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We investigate theoretically how the spectroscopy of an ancillary qubit can probe cavity (cir-
cuit) QED ground states containing photons. We consider three classes of systems (Dicke, Tavis-
Cummings and Hopfield-like models), where non-trivial vacua are the result of ultrastrong coupling
between N two-level systems and a single-mode bosonic field. An ancillary qubit detuned with
respect to the boson frequency is shown to reveal distinct spectral signatures depending on the
type of vacua. In particular, the Lamb shift of the ancilla is sensitive to both ground state photon
population and correlations. Back-action of the ancilla on the cavity ground state is investigated,
taking into account the dissipation via a consistent master equation for the ultrastrong coupling
regime. The conditions for high-fidelity measurements are determined.
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In recent years, cavity quantum electrodynamics
(QED) has thrived thanks to the possibility of control-
ling light-matter interaction at the quantum level, which
is relevant for the study of fundamental quantum phe-
nomena, the generation of artificial quantum systems,
and quantum information applications [1]. The field has
more recently blossomed in solid-state systems, partic-
ularly in superconducting quantum circuit QED [2, 3]
and semiconductor cavity QED [4]. In conventional cav-
ity QED, photons are present only in the excited light-
matter states of the system and can escape the cavity
due to a finite transparency of the mirrors. The situa-
tion changes drastically in the so-called ultrastrong light-
matter coupling regime[5–10], achieved when the light-
matter interaction rate is comparable or larger than the
photon frequency. Indeed, it can become energetically
favorable to have photons in the ground state. How-
ever, such ground state photons are bound to the cavity
and cannot escape, since that would violate the energy
conservation[11].

In the ’thermodynamic’ limit where a large number
N of two-level systems are (ultra)strongly coupled to a
single bosonic mode, phase transitions can occur with
non-trivial and degenerate vacua. The vacuum proper-
ties depend on the details of the light-matter coupling
and on the Hamiltonian symmetries. These phase transi-
tions are associated with a symmetry breaking: it is a dis-
crete Z2 symmetry for the phase transition [12–15] in the
Dicke model [16] where the non-rotating wave terms of
light-matter interaction are considered; it is a continuous
U(1) symmetry in the case of the Tavis-Cummings model
[17, 18] where non-rotating wave terms are absent. Such
symmetries can be controlled in models where the two-
level systems are coupled to both the quadratures of the
bosonic field [19]. On the other hand, in Hamiltonians
containing a strong enough quadratic renormalization of
the cavity photon frequency (e.g., due to the squared
electromagnetic vector potential term), the ground state

is a two-mode squeezed vacuum, but no phase transition
occurs [20]. This is the case for the Hopfield model [21],
notably realized in semiconductor microcavities [5, 7–9].
The fundamental meaning and validity of cavity and cir-
cuit QED quantization procedures is critically at play in
the ultrastrong coupling regime, since different forms of
Hamiltonians lead to extremely different physical phe-
nomena [22–24]. Protocols to detect the properties of
cavity vacua are therefore of strong significance, not only
for a study of intriguing ground states, but also as a sen-
sitive test of fundamental microscopic theories.

In this context, a crucial question arises: how to de-
tect ground state photon populations and correlations
without destroying them? In principle bound photons
in cavity (circuit) QED vacua can be released by a non-
adiabatic, ultrafast modulation of the Hamiltonian pa-
rameters [5, 25–28], which can convert a ground state into
an excited state. While non-adiabatic QED provides an
interesting way of observing non-classical quantum vac-
uum radiation, finding a non-invasive and sensitive probe
of the ground state properties remains highly desirable.
A theoretical work [29] in circuit QED has suggested to
study the coupling between a Dicke system and an ad-
ditional superconducting qubit, showing that Dicke crit-
icality can be observed via current transport measure-
ments. However, in Ref. [29] the considered effective
dispersive interaction between the cavity system and the
auxiliary qubit depends only on the cavity photon pop-
ulation, and not on the intracavity light-matter corre-
lations; moreover the dissipation has not been treated
with a master equation suited for the ultrastrong cou-
pling regime [30], which is essential to avoid artifacts such
the instability of the ground state and the excitation of
the system in the absence of driving[11, 30].

In this Letter, we show that the spectroscopy of an an-
cillary qubit, moderately coupled to a cavity QED sys-
tem, depends sensitively on the type of vacua. By driving
this ancillary qubit and analyzing its frequency response,
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FIG. 1: A sketch of a cavity (circuit) QED system S consist-
ing of a single-mode resonator coupled to N two-level (artifi-
cial) atoms. An ancillary qubit M is coupled to the resonator
boson mode. The spectroscopy of the ancilla is used to probe
quantum ground state properties of S.

we show that it is possible to have distinct signatures
of the ground state photon populations and correlations
without destroying them. We explore this protocol by
considering three different classes of systems described
respectively by the Dicke, Tavis-Cummings and Hopfield
models, each one having a ground state with different
properties. We show numerically and analytically that
the Lamb shift of the ancillary qubit transition is very
sensitive both on the photon populations and correla-
tions of exotic vacua. We explore the back-action of the
ancillary qubit on the cavity ground state and determine
the key physical quantities affecting the fidelity of the
measurement, including consistently the dissipation ef-
fects in the ultrastrong coupling regime.

As sketched in Fig. 1, we will consider an ancillary
qubit M coupled to the bosonic mode of a cavity (cir-
cuit) QED system S. In particular, we will deal with the
following time dependent Hamiltonian (~ = 1),

H(t) = HS+
ωM
2
σ(M)
z +gM

(
a† + a

)
σ(M)
x +Ωp cos(ωpt)σ

(M)
x ,

(1)
where HS is the system Hamiltonian, gM is the cou-
pling between the measurement qubit and the boson field,

whose boson annihilation operator is a. The σ
(M)
i Pauli

operators act on the Hilbert space of the qubit M , whose
transition frequency is ωM , while Ωp is the amplitude of
the driving field with frequency ωp acting on M .

In the following, HS will be one of the three Hamiltoni-
ans, describing respectively the Dicke, Tavis-Cummings
and Hopfield-like models (~ = 1):

HDicke = ωca
†a+ ω0Jz +

λ√
N

(
a† + a

)
(J+ + J−) ,
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FIG. 2: (Color online) Left panels: excitation energies for
the three considered systems S versus the coupling λ between
the boson field and the N atoms. Right panels: the Lamb
shift of the ancillary qubit transition. The red dashed lines
are calculated via Eq. (3). Top panels: Dicke system with
N = 3, ωc = ω0, ωM = 2.75ωc, gM = 0.1ωc. Middle panels:
Tavis-Cummings system with N = 3, ωc = ω0, ωM = 2.75ωc,
gM = 0.1ωc. Bottom panels: an Hopfield system with N = 3,
ωc = ω0, ωM = 6.75ωc, gM = 0.1ωc, D = λ2/ω0.

HTC = ωca
†a+ ω0Jz +

λ√
N

(
a†J− + aJ+

)
,

HHopfield = HDicke +D
(
a† + a

)2
,

where ωc is the frequency of the bosonic mode, ω0 is the
transition frequency of each of the N identical two-level
atoms, λ is the collective coupling and D = λ2/ω0 is the
strength of the boson renormalization term in the Hop-
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FIG. 3: Top panels: Lamb shift of the ancillary qubit (black
dots) versus λ for N = 1, 3, 10 and 30. Red-dashed lines are
obtained via Eq. (3). Bottom panel: ground state fidelity
FG. Left panels: Dicke model with ωc = ω0, ωM = 2.75ωc,
gM = 0.1ωc. Right panels: Hopfield model with ωc = ω0,
ωM = 6.75ωc, gM = 0.1ωc, D = λ2/ω0.

field model. The Ji are the angular momentum oper-
ators representing the collective pseudo-spin associated

to the N two-level systems, namely Jz = 1
2

∑N
i=1 σ

(i)
z ,

J± =
∑N
i=1 σ

(i)
± , where the Pauli matrices here refer to

each two-level system.
We start by considering the energy levels of HS+M , de-

scribing the system S coupled to the measurement qubit
M , namely:

HS+M = HS +
ωM
2
σ(M)
z + gM

(
a† + a

)
σ(M)
x . (2)

The eigenstates and their energies are defined by
HS+M |l〉 = εl|l〉. System S will be of the Dicke, Tavis-
Cummings or Hopfield type, as shown in Fig. 2. We

consider a qubit transition frequency ωM detuned with
respect to the boson frequency ωc = ω0. For gM = 0, the

driving field term, proportional to the operator σ
(M)
x , in-

duces a transition from the ground state |GS〉 ⊗ | ↓〉 to
the excited state |GS〉⊗| ↑〉, being |GS〉 the ground state
of S and | ↓〉 (| ↑〉) the ground (excited) state of the qubit
M . For finite gM , the coupling between S and M cre-
ates a mixing between states of the form |ΨS〉 ⊗ |ψM 〉
and the driving induces a transition from the ground
state |GS+M 〉 to excited states of HS+M . Therefore, in
the spectroscopy the relevant excited states |l〉 are those

having the largest values of |〈GS+M |σ̂(M)
x |l〉|2. The color

scale of the levels in Fig. 2 is proportional to such matrix
element. The results show that, due to the off-resonant
coupling, there is only one dominant spectroscopically-
active level (black thick solid line), which has a strong
overlap with the state |GS〉 ⊗ | ↑〉. The right panels
shows the Lamb shift of the qubit transition frequency.
The top, middle and bottom panels of Fig. 2 are respec-
tively for the Dicke, Tavis-Cummings and Hopfield mod-
els. For λ = 0 the system S is like a bare cavity, so the
spectral renormalization is the standard Lamb shift [31]
of the qubit due to the coupling to the normal vacuum
in the cavity. By increasing λ the vacuum is modified
and the Lamb-shift changes. It is apparent that the be-
havior of the qubit shift is qualitatively different in the
three cases. For the Dicke model (top panels), the Lamb
shift increases strongly with λ and becomes much big-
ger than in the case of the bare cavity (λ = 0). In the
Tavis-Cummings case (middle panels), the Lamb shift
increases in a step-like way as a function of λ. In the
Hopfield model (bottom panels), instead the Lamb shift
decreases with increasing value of λ.

By generalizing the approach in Ref. [33], we have
derived an analytical expression at the second order in
gM for the measurement qubit Lamb shift, namely

δω
(S)
M ' g2M

(
1

ωM − ωc
+

1

ωM + ωc

)
〈(a+ a†)2〉+ g2M

(
1

(ωM − ωc)2
− 1

(ωM + ωc)
2

)
〈V̂ (S)〉, (3)

where V̂ (Dicke) = λ√
N

(a + a†)Jx, V̂ (TC) = λ√
N

(aJ+ +

a†J−) and V̂ (Hopfield) = V̂ (Dicke) + 2λ
2

ω0
(a + a†)2. Here

the expectation values are calculated on the ground state
|GS〉 of the target system S. Importantly, the shift
not only depends on the ground state photon popula-
tion 〈a†a〉, but also on the anomalous expectation value
〈a†2 + a2〉 and on the correlation between photon field
and the N two-level systems. The red-dashed lines in
the right panels of Fig. 2 depict the shift predicted by
Eq. (3). The agreement between the numerical diagonal-

ization results and the analytical formula is excellent in
the considered range of values for λ/ωc, except for points
where there are avoided crossings with other levels.

In Fig. 3, we present the behavior of the qubit spec-
tral shift as a function of N . With increasing value
of N , a critical point emerges for the Dicke Hamilto-
nian (left panels), but not for the Hopfield case (right
panels). The behavior of the qubit Lamb shift, al-
ready completely different for small values of N , be-
comes strikingly dissimilar. Already for N = 30, the
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FIG. 4: Excited state population of the ancilla qubit M ver-
sus the coherent drive frequency ωp for different values of col-
lective coupling λ. Left panel: Dicke model with Ωp = 0.5γM .
Right panel: Tavis-Cummings model with Ωp = 0.2γM . Dis-
sipation parameters: γM = γc = γ0 = 0.01ωc. The other
parameters are as in Fig. 2. The white line corresponds to
the analytical curve in Eq. (3).

shift has a considerable jump around the critical cou-
pling. The bottom panels shows the ground state fidelity
FG = TrS,M (|GS+M 〉〈GS+M |(|GS〉〈GS | ⊗ 1̂(M))), quan-
tifying the change of the cavity system ground state in
presence of the ancilla qubit. In the considered condi-
tions, FG can be close to 1. However, for large values
of λ/ωc the fidelity strongly decreases in the Dicke case
above the critical coupling, while it stays close to 1 for
Hopfield. Since for gM → 0 the fidelity tends to 1 and
the qubit shift is proportional to g2M , a trade-off between
fidelity and size of the qubit shift can be found depending
on the degree of level broadening.

In order to include dissipation consistently with the
ultrastrong coupling regime, we need to consider a mas-
ter equation for the density matrix where the quantum
jumps occur between the actual eigenstates of the Hamil-
tonian HS+M [30, 32]. We consider three decay channels,
associated to the bosonic mode, the N two-level systems
and the measurement qubit, with dissipation rates γc, γ0
and γM respectively (see Fig. 1). Namely:

ρ̇ = −i[H(t), ρ]+
γc
2
D[U [a†+a]]+

γ0
2
D[U [Jx]]+

γM
2
D[U [σ(M)

x ]]

(4)
where D[Â] =

(
2ÂρÂ† − ρÂ†Â − Â†Âρ

)
and U [Â] =∑

ll′ Θ(εl′ − εl)〈l|Â|l′〉|l〉〈l′| defines the jump operators
taking as argument the system operator involved in the
coupling to the reservoir (Θ(ω < 0) = 0 and Θ(ω >
0) = 1). Here we are considering reservoirs at zero tem-
perature (they can only absorb energy from the system
S + M). Note that if one uses the standard Lindblad
equation with bare excitation operators as in Ref. [29],
the ground state of the whole system HS+M is unstable
and the reservoir excites the system even at zero temper-
ature.

We can now apply the master equation in Eq. (4) to
describe the spectroscopy when qubit M is driven as
described by Eq. (1). We have determined the steady-
state density matrix ρ̂S+M and consequently the re-
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FIG. 5: Measurement fidelity F (see definition in the text)
for different values of λ for the Dicke model and for different
dissipation rates γc = γ0 = ηγM and γM = 0.01ωc. Solid line:
η = 0. Dashed line: η = 1. Dot-dashed line: η = 10. Other
parameters as in Fig. 4.

duced density matrix of qubit M and system S , namely
ρ̂M = TrS(ρ̂S+M ) and ρ̂S = TrM (ρ̂S+M ). In Fig. 4,
we show results for the qubit excited state population

n
(M)
↑ = TrS,M (ρ̂S+M (1 + σ̂

(M)
z )/2) versus the driving

frequency ωp and the collective atom-photon coupling λ.
The ancilla excited state population spectrum shows a
resonant peak that provides direct access to the vacuum-
dependent qubit Lamb shift discussed so far and well de-
scribed by the formula in Eq. (3). Within our framework,
we can evaluate the degree of back-action on the system
S. In particular we can calculate the measurement fi-
delity F = TrS(ρ̂S |GS〉〈GS |), depending on the coupling
between S and M , the driving of the qubit and the dis-
sipation rates. F = 1 means that the cavity ground
state is unaffected by the overall measurement process.
In Fig. 5, we show F versus ωp for different values of
λ and of the dissipation rates. The moderate dip at the
resonance frequency is due to creation of real excitations
in the system S via the driving of the qubit M . When
the driving amplitude Ωp → 0, the dip disappears (not
shown). Out of resonance, F → FG, the fidelity depend-
ing only on the level mixing between qubit M and system
S (see Fig. 3), quantified by the ground state fidelity FG.
Concerning the dissipation, our results show that when
the cavity system S dissipation rates γc, γ0 are much
smaller than the ancilla qubit dissipation rate γM , then
the most pronounced fidelity dip is obtained (black solid-
lines in Fig. 5 are for vanishing dissipation in the system
S). Indeed, in such conditions a significant steady-state
population of excited states can be created in S due to
the low dissipation rates, implying that the ancilla qubit
cannot ’read’ faithfully the ground state of the system.
Instead in the opposite limit, the fidelity dip disappears
(F(ωdip)→ FG) as excited state populations in S can be
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dissipated efficiently.
In conclusion, we have shown theoretically that the

spectroscopy of an ancillary qubit coupled to a cavity
(circuit) QED system is a very sensitive probe of its
ground state photon properties. The spectral Lamb shift
of the ancillary qubit transition is vacuum-dependent,
namely depending on the ground state photon popula-
tions and correlations. The Lamb shift behaves quali-
tatively in a different way for systems described by the
Dicke, Tavis-Cummings and Hopfield models, whose ex-
otic vacua are qualitatively different. By a consistent so-
lution of the master equation to include dissipation in the
ultrastrong coupling regime, we have studied the mea-
surement fidelity by accounting for level-mixing between
system and measurement qubit, driving and dissipation.
The present work demonstrates that ancillary qubit spec-
troscopy of cavity QED systems is a promising tool to
study non-destructively the rich physics of QED vacua
in the ultrastrong light-matter coupling regime.

C. C. acknowledges partial support from Institut Uni-
versitaire de France and from ERC Consolidator grant
’CORPHO’.
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