the substitutions x, y in (34) and ru(k) above. (The term 16
xy does not depend on k̄ due

to the x, y and ru(k) substitution). Note that this is a good cross-validation of this formula,
because the expected number of link pairs of a node with given expected degree k is approximately
k(k − 1)/2 ≈ k2/2. This is because if the node degree κ has Poisson distribution with parameter

k then the expected number of link pairs at this node is E
[
κ(κ−1)

2

]
=
∑∞

l=0
l(l−1)

2
kl

l! e
−l, which

is exactly k2

2 . Based on the equations (37), (38) and substituting x, y, z into the formula of the
integrand one can obtain

cl(k, k̄, R) ≈
∫ R

rw=0

∫ R

rv=0

k̄e
1
2

(rv+rw−R)
(
k̄e

1
2

(rv+R) + k̄e
1
2

(rw+R) + 2ke
1
2

(rv+rw)
)

4
(
e
rv
2 + e

rw
2

)(
eR/2k̄ + 2ke

rv
2

)(
eR/2k̄ + 2ke

rw
2

) drvdrw . (39)

This double integral on the right hand side can be assessed symbolically by substitution, but even
a simplified result is still quite spacious (see the next note). Nevertheless, the detailed analysis of
this function reveals that it is approximately independent of R, and as k is increasing, the local
clustering coefficient tends to

cl(k, k̄) ≈ ln(2)k̄k−1 . (40)

For simplicity and for catching the behaviour of cl(k, k̄) even for smaller k values, the following
intuitive form of approximation is calculated by numerical matching. The intuition is based on the
observation that the integrand itself is in the form of a fraction of a first order and a second order
polynomial of k.

∫ R

rw=0

∫ R

rv=0

k̄e
1
2

(rv+rw−R)
(
k̄e

1
2

(rv+R) + k̄e
1
2

(rw+R) + 2ke
1
2

(rv+rw)
)

4
(
e
rv
2 + e

rw
2

)(
eR/2k̄ + 2ke

rv
2

)(
eR/2k̄ + 2ke

rw
2

) drvdrw ≈
1 + ak

b+ ck + dk2
(41)

where the coefficient a, b, c, d are approximately independent of R and is depending only on k̄. The
coefficient is summarised in the Table 3 for three cases: for the lower bound of the average degree
1, for the upper bound 4, and k̄ = 2.27 which latter average degree comes from the numerical
simulation of the network formation game.

Note that, for larger k’s

1 + ak

b+ ck + dk2
≈ a

d
k−1 ,

1

2
k̄ ≤ k ≤ 1

2
k̄e

R
2 , (42)

and a
d is very close to ln(2)k̄ for all the three cases, as expected.
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k̄ a b c d

1 0.598 1.008 2.168 0.869

2.27 0.331 1.002 1.019 0.209

4 0.220 1.002 0.618 0.080

Table 3: The clustering coefficient as a function of the average degree.

It is now possible to compute average clustering based on the approximation above as

cl =

∫ 1
2
k̄e
R
2

k= 1
2
k̄
cl(k, k̄)

∂

∂k
(1− F̄ (k))dk ≈

∫ 1
2
k̄e
R
2

k= 1
2
k̄

1 + ak

b+ ck + dk2

k̄2

2k3
dk . (43)

Evaluating this integral for the average degree lower bound k̄ = 1, upper bound k̄ = 4, and the
average degree in simulations k̄ = 2.27, we obtain, using Table 3, cl = 0.447075, 0.447615, 0.447146,
respectively. We have also performed more extensive numerical experiments showing that average
clustering does not significantly depend on the average degree for δ ∈ [10−8, 10−2] and R ∈ [10, 20].
Its dependence on R is also negligible, which is not surprising since R appears only on the upper
limit of the integral, and this upper limit negligibly affects the result since the integrands decrease
as ∼ k−5. All these analytic and numeric results are in a good agreement with simulations, see
Figure 15.
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Supplementary Figure 9: Average clustering as a function of δ, and local clustering as a function of node degree.
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Supplementary Figure 10: The in and out degree distributions of the NNG for various settings of the α param-
eter.

6

Figure 15: Average clustering as a function of δ, and local clustering as a function of node degree.

Appendix 8 - Evaluating the integral (39)

The integral for computing the local clustering coefficient presented (39) can be evaluated by
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the following substitution

ξ = Exp
(rv

2

)
, ζ = Exp

(rw
2

)
, dξ = Exp

(rv
2

) 1

2
drv , dζ = Exp

(rw
2

) 1

2
drw , (44)

which is in the form

cl(k, k̄, R) ≈
∫ e

R
2

1

∫ e
R
2

1

e−
R
2 k̄
(
e
R
2 k̄(ζ + ξ) + 2ζkξ

)
(ζ + ξ)

(
e
R
2 k̄ + 2ζk

)(
e
R
2 k̄ + 2kξ

)dξdζ . (45)

A simplified version of the result of the integral (39) is

1

8k2

e−R2
k̄eR/2

k̄
Li2

2
(

1 + e−
R
2

)
k

2k − k̄

− Li2

2
(

1 + e−
R
2

)
k

2k + k̄

+

Li2

(
−2
(
1 + eR/2

)
k

eR/2k̄ − 2k

)
+ Li2

(
4k

2k + eR/2k̄

)
− Li2

(
2
(
1 + eR/2

)
k

2k + eR/2k̄

)
− Li2

(
4k

2k − eR/2k̄

)
−

Li2

(
− 4k

k̄ − 2k

)
+ Li2

(
4k

2k + k̄

)+ k̄

(
log
(
eR/2 + 1

)(
ln

(
−2ke−

R
2 + k̄

2k − k̄

)
− ln

(
k̄ − 2ke−

R
2

2k + k̄

)
+

ln

(
eR/2(2k + k̄)

k̄eR/2 − 2k

)
− ln

(
eR/2(k̄ − 2k)

2k + k̄eR/2

))
+ ln

(
2eR/2

)(
ln

(
1− 4k

2k + k̄

)
− ln

(
4k

k̄ − 2k
+ 1

))
+

ln(2)

(
ln

(
1− 4k

2k + k̄eR/2

)
− ln

(
4k

k̄eR/2 − 2k
+ 1

))
+ 2

(
ln
(
eR/2(2k + k̄)

)
−

ln
(

2k+k̄eR/2
))(

tanh−1

(
2k

k̄

)
−tanh−1

(
2ke−

R
2

k̄

)))
+8k

(
ln
(
eR/2

)
−ln

(
eR/2+1

)
+ln(2)

)+

4kk̄
(

ln(4)− 2 ln
(
eR/2 + 1

)) ,

(46)

where the function Li2(z) =
∑∞

k=1
zk

k2
is the di-logarithm special function. We observe that factors

Exp(−R/2) and Exp(R/2) appear in several terms. If R is sufficiently large, e.g., ranging between
realistic values of 10 and 20, then we can neglect the exponentially smaller terms, keeping only the
exponentially large dominating terms. For example,

k̄ − 2ke−
R
2

2k + k̄
≈ k̄

2k + k̄
and

eR/2(2k + k̄)

k̄eR/2 − 2k
≈ 2k + k̄

k̄
. (47)

Using this procedure, after some simplifications, we finally obtain an R−free expression for clus-
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tering:

cl(k, k̄) ≈ 1

8k2
k̄

(
8k ln(2) + k̄

(
ln

(
k̄ + 2k

k̄

)
ln

(
k̄ + 2k

k̄ − 2k

)
+ ln(2) ln

((
k̄ − 2k

)2(
k̄ + 2k

)2
))

+

k̄

(
Li2

(
2k

2k − k̄

)
+ Li2

(
−2k

k̄

)
− Li2

(
2k

k̄

)
−

Li2

(
− 4k

k̄ − 2k

)
− Li2

(
2k

2k + k̄

)
+ Li2

(
4k

2k + k̄

)))
(48)

We can now see that cl(k, k̄) → ln(2)k̄ k−1 as k increases, because the logarithmic terms become
zero, while the dilogarithmic terms eliminate each other. The analysis of this function at k = 0 also
shows that cl(0, k̄) = 1, from which it follows that b = 1 in the polynomial matching the numerical
calculations, cf. Table 3.

Appendix 9 - Expected out-degree distribution in a frame
topology with quasi-uniform node density

The radial coordinate density in case of quasi-uniform node density is

ρ(r, α) :=
α sinh(αr)

cosh(αR)− 1
≈ αeα(r−R) (49)

while the angle density remains uniform ( 1
2π ) over the range [1, 2π]. Given a point pair (u, v), first

we determine the probability p(ru, α) that the u → v link exists, then based on this the average
out degree k(ru, α) of u is calculated, and finally F̄ (k, α) is also given.

Probability p(ru, α) is equal to the probability that none of the remaining N − 2 points fall in
the intersection of the v-centred duv circle and the R-disk. Let us denote by p1 the probability that
a point whose coordinates generated by randomly according to the densities above falls inside the
intersection. Using p1 the probability p(ru, α) can be calculated and approximated as

p(ru, α) = (1− p1)N−2 ≈ e−Np1 (50)

The calculation of p1 can be performed by using the node density function in the following way [72]

p1 =

∫ max(0,d−rv)

0
ρ(r, α)dr +

1

2π

∫ min(R,d+rv)

|d−rv |
ρ(r, α)2θ(r)dr (51)

where

θ(r) = arccos
cosh rv cosh r − cosh d

sinh rv sinh r
. (52)

In [72] a useful approximation is presented for quite similar integrals, based on which one can write

p1 ≈
4e

1
2

(d−R−rv)α

π(−1 + 2α)
(53)

for 0.5 < α ≤ 1 .
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Now the expected out-degree of u can be written as

kout(ru, α) ≈ N

2π

∫ R

0

∫ 2π

0
e−Np1dφρ(rv)drv . (54)

Using the approximation of p1 and cosh(d/2) ≈ e ru+rv2 sin φ
2 one can formulate∫ 2π

0
e−Np1dφ ≈

∫ 2π

0
e−x sin φ

2 dφ ≈ 2π(I(0, x)− S(0, x)) ≈ 4

x
(55)

where

x = 4
N

π

α

2α− 1
e
ru−R

2 . (56)

Note, that x does not depend on rv, therefore the second integration by rv results

kout(ru, α) ≈ N

2π

4

x

∫ R

0
ρ(rv, α)drv =

2α− 1

2α
e
R
2 e−

ru
2 . (57)

Note, that for α = 1 we get back the result for the uniform density case, (20).
Now the (approximation of the) complement cumulative distribution function F̄ (k) can be

derived as,

F̄ (k) =

∫ ru(k)

0
ρ(r, α)dr ≈ eα(ru(k)−R) =

(
1− 1

2α

k

)2α

(58)

where ru(k) is the inverse function of kout(ru) . The simulation results displayed in Figure 16
readily confirm this finding.

Figure 16: The in and out degree distributions of the NNG for various settings of the α parameter.
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Appendix 10 - Statistical Significance

In this note we provide probability estimates which represent the statistical significance of that
the NNG equilibrium network links’ containment by the real networks is very unlikely to occur
by random chance, but rather is likely to be attributable to the specific characteristics of our
embedding and NNG processes.

The NNG equilibrium network (graph) is a transformation of the real network under investiga-
tion by an embedding and a gaming (NNG) process. Although this transformation is completely
deterministic, the statistical significance test can be performed in the following two ways: In the
first approach the NNG equilibrium network is substituted by a completely random network with
the same average degree k̄NNG, that is N

2 k̄NNG links are randomly chosen from the possible N(N−1)
2

number of links. The probability that p fraction of these links (e.g. p = 0.83) are contained by the
real network (having N

2 k̄ links) can be calculated as(N(N−1)/2−N/2k̄
(1−p)N/2k̄NNG

)( N/2k̄

pN/2k̄NNG

)
(N(N−1)/2

N/2k̄NNG

) (59)

which is in the order of O(e−N ). Because this probability is extremely small for reasonable N ,
our result is very unlikely to occur also along with fully random networks with fixing only the
number of edges. For example, taking the values on the Internet AS-level topology embedding
(N = 4919, N2 k̄ = 28361, N2 k̄NNG = 5490, p = 0.83) the probability above is 5.62× 10−11068.

A more refined randomization of the NNG equilibrium network is to substitute only the em-
bedding process by fully random generation of H2 coordinates (with such coordinate distribution
similar to the one resulted by the embedding process) and then apply the gaming process (as if the
embedding was wrong and had no concern to the original real network). In this way, the resulted
random NNG network preserves not only the average degree, but the degree distribution and also
the clustering coefficient of the original NNG equilibrium network. Let X be a random variable
denoting the number of links from the randomized NNG equilibrium network contained by the
original real network. Inevitably, X is a non-negative random variable bounded also from above
by P := N

2 k̄NNG. Although the exact distribution of X cannot be calculated due to the dependent
link establishment of the gaming process, the expected value of X (which is insensitive to link
dependence) is

E(X) =
N

2
k̄
N
2 k̄NNG

N(N−1)
2

≈ 1

2
k̄NNG k̄. (60)

Based on this average value, a conservative upper bound can also be given on the probability that
the level of this link containment exceeds a certain threshold 0 < C < P . Applying Hoeffding’s
inequality [76] we can state that

P (X > C) ≤
(
E(X)

C

)C
P
(
P − E(X)

P − C

)1−C
P

(61)

This upper bound is far below 0.05 for several reasonable k̄ and N . For example, the probability
that more than 83 percent of the randomized NNG equilibrium network links (C =4556 of the total
5490 edges) coincide Internet real edges (among the total 28 361) is upper bounded by 0.00136044.
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The complement of the upper bound of the probability above (1-upper bound) can also be consid-
ered as a weight of our statement (in the example above 0.99864).

Appendix 11 - Euclidean plane

In this note we analyze the degree distribution in NNG equilibrium networks constructed on
sets of points sprinkled uniformly at random over Euclidean disks. We show that the expected
degree of a node located in the disk centre is around 1, while the expected degree of a node at
the disk boundary is around 1/2. In view of this lack of variability of node degrees, the degree
distribution in the Euclidean case cannot have any fat tails.

According to (7) the expected degree of a node u is

δ

∫ R

0

∫ 2π

0
e−δTuvdφrvdrv , (62)

where δ = N/TR = N
R2π

. To give an upper bound we will give a lower bound for Tuv. If u is the
centre of the disk, then Tuv is the area of the intersection of the disk and an circle around v with
radius rv. If rv ≤ R/2, then this intersection is the circle itself around v, else the intersection
contains a circle with radius R/2, hence

k(0) ≤ δ
∫ R/2

0

∫ 2π

0
e−δr

2
vπdφrvdrv + δ

∫ R

R/2

∫ 2π

0
e−δ(R/2)2πdφrvdrv

≤ 1− e− 1
4
δR2π +

3

4
δR2πe−

1
4
δR2π ≤ 1 + 3

N

4
e−N/4 ≤ 1 +

3

e
. (63)

Moreover, if N ≥ 6 then k(0) ≤ 1.05
To give a lower bound to the expected degree we will count with the whole circle around v

instead of the intersection:

k(0) ≥ δ
∫ R

0

∫ 2π

0
e−δr

2
vπdφrvdrv = δ2π

∫ R

0
e−δr

2
vπrvdrv = 1− e−δR2π = 1− e−N . (64)

If N ≥ 6, then k(0) ≥ 0.99.
Similarly, for the expected degree of a node u at the disk boundary

k(R) ≥ δ
∫ R

0

∫ 2π

0
e−δd

2πdφrvdrv, (65)

where d is the distance between u and v, and according to the cosines law, d2 = R2+r2
v−2Rrv cosφv.

The inner integration is∫ 2π

0
e−δπ(R2+r2v−2rurv cosφv)dφ = 2πI(0, 2πδrvR)e−δπ(R2+r2v), (66)

where I(0, x) is the BesselI function. Unfortunately the BesselI cannot be integrated, but we can
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use that I(0, x) ∼ ex/
√

2πx. Hence

k(R) ≥
∫ R

0

2πδ√
4π2δRrv

e2πδRrv−δπ(R2−r2v)rvdrv =

∫ R

0

rvN√
R3π

e−π(R−rv)2N/R2
drv

≥ 2
√
N

3
√
π

HypergeometricPFQ

({
1

2
, 1

}
,

{
5

4
,
7

4

}
,−N

)
−−−−→
N→∞

1

2
(67)
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Supplementary Figure 11: Average degree of nodes as a function of their radial coordinates on an Euclidean
disk (left), and the cumulative distribution function of node degrees in the corresponding NNG equilibrium, its
frame topology, the Hungarian road network, the brain network, and its NNG equilibrium (right).

7

Figure 17: Average degree of nodes as a function of their radial coordinates on an Euclidean
disk (left), and the cumulative distribution function of node degrees in the corresponding NNG
equilibrium, its frame topology, the Hungarian road network, the brain network, and its NNG
equilibrium (right).

On the left panel of Figure 17 the simulation results support the analytical findings that in the
Euclidean case the expected degree nodes as a function of their radial coordinates has very low
variability in the NNG equilibrium networks and their frame topologies. As a consequence of this
low variability the degree distributions do not have any fat tails or power laws, and decay fast with
the node degree, the right panel of Figure 17. Clustering is still relatively strong however: in the
synthetic Euclidean NNG network it is 0.19, in the road NNG network it is 0.22, while in the brain
network and its NNG, the clustering values are 0.46 and 0.21 respectively.

Appendix 12 - Heaviside step function approximation to the
effective connection probability

The Heaviside step function with the step at

R′ = 2 ln
k̄

8δ
(68)
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is a good approximation to the effective connection probability in Eq. (16) for δ ∈ [10−6, 10−3] and
R = [12, 18]. With this step-function approximation, node u connects to v iff duv ≤ R′. Therefore
the expected degree of u is the expected number of points lying within the intersection of the
R−disk and the u-centred disk of radius R′.

To see that this step function is indeed a good approximation to the effective connection prob-
ability in the NNG equilibrium, recall that the area of the two disks above can be approximated
as

TR′,R = 4e
R′
2 e

R−ru
2 . (69)

From these one can obtain

kout(ru) ≈ N TR′,R
TR−disk

= N
4e

R′
2 e

R−ru
2

πeR
. (70)

If R′ from (68) is substituted into the formula above we get back the expected out-degree in (20).
In particular, if R′ = R (as in [77]), then

kout(ru) =
4

π
Ne−

ru
2 (71)

and

k̄ =
8

π
Ne−

R
2 , (72)

which coincides with Eqs. (12,13) in [77].

Appendix 13 - Nonnavigable network example

One cannot expect every real network to be highly navigable because navigation is not an
important function of every real network. Here we consider one example, the Pretty-Good-Privacy
(PGP) web of trust network, specifically the December 2006 snapshot and its hyperbolic coordinates
from [78]. These data are then processed exactly as for all the other networks in the main text.
However, as expected, the navigation success ratio and precision metrics reported for this network
in Table 4 are substantially lower than for the navigable networks in the main text.

PGP

Nodes 4899

Real edges (|R|) 67650

NNG edges (|M |) 29311

True positives (|T |) 6945

False positives (|F |) 22366

Precision (|T |/|M |) 24%

Navigation success ratio 36%

Table 4: The table quantifies the relevant edge statistics showing the total number of edges in the
core of the PGP network |R|, and in its NNG equilibrium network |M |, the number of true positive
edges |T |= |M ∩ R|, the number of false positive green edges |F |= |M \ R|, and the true positive
rate, or precision, defined as |T |/|M |.
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