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REMARKS ON CLOSURE OPERATIONS

VU DIC THI
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Hungarian Academy of Sciences

§,1, INTRODUCTION

The relational datamodel was defined by E.F.Codd [3]. Many
papers have appeared since that dealing with the combinational

characterization problems of functional dependencies.

The main nurpose of this paper is to investigate the con-
nection of closure operations with the minimal keys and anti-

keys.

§,2., DEFINITIONS

In this section, we present some necessary definitions.

x

Definition 2.1. Let X = {1,...,n}. The function F:2* + 2% is

called a closure operation if for every 4,B ¢ X

(i) A C F(4) (extensive)
(31) A ¢ B => F(A) € F(B) (monotone)
(1ii1) F(F(A)) = F(A) (idempotent)

Let M be an mxn matrix and X be the set of its columns.
Let FM(A), A < X, be a function such that FM(A) contains the
ith column of M iff any two rows identical in columns belong-

ing to A are also equal in the ith column.
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It is clear that FM(A) is a closure operation.

Definition 2.2. Let F be a closure operation. We say that M
represents the closure operation F if F = FM°
It is known [1] that any closure operation is representable

by an appropriate matrix M.

Definition 2.3. Let F be a closure operation and 4 € X. 4 is
a key of F if F(4) = X.

Definition 2.4. Let F be a closure operation. We define

K, = {A:F(A)=X, (¥B_A)(F(B)=F(A)=>B=A)}

F
That is: KF is a set of minimal keys. We say that an man
matrix M represents the family X iff X = KF .

M
It is easy to see that the family of keys of a closure opera-

tion create a Spernér-system.

We denote A(K) = min{m:K = KF :' M 7Zs an mxn matrix}.
M

where K is a Sperner-system over X.

§,3, THE PROPERTIES OF THE CLOSURE OPERATIONS

It is easy to prove that if F is a closure operation and

m m m
A.C X (1 <72 < m), then F(U A.) = F(U F(A,)) and F(N\F(A.)) =
7 = - . 1 t 1 & 1 ®

F(Ai)‘

D3

Definition 3.1. Let F be a closure operation. We say that
A(A c X) is a maximal element of F iff for all B(Be€A):F(B) =
= F(A) implies B = 4,



.

Denote by M(F) the set of the maximal elements of F i.e.

M(F) = {A:(¥B € A)(F(B)=F(A) => B = A)}

Theorem 3.2. Let F be a closure operation. Then
M(F) = {A:(¥C)(AGF(C) => CZA)}

Proof. Assume the A6M(F), but 3C such that 4 ¢ F(C) and C < A.
We have F(A) ¢ F(F(C)) = F(C) by (ii) and (iii). ¢ « A implies
F(C) € F(A), so F(A) = F(C) holds. Consequently there exists

C <A such that F(A) = F(C). This conteadicts to the assumption
AGM(F) .

Now, assume that
¥ C (4 g F(C) = CfA) (*)

but 4 ¢ M(F). This means that there is a set B such that B< 4
and F(B) = F(A). (i) implies A4 € F(A) = F(B). Consequently,
there is B such that 4 € F(B) and B € A. This contradicts the
fact that 4 satisfies (*). The theorem is proved.

Let MZ(F)= {A:A F(A) and (¥BE€A) (F(B)=F(A)=> A=B)}

Denoting by M. the extremum of /MZ(F)/ it can be proved

M
that lim —2 = 1, see [21].
nreo 2
We denote by N the extremumof /M(F)/. It is clear that
- N
M < N < 27, hence lim e
n—"m-— n
nre 2

Definition 3.3. Let F be a closure operation over X, we call
the image F(A) of A as a nontrivial one if ACF(4).

Let P(F) = {F(A):A <cF(A)} and denote by Pn the extremum of
LBEE) /.



Theorem 3.4. P = ghTl

Proof. Let T(F) ={A:A€F(4)}. It is clear that /T(F)/>/P(F)/(*).
On the other hand (iii) implies F(F(A))=F(A), so P(F)NT(F)=y¢
holds. Consequently, /P(F)/+/T(F)/:2n, we obtain 2/P(F)/52n

by (*). Hence /P(F)/.<_.2”—Z Take b6X and let F(4)=AyU {b} for
every A € X. It is easily seen that F is a closure operation

and /P(F)/=2n—1. The theorem is proved.

§.4, THE CONNECTION BETWEEN THE MINIMAL KEYS AND ANTIKEYS

Let K be a Sperner-system. We define the set of the anti-

keys of Kk, denoted by K—Z, as follows:

k1= {acx: (BeK=>B#A) and (A C)=> (3BEK)(B & C)}.

That is: the antikeys of K are the subsets of X not containing
the elements of XK and which are maximal for this property.

Ot is clear that X ! is a Sperner-system.

Remark 4.1. In C1,43, it has been proved that if X is an ar-
bitrary Sperner-system then there exists a closure operation

F(F")-for which K = KF (K=K;1).

The antikeys play important roles for the evaluation of
A(K) as well as for the construction of a concrete matrix rep-

resenting a family K or for finding minimal keys.
The algorithm for finding the set of antikeys:

Let K = {BZ""’Bm} be the Sperner~-system over X we have to

contruct K-l. For every q = 1,...5n, We_construct

. -1 4 .
Kq-{Bz,...,Bq} by ‘induction.

Step 1l: Construct K, in the following way:

1
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Step g+1: Construct Kq+1 in the following way:

By the inductive hypothesis we have constructed Kq={Bl,...,Bq}51.

Suppose that XZ""’Xp are the elements containing Bq+1 of K .
So

K = {X

g 7 & Al

seees X Y ULAGK B, &

Denote {AGKq(Bq+ZgA} by Fq. For all i (Z=1,...,p) we construct

the antikeys of {Bq } on X, in the analogous way of as in

7
step 1, which are the maximal subsets of Xi not containing

B Denote them by A?,,..,Az

g+1° B (=1, 5 s Dl
z

” ) . .
Let K ,;=F U{Ap:Ay £ 4, if A6F , I<T<R;, 1<i<p)

Theorem 4.2. K = .

d
Proof. We prove the theorem by induction. The fact X

= {Bl,o..,B

the induktive hypothesis Kq = {BZ,...,Bq}—Z. We have to prove:

= 1By
is obvious. Now we have to prove K }-1 using

q+l qtl

a) If AGKq+1

Bp (F=1,...,q+1) and being maximal for this property.

then 4 is the subset of X not containing

b) Every A ¢ X not containing elements B, (T=1,...,q+1)

g+1° The
proof for (a): Let A€KQ+1. I AGFq then 4 doesn’t contain any
one in Bl""’Bq and 4 is maximal for this property and at the

T
and being maximal for this property is a element of X

same time Bq+lgﬂo Consequently, 4 is a maximal subset of X not

containing BT (P=Ty s uau@¥ll,

Let AFfK \F . It is clear that there is 0 ks
g+l " q : i

liT:EQ) such that 4 = A;. Our construction shows that

B, & A% (l=1,...,9+1). Because 4
L= P

(1<t<p and

7
T
£ ,

X5 the? Ap = Xi\{b} for some bqu

} for

is an antikey of {Bq+1

1" Now it is obvious that

A;,U{b} b~ Bq+1. If aGX\Xi then, by inductive hypothesis, for
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A% Uta) (b} = X,y {a) there is B, (1=1,...,q) such that

1 ’ :
B, E.ATU{a}U{b}o X doesn’t contain BZ"'°’Bq by XiGKq' Hence
a€B,. If (B,\a) €4, then A, V{a} D B;. For every B, (1<l<q)

l T
Z
such that BZ c X U{al}l and B, & Ap we have b€BZ,
Hence (BZ\{a,b}) c A;. Consequently, there is AIGFq such that
A7 4 This contradicts AfX

LA
such that A;’, {a} > Bzo

q+1\Fq° So there exists BZ (1<1<q)

The proof for (b): Suppose that 4 is the maximal subset of X

not containing B, (1<T<g+1). By inductive hypothesis, there is

T
YGKq such that 4 c MG

. = ’ 3
The first case: If Bq+1 & Y then Y doesn’t contain Bz,eeg,Bq+19

Because 4 is the maximal subset of X not containing BT (1<T<q+1),

then A=Y, B € Y implies AGFq. Hence A€K

q+1 q+1’

The second case: If Bq+1 & Y then Y = X, for somé £ im 171,.450}

and 4 € A; for some T'in {1""’Ri}' If there exists A, éF

7z
such that ATC.AJ, g+1°* I?ence

A AZ' This contradicts the definition of A. Hence A;qu+10

By the defi-

then 4, doesn’t contain BiseeesB

; 7 ’ ;
It is clear that AT doesn’t contain BZ,..V,Bq+Zq

nition of 4 we obtain A=AZ,’,o The theorem is proved.

It can be seen that XK and Kfl are determined uniquely by
each other. Because of this fact, the determination of K_J
based on the algorithm doesn’t depend on the order of sequence

{Bl_’lll,Bm}.

EXAMPLE: et X = 41,2,8,2,5,68} dnd
K = {(1,2),(2,3,4),(2,4,5),(4,6)}

According to the above algorithm we have:

Ry = 01,8,8,5,6),02,8,4,8,6)0); K, =1(1,5,4,5,6),(2,5,5,6)(2,4,5,8)}

Ky =1(1,3,4,5,6),(2,3,5,6),(2,4,6)}; K,=1(2,3,5,6)(1,3,4,5)(1,3,5,6),(2,4)}
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We consider the following matrix:

The attributes: 1 2 3 4 5 6
0 0 0 0 0 0

: 0 0 1 0 0

M = 0 2 0 0 0 2

0 3 0 3 0 0

= 0 4 0 4 4

M represents K, see [L1],

Now we describe the "reverse" algorithm:
For given Sperner-system considered as the set of antikeys,

we construct it’s origin.

The following definition is necessary for us.

Let F be a closure operation over X. Denote:
Z(F) ={A:F(A)=A} and Y(F) = {ACX:F(A)=4 and 3BEZ(F)\{X}:ACB}

The elements of 7 (F) are called closure sets. It is clear that

Y(F) is the family of maximal closure sets.

Now we prove the following lemma:

Lemma 4.3.: A4 is an antikey if and only if A is the maximal
closure set. That is: K}J = Y(F).

Proof. Let A4 is an antikey and suppose that ACF(4). Hence
F(F (A))=F(A)=X. Consequently 4 is a key. This contradicts to
VBGKF:BgA. If there is A' such that AQ A' and A'6Z(F)\{X},
then A' is a key. This contradicts to A'¢ X.

On the other side if 4 is a maximal closure set but there
exists B(BGKF) such that B € 4, theh F(4A)=X. This contradicts
to AQX. If AcD (D c X) then it is cléar that F(D)=X (because

A is the maximal closure set). Consequently 4 is anantikey.
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The lemma is proved.

An algorithm finding a minimal key:

Let H be the Sperner-system, B€ H and afX\B. Suppose that

B = {bz""’bm}' Let G={BTeH:a¢!BT} and TO=BU{a}
Tq\{bq+1} if VBiGH\G:Tq\{bq_,_J} £ B,

By =
Tq otherwise

Theorem 4.4. If H is a set of antikeys, then {To""’Tm} are

the keys and Tm is a minimal key.

Proof. By the remark 4.1. there is a closure operation F such
1

that H=K; . We prove the theorem by the induction.

It is obvious that To is a key. If T is the key and

Tq+1=Tq, then Tq+Z is a key. If Tq+1=Tq\{bq+1} and F(Tq+1)#X,
then by lemma 4.3 there is B 6H such that F(Tq+1) € B,. Hence

T c B

g+1 € Bpe This constradicts to VBTGH:TQ+1£BT. Consequently,

Tq+1 is a key.

Now suppose that 4 is a proper subset of Tm. If afA, then
clearly F(4A)#X. If af4, then there is quB such that
quTm\A (1<q). By the given algorithm there is BTGH\G such

that T b _} «€B We obtain A€T b CT b CB. b
q-J{ g 'S n A< m\{ q} - q—l\{ q} CB, by

7o
Tm G Tq (0<q<m-1). Hence F(A)#X. Consequently, Tm is a minimal
key. The theorem is proved.

Remark 4.5:
- It is best to choose B such that /B/ is minimal.

- If there is B such that VBTGH and BT#B:BnBT=ﬁ then aUb

is a minimal key (¥b€B)
- If X\ U BT#ﬂ then a¢6x\ U B
BTQH BTGH
- Let Y= U B (BT#B). If B\Y#7Z then it is best to choose

BTGH

7, =BAY U{a} U{b} (bEB\Y).

T is a minimal key.

/4
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Remark‘4.6: Let H be an arbitrary Sperner-system and ACX,

We can give an algorithm (which is analogous to the gbove one)
to decide whether 4 is or isn’t a key. If 4 is the key, then
this algorithm find one 4' such that 4' ¢ 4 and A' is a mi-

nimal key.

Basing on theorem 4.4. We can find the minimal keys in
concrete cases.
In the paper [L4L]1 the equalitysets of the relation are defined:
Let R be a relation and hi’ hTGR. Denote

E(hi’hT) = {aGX:hi(a)=hT(a)} (i#T)

Remark 4.7. Let R be a relation over X.

R={h1,...,hm}. Let EiT::{aGX:hi(a)=hT(a)} where I1<i<m, 1<T<m
and Z#T. Denote M:z{EiT: there isn't E g such that EiTC:Esr}
practically, it is possible that there are many EiT which
equal to each other. We choose one EiT from M. According to
Lemma 4.3 it can be seen that M is the set of antikeys.
Basing on the theorem 4.4. and the Remark 4.7 we find the

minimal keys.

EXAMPLE. et X = {1.,8.3.4,5,6) and

R be the relation:

W MM N
N = )
N MM O N O
(= TR T = T e YRR R <.
S T v © N
S N N B D

It can be seen that M = {(1,2),(3,4,5),(4,6)}, where

E,p = (1,2}, B, = {4,6} and Egp=13,4,5}.

By the Theorem 4.4 and the Remark 4.5 it is clear that:
{1,8%, 11,3), -£1,8Y, 11,8}, 18,3%, 12.4%, T5,5) , {5,8) are
the minimal keys. We use the algorithm (Theoreh 4.4) with
T, = 1{3,4,6} and T, = {4,5,6}. It can be seen that {3,6}

and {5,6} are the minimal keys.
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Let K be an arbitrary Spverner-system. The following theorem
has been proved in (1.

A(CK)
o

&

3. % IK_JI

Theorem 4.8. (C21). ( > A(K)-1.

Denote by (g) the family of all k-element subsets of X. Let

Fp(n) = max {A(K):K € (‘Z), (%] =m}

Theorem 4.9 (C[57). 3 " 1
3 — 2k=2 .2 2k~-1
Foln) > V2 (%, 3}

We define the function f :N+N (N-the set of natural numbers)

2k ~1
in following way

n
(BK71)B=T i mz0 (mod (2k-1)
e LY
B bl =N B ZR=1T T (2XTI*P) if mzp (mod (2k-1)) and
1ep<k=1
=i, BT
g x (,F.) if n=p (mod (2k-1)) and
k<p<2k-2
and
n
e if n=0 (mod (2k-2))
LT,
fop_g(n) = § (PX72)72n7 17 " (BXT2*P) if nzp  (mod (2k-2)) and
1<p<k-1
n
it Lem—ert] ?
(2%72)"En=1" (P ) if nzp (mod (2k-2)) and

k<p<2k-3

It is clear that 2k-1I and Zk'2i”

. . = — n
Take a partition X = XZU e UXmUW, where m"EEE:Tj and

IXiI = 2k-1 (1<i<m). Let

E=1Bs|B[ =k B €X.5 1 df |w] = 0
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K = {B:|B|=k, B C X, (1<i<m-1) and BSX UW} if 1<|W|<k-1

K

{B:|B|=k, B € X, (1<i<m) and B < W} if k<|W|<2k-2

It is clear that K_Z={A:|Anxi|=k—1, ¥.} if |w|=o0.

1

K= {4:|anx,| =k-1 (1<i<m-1) and |AN(X UW)|=k-1} if 1<|W|<k-1
k1= {A:]AnXi[ =k-1 (1<i<m) and |ANW|=k-1} <f k< |W|<2k-2

-1
It can be seen that f,, ,(n)=|K ~|

By the analogous way we take a partition

— — n y ——J —
X=X,U ... UX UW, where m=Cz3—5] and [Xi|—2k 2

Let K = {B:|B|=k,

S
1N

X, ¥:} if |w|=0

{B:|B|=k, B

b
Il
n

X, (1<i<m=1) and B C X _UW} if 1<|W]|<k-1

K = {Bz|B|=k, B

n

X, (1<i<m) and B ¢ W} if k<|W|<2k-3

n

E—%——]
It is clear that f2k_2(n)=|K_1[ and fgk_g(n)i(gz:i) i

Theorem 4.10. Let X = {1,...,n}.

If n=0, (mod (2k-2)(2k-1)) then fzk—l(n)>f2k—2(n)

Fov_alind
If we fix k, then Ilim ‘QELE%VfT =
pives 3 pi-n 0"

Proof. If k=2 then it is easy to prove that Vn:f3(n)if2(n).
If n=6 or n>8 then f3(n)>f2(n).

n n
2k—1)2z—1 2k—1)2k—1

( (——
Let F = —K1 s, =
(2k-2,2k=2  ,2k-2,72k-2) (2k-1)
k=1 k=1

on

n —
It is known that »n! = /2mn (g) e 12”, where 0<en<1.
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n n
So (2k=1,2k=1 i = A R
i 2K ”
Fx - > - =
on (2k=2) (2k-1) 5 1 (2k-2) (2k-2)
91222E-2)> ,257:7' (824 -1
/r(k=1) Yu(k=-1)

Lo Ll Labg g &
LnE = m(ln(l-ﬁ)'f‘-z—k:—z-(—g Zn('rr(k 1)) m)) T

n 1 1 i 1 1 1
T = 5% =] (2%_2 ('g Zn(n(k-l))-24(7<_1)) 27(—1) by lZn(l—.g_E)Iim

; occdgn 2 o ’ 1 1
It is clear that if k=3 then mz—(5 In(n(k-1)) 24(k-1)) 5%=7>"

o > oy, i
and for every k>4: 3 tn(nlk—-1)) 3?7?:77'>1‘ Hence

1 :
?F%E (% in(n(k-1)) 24%k—1)) 57—7 > 0. Consequently, if n=0

(mod(2k-2) (2k=1)) then f,,_,(n)>fy o(n).

Now let n be an arbitrary natural number and k fixed. It can
be seen that there exists a number M>0 such that

2k-1+p p 2k-2+4p
( ) ( ) ( )

k-1 . ¥ 1 e o
(2k-1)1+2E—1 (21 ,7k~1 (Zk-2)1+2 =)

k-1 k-1 k-1

p
GE
(2k=2  ZR-2
k-1

It can be seen that In E+«. Hence F o ,
N> n>o

fgk_z(n)
Consequently: A (It is easily seen that k=2 is also
Fox-2(m

true)
n—ro

The theorem is proved.
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On the basis of theorem 4.10 and theorem 4.8 it is clear that

B ul 5 /B T TH) 5

§.5, THE GENERAL FUNCTIONAL DEPENDENCY

In the paper [61 the concept of the general functional

dependency is defined.

Let X = {1,...,n}, B be a relation over X.

0 if h(L)#h'(Z)
h,h'6R: t.(h,h') = {
t 1 if h(i)=h'(Z)

Let t(h,h’)=(t1(h,h'),,o.,tn(h,h'))

We say that (f,g) is a functional dependency iff f,g are the

Boolean function of »n variables.
Let R = (f,g) <=> ¥h,h'6R:ft(h,h')=1 => gt(h,h')=1

Denote by F the set of the functional dependencies,
B(f,g) ={R:R = (f,g)}, for Y € F let B(Y) = M B(f,g)
(fygl6Y

Denote Y = (f,g) iff B(Y) € B(f,g) and let C(Y) =
= {(f,g)6F:YF (f,g)}.

We denote f<f' iff ¥t6E,:f(t)=1 => f'(t)=1 and Y(YCF) is a
closure set if yY=C(Y).

Let Y be a closure set and

MAX(Y) ={(f',g')6Y:g9"' = max(f), f'=min(g), (f,gl)€Y}

where max(f) = Ag and min(g) = Vf
(f,g)eY (f,gl)6Y

Let MIN(Y) = {(f',g')€Y:g"'=min(f),f'=max(g), (f,g)6Y}

where min(f) = Vg- and max(g) = Af
(fsg)6Y (f,g)éY
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Theorem 5.1 (C63]1). Let Y be a closure set. Then (f,g) is an
element of Y if and only if there exists (f',g')éMAX(Y) such
that f<f' and g'<g.

Theorem 5.2. Let Y be a closure set. Then (f,g) is anelement
of Y if and only if there exists (f',g')6MAX(Y) and
(f",g")6MIN(Y) such that f"<f<f' and g'<g<g".

Proof. By the theorem 5.1. it is clear that we have only to
prove: there is (f",g")éMIN(Y) such that f"<f and g<g”.

Let g"=min(f) and f"=max(min(f)). It is clear that g<g"” and we
have (f, min(f))6Y by Yl (f, min(f)).

Consequently, max(min(f))<f by the definition of MIN(Y).

It is clear that min(max(min(f)))<min(f). It can be seen that
min(f)<min(max(min(f))) (by (f,g) E (max(min(f)) ,min(f)).
Hence min(f)=min(max(min(f))). We obtain

(max(min(f)) ,min(f))6EMIN(Y) by the definition of MIN(Y).
Hence (f",g")6MIN(Y) hold. The theorem is proved.

Finally, I express any decpest gratitude to Professor

DR Demetrovics Janos for his help and encouragement.
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OSSZEFOGLALAS

MEGJEGYZESEK A LEZARASI OPERACIOKHOZ

VU DUC THI

A dolaozatunkban a minimdlis kulcsok és antikulcsok és

a lezarasi operéacid kozdtti kancsolatot vizsgaljuk.

PE3N0OME

3AMEYAHUA OB OINEPAIUAX 3AMBIKAHUSA

B HacTosmer paboTe H3ydYaeTCs CBA3b MeXOy MHHUMAaJIbHEMU KJIT0-

YaMH, AaHTHKJIIOYaMH H oOnepanusaMH 3aMEKaHHA.
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