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REMARKS ON CLO SU R E O P E R A T I O N S

VU Die THI

C o m p u t e r  and A u t o m a t i o n  In s t i t u t e  
H u n g a r i a n  A c a d e m y  of Sciences

§ . l .  I N T R O D U C T I O N

The relational datamodel was defined by E.F.Codd C33. Many 
papers have appeared since that dealing with the combinational 
characterization problems of functional dependencies.

The main purpose of this paper is to investigate the con
nection of closure operations with the minimal keys and anti
keys .

§ . 2 ,  D E F I N I T I O N S

In this section, we present some necessary definitions.

Definition 2.1. Let X = { The function F : 2х -* 2х is 
called a closure operation if for every АгВ c l

(i) A C  F(A) (extensive)
(ii) A ç  J => F(A) C  F(В) (monotone)

(iii) F(F(A)) = F(A) (idempotent)

Let M be an mxn matrix and X be the set of its columns.
Let F ..(A). A e  X, be a function such that F..(A) contains the M — 3 M
ith column of M iff any two rows identical in columns belong
ing to A are also equal in the ith column.
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It is clear that ? M J  is a closure operation.

Definition 2.2. Let F be a closure operation. We say that M 
represents the closure operation F if F = F^„
It is known C1I that any closure operation is representable 
by an appropriate matrix M.

Definition 2.3. Let F be a closure operation and A c  I. A is 
a key of F if F(A) = X.

Definition 2.4. Let F be a closure operation. We define 

K„ = {A:F(A)=X. (VB A) ( F (В )=F (A) =>B=4 ) }

That is: Kp is a set of minimal keys. We say that an mxn
matrix M represents the family К iff К = K„ .

M
It is easy to see that the family of keys of a closure opera 
tion create a Spernér-system.
We denote B(K) = minim:К = К : M is an mxn matrix}.

FM
where F is a Sperner-svstem over X.

§ . 3 .  THE P R O P E R T I E S  OF T H E  CLO SU RE O P E R A T I O N S

It is easy to prove that if F is a closure operation and
m m  m

A . С  X (1 < i < m), then F( U A .) = FfU F(A .) ) and F ( (\ F ( A .) )
ъ * 1. ^ 1 ^ 1 ^
m

= n F(A .) .
1 г

Definition 3.1. Let F be a closure operation. We say that 
A(A с. X) is a maximal element of F iff for all B(BcA):F(B) = 
= F (A) implies В = A.
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Denote by M(F) the set of the maximal elements of F i.e. 

M(F) = {A:(¥B C. A) (F(B)=F(A) => В = A)}

Theorem 3 . 2 .  Let F be a closure operation. Then

M(F) = {A: (VC) (Ac.F(C) => С0А) }

Proof. Assume the AGM(F), but 3C such that A c.F(C) and С C-A. 
We have F (A) c. FCF(C)) = F(C) by (ii) and (iii). C <=. A implies 
F(C) c. F (A) a so F(A) = F(C) holds. Consequently there exists 
C C.A such that F (A) = F(C). This conteadicts to the assumption
AGM(F) .

Now, assume that

V C (A c. F(C) => C/A) (*)

but A 0 M(F). This means that there is a set В such that В C. A 
and F(B) = F(A). (i) implies A C. F(A) = F(B). Consequently, 
there is В such that A F(B) and В C. A. This contradicts the 
fact that A satisfies (*). The theorem is proved.

Let M (F)= {A:A F (A) and (VBCA)(F (B)=F(A) => A=BJ}

Denoting by M the extremum of /М (F)/ it can be proved 
M n 1

that lim —  = 2, see C23. 
n+°° 2

We denote by N the extremum of /M(F)/. It is clear that
N

M < N < 2n. hence lim —  = 1. n — m — nnn-*-00 2

Definition 3 . 3 .  Let F be a closure operation over X, we call 
the image F (A) of A as a nontrivial one if ACLF(A).

Let P(F) = {F(A):A c.F(A)} and denote by P the extremum ofn
/PCF)/.
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Theorem 3.4. P - 2n ^ „n

Proof. Let T (F) = {A :A CF (A) } „ It is clear that /Т (F)/>_/P(F) / ( *) . 
On the other hand (iii) implies F(F (A) )=F (A) , so P(F)CIT(F)=0 
holds. Consequently, /Р(F)/+/T(F)/ <2n s we obtain 2/P(F)/<2n 
by ( *). Hence /P(F)/<_2n  ̂ Take bGX and let F(A)=A\J{b} for 
every A с. X. It is easily seen that F is a closure operation

yq "7and /P(F)/=2 . The theorem is proved.

§ . 4 .  THE CONNECTION BETWEEN THE MINIMAL KEYS AND ANTIKEYS

Let К be a Sperner-system. We define the set of the anti-
- Jkeys of K, denoted by К , as follows:

K~2 = {ACX:(BGK=>B£A) and (A C)-> (ZBGK)(B CC)}.

That is: the antikeys of К are the subsets of X not containing 
the elements of К and which are maximal for this property.
Ot is clear that К  ̂ is a Sperner-system.

Remark 4.1. In Cl,1*3, it has been proved that if К is an ar
bitrary Sperner-system then there exists a closure operation 
F (F ' ) for which К = K„ (K=K~J ) .

F t

The antikeys play important roles for the evaluation of 
A(K) as well as for the construction of a concrete matrix rep
resenting a family К or for finding minimal keys.

The algorithm for finding the set of antikeys:
Let К = {5^,...,#^} be the Sperner-system over X we have to 
contruct К ^. For every q = we construct
К = { B ......В } 1 by induction.q 1* * q

Step 1: Construct К in the following way:
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К 1 = < V
-7 = ( А  {С}; С G В }

Step g + 7: Construct Я  ̂ in the following way:
By the inductive hypothesis we have constructed K ^ = { B ...3В
SuoDose that X-.....X are the elements containing В ,, of К .I3 3 p 3 g + 7 g
So

-7

=  U 2 , . . . . , * p } £  л } .
Denote {A6K (B , ~<£A} by F . For all i (i=l3..o3p) we constructq q+l— q
the antikeys of on X^ in the analogous way of as in
step 1, which are the maximal subsets of X^ not containing
В + .̂ Denote them by Аг3„..3Агк (г=1 3 . . . , p ) .
^ i

Let Kq + 1 = Fq \J {Агт:Агт <£ A, if A G F Л<Т<В^ l<i<p}

-1Theorem 4.2. К - Кm

-1Proof. We prove the theorem by induction. The fact K 1= {S 7} 
is obvious. Now we have to prove + ̂ = [B ̂ 3 „ . . 3 Bq + j } using
the induktive hypothesis Kq = {B^3...3Bq} We have to prove:

a) If AGK , then A is the subset of X not containingq + l 3
BT (T-=l3 . . „ 3q+l) and being maximal for this property.

b) Every А с X not containing elements Ву (T=l3 ...tq + l)
and being maximal for this property is a element of The
proof for (a): Let AGK , . If AGF then A doesn't contain anyq + l q 1
one in B^3...3Bq and A is maximal for this property and at the 
same time Bq + ̂ A 0 Consequently, A is a maximal subset of X not 
containing B_ (T=13 „..3q+l).

Let AGK , ,\F . It is clear that there is Am (l<i<p andq + l q . T —  —
1<T<R.) such that A = a 'L. Our construction shows that — — ъ T

и иВ £ ф  Ay (1 = 13 ...3q + l). Because Ay is an antikey of {Bq + for
ъX^3 then Ay = XF\{b} for some bGBq + ̂ . Now it is obvious that 

Ay\J{b} ^  Bq+2 ‘ If aGX\X^ then, by inductive hypothesis, for
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A^Uia} {b} = X^\j{a} there is В  ̂ (l=l3...3q) such that
В, с. Аггп\){а}К){Ъ} * X. doesn't contain В В by X .GK . HenceL — T г 1 q г q

a G B If (B-j\a) <= Л^ then Л^ \J {a} o B ^ .  For every В  ̂ (l<_l<q) 
such that B  ̂<z X^ U(a) and В  ̂ф A^ we have bGB^,
Hence (B1\{a3b)) C A^. Consequently, there is A GF such that

L  ' -L I. Cj

Al This contradicts AGK ,~\F . So there exists B 7 (l<l<q)T 1 q + 1 q l — —л
such that Лу {a} B^„

The proof for (b): Sunpose that A is the maximal subset of X 
not containing ВT (l<T<_q+l). By inductive hypothesis, there is
YGK such that A C. Y.

Я
The first case: If В , 7 ф  Y then Y doesn't contain B 7,o<,o,B ^ 7 0q+1 — i q+1
Because A is the maximal subset of X not containing В^ (l<T<q+l)3
then A=Y. B , C. Y implies AGF . Hence AGK i7.q+1 — L q q+1
The second case: If В ez Y then Y = X. for some i in {2,..,p}q+1 — г > »f

and А С. Агт for some T'in {2....,2?.}. If there exists A^GF— t ъ 1 q
such that а \ <Z A _ . then Л 7 doesn't contain В В , 7. HenceT l3 1 l3 3 q+1
А Л,. This contradicts the definition of Л. Hence AmGK l70 2 T q + 1

It is clear that Л^ doesn't contain В В ,7. By the defi-T l3 3 q+1 1
nition of Л we obtain Л=Лу . The theorem is proved.

It can be seen that X and 2C  ̂ are determined uniquely by
-1each other. Because of this fact, the determination of К 

based on the algorithm doesn't depend on the order of sequence
{Bj j...jвт }.

EXAMPLE: Let X = {13 2,3,43536} and
К = { (13 2) 3 (23 Z3 4) 3 (23 43 5) 3 (43 6) }

According to the above algorithm we have:

K2 = {(l,Z3 43 53 6) 3 (23 Z3 43 53 6)}; К g = { ( 13 Z 3 4 3 5 3 6 ) 3 (2333536) (2343536)}

K3= {(133343536)3 (23Z3536)3 (23436)}; ^  = {(23Z3536) (13Z3435) (13Z3536)3 (234)}
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We consider the following matrix:

The attributes: 1 2 3 4 5 6

0 0 0 0 0 0
1 0 0 1 0 0

M = 0 2 0 0 0 2
0 3 0 3 0 0
4 0 4 0 4 4

M represents K3 see cU:.

Now we describe the "reverse II algorithm:
For given Sperner-system considered as the set of antikeys, 
we construct it's origin.

The following definition is necessary for us.
Let F be a closure operation over X. Denote:

Z (F) = {A:F(A)=A} and Y(F) = {ACX: F (A)=A and 3 BGZ(F)\{X}:ACB}

The elements of Z(F) are called closure sets. It is clear that 
Y(F) is the family of maximal closure sets.
Now we prove the following lemma:

Lemma 4.3. : A is an antikey if and only if A is the maximal 
closure set. That is: k J' = Y(F).Г

Proof. Let A is an antikey and suppose that AC.f (A). Hence 
F(F (A))=F(A)=X. Consequently A is a key. This contradicts to 
VBGKp:B<£A. If there is A ’ such that ACZ A 1 and A'GZ(F)\{X}3 
then A ' is a key. This contradicts to A ' с. X.

On the other side if A is a maximal closure set but there 
exists B(BGK ) such that В cz A. theh F(A)=X. This contradictsr —
to A X. If AC D (D с  X) then it is clear that F(D)=X (because 
A is the maximal closure set). Consequently A is anantikey.
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The lemma is proved.
An algorithm finding a minimal key:

Let H be the Sperner-system, B G H and aGX\B0 Suppose that
В = {Ъ13...3Ь }. Let G = {ВтвН:а0Вт} and TQ =BU{a}

T \{b ^ 7) if VB ,GH\G:T \{b n} £  B. q q + 1 J г q q + 1 —  гq q-

q + 1
T otherwise

Theorem 4.4. If Я is a set of antikeys, then {T .....T } are2 o3 3 m
the keys and T is a minimal key.2 m

Proof. By the remark 4.1. there is a closure operation F such 
that H=Kp^. We prove the theorem by the induction.
It is obvious that T is a key. If T is the key andо 1 q
T . then Г ,, is a key. If T =Т \{b and F(Tq+1 q3 q+1 1 q+1 q q+1 q+1
then by lemma 4.3 there is BmGH such that F(T ) C. Bm. Hence2 T q+1 — T
T , c Bm. This constradicts to VBmGH:T Consequently,q+1 — T T q+1— T
T , , is a k e y .q + 1 2

Now suppose that A is a proper subset of T . If a0A3 then 
clearly F(A)0X. If aGA, then there is such that
b^GT^\A (l<a). By the given algorithm there is ВTGH\G such
that T 7{b } C B _ . We obtain A^T \{b } CT 7\{b } CB_ by q-1 q — T — m q — q-1 q — T 2
T С. T ( 0 <q<m-l ) . Hence F(A)0X. Consequently, T is a minimal m — q — — ^ m
key. The theorem is proved.

Remark 4.5:
- It is best to choose В such that /В/ is minimal.
- If there is В such that VB^GH and В T0B :B(\B T=0 then a U b  

is a minimal key (VbGB)
- If X\ U  В 00 then aGX\ U  В„ is a minimal key.

BTGH BTGH

- Let Y= U  В (B„0B). If B\Y00 then it is best to choose
BTGH

T = B C\ Y Ü {a} U {b} (bGB\Y) . о
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Remark 4.6: Let H be an arbitrary Sperner-system and A OX.
We can give an algorithm (which is analogous to the qbove one) 
to decide whether A is or isn't a key. If A is the key, then 
this algorithm find one A ' such that A ' о  A and A ' is a mi
nimal key.

Basing on theorem 4.4. We can find the minimal keys in 
concrete cases.
In the paper CU□ the equalitysets of the relation are defined: 
Let R be a relation and h ., hTGR. Denote

E(h^3hT) = {aGX:h^(a)=h^(a) } (i^T)

Remark 4.7. Let R be a relation over X.
R-{hn3...3h }. Let E .rn = {aGX :h . (a) —h m( a) } where l<i<m3 l<T<m 1J J m гТ г T — — — —
and г-АТ. Denote M={E.m: there isn't E such that E.mO E  }гт ет гТ sx
practically, it is possible that there are many £ . which

"Is -L
equal to each other. We choose one Ê j, from M. According to 
Lemma 4.3 it can be seen that M is the set of antikeys.
Basing on the theorem 4.4. and the Remark 4.7 we find the 
minimal keys.

EXAMPLE. Let X = {I,2,3,4, 5, 5} and

R be the relation: 0 1 0 0 1 0
1 0 1 0 0 1
2 0 0 1 2 2
0 1 2 2 0 3
3 2 1 0 0 0

It can be seen that M = { ( 13 2 ) 3(3, 4,5), ( 4 3 6 ) }

*14 - {3> 2), E15 = H , 6} and E25 = {3>4,5}.
By the Theorem 4.4 and the Remark 4.5 it is clear that: 
{133}3 { 13 4} 3 { 13 5} 3 {136}3 { 2 3 3} 3 {23 4}3 {2,5} , {2,5} are 
the minimal keys. We use the algorithm (Theorem 4.4) with 
To = {3,4,5} and Tq = {4,5,5}. It can be seen that {3,5} 
and {5,5} are the minimal keys.



82

Let К be an arbitrary Sperner-system. The following theorem 
has been proved in [:']«

Theorem 4.8. (C2l). ) >_ | К  ̂| >_ h(K)-l.
%Denote by ( )̂ the family of all fc-element subsets of X. Let

Fy(n) = max { A(K):K C (^)3 | X | = n]

Theorem 4.9 (C51 К  1_ r n ,
„ , , /77 ,2k-2 ,2 2k-lFk(n! >_ /2 Í k_1)

We define the function f2k_2:N+N ( W-the set of natural numbers)
in following way

f2k-lfn> = \

and

f 2k-2(n)

It is clear that 2k-l and 2k-2<n
Take a partition X = Z,U ... UJ UW. where m= typrr-and1 m 2k-l

I AT . I = 2k-l (l<_i<m). Let

К = {В:\В \ = k t В С  X .3 V .} if | J/| = 0

(2kJi}2k 1 n = 0 (mod (2k_2f

n

1 * <2kb Y P) if n = p (mod (2k-l)) and 
K 1 * 1 l<p<k-l

E n_]
(2!f l) ^   ̂ X if n = p (mod (2k-l)) andk-1 k<p<2k-2

Г ,2k-2 ,2n-2 
' k-lJ if n=0 (mod (2k-2))

- 1 - 1,2k-2 ,u 2n-l~1 * ,2k-2+p , , j /m 0 1 1  j( 7, ,J y.( . 7 w  tf n = p (mod (2k-2)) andk-1 1<p<k-l

c n :
(2k 2j 2n 1 x ( p « (mo£ (2k-2)) and

K 1 k<p<2k-3^ к-Г
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К = {В:\в\=к3 В С Xi (1<_г<_т-1) and В^Х UW} if l<]w\<k-l 
К = [В:\в\=к3 В С L  (1<_г<_т) and В с W} if kf | 1/| <_2k-2

It is clear that K~2 = {A : | A(\ X . \ =k-l 3 ¥ .} if \w\ = 0."Ъ ъ

К 2= {А:\А(\Х^ =k-l (l<i<m-l) and | Al\ (X \JW) \ =k-l\ 

K~2 = {A:\A(\Xi\ =k-l (l<i<m) and \ADW\=k-l} if k<

It can be seen that f^^_^fn)=\K-1

By the analogous way we take a partition
X=^7U ... UJ^UW3 where m= and \X^\=2k-2m

if 1<_ I W\<k-1 

I W\<_2k-2

Let К = {B:\B\=k3 В С Х^3 ¥_.} i f  \w\=0

К = {B:\B\=k3 В С Xi ( 1<г<т-1 ) and В С X W} if l<\U\<k-l 
К = {В:\в\=к3 В с Х^ (l<i<rn) and В <z W) if k<_\w\<2k-3

f П -J
It is clear that f 2k_2(n)=[K~2| and f  2k-2(n)- ^ k - P  ^ " 2

Theorem 4.10. Let X = {l3...3n}a
If n=03 (mod (2k-2)(2k-1)) then f2k_i(n)>f2k-2 ^

?2k-2(n)If we fix k, then lim -x-----,— г
n—  ^2k-2 n

Proof. If k=2 then it is easy to prove that ¥ :f (n)>f9(n).
Yl ó  и

If n=6 or n>8 then fs(n)>f2(n).

Let F

n n
2 k - 1 , 2 k - l  , 2 4 - 1,2 k - 1

k - Г  = (~£ J________
n n

2 k - 2  . W ^ 2  , 2 k - 2 , ( 2 k - 2  ) ( 2 k - l )
k - 1 ' k - l J

It is known that n! = /2irn
9 n

where 0<6 <1.ne
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n
So ,2k-l,2k-l

F >
ö - У 2*"1

n n = E

Qn
e 12 (2k-2) 
AT (к —1 )

(2k-2) (2k-l)

X 2
n 1 \(2k-2)(2k-2)

24(k-1)

/ír (k-1 )

InE W =j(ln^2 2b)+2k-2(2 1п(ъ(к 122 24(k-2)■))

T I  2k-l ( 2k-2 (2 ln(^(k~122 24 (k-1)2 ~ 2k-l2 by \ln(1 JK2 I -2k-l

It is clear that if k=3 then §̂  2п ̂ ъ ̂ ~ 2 2 2 ~24̂ (к-1 ) 2 ~2к-1>0

1 1and for every к >4 : — I n ( тг ( к -1 ) ) — > 2 ' ^ence

Ж ^ 2  ( 2 1п('п(к 1)2 24 (к-1 ) 2 I t t > 0. Consequently, if п=0 

(mod(2k-2)(2к-1)) then n̂2>^2k-2^n2’

Now let n be an arbitrary natural number and к fixed. It can 
be seen that there exists a number M>0 such that

,2k-l+p, 
‘ k-1 1

2+ p
,2k-l,
1 k-1

< My
( P )[ k-1 < My

,2k-1 ,2k-l 
' k-11

,2k-2+p,
‘ k-1 1

7 . P__
,2k-2 , TTc=2 
‘ k-11

< My

( p )' k-l1 < M.
,2k-2 , 2k-2 
‘ k-11

It can be seen that In E-+°°. Hence F -*■<*>
n-yco n-̂ °°

f2k-l(n)Consequently: — — ,— r (it is easily seen that k = 2 is also
?2к-2(n2 
n->°° true )

The theorem is proved.



On the basis of theorem 4.10 and theorem 4.8 it is clear that

Fk(n) - y/2 ?2k-l (n) *

§ . 5 .  THE G E N E R A L  F U N C T I O N A L  D E P EN D E N C Y

In the paper СбП the concept of the general functional 
dependency is defined.

Let X = R be a relation over X.

We say that (f3g) is a functional dependency iff f3g are the 
Boolean function of n variables.

Let R f= (f3g) <“ > Vh 3h ' GR : ft (h3h ' ) = 2 => gt(h3h')=l
Denote by F the set of the functional dependencies,
B(f3g) ={R:R (= Cf3g)}3 for Y c F let B ( Y) = П  B(ftg)

(f>g)GY

Denote Y f= (f,g) iff B(Y) C,B(f3g) and let C(Y) =
= {(f,g)GF:Y b  (f3g)).

We denote f<f' iff VtGE*:f(t)=l => f'(t)=l and Y(YCF) is a 
closure set if Y=C(Y).
Let Y be a closure set and
MAX (Y) = { ( f ' 3 g ' ) GY : g ' =max(f)3 f'=min(g)3 (f3g)6Y} 
where max(f) = Ag and min(g) = V/

Let MIN(Y) = { ( f  3g ' ) 6Y : g '=min ( f) 3 f'=max (g) 3 (f3g)GY}

0 if h(i)^h ’ (i)

1 if h (i)=h' (i)

Let t (h3h ' ) = (t j(h3h ' ) tn (h3h4)

(f»g)GY (f,g)GY

where min(f) = Уд and max(g)
(f.g)GY

Л /
(f,g)GY
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Theorem 5.1 (С б □ ) . Let У be a closure set. Then (f,g) is an 
element of У if and only if there exists (f ', g ')GMAX(У) such 
that f<_f ' and g ' <_g,

Theorem 5.2. Let У be a closure set. Then (f3g) is anelement 
of У if and only if there exists (f ',g ')GMAX(У) and 
( f"i g" ) GMIN ( У ) such that and g'<g<g".

Proof. By the theorem 5.1. it is clear that we have only to 
prove: there is ( f", g " ) 6MIN ( У ) such that f"<f and g<_g".
Let g"=min(f) and f"=max (min ( f) ) „ It is clear that g<g" and we 
have (ft min(f))GY by l\=(f3 min(f)).
Consequently, max(min( f) ) <_f by the definition, of MIN(Y)0 
It is clear that тгп(тах(тгп(f)))<min(f). It can be seen that 
тъп( f) <min(max (nvin( f) ) ) (by (f3g) (= (max (min ( f) ) 3min ( f) ) .
Hence min(f)=тгп(max(min(f))). We obtain
(max(min(f))3min(f))GMIN(Y) by the definition of MIN(Y).
Hence ( f",g") GMIN(Y) hold. The theorem is proved.

Finally, I express any deepest gratitude to Professor 
DR Demetrovics János for his help and encouragement.
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Ö S S Z E F O G L A L Á S

MEGJEGYZÉSEK A LEZÁRÁSI OPERÁCIÓKHOZ

VU DUC THI

A doinozatunkban a minimális kulcsok és antikulcsok és 
a lezárási operáció közötti kapcsolatot vizsgáljuk.

Р Е З Ю М Е

ЗАМЕЧАНИЯ ОБ ОПЕРАЦИЯХ ЗАМЫКАНИЯ

В настоящей работе изучается связь между минимальными клю
чами, антиключами и операциями замыкания.
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