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State-selective all-optical detection of Rydberg atoms
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Auf der Morgenstelle 14, D-72076 Tübingen, Germany
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We present an all-optical protocol for detecting population in a selected Rydberg state of alkali
atoms. The detection scheme is based on the interaction of an ensemble of ultracold atoms with two
laser pulses: one weak probe pulse which is resonant with the transition between the ground state
and the first excited state, and a pulse with high intensity which couples the first excited state to
the selected Rydberg state. We show that by monitoring the absorption signal of the probe laser
over time, one can deduce the initial population of the Rydberg state. Furthermore, it is shown
that – for suitable experimental conditions – the dynamical absorption curve contains information
on the initial coherence between the ground state and the selected Rydberg state. We present the
results of a proof-of-principle measurement performed on a cold gas of 87Rb atoms. The method is
expected to find application in quantum computing protocols based on Rydberg atoms.

PACS numbers: 32.80.Ee,32.80.Qk,32.80.Rm

I. INTRODUCTION

Rydberg atoms coupled to electromagnetic fields form
a promising system for the physical realization of quan-
tum information protocols [1] and quantum simula-
tions [2]. In these protocols qubits are realized by a
set of atomic states, which includes one or potentially
more Rydberg levels. One requirement of these schemes
is the ability to measure the Rydberg states’ population
in order to read out the results of the quantum oper-
ations. For accomplishing this task, most experiments
with ultracold Rydberg gases use methods including field
ionization and subsequent detection of electrons and/or
ions on multi-channel plates or channeltrons [3]. These
techniques offer high sensitivity and – for carefully cho-
sen experimental conditions [4, 5] – selectivity among the
Rydberg levels [6–8].
Selective field ionization (SFI) techniques are based on

the fact that the ionization threshold is different for each
atomic state, increasing from higher to lower lying lev-
els. Hence, by slowly ramping up the electric field and
monitoring the electrons/ions over time it is possible to
deduce the initial populations in each level. However,
the population of a lower lying Rydberg level cannot be
probed without destroying the population of any higher
lying Rydberg state. Therefore this method is not appli-
cable in protocols which require independent probing of
multiple Rydberg states[9]. Another inherent property of
methods based on ionization is that the detected atoms
are removed from the system and cannot be reused. Al-
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though this atomic loss is negligible in most cases [3],
it might be a serious limitation in experiments working
with only one or a few atoms [10].

One alternative to ionization detection methods is all-
optical probing based on electromagnetically induced
transparency (EIT) [11]. This approach has been suc-
cessfully applied in order to non-destructively probe the
Rydberg level structure in non-interacting [12, 13] and
weakly interacting [14] Rydberg gases, as well as in the
presence of electric fields [15–19]. These experiments,
however, did not access the population of the Rydberg
state. On the other hand, an EIT-based scheme for the
optical detection of Rydberg population [20, 21] has been
proposed and demonstrated in dense atomic clouds where
the Rydberg blockade allows the spatially resolved detec-
tion of Rydberg atoms.

Here we propose an all-optical scheme for detecting the
population in a selected Rydberg state in dilute gases.
By using a series of laser pulses in EIT configuration this
technique also allows for distinction between coherent su-
perpositions and statistical mixtures of the ground and
Rydberg states of the atoms. Since this scheme is based
on time-resolved observation of the optical response of
individual atoms it may, in principle, be used down to
the single atom level. Our method is state selective and
applicable for testing the population not only in the high-
est Rydberg level of interest (cf. SFI) but any lower lying
or intermediate Rydberg state.

We present our theoretical model along with numeri-
cal simulations and demonstrate the scheme in a proof-
of-principle experiment with a dilute gas of 87Rb atoms
showing the detection of the population in an initially
prepared Rydberg state. Our analysis includes character-
istic effects of Rydberg experiments such as blackbody-
induced depopulation [22, 23], superradiance [24] and
dipole-dipole interaction [25].

http://arxiv.org/abs/1502.03964v2
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FIG. 1. (Color online) Illustration of the atom-laser interac-
tion as used for the model of time-resolved electromagneti-
cally induced transparency (EIT). States |1〉, |2〉 and |3〉 de-
note the ground state, the first excited state and a Rydberg
state of the atom, respectively. In our experimental setup,
these states correspond to the 5S1/2(F = 2), 5P3/2(F = 3)

and 35S1/2(F = 2) states of 87Rb. The atomic transition
|1〉 ↔ |2〉 is driven by a weak probe laser with the Rabi fre-
quency Ωp (red), while the transition |2〉 ↔ |3〉 is driven by a
stronger coupling laser with the Rabi frequency Ωc (blue). γp
and γc denote coherence decay terms. δp and δc are the de-
tunings of each laser to the corresponding atomic resonance.
The radiative decay from the selected Rydberg state |3〉 to
the neighboring states is accounted for by including a reser-
voir state |4〉. Γij denote the respective incoherent decays,
consisting of spontaneous emission as well as transitions in-
duced by blackbody radiation.

II. THEORETICAL MODEL

Let us consider a cold atomic gas interacting with two
laser pulses in an EIT-like configuration [11]. One of
the pulses, resonant with the atomic transition between
the ground state |1〉 and the first excited state |2〉, is
a weak probe pulse well below the saturation intensity,
while the other one is a relatively strong coupling pulse
which is resonant with the atomic transition between the
first excited state |2〉 and a selected (arbitrary) Rydberg
nS1/2 state |3〉 (see Fig. 1). A single “reservoir” state |4〉
is used to model the neighboring Rydberg states [14].
We use a semiclassical approach for describing the dy-

namics of the system and the laser pulses are taken into
account through their classical electric field. The atomic
gas is modeled by a motionless ensemble of atoms. The
state of the atoms is described by the density matrix
ρ =

∑4

i,j=1 ρi,j |i〉 〈j|, where the states |2〉 and |3〉 ro-
tate with the atomic transition frequencies ω21 and ω23,
respectively.
The time evolution of ρ(t) is described by the master

equation

i~ρ̇ = [H, ρ] + U [ρ]. (1)

Here the Hamiltonian H accounts for the interactions be-
tween the atoms and the laser pulses. The effects due to

interatomic interactions are considered through dynamic
effective rates in U [ρ] along with radiative losses occur-
ring in the system. The Hamiltonian H is written as

H =−
~

2
(Ωp |2〉 〈1|+Ωc |3〉 〈2|+ h.c.)

− ~ (δp |2〉 〈2|+ δc |3〉 〈3|) , (2)

where Ωp = (Epd12)/~ and Ωc = (Ecd23)/~ are the Rabi
frequencies of the probe and coupling lasers, with Ep

and Ec being the electric fields, and d12 and d23 the
dipole matrix elements of the corresponding transitions,
whereas δp and δc are the detunings of the probe and
coupling laser from the corresponding transitions, respec-
tively (see Fig. 1). Although we consider a situation
where both the coupling and the probe laser are resonant
with the atomic transitions they drive (i.e. δp = δc = 0),
by including these detunings one can account for poten-
tially uncompensated electric and/or magnetic fields in a
specific experimental realization. The operator U which
governs the non-Hamiltonian part of the dynamics reads
as

U [ρ] =
Γ32

2
(2σ13ρσ31 − σ33ρ− ρσ33)

+
Γ21

2
(2σ12ρσ21 − σ22ρ− ρσ22)

+
Γ34

2
(2σ43ρσ34 − σ33ρ− ρσ33)

+
Γ41

2
(2σ14ρσ41 − σ44ρ− ρσ44)

+
γp
2

(2σ11ρσ11 − ρ11σ − ρσ11)

+
γc
2
(2σ33ρσ33 − ρ33σ − ρσ33) , (3)

where σkj = |k〉 〈j| are the atomic projection operators
(k, j ∈ {1, 2, 3, 4}).
There are multiple sources of non-unitary dynamics in

the system. One of them is the spontaneous emission
from the first excited state |2〉 and the Rydberg state |3〉
which we take into account by introducing radiative de-
cay rates Γ21 and Γ32. Another source, if present, is a
depopulation of the Rydberg state |3〉 towards the neigh-
boring Rydberg states. The depopulation may occur due
to several phenomena depending on the actual realization
of the system, such as amplified spontaneous emission
and/or superradiance [24, 26] as well as induced emission
and absorption due to the blackbody radiation of the en-
vironment [22, 23]. Following [26], we take these effects
into account by modifying the third term in Eq. (3) to
the dynamic effective decay rate

Γ̃34(t) = Γ34,sp · [ρ44(t) · psup + 1] + Γ34,bb, (4)

with psup a superradiance parameter, and Γ34,sp and
Γ34,bb the effective decay rates caused by spontaneous
emission and blackbody radiation, respectively. In our
model we assume that the entire population eventually
ends up in the ground state |1〉. This assumption is valid
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provided the ionization from all involved states is negli-
gible.
The above mentioned phenomena cause population-

transfer between the atomic states. In contrast, there are
a group of processes which do not result in a significant
energy-decay in the system but leads to a relevant coher-
ence loss. One such process is the phase noise of the driv-
ing lasers, which is included into the model through the
coherence decay rates γp and γc. Due to the redistribu-
tion of population from |3〉 to |4〉, atoms in Rydberg nPj

states are present in the cloud at various distances. As
observed by [25], the dipole-dipole interaction with these
nPj state atoms results in an inhomogeneous broadening
of the Rydberg nS1/2 state. We take this into account
by adding an effective dephasing term in Eq. (3) to γc,

γ̃c(t) = γc + γ3,dd · ρ44(t). (5)

The optical response of the cloud under the effect of the
two laser pulses is given by the macroscopic polarization
~P = NTr[ρ~d] where ~d =

∑

i6=j (dij |i〉 〈j|+ h.c.) is the
atomic dipole operator. The absorption α of the probe
laser is then given by the imaginary part of the electric
susceptibility χ,

α(t) = ℑ(χ(t)) =
Nd212
ǫ0~Ωp

ℑ(ρ21(t)), (6)

where N is the atom density of the cloud. Note that here
we make the approximation that the cloud is homoge-
neously irradiated and the propagation effects of the laser
pulses can be neglected. The time dependent absorption
signal is thus given by the master equation, which, using
the operators given in Eqs. (2) and (3), reads as

ρ̇11 =
i

2

(

Ω∗
pρ21 − Ωpρ12

)

+ Γ21ρ22 + Γ41ρ44 (7a)

ρ̇22 =
i

2

(

Ωpρ12 − Ω∗
pρ21 − Ωcρ23 +Ω∗

cρ32
)

− Γ21ρ22 + Γ32ρ33 (7b)

ρ̇33 =
i

2
(Ωcρ23 − Ω∗

cρ32)− (Γ32 + Γ̃34)ρ33 (7c)

ρ̇21 =
i

2
[Ω∗

cρ31 − Ωp (ρ22 − ρ11) + 2δpρ21]

−
1

2
(Γ21 + γp) ρ21 (7d)

ρ̇31 =
i

2
[Ωcρ21 − Ωpρ32 + 2(δp + δc)ρ31]

−
1

2
(γp + γ̃c + Γ32 + Γ̃34)ρ31 (7e)

ρ̇32 =
i

2

[

−Ω∗
pρ31 − Ωc (ρ33 − ρ22)− 2δcρ32

]

−
1

2
(γ̃c + Γ21 + Γ32) ρ32 (7f)

ρ̇44 =Γ̃34ρ33 − Γ41ρ44 (7g)

ρ̇41 =
i

2
(−Ωpρ42 + 2δpρ41)−

1

2
(Γ41 + γp)ρ41 (7h)
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FIG. 2. (Color online) Pulse sequence for the coupling (blue)
and probe (red) lasers. At t = 0 a fraction of the atomic pop-
ulation is prepared in the Rydberg state. In the simulations
this fraction is an input value, while in the experiment it is de-
termined by the length of the excitation pulse (Exc.). Before
this, an optical pumping pulse (Pump) is used to pump the
atoms to the correct polarization. The time evolution of the
optical density is monitored after the excitation pulse with
the probe laser (A, B, C). The coupling laser is added in time
interval B (EIT pulse). The Rabi frequencies are taken from
the experimental values in part IV.

ρ̇42 =−
i

2
(Ω∗

pρ41 +Ωcρ43)−
1

2
(Γ21 + Γ41) ρ42 (7i)

ρ̇43 =−
i

2
(Ω∗

cρ42 + 2δcρ43)

−
1

2

(

Γ32 + Γ̃34 + Γ41 + γ̃c

)

. (7j)

When there is no coupling to the Rydberg state (Ωc = 0),
an analytical steady state solution for α can be obtained,
which will be used for normalization:

α0 =
Nd212
ǫ0~

· Γ21(γp + Γ21)

×
[

γ2
pΓ21 + 2γp

(

Ω2
p + Γ2

21

)

+Γ21

(

4δ2p + 2Ω2
p + Γ2

21

)]−1
. (8)

III. DETECTION OF THE RYDBERG

POPULATION: RESULTS OF THE NUMERICAL

SIMULATION

We numerically solve the equation system (7) with the
pulse sequence of the lasers given by Ωp(t) and Ωc(t) (see
the sequence A, B, C in Fig. 2). The solution provides a
description of the population dynamics while the atom is
being probed by the weak laser on the |1〉 ↔ |2〉 transition
along with a time-dependent coupling between states |2〉
and |3〉. Furthermore, through Eq. (6) it describes the
absorption of the probe laser, which we give relative to
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FIG. 3. (Color online) Dynamics of the populations ρkk(t) of
the atomic states (dotted lines) and the relative absorption
αrel(t) (solid lines) of the probe laser induced by the pulse
sequence A, B, C (see Fig. 2) for atoms initially prepared in
the ground state (a), the selected Rydberg state (b) and the
reservoir state (c). Since the population ρ22 is almost zero at
all times, except for a transient population in the first 100 ns
of B, it is not shown here.

α0 (see Eq. (8)):

αrel(t) =
α(t)

α0

(9)

In Fig. 3 we show results for the cases where the en-
tire population is initially (a) in the ground state (ρ0 ≡
ρ(t = 0) = |1〉 〈1|) or (b) in the selected Rydberg
state (ρ0 = |3〉 〈3|). In (c) the population is split be-
tween the Rydberg state and the reservoir state (ρ0 =
0.7 |3〉 〈3|+ 0.3 |4〉 〈4|).
Following the pulse sequence, the time evolution of the

system can be separated into three major parts. When
the atoms are initially prepared in the ground state, only
small changes in the populations are visible (see Fig.
3(a)). However, the reasons for these changes are not
the same in the different parts of the time evolution. In
part A, when the atoms are only irradiated by the rela-
tively weak probe laser (Ωp ≪ Γ21), a small fraction of
the population is transferred to the first excited state |2〉
by the absorbed light. In part B, the population trans-
fer to state |2〉 is prevented by the strong coupling laser
applied on the transition between states |2〉 and |3〉 and

the absorption is reduced, which is the well-known ef-
fect of EIT. The timescale for the transparency to build
up is defined by the Rabi-frequency Ωc of the coupling
laser. If the requirement Ωp ≪ Ωc is not fulfilled, the
transparency is only partial. In this case, the two laser
fields cause two-photon transitions to state |3〉, and the
absorption of the probe pulse is nonzero. This absorption
level (in case of δp = δc = 0) depends on Ωp/Ωc and the
decoherences γp and γc. A consequence of this effect is
that different initial populations of Rydberg states cause
a different absorption level in the equilibrium of part B
due to the dependence of γc on ρ44. In part C, where the
atom cloud is again only irradiated by the weak probe
laser, the process is very similar to what happens in part
A with the exception that there is a small fraction of pop-
ulation is state |3〉. Consequently, the absorption level of
the probe laser is smaller, because atoms are missing from
the ground state.

In the case of initial population in the selected Rydberg
state |3〉, the dynamics of the system only differ in parts
A and B, provided B is long enough to reach steady state
EIT. In part A, the absorption of the probe laser is close
to zero, and slowly increases while a small fraction of the
population decays from the Rydberg state |3〉. Since the
lifetime of the Rydberg states is much longer than 10µs,
the amount of population transferred by spontaneous de-
cay is small although not negligible on the µs timescale
of the pulse sequence. At the beginning of part B the
population in the selected Rydberg state is transferred
to the ground state |1〉 through a resonant transfer from
state |3〉 to |2〉 induced by the coupling laser with Rabi
frequency Ωc and the consecutive spontaneous emission
from |2〉 to |1〉. For Ωc < Γ21, this process results in only
a small increase in ρ22, because a half Rabi cycle induced
by Ωc between states |2〉 and |3〉 would take longer than
the lifetime of state |2〉 (see Fig. 3(b)). Hence, assum-
ing the initial population is either in the ground state
|1〉 or the selected Rydberg state |3〉, we can determine
the fractions by monitoring the absorption of the probe
laser in part A of the time evolution. If there is a way to
ensure that all the population missing from the ground
state |1〉 is in the selected Rydberg state |3〉, then this is
indeed sufficient. However, if the probability that a frac-
tion of the population is in another state (for example,
the interaction scheme to be realized contains more than
one Rydberg state), the absorption level in part A of the
time evolution is not enough in itself to give information
about the population of the selected Rydberg state |3〉.

As illustrated in Fig. 3 (b) and (c), the absorption
of the probe laser in part A is the same for different
initial states of the atoms as long as the population in the
ground state is the same. In contrast, the dynamics and
the equilibrium become significantly different in part B.
Since only the population in the selected Rydberg state
is transferred back to the ground state by the coupling
field, the absorption level in part C also changes with the
initial population in |3〉.

Another result of the simulations is the possibility to
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FIG. 4. (Color online) Numerically calculated relative ab-
sorption αrel of the probe laser in the beginning of part B for
atoms prepared in states ρm(t = 0) = 1

2
(|1〉 〈1| + |3〉 〈3|) and

ρ±(t = 0) = 1

4
(|1〉 ± |3〉)(〈1| ± 〈3|). The parameters used for

the calculation are the same as for Fig. 3 with Ωc < Γ21 in
(a) and Ωc ≈ Γ21 in (b). This distinct signature of coherent
states is expected to be experimentally observable and even
more pronounced if Ωc is larger.

obtain information on the initial coherence of the sys-
tem. The time evolution of the relative absorption in
the beginning of part B for three different initial prepa-
rations of the atoms is shown in Fig. 4. These initial
preparations consist of the same fraction of population
in the ground state |1〉 and the selected Rydberg state
|3〉, but the coherence between these two states is dif-
ferent. One of the initial preparations is the mixed state
ρm(t = 0) = 1

2
(|1〉 〈1|+|3〉 〈3|), while the other two prepa-

rations are ρ±(t = 0) = 1
4
(|1〉±|3〉)(〈1|±〈3|). Comparing

numerical calculations for these three cases, we find sig-
nificant changes in the beginning of part B, where the
EIT did not yet reach equilibrium. The absorption level
during the rest of the pulse sequence is not sensitive to
the initial coherence. If the Rabi frequency Ωc of the cou-
pling laser is on the order of Γ23 or higher, oscillations of
the absorption signal can be observed.

IV. EXPERIMENTAL SETUP

For demonstrating the detection of Rydberg popula-
tion with time-resolved EIT, we have conducted an ex-
periment on a cloud of ≈ 2× 107 87Rb atoms at a tem-
perature of ≈ 150µK. In this experiment the atoms are
trapped in a magneto-optical trap (MOT), loaded to a
magnetic quadrupole trap and then released. The time-

FIG. 5. (Color online) Experimental setup for time-resolved
EIT measurements. The counter-propagating coupling (blue)
and probe (red) beams are superimposed on the atom cloud
and separated with dichroic mirrors. The transmission of the
probe laser is detected by an avalanche photo diode (APD).
The intensities of the lasers are controlled with acousto-optic
modulators (AOM). Both laser frequencies are stabilized us-
ing a frequency comb.

resolved measurements are started after 3ms of time of
flight, in order to ensure that all magnetic fields have
fully decayed while the effects of atomic motion are still
negligible. The measurements are performed within 30µs
(excitation pulse and probe sequence, cf. Fig. 2). The
density and optical density at the center of the cloud,
measured by absorption imaging, are 5× 109 cm−3 and
1.7, respectively.

The transitions from the ground state |5S1/2, F = 2〉
to the first excited state |5P3/2, F = 3〉 and from there
to the selected Rydberg state |35S1/2〉 are driven by
two lasers with wavelengths of ≈ 780nm (red, probe)
and ≈ 480 nm (blue, coupling), respectively (see Fig. 1).
Additionally, we use a repumper to pump atoms from
|5S1/2, F = 1〉 back to |5S1/2, F = 2〉 via |5P3/2, F = 2〉
during the whole pulse sequence. The frequencies of
both lasers used in the experiment are referenced to a
frequency comb and controlled with slow servo loops
(< 100Hz bandwidth). The linewidths of both lasers
are narrowed to less than 2 π × 20 kHz with fast locks
(> 1MHz bandwidth) to scanning Fabry-Pérot interfer-
ometers. As the Fabry-Pérot cavities are sensitive to
acoustic noise, the effective linewidth for the experiment
can be larger. The red and the blue lasers are aligned in a
counterpropagating configuration (see Fig. 5). We use an
acousto-optic modulator (AOM) in each beam to create
the intensity envelopes of the pulses. The switching time
of the AOMs is 50 ns (20% to 80% light intensity). The
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time-dependent intensity of the red laser (probe signal)
is measured with an avalanche photo detector (Thorlabs
APD120A/M) and recorded with a digital oscilloscope.
The time resolution of the setup is 20 ns.
As shown in Fig. 2, our measurement consists of three

main parts. First we put all the atomic population
into the Zeeman-sublevel of the ground state matching
the polarization of the red laser by optically pumping
for 14.5µs. This pulse is also long enough that any
transient effects due to the switching of the AOM wear
off before the next pulse. Next, we prepare the ini-
tial state of the atomic cloud with an excitation pulse.
We always apply the red laser for 2µs with a Rabi fre-
quency of 2π × 3.3MHz. If we want no population to be
transferred to the Rydberg state, the blue laser remains
switched off and due to the very short lifetime of the first
excited state, practically the entire population remains in
the ground state. Applying the blue laser with a Rabi
frequency of 2π × 1.8MHz for up to 2 µs causes a frac-
tion of the population to be transferred to the Rydberg
state, with the most atoms being excited in the case of
the full 2 µs pulse. Due to the high Rabi frequency of
the red laser there is no coherent excitation of Rydberg
atoms. In the third part (probe sequence in Fig. 2), we
use the red laser at a low intensity as the probe laser
during time intervals A, B and C together with the blue
laser as the coupling laser during time interval B (EIT
pulse).
As a reference, we always add one experimental cycle

without atoms in order to measure the intensity Iref(t)
of the red laser with the photodetector and another one
with atoms but no excitation pulse and no coupling pulse
to normalize the data later on. The parameters are then
varied from cycle to cycle and the transmitted intensity
IT(t) of the probe light after passing through the cloud is
measured. The experiment is repeated several times for
each set of parameters to reduce photo diode noise. The
optical density OD is calculated as follows:

OD(t) = − ln

(

IT(t)

Iref(t)

)

. (10)

The resulting OD datasets are then normalized by divid-
ing them by the OD dataset that had no excitation pulse
and no EIT pulse [OD0(t)]:

ODrel(t) =
OD(t)

OD0(t)
=̂

α(t)

α0

. (11)

This relative optical density ODrel is comparable to the
relative absorption α(t)/α0 that is calculated in the nu-
merical simulation. To reduce the effect of the acous-
tic noise on our Fabry-Pérot cavities, we selected the 30
datasets where the mean transparency in the EIT pulse
between 7 µs and 9µs was maximal. We observe that in
all measurements the relative optical density eventually
returns to the level before the excitation pulse, ensuring
that ionization effects are negligible.
In general this scheme is applicable in situations where

the optical density can be precisely measured. The reso-

FIG. 6. (Color online) Measured optical density for the
dynamics during the probe sequence. The shaded areas
are 95% confidence intervals for the relative optical densi-
ties ODrel(t) obtained from the measurements by applying
Eqs. (10) and (11) for three durations of the excitation pulse
(0µs for I, 0.5 µs for II and 2 µs for III). Solid lines repre-
sent fit results for the simulated relative absorption α(t)/α0.
The reversed order of the absorption signals in part B can be
explained by dipole-dipole interactions.

lution is limited by technical noise from the photodiode
and the digital resolution of the subsequent data acqui-
sition system. For low optical densities it is necessary
to detect not only the absorption of the atoms, but to
resolve the EIT signal as well. At high optical densities
the constant resolution of the intensity measurement ad-
ditionally leads to a lower resolution of the optical density
due to the logarithmic scaling in Eq. (10). For sufficient
averaging, we estimate the presented scheme to be ap-
plicable in the range of optical densities between ≈ 0.1
and ≈ 4. In principal, the optical density can be lowered
by detuning the probe laser while maintaining the two
photon resonance for the EIT condition, which on the
other hand decreases the contrast for the EIT signal and
therefore only allows for a limited extension of the range.

V. DETECTION OF THE INITIAL

POPULATION: EXPERIMENTAL RESULTS

We demonstrate the optical detection of population for
three different initial Rydberg excitation pulses. The ex-
perimental results for the optical density are shown in
Fig. 6. In order to compare these results to the model
we calculate values for the decay rates matching the cho-
sen combination of states in our experiment (see Fig. 1).
We calculate the spontaneous emission rates using the
wavefunctions calculated in [19]. Γ32 is approximated by
summing the spontaneous decay rates from |35S1/2〉 to
all nPj states, which results in

Γ32 =
∑

n>5

Γsp,35S→nP = 2π × 3.9 kHz. (12)
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FIG. 7. (Color online) Dynamics of the population of the four
states (ρ11=̂5S1/2, ρ22=̂5P3/2, ρ33=̂35S1/2, ρ44=̂Reservoir)
retrieved from the fit to the dataset with high excitation (see
Fig. 6). The colors match those of the states in Fig. 3. The
population of the Rydberg state (35S1/2) starts to decay im-
mediately after excitation at t = 0.

The main contribution comes from |5P3/2〉 (Γsp,35S→5P =
2π × 1.2 kHz) and other low-lying, fast-decaying states.
The spontaneous decay rate Γ34,sp is given by the rate
Γsp,35S→34P = 2π × 16.8Hz. Here we take only the
strongest superradiant transition into account. The tran-
sition rate Γ34,bb is approximated by a sum over all tran-
sition rates induced by blackbody radiation from |35S1/2〉
to all nPj states

Γ34,bb =
∑

n>5

Γbb,35S→nP = 2π × 2.7 kHz, (13)

in which the rates Γbb,35S→nP are calculated as in [22, 23].
The main contribution to Γ34,bb comes from neighboring
Rydberg states. For the transitions induced by black-
body radiation a temperature of 300K is assumed. The
preceding approximations for the decay rates ensure that
the total decay out of the state |35S1/2〉 is modeled cor-
rectly. Similar to the calculation of Γ32 we obtain

Γ41 =
∑

n>5

Γsp,34P→nS = 2π × 0.8 kHz. (14)

The Rabi frequencies of the two lasers Ωp =
2π × 0.83MHz and Ωc = 2π × 2.10MHz and the coher-
ence decay γc = 2 π × 112 kHz are fitted to the dataset
without Rydberg excitation (see curve ’I’ in Fig. 6). The

Rabi frequencies are consistent with estimates based on
beam power and geometry. The noise γc is mainly caused
by the acoustic noise on the Fabry-Pérot cavities. As the
fit is only sensitive to γp+γc and not to the single values,
we choose γp = 2 π × 20 kHz.
An analysis of the datasets with the same conditions,

but with Rydberg excitation, allows us to fit the frac-
tion of atoms excited to a Rydberg state (0.494(8) and
0.284(10)) within interval A, where only the red laser is
on. The superradiance parameter psup = 7.9(8)× 103 is
fitted to parts B and C and the dipole-dipole interaction
parameter γ3,dd is adjusted in part B. The former scales
with the absolute atom number while the latter scales
with the atomic density. From the model one can now
derive the time-resolved populations of the participating
states as can be seen in Fig. 7. The accuracy of these
populations is within ±0.01 compared with values calcu-
lated using a variation method.

VI. CONCLUSION

We have demonstrated the all-optical detection of Ryd-
berg population in a dilute gas, which is an alternative to
the methods based on field ionization. Our results show
that Rydberg population fractions can be measured with
an accuracy of 0.01. By comparing the dynamics of the
measured optical densities to our numerical simulations
we have quantified the decoherence effects occurring in
the system, namely blackbody radiation induced transi-
tions, superradiant decay and inhomogeneous broadening
due to dipole-dipole interactions.
From our simulations we conclude that the detection

scheme can also be used to obtain information on the co-
herence between the ground state and the Rydberg state.
The numerical results predict that future studies using a
coherent excitation method and experimental parameters
similar to our experiment will be able to detect the initial
and time-dependent coherence.
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