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ABSTRACT: The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to
prevail in the harshest environment in terms of particle fluence and radiation. There are several
mechanisms that may decrease the efficiency of the detector. These are mainly caused by data
acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is
referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout
Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of
instantaneous luminosity the inefficiency reached 2% (in the region closest to the interaction point)
which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will
result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-
driven method has been developed to simulate dynamic inefficiency, which has been shown to
successfully simulate the effects.
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1. Introduction

The Compact Muon Solenoid (CMS) is one of the two general-purpose detectors that measure the
products of high energy particle interactions at the Large Hadron Collider (LHC). The CMS Pixel
Detector is a silicon semiconductor detector at the centre of the CMS tracking system. Along with
the surrounding Silicon Strip Tracker, it provides precision measurements of the trajectories of
charged particles. The Pixel Detector consist of three cylindrical layers called the barrel and two
endcap disks at each end, called the forward part of the detector. It lies very close to the interaction
point; the mean radius of layers 1, 2 and 3 are 4.4 cm, 7.3 cm and 10.2 cm, respectively. The
barrel is divided into ladders (along the r−φ plane) and rings (along the z axis) as can be seen in
figure 1. The intersection of a ladder and a ring is called a module, the basic building block of the
detector. A module is made up of 8 or 16 Readout Chips (ROC), each with 52×80 pixels of size
100×150 µm2. The ROC reads out the pixel data in double columns, with each double column
having its own data and time-stamp buffer [1]. The structure of a ROC can be seen in figure 2. A
more detailed description of the detector can be found in [2].

2. Dynamic Inefficiency

We measure the performance of the detector in terms of hit efficiency [3]. The hit efficiency is the
probability to find a pixel cluster in any given sensor within a 500µm radius of a charged particle
trajectory. Only well reconstructed tracks are used in the measurement. Tracks are required to
be isolated from other tracks, to originate from the primary vertex, and to pass through the active
regions of the sensors. We estimate the systematic uncertainty for the measurement by comparing
it to measurements with “ideal tracks” (high transverse momentum, zero impact parameter, etc.).
This way the systematic uncertainty is approximated to be 0.3%. This method is used to measure
hit efficiency both in the data and simulations. The sensor efficiency is defined by excluding the fol-
lowing sources of inefficiency: permanently damaged detector parts, modules with readout errors
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Figure 1. The structure of the CMS Pixel Detector.

Figure 2. Schematics of a Pixel Readout Chip (ROC) with the global coordinates relevant for the barrel part
of the detector indicated.

and Single Event Upsets (SEU). The last one is caused by ionising radiation, which can cause the
memory state of a logical element of the detector to flip. This may affect individual pixels, ROCs,
or the readout electronics for entire modules. The impact of SEUs is minimized by reprogram-
ming the detector during data taking [4]. ROCs undergoing SEU in recorded data (taken before
the reprogramming happens) are identified and excluded from the hit efficiency measurement. The
SEU is not yet included in the CMS simulation software since it has a minor effect on recorded
data. Excluding all the above efficiency decreasing effects from the measurement, there remains
a significant efficiency loss that we call the dynamic inefficiency. In a series of high multiplicity
events, the buffers (mainly data and time-stamp buffers) of the ROC may overflow, resulting in data
losses. The largest part of the inefficiency comes from the overflow of the time-stamp buffers in
the double columns. After a triggered readout, the buffers get cleared and the overflowed buffers
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are able to store data again. Therefore we call this inefficiency dynamic in the sense that it is not
permanent, instead the size of the effect depends on trigger rate, previous and current events. The
detector has a maximum efficiency just after the abort gap of the LHC. Individual pixels and entire
ROCs can be inefficient, but data suggests that double column loss is the dominant effect.

3. Simulation

The dynamic inefficiency in a certain event depends on pixel occupancy in the double columns in
previous events. In order to properly simulate this effect, one would need to use the full simulation
of the ROCs, in addition to storing the history of many events. Neither of this is possible in the
current CMS simulation software. The average occupancy is determined by the pileup in a series
of events. The simulation is generated with a flat pileup distribution in a range that covers the
entire domain of pileup expected in the data. After measuring the real pileup in the data, the pileup
distribution of the simulation is re-weighted accordingly. When the simulation is created, the final
pileup distribution is unknown, thus the occupancy could not be calculated but for one event, which
is inadequate. Therefore, a data-driven method has been developed, in which the hit efficiency is
parametrised for each module as a function of variables determining occupancy: pileup and module
position (layer, ladder and ring coordinates). This way, the simulated efficiency is also independent
of the method of the pileup simulation, but it has to be calibrated for different running conditions,
such as the bunchspacing and the energy of the collision.

The dynamic inefficiency is observed in the hit efficiency measurement of the detector, and
it is expected to be caused by double column loss. Therefore in the simulation we set the double
column efficiency in such a way that the measured hit efficiency would be the same in the data as
in the simulation. In order to do that, first a double column efficiency scan is made: a series of
simulated datasets are created with different double column efficiency settings. By measuring the
hit efficiency in each simulation, one can derive a hit efficiency to double column efficiency con-
version function. With the help of this function and the hit efficiency measured in the data, scaling
factors can be derived for each module as an input for the simulation. The dynamic inefficiency is
simulated in this way, in all three layers of the barrel part of the detector.

Module position is determined by ladder coordinates, ring coordinates and layer number. The
ladder and ring coordinates are defined in the CMS global coordinate system: x points towards the
centre of the LHC ring, y points upwards to the surface, and z points along the beam line. This can
be seen in figure 1. The x = y = z = 0 is the interaction point in the centre of the CMS detector.
The ladders are numbered along the r−φ plane. The coordinates’ sign corresponds to the x axis
sign; the numbers start from x = 0 and run from the +y side to the −y side. The rings are numbered
along the beam axis with the interaction point in the middle. The coordinates’ sign corresponds to
the z axis sign; the numbers increase in magnitude moving outwards in ±z.

Results of the simulation are shown for layer 1 where the effect is most visible. The method
has been validated by comparing simulations with, and without, dynamic inefficiencies to data.
The data showed in the following plots are from the 2012 8TeV data taking period used with
ZeroBias trigger and with an average pileup of 17.72. Pileup is not directly observed in the data, it
is converted from the instantaneous luminosity measurement, this conversion can also be done for
the simulation in the other way around. In figure 3, the dynamic inefficiency simulation agrees with
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Figure 3. Hit efficiency as a function of the three variables that the dynamic inefficiency simulation is
parameterised in terms of: a) ladder coordinates, b) ring coordinates and c) instantaneous luminosity.

Figure 4. a) Local coordinate system, b) Efficiency versus α , c) Efficiency versus β .

the data by construction, as the double column efficiency in the simulation was set to reproduce
hit efficiency in data. Ladder coordinates correspond to azimuthal angle φ , in which the detector
is symmetric. However because the beam was not perfectly centered (beam offset) there is an
azimuthal asymmetry in figure 3(a). In figure 3(b), the simulated hit efficiency measured in the
rings numbered ±4 (corresponding to the rings at each end of the barrel region) differ from those
observed in the data, but still in the range of the estimated systematic uncertainty. This subject is
discussed in the next section. In figure 3(c) it can be seen that the dependence of the hit efficiency
on the instantaneous luminosity is well reproduced in the simulation.

4. Results

The assumption of double column loss causing the dynamic inefficiency can be verified by studying
the track incidence angles. The incidence angles are defined in the local coordinate system, which
can be seen in figure 4(a). The double column direction points along global azimuthal angle φ , this
can also be seen in figure 2. The incidence angle α points along the double column direction, whilst
the incidence angle β corresponds to the global polar angle θ (or equivalently, the pseudorapidity,
η) which is perpendicular to the double columns.

Based on these definitions, we expect that if the dynamic inefficiency is caused by double
column loss, the hit efficiency should be independent of α , but dependent on β . This trend is
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Figure 5. The distribution of the number of tracks and clusters in the forward pixel detector and in layer 1
of the barrel pixel detector.

indeed observed in figure 4. However, in figure 4(c) it can also be seen that the shape of the
distribution in the simulation does not agree with that observed in the data. For values of β close
to 90◦degrees, an incoming (grazing) track creates a long cluster and the loss of a double column
will only have a small effect, because β is perpendicular to the double column direction. Clusters
cut in half by a double column loss will still most probably be matched to the track, therefore
the hit efficiency is unchanged. The modules on ring numbers ±4 (the rings at each end of the
barrel region) are likely to have tracks with β near 90◦, therefore the hit efficiency measured there
is mostly unaffected by double column loss. A track perpendicular to the module plane (β ≈ 0◦)
causes a small cluster which is more likely to lie within the boundary of a lost double column; as
such the efficiency loss would be greater. While the difference between the simulation and the data
is clear in figure 4(c), it is not significant if we take into account the systematic uncertainty which is
estimated as 0.3%. The effect of the double column loss is possibly not well simulated, and could
lead to this discrepancy, or the difference could suggest another efficiency decreasing mechanism.
One should consider the fact that the maximum of the measured inefficiency is ≈ 2%, the effect we
try to measure is not that sizable enough to clearly see the underlying phenomenon.

In order to cross check the validity of the method many parameters have been examined;
the distribution of the number of tracks and clusters showed the most improvement. It is not
expected that the distribution of these variables would be in perfect agreement with data solely by
the inclusion of the dynamic inefficiency in the simulation. The signs of improvements implies
the legitimacy of the way of the dynamic inefficiency is simulated. The results can be seen in
figure 5. The inefficiency of the forward disks is not simulated, however the effect of the barrel
dynamic inefficiency simulation on the forward disk 1 can be seen in figure 5(a). Tracks crossing
the forward region of the detector are likely to have hits from the barrel region which serve as seeds
for the tracking. Since these hits can be lost by dynamic inefficiency it affects the tracking in the
forward region. The description of the distribution of the number of clusters has improved due to
proper simulation of clusters splitted by double column loss.

5. Conclusion

The CMS simulation software has been improved by taking into account the dynamic inefficiency
of the pixel detector barrel region. The advantage of using a data-driven method is that it is inde-

– 5 –



pendent of the quality of the physics simulation. The disadvantage is that it needs to be calibrated
using data from different running conditions. The technique has been validated by comparing sev-
eral variables in data and simulation. The new simulation shows better agreement with data. Fur-
ther improvement of the simulation is possible, for example, by including entire ROC or individual
pixel loss and the extension of the efficiency loss to the forward disks.
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