REMARKS ON CLOSURE OPERATIONS

$V U$ DIC THI

Computer and Automation Institute Hungarian Academy of Sciences

§.1, INTRODUCTION

The relational datamodel was defined by E.F.Codd [3]. Many papers have appeared since that dealing with the combinational characterization problems of functional dependencies.

The main nurpose of this paper is to investigate the connection of closure operations with the minimal keys and antikeys.

§.2. DEFINITIONS

In this section, we present some necessary definitions.

Definition 2.1. Let $X=\{1, \ldots, n\}$. The function $F: 2^{x} \rightarrow 2^{x}$ is called a closure operation if for every $A, B \subseteq X$
(i) $A \subseteq F(A)$ (extensive)
(ii) $A \subseteq B \Rightarrow F(A) \subseteq F(B)$ (monotone)
(iii) $F(F(A))=F(A) \quad$ (idempotent)

Let M be an $m x n$ matrix and X be the set of its columns. Let $F_{M}(A), A \subseteq X$, be a function such that $F_{M}(A)$ contains the ith column of M iff any two rows identical in columns belonging to A are also equal in the ith column.

It is clear that $F_{M}(A)$ is a closure operation.

Definition 2.2. Let F be a closure operation. We say that M represents the closure operation F if $F=F_{M}$ 。
It is known [l] that any closure operation is representable by an appropriate matrix M.

Definition 2.3. Let F be a closure operation and $A \subseteq X$. A is a key of F if $F(A)=X$.

Definition 2.4. Let F be a closure operation. We define

$$
K_{F}=\left\{A: F(A)=X, \quad\left(\forall B _A\right)(F(B)=F(A) \Rightarrow B=A)\right\}
$$

That is: K_{F} is a set of minimal keys. We say that an $m x n$ matrix M represents the family K iff $K=K_{F_{M}}$.
It is easy to see that the family of keys of a closure operation create a Sperner-system.
We denote $\Delta(K)=\min \left\{m: K=K_{F_{M}}: M\right.$ is an mxn matrix\}. where K is a Sperner-system over X.

§.3. THE PROPERTIES OF THE CLOSURE OPERATIONS

It is easy to prove that if F is a closure operation and $A_{i} \subseteq X(1 \leq i \leq m)$, then $F\left(\bigcup_{1}^{m} A_{i}\right)=F\left(\bigcup_{1}^{m} F\left(A_{i}\right)\right)$ and $F\left(\bigcap_{1}^{m} F\left(A_{i}\right)\right)=$ $=\bigcap_{1}^{m} F\left(A_{i}\right)$.

Definition 3.1. Let F be a closure operation. We say that $A(A \subseteq X)$ is a maximal element of F iff for all $B(B \subseteq A): F(B)=$ $=F(A)$ implies $B=A$.

Denote by $M(F)$ the set of the maximal elements of F i.e.

$$
M(F)=\{A:(\forall B \subseteq A)(F(B)=F(A) \Rightarrow B=A)\}
$$

Theorem 3.2. Let F be a closure operation. Then

$$
M(F)=\{A:(\forall C)(A \subseteq F(C) \Rightarrow C \not \subset A)\}
$$

Proof. Assume the $A \in M\left(F^{\prime}\right)$, but $\exists C$ such that $A \subseteq F(C)$ and $C \subset A$. We have $F(A) \subseteq F(F(C))=F(C)$ by (ii) and (iii). $C \subset A$ implies $F(C) \subseteq F(A)$, so $F(A)=F(C)$ holds. Consequently there exists $C \subset A$ such that $F(A)=F(C)$. This conteadicts to the assumption $A \in M(F)$ 。

Now, assume that

$$
\forall C(A \subseteq F(C) \Rightarrow C / A) \quad(*)
$$

but $A \nsubseteq M(F)$. This means that there is a set B such that $B \subset A$ and $F(B)=F(A)$. (i) implies $A \subseteq F(A)=F(B)$. Consequently, there is B such that $A \subseteq F(B)$ and $B \subset A$. This contradicts the fact that A satisfies (*). The theorem is proved.

Let $M_{1}(F)=\{A: A \quad F(A)$ and $(\forall B \subset A)(F(B)=F(A) \Rightarrow A=B)\}$
Denoting by M_{n} the extremum of $/ M_{1}(F) /$ it can be proved that $\lim _{n \rightarrow \infty} \frac{M_{n}}{2^{n}}=1$, see [2].

We denote by N_{n} the extremum of $/ M(F) /$. It is clear that $M_{n} \leq N_{m} \leq 2^{n}$, hence $\lim _{n \rightarrow \infty} \frac{N_{n}}{2^{n}}=1$.

Definition 3.3. Let F be a closure operation over X, we call the image $F(A)$ of A as a nontrivial one if $A \subset F(A)$.

Let $P(F)=\{F(A): A \subset F(A)\}$ and denote by P_{n} the extremum of $/ P(F) /$.

Theorem 3.4. $P_{n}=2^{n-1}$.
Proof. Let $T(F)=\{A: A \subset F(A)\}$ 。It is clear that $/ T(F) / \geq / P(F) /(*)$ 。 On the other hand (iii) implies $F(F(A))=F(A)$, so $P(F) \cap T(F)=\varnothing$ holds. Consequently, $/ P(F) /+/ T(F) / \leq 2^{n}$, we obtain $2 / P(F) / \leq 2^{n}$ by $(*)$. Hence $\mid P(F) / \leq 2^{n-1}$ Take $b \in X$ and let $F(A)=A \cup\{b\}$ for every $A \subseteq X$. It is easily seen that F is a closure operation and $/ P(F) /=2^{n-1}$. The theorem is proved.
§.4. THE CONNECTION BETWEEN THE MINIMAL KEYS AND ANTIKEYS

Let K be a Sperner-system. We define the set of the antikeys of K, denoted by K^{-1}, as follows:

$$
K^{-1}=\{A \subseteq X:(B \in K \Longrightarrow B \notin A) \text { and }(A \quad C) \Rightarrow(\exists B \in K)(B \subseteq C)\}
$$

That is: the antikeys of K are the subsets of X not containing the elements of K and which are maximal for this property. Ot is clear that K^{-1} is a Sperner-system.

Remark 4.1. In [1,4], it has been proved that if K is an arbitrary Sperner-system then there exists a closure operation $F\left(F^{\prime}\right)$ for which $K=K_{F}\left(K=K_{F}^{-1}\right)$.

The antikeys play important roles for the evaluation of $\Delta(K)$ as well as for the construction of a concrete matrix representing a family K or for finding minimal keys.

The algorithm for finding the set of antikeys:
Let $K=\left\{B_{1}, \ldots, B_{m}\right\}$ be the Sperner-system over X we have to contruct K^{-1}. For every $q=1, \ldots, n$, we construct $K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$ by induction.

Step 1: Construct K_{1} in the following way:

$$
K_{1}=\left\{B_{1}\right\}^{-1}=\left\{X \backslash\{C\}: C \in B_{1}\right\}
$$

Step $q+1$: Construct K_{q+1} in the following way:
By the inductive hypothesis we have constructed $K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$ 。 Suppose that X_{1}, \ldots, X_{p} are the elements containing B_{q+1} of K_{q}. So

$$
K_{q}=\left\{X_{1}, \ldots, X_{p}\right\} \cup\left\{A \in K_{q}: B_{q+1} \subseteq A\right\}
$$

Denote $\left\{A \in K_{q}\left(B_{q+1} \nsubseteq A\right\}\right.$ by F_{q}. For all i $(i=1, \ldots, p)$ we construct the antikeys of $\left\{B_{q+1}\right\}$ on X_{i} in the analogous way of as in step l, which are the maximal subsets of X_{i} not containing B_{q+1}. Denote them by $A_{1}^{i}, \ldots, A_{R_{i}}^{i} \quad(i=1, \ldots, p)$ 。
Let $K_{q+1}=F_{q} \cup\left\{A_{T}^{i}: A_{T}^{i} \notin A\right.$, if $\left.A \in F_{q}, 1 \leq T \leq R_{i}, 1 \leq i \leq p\right\}$ Theorem 4.2. $K_{m}=K^{-1}$

Proof. We prove the theorem by induction. The fact $K_{1}=\left\{B_{1}\right\}^{-1}$ is obvious. Now we have to prove $K_{q+1}=\left\{B_{1}, \ldots, B_{q+1}\right\}^{-1}$ using the induktive hypothesis $K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$. We have to prove:
a) If $A \in K_{q+1}$ then A is the subset of X not containing $B_{T}(T=1, \ldots, q+1)$ and being maximal for this property.
b) Every $A \subseteq X$ not containing elements $B_{T}(T=1, \ldots, q+1)$ and being maximal for this property is a element of K_{q+1}. The proof for (a): Let $A \in K_{q+1}$. If $A \in F_{q}$ then A doesn't contain any one in B_{1}, \ldots, B_{q} and A is maximal for this property and at the same time $B_{q+1} \not A_{A}$. Consequently, A is a maximal subset of X not containing $B_{T}(T=1, \ldots, q+1)$.

Let $A \in K_{q+1} \backslash F_{q}$. It is clear that there is $A_{T}^{i}(1 \leq i \leq p$ and $1 \leq T \leq R_{i}$) such that $A=A_{T}^{i}$. Our construction shows that $B_{\imath} \nsubseteq A_{T}^{i}(\tau=1, \ldots, q+1)$. Because A_{T}^{i} is an antikey of $\left\{B_{q+1}\right\}$ for X_{i}, then $A_{T}^{i}=X_{i} \backslash\{b\}$ for some $b \in B_{q+1}$. Now it is obvious that $A_{T}^{i} \cup\{b\} \supseteq B_{q+1}$. If $a \in X \backslash X_{i}$ then, by inductive hypothesis, for
$A_{T}^{i} \cup\{a\}\{b\}=X_{i} \cup\{a\}$ there is $B_{\mathcal{Z}}(\mathcal{Z}=1, \ldots, q)$ such that $B_{q} \subseteq A_{T}^{i} U\{a\} \cup\{b\}$ 。 X_{i} doesn＇t contain B_{1}, \ldots, B_{q} by $X_{i} \in K_{q}$ ．Hence $a \in B_{q}$ ．If $\left(B_{\tau} \backslash a\right) \subseteq A_{T}^{i}$ then $A_{T}^{i} \cup\{a\} \supseteq B_{q}$ ．For every $B_{q}(1 \leq \tau \leq q)$ such that $B_{\tau} \subseteq X_{i} U\{a\}$ and $B_{q} \nsubseteq A_{T}^{i}$ we have $b \in B_{q}$ 。 Hence $\left(B_{\mathcal{Z}} \backslash\{a, b\}\right) \subseteq A_{T}^{i}$ ．Consequently，there is $A_{1} \in F_{q}$ such that $A_{T}^{i} A_{1}$ ．This contradicts $A \in K_{q+1} \backslash F_{q}$ ．So there exists $B_{q}(1 \leq \mathcal{L} \leq q)$ such that $A_{T}^{i} \quad\{a\} \supseteq B^{B}$ 。
The proof for（b）：Suppose that A is the maximal subset of X not containing $B_{T}(1 \leq T \leq q+1)$ ．By inductive hypothesis，there is $Y \in K_{q}$ such that $A \subseteq Y$ ．
The first case：If $B_{q+1} £ Y$ then Y doesn＇t contain B_{1}, \ldots, B_{q+1} 。 Because A is the maximal subset of X not containing $B_{T}(1 \leq T \leq q+1)$ ， then $A=Y . B_{q+1} \subseteq Y$ implies $A \in F_{q}$ ．Hence $A \in K_{q+1}$ ．
The second case：If $B_{q+1} \subseteq Y$ then $Y=X_{i}$ for some i in $\{1, \ldots, p\}$ and $A \subseteq A_{T}^{i}$ for some T^{\prime} in $\left\{1, \ldots, R_{i}\right\}$ ．If there exists $A_{1} \in F_{q}$ such that $A_{T}^{i} \subset A_{1}$ ，then A_{1} doesn＇t contain B_{1}, \ldots, B_{q+1} ．Hence $A \quad A_{1}$ ．This contradicts the definition of A ．Hence $A_{T}^{i} \in K{ }_{q+1}$ ． It is clear that A_{T}^{i} doesn＇t contain B_{1}, \ldots, B_{q+1} ．By the defi－ nition of A we obtain $A=A_{T}^{i}$ ．The theorem is proved．

It can be seen that K and K^{-1} are determined uniquely by each other．Because of this fact，the determination of K^{-1} based on the algorithm doesn＇t depend on the order of sequence $\left\{B_{1}, \ldots, B_{m}\right\}$ ．

EXAMPLE：Let $X=\{1,2,3,4,5,6\}$ and

$$
K=\{(1,2),(2,3,4),(2,4,5),(4,6)\}
$$

According to the above algorithm we have：
$K_{1}=\{(1,3,4,5,6),(2,3,4,5,6)\} ; K_{2}=\{(1,3,4,5,6),(2,3,5,6)(2,4,5,6)\}$
$K_{3}=\{(1,3,4,5,6),(2,3,5,6),(2,4,6)\} ; K_{4}=\{(2,3,5,6)(1,3,4,5)(1,3,5,6),(2,4)\}$
$K^{-1}=K_{4}$.
We consider the following matrix:
The attributes: $1 \begin{array}{lllllll} & 2 & 3 & 4 & 5 & 6\end{array}$

$M=$| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 2 | 0 | 0 | 0 | 2 |
| 0 | 3 | 0 | 3 | 0 | 0 |
| 4 | 0 | 4 | 0 | 4 | 4 |

M represents K, see [4].
Now we describe the "reverse" algorithm:
For given Sperner-system considered as the set of antikeys, we construct it's origin.

The following definition is necessary for us.
Let F be a closure operation over X. Denote:

$$
Z(F)=\{A: F(A)=A\} \text { and } Y(F)=\{A C X: F(A)=A \quad \text { and } \overline{3} B \in Z(F) \backslash\{X\}: A \subset B\}
$$

The elements of $Z(F)$ are called closure sets. It is clear that $Y(F)$ is the family of maximal closure sets.

Now we prove the following lemma:

Lemma 4.3.: A is an antikey if and only if A is the maximal closure set. That is: $K_{F}^{-1}=Y(F)$.

Proof. Let A is an antikey and suppose that $A \subset F(A)$. Hence $F(F(A))=F(A)=X$. Consequently A is a key. This contradicts to $\forall B \in K_{F}: B \notin A$. If there is A^{\prime} such that $A \subset A^{\prime}$ and $A^{\prime} \in Z(F) \backslash\{X\}$, then A^{\prime} is a key. This contradicts to $A^{\prime} \subset X$.

On the other side if A is a maximal closure set but there exists $B\left(B \in K_{F}\right)$ such that $B \subseteq A$, then $F(A)=X$. This contradicts to $A \subset X$. If $A \subset D(D \subseteq X)$ then it is clear that $F(D)=X$ (because A is the maximal closure set). Consequently A is anantikey.

The lemma is proved.
An algorithm finding a minimal key:
Let H be the Sperner-system, $B \in H$ and $a \in X \backslash B$ 。Suppose that $B=\left\{b_{1}, \ldots, b_{m}\right\}$. Let $G=\left\{B_{T} \in H: \alpha \notin B_{T}\right\}$ and $T_{o}=B U\{a\}$
$T_{q+1}= \begin{cases}T_{q} \backslash\left\{b_{q+1}\right\} & \text { if } \forall B_{i} \in H \backslash G: T_{q} \backslash\left\{b_{q+1}\right\} \subseteq B_{i} \\ T_{q} & \text { otherwise }\end{cases}$

Theorem 4.4. If H is a set of antikeys, then $\left\{T, \ldots, T_{m}\right\}$ are the keys and T_{m} is a minimal key.

Proof. By the remark 4.1. there is a closure operation F such that $H=K_{F}^{-1}$. We prove the theorem by the induction. It is obvious that T_{0} is a key. If T_{q} is the key and $T_{q+1}=T_{q}$, then T_{q+1} is a key. If $T_{q+1}=T_{q} \backslash\left\{b_{q+1}\right\}$ and $F\left(T_{q+1}\right) \neq X$, then by lemma 4.3 there is $B_{T} \in H$ such that $F\left(T_{q+1}\right) \subseteq B_{T}$. Hence $T_{q+1} \subseteq B_{T}$. This constradicts to $\forall B_{T} \in H: T{ }_{q+1} \mathcal{L}_{T}$. Consequently, T_{q+1} is a key.

Now suppose that A is a proper subset of T_{m}. If $\alpha \notin A$, then clearly $F(A) \neq X$. If $a \in A$, then there is $b_{q} \in B$ such that $b_{q} \epsilon_{m} \backslash A(1 \leq q)$. By the given algorithm there is $B_{T} \in H \backslash G$ such that $T_{q-1}\left\{b_{q}\right\} \subseteq B_{T}$. We obtain $A \subseteq T{ }_{m} \backslash\left\{b_{q}\right\} \subseteq T{ }_{q-1} \backslash\left\{b_{q}\right\} \subseteq B_{T}$ by $T_{m} \subseteq T_{q}(0 \leq q \leq m-1)$. Hence $F(A) \neq X$. Consequently, T_{m} is a minimal key. The theorem is proved.

Remark 4.5:

- It is best to choose B such that $/ B /$ is minimal.
- If there is B such that $\forall B_{T} \in H$ and $B_{T} \neq B: B \cap B_{T}=\varnothing$ then $a \cup b$ is a minimal key $(\forall b \in B)$
- If $X \backslash \underset{B_{T} \in H}{\cup} B_{T} \neq \emptyset$ then $a \in X \backslash \underset{B_{T} \in H}{\cup} B_{T}$ is a minimal key.
- Let $Y=\bigcup_{B_{T} \in H} B_{T}\left(B_{T} \neq B\right)$. If $B \backslash Y \neq \varnothing$ then it is best to choose $T_{O}=B \cap Y \cup\{a\} \cup\{b\} \quad(b \in B \backslash Y)$.

Remark 4.6: Let H be an arbitrary Sperner-system and $A \subset X$. We can give an algorithm (which is analogous to the gbove one) to decide whether A is or isn't a key. If A is the key, then this algorithm find one A^{\prime} such that $A^{\prime} \subseteq A$ and A^{\prime} is a minimal key.

Basing on theorem 4.4. We can find the minimal keys in concrete cases.

In the paper [4] the equalitysets of the relation are defined: Let R be a relation and $h_{i}, h_{T} \in R$. Denote

$$
E\left(h_{i}, h_{T}\right)=\left\{a \in X: h_{i}(a)=h_{T}(a)\right\} \quad(i \neq T)
$$

Remark 4.7. Let R be a relation over X.
$R=\left\{h_{1}, \ldots, h_{m}\right\}$. Let $E_{i T}=\left\{a \in X: h_{i}(a)=h_{T}(a)\right\}$ where $1 \leq i \leq m, 1 \leq T \leq m$ and $i \neq T$. Denote $M=\left\{E_{i T}\right.$: there isn't $E_{s \tau}$ such that $\left.E_{i T} \subset E_{s \tau}\right\}$ practically, it is possible that there are many $E_{i T}$ which equal to each other. We choose one $E_{i T}$ from M. According to Lemma 4.3 it can be seen that M is the set of antikeys. Basing on the theorem 4.4. and the Remark 4.7 we find the minimal keys.

EXAMPLE. Let $X=\{1,2,3,4,5,6\}$ and
R be the relation: $0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0$

1	0	1	0	0	1
2	0	0	1	2	2
0	1	2	2	0	3
3	2	1	0	0	0

It can be seen that $M=\{(1,2),(3,4,5),(4,6)\}$, where $E_{14}=\{1,2\}, E_{15}=\{4,6\}$ and $E_{25}=\{3,4,5\}$.

By the Theorem 4.4 and the Remark 4.5 it is clear that: $\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\},\{2,6\}$ are the minimal keys. We use the algorithm (Theorem 4.4) with $T_{0}=\{3,4,6\}$ and $T_{o}=\{4,5,6\}$. It can be seen that $\{3,6\}$ and $\{5,6\}$ are the minimal keys.

Let K be an arbitrary Sperner-system. The following theorem has been proved in [2].

Theorem 4.8. ([?]). $\left.\begin{array}{c}\Delta(K) \\ 2\end{array}\right) \geq\left|K^{-1}\right| \geq \Delta(K)-1$. Denote by $\binom{X}{k}$ the family of all k-element subsets of X. Let $F_{k}(n)=\max \left\{\Delta(K): K \subseteq\binom{X}{k},|X|=n\right\}$

Theorem 4.9 ([5]).

$$
F_{k}(n) \geq \sqrt{2}\binom{2 k-2}{k-1}^{\frac{1}{2}\left[\frac{n}{2 k-1}\right]}
$$

We define the function $f_{2 k-1}: N \rightarrow N$ (N-the set of natural numbers) in following way

$$
\begin{aligned}
& f_{2 k-1}(n)=\left\{\begin{array}{cc}
\binom{2 k-1}{k-1}^{\frac{n}{2 k-1}} \text { if } n \equiv 0(\bmod (2 k-1) \\
\binom{2 k-1}{k-1}^{\left[\frac{n}{2 k-1}\right]-1} \times\left(\begin{array}{cc}
2 k-1+p) \\
k-1
\end{array}\right. & \text { if } n \equiv p \\
(\bmod (2 k-1)) & \text { and }
\end{array}\right. \\
& \binom{2 k-1}{k-1}^{\left[\frac{n}{2 k-1}\right]} \times\binom{ p}{k-1} \text { if } n \equiv p \quad(\bmod (2 k-1)) \text { and }
\end{aligned}
$$

and

$$
f_{2 k-2}(n)= \begin{cases}\binom{2 k-2}{k-1}^{\frac{n}{2 n-2}} & \text { if } n \equiv 0 \quad(\bmod (2 k-2)) \\
\binom{2 k-2}{k-1}^{\left[\frac{n}{2 n-1}\right]-1} \times\left(\begin{array}{c}
2 k-2+p) \\
k-1
\end{array}\right. & \text { if } n \equiv p \underset{1 \leq p \leq k-1}{(\bmod (2 k-2))} \text { and } \\
\binom{2 k-2}{k-1}^{\left[\frac{n}{2 n-1}\right]} \times\binom{ p}{k-1} \text { if } n \equiv p \underset{k \leq p \leq 2 k-3}{(\bmod (2 k-2))} \text { and }\end{cases}
$$

It is clear that $2 k-1$ and $2 k-2 \leq n$
Take a partition $X=X_{1} \cup \ldots \cup X_{m} \cup W$, where $m=\left[\frac{n}{2 k-1}\right]$ and $\left|X_{i}\right|=2 k-1 \quad(1 \leq i \leq m)$. Let

$$
K=\left\{B:|B|=k, B \subseteq X_{i}, \quad \forall_{i}\right\} \quad \text { if } \quad|W|=0
$$

$K=\left\{B:|B|=k, B \subseteq X_{i}(1 \leq i \leq m-1)\right.$ and $\left.B \subseteq X_{m} U W\right\}$ if $1 \leq|W| \leq k-1$
$K=\left\{B:|B|=k, B \subseteq X_{i}(1 \leq i \leq m)\right.$ and $\left.B \subseteq W\right\} \quad$ if $k \leq|W| \leq 2 k-2$
It is clear that $K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1, \forall_{i}\right\} \quad$ if $|W|=0$.
$K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1 \quad(1 \leq i \leq m-1)\right.$ and $\left.\left|A \cap\left(X_{m} \cup W\right)\right|=k-1\right\}$ if $1 \leq|W| \leq k-1$
$K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1 \quad(1 \leq i \leq m)\right.$ and $\left.|A \cap W|=k-1\right\}$ if $k \leq|W| \leq 2 k-2$
It can be seen that $f_{2 k-1}(n)=\left|K^{-1}\right|$
By the analogous way we take a partition

$$
X=X_{1} \cup \ldots \cup X_{m} \cup W \text {, where } m=\left[\frac{n}{2 k-2}\right] \text { and }\left|X_{i}\right|=2 k-2
$$

Let $K=\left\{B:|B|=k, B \subseteq X_{i}, \forall_{i}\right\} \quad$ if $|W|=0$

$$
\begin{aligned}
& K=\left\{B:|B|=k, B \subseteq X_{i}(1 \leq i \leq m-1) \text { and } B \subseteq X_{m} \cup W\right\} \text { if } 1 \leq|i| \leq k-1 \\
& K=\left\{B:|B|=k, B \subseteq X_{i}(1 \leq i \leq m) \text { and } B \subseteq W\right\} \text { if } k \leq|W| \leq 2 k-3
\end{aligned}
$$

It is clear that $f_{2 k-2}(n)=\left|K^{-1}\right|$ and $f_{2 k-2}(n) \geq\binom{ 2 k-2}{k-1}^{\left[\frac{n}{2 k-2}\right]}$
Theorem 4.10. Let $X=\{1, \ldots, n\}$ 。
If $n \equiv 0,(\bmod (2 k-2)(2 k-1))$ then $f_{2 k-1}(n)>f_{2 k-2}(n)$
If we fix k, then $\lim _{n \rightarrow \infty} \frac{f_{2 k-2}(n)}{f_{2 k-2}(n)}=\infty$
Proof. If $k=2$ then it is easy to prove that $\forall_{n}: f_{3}(n) \geq f_{2}(n)$. If $n=6$ or $n \geq 8$ then $f_{3}(n)>f_{2}(n)$.

Let $F=\frac{\binom{2 k-1}{k-1} \frac{n}{2 k-1}}{\binom{2 k-2}{k-1} \frac{n}{2 k-2}}=\frac{\left(\frac{2 k-1}{k}\right)^{\frac{n}{2 k-1}}}{\binom{2 k-2}{k-1} \frac{n}{(2 k-2)(2 k-1)}}$
It is known that $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{\theta n}{12 n}}$, where $0<\theta_{n}<1$.

So $F \geq \frac{\left(\frac{2 k-1}{k}\right)^{\frac{n}{2 k-1}}}{\left(\frac{e^{\frac{\theta n}{12(2 k-2)}}}{\sqrt{\pi(k-1)}}\right)^{\frac{n}{(2 k-2)(2 k-1)}} \times 2^{\frac{n}{2 k-1}}\left(\frac{\left(1-\frac{1}{2 k}\right)^{\frac{n}{2 k-1}}}{\sqrt{\pi(k-1)}}\right)^{\frac{n}{(2 k-2)(2 k-2)}}}=E$
$\operatorname{In} E=\frac{n}{2 k-1}\left(\ln \left(1-\frac{1}{2 k}\right)+\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-2)}\right)\right)=T$
$T \geq \frac{n}{2 k-1}\left(\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}\right)$ by $\left|\ln \left(1-\frac{1}{2 k}\right)\right| \leq \frac{1}{2 k-1}$

It is clear that if $k=3$ then $\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}>0$ and for every $k \geq 4: \frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}>1$. Hence $\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}>0$. Consequently, if $n \equiv 0$ $(\bmod (2 k-2)(2 k-1))$ then $f_{2 k-1}(n)>f_{2 k-2}(n)$.

Now let n be an arbitrary natural number and k fixed. It can be seen that there exists a number $M>0$ such that

$$
\frac{\binom{2 k-1+p}{k-1}}{\binom{2 k-1}{k-1}}<1+\frac{p}{2 k-1} \quad\binom{p}{k-1}<M, \frac{\binom{2 k-2+p}{k-1}}{\binom{2 k-1}{k-1} \frac{p}{2 k-1}}<M,
$$

$$
\frac{\binom{p}{k-1}}{\binom{2 k-2}{k-1} \frac{p}{2 k-2}}<M
$$

It can be seen that $\ln _{n \rightarrow \infty} E \rightarrow \infty$. Hence $\underset{n \rightarrow \infty}{F \rightarrow \infty}$.

Consequently: $\frac{f_{2 k-1}(n)}{f_{2 k-2}(n)} \rightarrow \infty$ (It is easily seen that $k=2$ is also
The theorem is proved.

On the basis of theorem 4.10 and theorem 4.8 it is clear that

$$
F_{k}(n) \geq \sqrt{2 f_{2 k-1}(n)} .
$$

§.5. THE GENERAL FUNCTIONAL DEPENDENCY

In the paper [6] the concept of the general functional dependency is defined.

Let $X=\{1, \ldots, n\}, R$ be a relation over X.
$h, h^{\prime} \in R: t_{i}\left(h, h^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } h(i) \neq h^{\prime}(i) \\ 1 & \text { if } h(i)=h^{\prime}(i)\end{array}\right.$

Let $t\left(h, h^{\prime}\right)=\left(t_{1}\left(h, h^{\prime}\right), \ldots, t_{n}\left(h, h^{\prime}\right)\right)$
We say that (f, g) is a functional dependency inf f, g are the Boolean function of n variables.
Let $R \neq(f, g) \Leftrightarrow \forall h, h^{\prime} \in R: f t\left(h, h^{\prime}\right)=1 \Rightarrow g t\left(h, h^{\prime}\right)=1$
Denote by F the set of the functional dependencies, $\dot{B}(f, g)=\{R: R \not \models(f, g)\}$, for $Y \subseteq F \operatorname{let} B(Y)=\bigcap_{B Y} B(f, g)$ $(f, g) \in Y$

Denote $Y \neq(f, g)$ iff $B(Y) \subseteq B(f, g)$ and let $C(Y)=$ $=\{(f, g) \in F: Y \models(f, g)\}$.
We denote $f \leq f^{\prime}$ iff $\forall t \in E_{2}^{n}: f(t)=1 \Rightarrow f^{\prime}(t)=1$ and $Y(Y \subset F)$ is a closure set if $Y=C(Y)$.
Let Y be a closure set and
$M A X(Y)=\left\{\left(f^{\prime}, g^{\prime}\right) \in Y: g^{\prime}=\max (f), f^{\prime}=\min (g),(f, g) \in Y\right\}$
where $\max (f)=\underset{(f, g) \in Y}{\Lambda g} \quad$ and $\min (g)=\underset{(f, g) \in Y}{\vee f}$
Let $\operatorname{MIN}(Y)=\left\{\left(f^{\prime}, g^{\prime}\right) \in Y: g^{\prime}=\min (f), f^{\prime}=\max (g),(f, g) \in Y\right\}$
where $\min (f)=\vee g$ and $\max (g)=\Lambda f$

$$
(f, g) \in Y \quad(f, g) \in Y
$$

Theorem 5．1（［6］）．Let Y be a closure set．Then（f，g）is an element of Y if and only if there exists（ f^{\prime}, g^{\prime} ） $\operatorname{GMAX}(Y)$ such that $f \leq f^{\prime}$ and $g^{\prime} \leq g$ 。

Theorem 5．2．Let Y be a closure set．Then（ f, g ）is anelement of Y if and only if there exists（ $\left.f^{\prime}, g^{\prime}\right) \in M A X(Y)$ and $\left(f^{\prime \prime}, g^{\prime \prime}\right) \in M I N(Y)$ such that $f^{\prime \prime} \leq f \leq f^{\prime}$ and $g^{\prime} \leq g \leq g^{\prime \prime}$ ．

Proof．By the theorem 5．l．it is clear that we have only to prove：there is $\left(f^{\prime \prime}, g^{\prime \prime}\right) \in M I N(Y)$ such that $f^{\prime \prime} \leq f$ and $g \leq g^{\prime \prime}$ ． Let $g^{\prime \prime}=\min (f)$ and $f^{\prime \prime}=\max (\min (f))$ 。 It is clear that $g \leq g^{\prime \prime}$ and we have（f， $\min (f)) \in Y$ by $Y \vDash(f, \min (f))$ ．

Consequently， $\max (\min (f)) \leq f$ by the definition，of $M I N(Y)$ 。 It is clear that $\min (\max (\min (f))) \leq \min (f)$ ．It can be seen that $\min (f) \leq \min (\max (\min (f)))(b y(f, g) \vDash(\max (\min (f)), \min (f))$ ． Hence $\min (f)=\min (\max (\min (f)))$ ．We obtain $(\max (\min (f)), \min (f)) \in M I N(Y)$ by the definition of MIN（Y）． Hence（ $\left.f^{\prime \prime}, g^{\prime \prime}\right) \in M I N(Y)$ hold．The theorem is proved．

Finally，I express any decnest gratitude to Professor DR Demetrovics János for his help and encouragement．

REFERENCES

［l］W．W．Armstrong；Dependency Structures of Data base Relationships．Information Processing 74，North－Holland Publ．Co．（1974）580－583．
［2］A．Békéssy，J．Demetrovics，L．Hannák，G．OH．Katona P． Frankl；On the number of maximal dependencies in data relation of fixed order．Discrete Math．， 30 （1980）83－88
［3］E．F．Codd；Relational model of data for large shazed data banks．Communications of the ACM，13，（1970）377－384．
［4］J．Demetrovics，Relációs adatmodell logikai és strukturá－ lis vizsgálata．MTA－SZTAKI Tanulmányok，Budapest， 114 （1980）
[5] J.Demetrovics, Z.Füredi, G.O.H.Katona; Minimum matrix representation of closure operations. Preprint of the mathematical institute of the Hungarian academy of sciences Budapest, 12 (1983) l
[6] Б. Тальхайм; Зависимости в реляционных структурах данных. ACTA CYBERNETICA, Szeged (1984)

ÖSSZEFOGLALÁS

MEGJEGYZESEK A LEZARASI OPERACIOKHOZ
 VU DUC THI

A doīcozatunkban a minimális kulcsok és antikulcsok és a lezárási operáció közötti kancsolatot vizsgáljuk.
Р Е З Ю M E

ЗАМЕЧАНИЯ ОБ ОПЕРАЦИЯХ ЗАМЫКАНИЯ

В настоящей работе изучается связь между минимальными ключами, антиключами и операциями замыкания.

