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INTRODUCTION

In this paper we shall be concerned with a class of trans-
lations of relational schemas.

Starting from a given relational schema; translations make

it possible to obtain simpler schemas, i.e. those with a 1@5:

number of attributes and with shorter functional dépcédengiea
so that the key-finding problem becomes less cumbhersome, etc.

On the other hand, from the set of keys of the run re-
lational schema obtained in this way the correspcnding keys oF
the original schema can be found by a single "transiation".

In §1 we introduce the notion of z~translation of a re-
lational schema, give a classification of the relatignal
schemas and inverstigate the characteristic propertieé of some
classes of z-transformations.

In §2 we study some properties of the so called nontrans-e
latable relational schemas. R

The notation used here is the same as in [1]; <& means

strict inclusion.



=

§1.
Definrtron 1..1. Let S =<f2,F> be a relational schema, where
2, ={ A1,A2,...,An } is the set of attributes,
F :{Li-—;Ri| 1wy ennyky Tny By & 0 %
is the set of functional dependencies, and 7 . Sl
be an arbitrary subset of I . We define a new relational

schema <§21,F1> by :
Q1 P

F

{ LAZ >R\ Z ‘(Li—’RileF, 1=1,...,k§

Then’< Q1,F1> is said to be obtained from < Q:F > by a 2~

-translation, and the notation

< ardy=(ar)-z

is used.

Remarks

1) Depending on the characteristic properties of the class
chosen, the corresponding class of translations has its own

characteristic features.

2) With the Z-translation just defined above, a functicnal
dependency of type @-»Y may oésur in<S21,F1> that has
no ordinary semantic but carries information from the old

relational schema to the new one.

In particular, the possibility that @ turns out to be a
key of <§21,F1> is not excluded.

The next lemma is fundamental for the paper.

Lemma 1.1. Let < Q,F) be a relational schema and

{a,.F)=<2,D-z, z&al

P



a) X —E* ¢ impligs

b) X -¥:+ Y- implies
where X—F’Y means (X-—’Y)eF+
(X—-)Y)(-ZF?.

Proof.

—>

X\2Z F1 Y\Z

XUz —Fﬁ YUZ

and similarly, x-¥r>Y for
1

For the part a) of the lemma, we shall prove that

xtNzexngy?
E F

By the algorithm for finding the closure x" of X in [2] with
x(o)=x, (X\Z)(O)= X\Z we have
B F ;
py (0)
e (XNZ)
F
1
Supposing that (1) holds for i, that is
iz gx\z) (), (2)
F F1
we prove that (1) holds for (i+1) as well.
Indeed we have
(i+1) ~ L) s
Xa Nz ==~ Ut U(i) R)INZ =
LUSXF
-
aﬁ %ﬂeF
CUt T S (S Y R
(1) °©
L%
(15*R3)€F

1



- 10 -

({15
= (xNz) Ul U )(RJ\Z))
i (i

LEXp

(by virtue of the inductive assumption (2)).

On the other hand, from L Q)dl) and the inductive assump-
5 Rl P

tion (2), we have:

(i) (1)
L\ Z2EX7N\ ZS(X\Z)F1

Consequently:
% (147) (i) (i+1)
N ZiE(XNB),, uw( | (R:\Z)) € (X\F)
A S a
'S X

Thus (1) has been proved.

Now, it is well known that

+

—>
XY & YEX,

Hence, from X??Y, we have:

Y\2 c_:x;f.\z c(x\z)T
£q

That is,

X\NZ —FT ¥ \E

Similarly, for the part b) of the lemma, we shall prove by
induction that

x; uzexuz)t . (3)
1 F



—1‘]_
By the algorithm for finding the closure x' of X ‘we have

(o) ; (o)
xF1 U 2 E(XUZ)F -

Supposing that (3) holds with (i), that is

xP 2 2 (xuz) D), (4)
Fq F

we shall prove that (3) also hdlds foxr - (1i+1).

Indeed we have: xé:”)uz = x3y (Ry\2))} UZ =

F1 L\Ze (1)
NS

(XF(‘?)UZ)U( U(i)(RJ\Z“E(XUZ)él)'U( S
LJ\ZEXF1 IUNZGXF1 :

(by the inductive assumption (4)).
(i)
, o

(1) : (1)
Vzg(xUz),

On the other hand, from | LJ\Z & X and (4) we have

J Fy
Consequently:
. : (1+71)
x4 yzgxuzny Py R;) € (XU Z)
F F (1) F
1 IU\ZQX%1

Thus (3) has been proved.

+
From XE-;bY we have Ys-XF . hence
1 1

+
vyuze x u z g (xuz)?
= w, F
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showing that: XU2Z —F-, YUZ

The proof is complete.

Definition 1.2.

Let S =<S2,F> be a relational schema. Let 'J{(Q,F) be
the set of all keys of S and

H= U X; g= 1Y %

1P
xie]((fz ,F) xiemn.,F) *

Now, we give a classification of the relational schemas as follows:

I -{¢ary| (o is a relational schema §
:C1 ={(.Q.,F> - J}J&l: LUR}

iz <25y ef|rer= 0 }

e ={(Q:F) ellrcL= @ 5

L, -{wryeLl-r= 2}

From the above classification, it is easily seen that:

* ) L, eled €L,
[3 )z4EZZSI1EIo
) i4 =Zznj3

Figure 1 shows the hierarchy of classes io,i1,i2,j3,£4.



We are now in a position to prove the following thecrems.

Theorem 1.1. Let {Q,F) be a relational schema, 7&G
4 91,F1)=49,F>—z. Then X is a key v5f<£21,F1> ifE
XAZ=p and XuZ is a key of {Q,F) .

Proof.

We first prove the necessity. Suppose that X is a’'key of
{9 ,F,). Obviously  %&%

a key of< Q1,F1>, X=—=* 0 .. Taking lemma 1.1. into account we

XNZ=@g. Since X 18

——d
~
t
3
(0]
-
o
Hh
e
I
(6]

get

showing that X UZ is a superkey 0f<f2,F>. Were X iiZd not u

- " e S - W, [ T e c - = . X
key of :d,I} then there would exist a key X E 4 st ok )  susd

-hat

Const 1

there would exist an ';-f._iz:}: such that

,.
ly
)
g
-
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Since X is supposed to be a key of { 2,F), XUz 5> 0 .

Applying lemma 1.1, clearly

(X, UZYNG = QN2
1 P ,

i iy g
that is X1 F1 01.

This contradicts the hypothesis that "X is a key of<.§21,F1> .
Thus XUZ is a key of{ Q,F).

We now turn to the proof of sufficiency. Suppose that
XNz =@ and XUZ is a key of{2,F). We have to show that
X is a key of{2,/,F>.

Since XU2Z is a key of <§2,F> we have

—_— )
XUZ F é

By virtue of lemma 1.1, we get

(R U Z)ING = N7,
Fq

Consequently (from XMz = @):

X—E:-;Q-]I

showing that X is a superkey of { 91,F1>. Assume that X is
not a key of <.Q1,F1). Then, there would exist a key X of
< 91’F1> such that

X& X and )_("F'," Q

1

Applying lemma 1.1, it follows:



where XU 22 XUz,

This contradicts the fact that XUZ is a key of { 2,F)
Hence X 1is a key of(Q1,F1>. :

The proof is complete.

Theorem 1.2.

Let ( 0,F) is a relational schema, ZGQ, ZNH =@
and £ @,,F;) =<Q,F)-z.

Then X 1is a key of< Q1,F1> 1 EF X 1is a key of.< 32,&*}.

Proof.

(i) (The necessity)
. .l x

Suppose that X is a key of¢ 91,5‘1). Obviously X =%* Q.
.L,!.-

By virtue of lemma 1.1, we have

XUVZ -?.91UZ =

?

showing that X UZ 1is a superkey of { Q,F). Hence, there
exists a key X of {Q,F) such that . XEX U 2. :
Since ZMNH =@ then XNz = ¢. From this, it is easy to
see that X&X. There are two possible cases:

a) X =X Then obviously X 1is a key of { ,F).

b) X& X Since X is a key of {9,F), 32""‘1;’9
Applying lemma 1.1., we have

X\ 2 = QANZ,
1

that is X
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This contradicts the fact that X is a a key of < Q 1,F1>
(ii) (The sufficiency)

Suppose that X 1is a key 0f<Q,F). We have to prove that X
is also a key of( Q1,F1). We have, by the definition of keys

Applying lemma 1.1:

XN Z -?,Q.\Z =

1 1

Since ZAH = @, it follows XNZ = @. Consequently,

showing that X is a superkey of < 521,}?1).

Now, assume the contrary that X is not a key of
{q 1,F1>. Then there would exist a key X of<Q1,F1> such
that X€ X. Obviously

X —> Q
XF1 7°

We invoke lemma 1.1. to deduce

X =
XUZ-F‘,"’Q.IUZ ’

showing that X UZ is a superkey of<.Q ,F). Consequently,
there exists a key X of <.Q.,F> such that

il
in
=
(G
[\
>
=)
N
1
A

I
in
b
n
x

From this

This contradicts the hypothesis that X 1is a key of < 9,F).



The proof is complete.

Based on theorems 1.1 and 1.2, in the following we investe.
igate only the class of Z - translations with Z#9, '
2=2,UZ,, 2Z,0%Z,=p. Z,cG, Z,NH=pg.

Bearing this in mind, if

2

then applying theorem 1.2 and 1.1 one after another to the
Zz—translation and the Zl-translation, we have: X: is a key
of <Q1,F1> if and only if XN2Z2=¢ and XU Z1 is a key of
<Q,F>. For the sake of convenience, we use in the sequel ‘the
notation
<Q,F> =————> <Q. ,F.>
et
0=(2,,24)

where the meaning of p is obvious.

To continue, let us recall a result in [1

[ W]
£t
)
pir
147]
fi
N
{

a relationsl schema, where

= {A1""’An} - the set of attributes,

F

{L; *R,|L,,Ry&Q, i=1,...,k} -~ the set of

functional dependencies.

Let us denote

Then, the necessary condition for which X is'a key of  S-
is that
GAR € X € {IVR)U (LOR)

For Vg Q we denote V=Q V. It is easily seen that

Q\R < G

tt
(=
w
In

LSNR €Q\Re G



R\NL & ﬁ, consequently (RNL) N H=@p, and we have the follow-

ing lemma:

Lemma 1.2. Let S=<§,F> be a relational schema, ZcG, where

G 1is the intercection of all the keys of S.
Then (z'\2Z)NH =9,

where H 1is the union of all the keys of S.

Proof. Assume the contrary that

z*\z)nH # @.

Then, there would exist an attribute AGZT, A€Z and A€H.
Consequently, there exists a key X of S=<{Q,F> such that
A€X.

since A€zt and A€z we infer that Z < X \A.

Hence

with A€X

This contradicts to the fact that X is a key of S.
The proof is complete.
From the results mentioned just above the following

theorems are. obvious.

Theorem 1.3. Let 8=<Q,F> Dbe a relational schema belonging

T

<Q.,F,> = <Q,F> - L U R.

Then

<Q,F> ——————== <S%,F1>
p=(LUR,LUR
with
<02 e,



Proof. As remarked above LUR <G

Applying Theorem 1.1. tothe Z-transl
have

<Q,F) e s
p=(LUR,LUR)

The theorem 1.3 is illustrated !

R
7,

LUR

7000

oy, SRR e

<n,rFre <R, F Y = <a,Fy- U7

Example 1. Let there be given S = <{,F:
with = {a,b,e;d,ef; F C ¢
We have L UR = ab.

Con;ider <§£1,F1> = <Q,F> = ab.
Obviously 91 = {c,d,el}, F, = {c>d, d-el.

It is easily seen that c¢ 1is the unique key of

hence " abc is the unique key of <Q,F

Theorem 1.4.

Let <{,F> be a relational schema of itb’
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<Q1,F1> = <,F> - (LUR U (LM\R)).
Then
<{,F> o > > <Q1’F1>
P =(LUR U(LM\R) ,LUR U (L\R) )
with
<Q1,F1> e:ﬂz.
Pyroof.

It is clear that

The theorem 1.4 now follows from applying theorem 1.1 to the
Z-translation.

Theorem 1.4 is illustrated by figure 3.

S,
)

| —— ¥
1 p=(TTRUQR),LURU(R))

(a,Fy e, Q,Fyedd,

Fig. 3,



Theorem 1.65.

; = C e S
Let S = <Q,F> be a relational schema of Wﬂ_,

<Qq,Fy> = <Q,F> - (LUR .U (R\L)) .

Then

QP = ——— XL B D
4 =(LURU (R\L) ,LUR)

<Q1,F1> € iB'

with

Proof. As remarked above, R\ L & H.

—_—

Let Z = LUR U (R\L) =2, UZ

1 2t

where Z1 = LU

o

c G, Z2 = RNL, 2,0 H

The theorem 1.5 now follows from sequential
theorems 1.2 and 1.1 one after another to the 2

tion and the Z1 - translation. Theorem 1.5 is illus<%

Fig. 4.

(QFyed

Fig. 4.
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Theorem 1.6. Let S

<Q,F> be a relational schema of :tg,

<QVF1>==<QJ» - (LUR U(LNR) U (R\NL)).

Then
<Q,F> > <Q1’F1>’

=(LUR U(L R)U(R L), LURU (L R))

with
<Q1,F1> ei4,

Proof. Let Z = LUR UL SR) U(RNL) = 2.0 2

1 2"

LUR U(L\R) = @NRcG

<
B
v
3]
0]
N
I

N
Il
)
/
£

c H or equivalently Z,NH = @

It is obvious that <Q1,F1> is obtained from <Q,F> by the
Z - translation. The proof of theorem 1.6 is straight-forward.

Theorem 1.6 is illustrated by Fig. 5.

N
)

P =(LUR U(L\R)URW) ,L_U'ﬁU(L‘R;)

(Fyed,

Fig. §.
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Similarly, we can prove the following theorems:

Theorem 1.7.

Let S = <Q,F> be a relational schema of gﬂ,;

<Q1,F1> = <Q,F> - (L\R).

Then

CQFs, > = > <Q1,F1;-,
=(L R, L R)

where <Q1,F1>€i2.

Theorem 1.7 is illustrated by Fig. 6.

L R

<nFyed ¢n, T,

B — ST

P 4
Theorem 1.8.
Let S = <,F> - be a irelativnal schema of :iﬁ;

<Q1,F1> =R RS S ERINGTEY



Then

where

Theorem 1.8.

g

<,F> <Q1,F1>,
p=(RN\L, ¢)

is illustrated by Fig. 7.

L R i
"
>
f’: (R\L,¢)
4
0, Fy € L, <,Fye L,

Theorem 1.9.

Then

where

Pigs €

Let S = <Q,F> be a relational schema of

<Q1,F1> = <, FP=([LNR) U (R\L)).

<Q,F> i <Q1 ’F >,
P=((L \R)U(R\L) ,L\R)

<Q1,F1> € :Q

’
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Theorem 1.9 is illustrated by Fig. 8.

u,
dqu
. S

; Z \/
p= (LRI RN, L\R) :
¢ gy
L W o
Fig. 8.
Theorem 1.10. Let < ,F> be a relational schema of b

e
m1ﬁw>= <QF> - (R\L).

Then

<Q,F> =

c=mLg) . Fp

where
<Q1,F1> €i4

Theorem 1.10 is illustrated by Fig. 9.

LS
g
rd

! f’:.(RD~L,Qb:)

" (L, Fr€ f.ﬁ,ﬁ
<n,Fy e, | '

Fig. 9.
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Theorem 1.11. Let <Q,F> be a relational schema of s
<Q1,F1> = < ,F> - (L \R).
Then
<R, F> > <Q1,F1>,
=(LSR,L\R)
where <Q1,F1> e:z;.

Theorem 1.11 is illustrated by Fig. 10

L. R
s

7z

NI%

p= (WR, INR)

<N Eyed
{a,Fyed, ' 4

Fig. 10,

Combining theorems 1.3 - 1.11 we have the diagram of trans-

lations as illustrated on figure 11.



A v

Now, the following theorem follows from thecrems 1.1,

and lemma 1.3.

Theorem 1.12.

Let <{,F> be a relational of :ﬁ;,

<@, ,F.> = <@,F> - {LUR U (L\NR)T U (RAL) ]



Then
<% P> s > < .,J_I,F_I>,
Pp=(LURU(L\NR) U (R\L), LUR U(L\R))
where
- T
(BB ezél.
Pr’oof.
Put Z = LURU (LAR) U € (L\R) T\ (LAR) JU(RAL) = 7,U%,,
where By & LURU (LAR) =8 \R cG,
Z, = C(L\R) "N\ (L\R) JU (R\L) .
Clearly Z,NH = ?.

Applying theorem 1.2 to

and then, theorem 1.1 to

,F1 = -.fl".]_-".'» - 2

the proof of theorem 1.12 is easy.

Theorem 1.12 is illustrated by Fig. 12.

\
>

= MU(L\R)*U(R\L),MU(L\R)) g
Pl <, k> ei;

(L Fye L,

The "double hashing" part is (L\ R)
Fig. 18,
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From the just mentioned results, we have the following

diagram of translations of relational schemas (Fig. 13).

( (LNRIPUCRNL), LNR)

hY

Fig. 18.

Example 2. Let S =abhggqgmnvwk]1l,

F = {a»b, b+h, g»q, kvow, wsvl}.
we have

L = abgkvw; R = bhgwvl; R\L = hql;
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IAR = kga; (L\R) =kgabhq; LUR = mn;
(R\L) U(LAR) YU (TUR) = mnkgabhgl

<Qq.,F> = <Q,F> - mnkgabhqgl = <wv,{v>w, w>v}>.

It is easily seen that v and w are keys of <Q1,F1>.
On the other hand

(LUR)U(L\R) = mn k g a

Consequently mnkgav and mnkgaw are keys of <{,F>.

§2.

In this section we investigate some properties of the

so-called nontranslatable relational schemas.

Definition 2.1. Let S = <Q,F> be a relational schema.

S 1is called translatable if and only if there exist certain

sets Z,,Z, < 2 such that:
(i) Z2, # 9
(i) X is a key of <9%.,F.> iff XNZ, =9 and XUZ

: Sl 2 2

is a key of <Q,F>, where <Q1,F > = <G, F> = %

1 i

Otherwise S 1is called nontranslatable.

Theorem 2.1. Let S = <§,F> be a translatable relational

schema with Z1’Z2 as defined above.

Then H\G = H.\G.,
T 1
where H and G (and similarly H1 and G1) are defined in

definition 1.2.



Prooﬁ.

e

Let <Q1,F1> = <Q,F> - Z,-

Since X is a key of <Q1,F1> iff x0%, = @ and XUz, is a
key of <&,F>, it follows: \

H = H4VZ,, " Z,NH, = @,

G = G1UZZ, ZzﬂG1 =@, .
hence

H\NG = (H1UZ2)\(G1UZ2) - ((H1UZ2)\22)\Gi = H1\G1

(because 220H1 = @).

Combining theorems

theorem is obvious:

Te,

1.2 with theorem 2.7, the following

Theorem 2.2. Let S = <Q,F> be a relational schema. <Q,F> is
non translatable iff H= Q and G = @.
Theorem 2.3. Let S = <.;,F> be a relational schema,
<Q1,F1> = <Q,F> - (G\H)
Then:.
a) <8, m—— <Q1,F1>.
p=(GUH,G)
b) <Q1,F1> is non translatable.
c) <Q1,F1> €i4.
Proof. Let 2 = GUH = z2,UZ,,
where Z1 = GcgG, 22 = H (clearly ZzﬂH = ¢).
Hence part a) of the theorem is obvious. To prove b), we

have only to show that



ERE S

G, = @ and H1 = 91.

From a) it is clear that X is a key of <Q1,F1> 1Ef
XNG = P and XUG is a key of <Q,F>.

Therefore, G = UG, GﬂG1 =0
H = GUH,, GNH, = @-
Hence
Gy =GNE = %)
and H, = H\G.

On the otherhand we have

Q, = Q\(GUH) = (QMH)\G = H\G

Il
jas

To prove c¢) we have to show that

where L! and R! are the union of all the left sides and
right sides of all functional dependencies of F1, respectiv-
ely.

It is known [1] that

G.NRY & B, = @,

1 1

On the other hand

Il
2

Hence R! 1

There remained to prove L' = 2.
Were this false, there would exist an A€Q1\L}

Since R! = @ we have

-II
A€R! and aeL!.



From 91 = H1 there exists a key X of <Q1,F1» sugch
*
A€ X amd X -~ 91

it follows from [11 that

mp!

Since. A

*
X\NA > Q.] N A,

Evidently

LY & 91\1\

and from this,

»* * *
X\A+f%\A+I;§R1+A.

This contradicts the fact that X is a key of <f,,F,

&

Tas
L = 91.

The proof is complete.

From the proof of <c¢) we conclude that all non transiatab

relational schemeas are of type ;Z4.

Theorem 2.4. Let S = <Q,F> be a relational schena

:f4 satisfying the following conditions:

(1) LyNR, =P ¥ = 1,2,...5K

(ii) for each Li’ i=1,...,k there exists a key
that., L:=X. . ’
1 ot

Then <§ F> is a nontranslatable relational schema.

Proof. - We have to prove that H= and G = g~
In fact, from <Q,F>€:t4 we have T5 =0 R =0

By virtue of the hypothesis of the theorem we have



Consequently, H = Q.

To prove G =@ we first show that if L; » Ri and X, is a
key such that Lig;Xi then XinRi = @.

Assume the contrary that XiWRi # 0.

Then, there would exist an A € XinRi.
Since L1ﬂRi =@ clearly A € L. Therefore Lis;Xi‘~A.

On the other hand

showing that X is not a key of <Q,F>. We thus arrive at a
contradiction. From XinRi =@, it follows:

X. SO\R. .
3 i

Thus k K
age [ % & . ) =asll B
& =1 * 1

ol 1e

Since R = Q clearly
G = = 0.

showing that G = @.

The proof is complete.
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OSSZEFOGLALAS

A RELACIOS SEMAK ELTOLASAI

Ho Thuan és Le Van Bao

A cikkben a szerztk bevezetik a relacids sémdk eltolasainak
fogalmat. Elindulva az adott sémabodl eltolassal altaléaban
egyszeribb sémak nyerhetok.

A szerzok a kovetkezd kérdésekkel foglalkoznak:

- a relacids sémak osztalyozasa az eltolhatdésag szempont-
jabol;

- az eltolasok bizonyos osztalyainak tulajdonséagai;

- u.n. nem eltolhatdé sémak tulajdonsagai.

TPAHCJIAIIMU PEJIIMOHHHEIX CXEM

B cTaTee BBOOUTCA I[OHATHE TPAHCJAIMUH PEJIAIHUOHHHX CXeM U U3y-

YawnTCsa OCHOBHBIE BOIIPOCH, TaKHe KakK:

- KJaccudukalusa cCxXeM C TOUKH 3PEeHUSA UX TPaHCIALIUN;
— CBOHMCTBa HEKOTOPHX KJIACCOB TPAHCJIALIUY;

- CBOMCTBa CXeM, KOTOpHE He IMO3BOJIANT TPAaHCJALUN.
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