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We investigate first passage percolation on inhomogeneous ran-
dom graphs. The random graph model G(n, κ) we study is the model
introduced by Bollobás, Janson and Riordan in [9], where each vertex
has a type from a type space S and edge probabilities are indepen-
dent, but depending on the types of the end vertices. Each edge is
given an independent exponential weight. We determine the distri-
bution of the weight of the shortest path between uniformly chosen
vertices in the giant component and show that the hopcount, i.e. the
number of edges on this minimal weight path, properly normalized
follows a central limit theorem. We handle the cases where λ̃n → λ̃
is finite or infinite, under the assumption that the average number
of neighbors λ̃n of a vertex is independent of the type. The paper
is a generalization of [5] written by Bhamidi, van der Hofstad and
Hooghiemstra, where FPP is explored on the Erdős-Rényi graphs.

1. Introduction and the main results. First passage percolation
(FPP), generally speaking, deals with the asymptotic behavior of first-
passage times of percolating fluid in some random environment. This topic
has gained much attention due to its application in various fields such as
interacting particle systems, statistical physics, epidemic models and real-
world networks, just to name a few.

Particularly, two quantities of interest for FPP on finite weighted random
graph models are the minimal weight of a path between two vertices x and
y and the number of edges, often referred to the hopcount, on this path.
Without edge weights these quantities coincide. Other natural questions
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can be to determine the flooding time of the graph from a fixed vertex
x or its diameter, i.e. the maximum of the shortest paths between x and
all other vertices and the maximum of the flooding times, respectively. This
paper investigates FPP on the inhomogeneous random graph (IHRG) model
introduced in [9] with independent identically distributed (i.i.d.) exponential
edge weights with rate one.

The addition of edge weights on the network can be interpreted as the cost
of carrying the flow from one node to the other along the edge. Furthermore,
edge weights can dramatically alter the geometry of the graph. For example,
consider the complete graph on n vertices first without edge weights. The
hopcount between any two vertices is of course one. However, by adding
i.i.d. exponential Exp(1) or uniform U(0,1) edge weights, the weight of the
shortest-weight path is of order log n/n� 1 and the hopcount is about log n
[15]. A similar phenomena can be observed for the IHRG, see Subsection 1.2.

The proofs usually rely on results from branching processes. The use of
exponential weights imply that the exploration processes of the graph are
Markovian. Only recently was FPP studied on random graphs with general
continuous edge weights [6]. Other related results are discussed in Subsection
1.4. We begin by introducing the IHRG model in Subsection 1.1. This section
is continued with the statements of our main results in Subsection 1.2 and
then the main ideas of the proofs are sketched in Subsection 1.3.

1.1. The model. The random graph model we consider is a general in-
homogeneous random graph model introduced by Bollobás, Janson and Ri-
ordan in [9]. We briefly describe the model G(n, κ) on n vertices and kernel
κ in the general setting and then turn to an important special case.

Each vertex of the graph will be assigned a type from a separable metric
space S which is equipped with a Borel probability measure µ. For each n
we have a deterministic or random sample of n points xn = (x1, . . . , xn)
from S. We assume that the empirical distribution

νn :=
1

n

n∑
i=1

δxi

converges in probability to µ as n→∞, where δx is the measure consisting
of a point mass of weight 1 at x. This convergence condition is equivalent
to the condition

(1.1) νn(S) :=
#{i : xi ∈ S}

n

P−→ µ(S),

for every µ-continuity set S ⊂ S (i.e. S is measurable and there is no mass
on the boundary of S). The pair (S, µ) is called a ground space and for
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a sequence (xn)n≥1 satisfying (1.1) we say that the triplet (S, µ, (xn)n≥1)
defines a vertex space ν. Further, a kernel κ on a ground space is a symmetric
non-negative measurable function on S ×S. The natural interpretation of κ
is that it measures the density of edges.

The simple random graph G(n, κ) for a given kernel κ and vertex space
ν is defined as follows. An edge {ij} (with i 6= j) exists with probability

(1.2) pij := min

{
κ(xi, xj)

n
, 1

}
.

Independently of all randomness each edge is given an Exp(1) edge weight.
We want to exclude cases where the vertex set of G(n, κ) can be split into

two parts so that the probability of an edge from one part to the other is
zero, i.e. we want to ensure the emergence of a single giant component later.
To do so, further restrictions are needed for the kernel κ.

Definition 1.1. A kernel κ on a ground space (S, µ) is irreducible if

A ⊆ S and κ = 0 a.e. on A× (S \A) implies µ(A) = 0 or µ(S \A) = 0.

As a slight modification we say that κ is quasi-irreducible if there is a µ-
continuity set S ′ ⊆ S with µ(S ′) > 0 such that the restriction of κ to S ′×S ′
is irreducible and κ(x, y) = 0 if x 6∈ S ′ or y 6∈ S ′.

G(n, κ) is a sparse graph, i.e. the number of edges e(G(n, κ)) is linear in
n, since

E [e(G(n, κ))] = E

∑
i<j

min {κ(xi, xj)/n, 1}

 ,
tends to n

(
1
2

∫∫
κ
)

under certain conditions ensuring this ”well-behavior”
(see [9, Lemma 8.1]). This is formulated in the notion of graphical kernels.

Definition 1.2. A kernel κ is graphical on a vertex space (S, µ, (xn)n≥1)
if it is continuous almost everywhere (a.e.) and in L1(S×S, µ×µ), further-
more

(1.3)
1

n
E [e(G(n, κ))]→ 1

2

∫∫
S2
κ(x, y)dµ(x)dµ(y).

For example, condition (1.3) holds whenever κ is bounded and ν is a vertex
space. An important ingredient in the proof will be the use of approximating
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kernels, where κ depends on n. We say that a sequence κn of kernels on (S, µ)
is graphical on ν with limit κ if, for a.e. (y, z) ∈ S2,

yn → y and zn → z imply that κn(yn, zn)→ κ(y, z),

κ ∈ L1 and continuous a.e., and

(1.4)
1

n
E [e(G(n, κn))]→ 1

2

∫∫
S2
κ(x, y)dµ(x)dµ(y).

The approximation of a general kernel will be done with an appropriate
sequence of step functions. This motivates the special case of regular fini-
tary kernels: the type-space S has a finite partition into (µ-continuity) sets
S1, . . . , Sr such that κ is constant on each Si × Sj for all 1 ≤ i, j ≤ r. By
identifying each Si with a single point i with weight µi = µ(Si), a random
graph G(n, κ) generated by a regular finitary kernel has the same distribu-
tion as a finite-type graph. If the type-space S = {1, 2, . . . , r}, and nt stands
for the number of type t vertices (so

∑
t∈S nt = n), condition 1.1 becomes

(1.5)
nt
n

P−→ µt holds for every t ∈ S,

and κ = (κ(s, t))rs,t=1 is a symmetric non-negative r × r matrix. Note that
finite-type kernels are automatically graphical. Further note that the Erdős-
Rényi (ER) random graph is a special case of a finite-type graph when r = 1
and κ = c. Then the probabilities pij are all simply c/n (for n > c).

We make an important assumption on the random graphs G(n, κ). We will
assume that asymptotically the average degree of a vertex is independent of
its type. This is referred to as the homogeneous case in [9, Example 4.6]. In
this case the global behavior of G(n, κ) in the limit is the same as of the ER
random graph, but the local behavior can be quite different. In the general
setting this assumption can be formulated as

(AG)

∫
S
κ(x, y)dµ(y) = λ̃+ 1 for a.e. x.

An example for a kernel κ satisfying (AG) can be given by taking S = (0, 1]
(interpreted as the 1 dimensional torus T1), µ as the Lebesgue measure and
κ(x, y) = h(d(x, y)) for an even function h ≥ 0 of period 1, where d(x, y)
is the metric given on S. Figures 1 and 2 show the contours of two such
examples, where the dark purple strips indicate where the contour is zero.

In the finite-type case we use the following notation:

(1.6) λst := κ(s, t)µt,
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Fig 1. h(z) = 11 [ |z| < 0.25] Fig 2. h(z) = z2

for all s, t ∈ S. The number of type t neighbors of a type s vertex are
binomially distributed with parameters nt − δst and κ(s, t)/n (δst = 1 if
and only if s = t). Thus from (1.5) we get that in the limit λst gives us
the average number of type t neighbors of a type s vertex. From here we
construct the matrix

(1.7) A =


λ11 − 1 λ12 · · · λ1r

λ21 λ22 − 1 · · · λ2r
...

...
. . .

...
λr1 λr2 · · · λrr − 1

 .

Assumption 1.3. We will assume that the row sums of the matrix A
are the same and equal to λ̃ > 0. Also assume that A is irreducible, i.e. there
exists a k0 s.t. Ak0 has strictly positive entries.

In the finite-type case Assumption 1.3 is the equivalent of (AG). The
λ̃ > 0 condition is necessary and sufficient for a giant component to emerge
in G(n, κ) [9, Theorem 3.1]. Let π denote the normalized left eigenvector
corresponding to the eigenvalue λ̃ of A. Under Assumption 1.3 we find that

(1.8) π = µ.

Indeed, using the symmetry of κ, µA = λ̃µ follows immediately.

Let us introduce some standard notation. Let Bin(n, p), Poi(λ), Exp(µ)
respectively denote a binomial, a Poisson and an exponential random vari-
able with the parameters having their usual meaning. Convergence almost
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surely, in distribution and in probability are denoted by
a.s.−→, d−→, P−→ re-

spectively. A sequence of events holds with high probability (whp), if it holds
with probability tending to 1 as n→∞. We use the Landau symbols O and
o with their usual meaning. We say that a sequence of random variables Xn

satisfies Xn = OP(bn) if Xn/bn is tight (i.e. ∀ε > 0 ∃M : P [Xn > Mbn] < ε)

or Xn = oP(bn) if Xn/bn
P−→ 0. Now we turn to the main results.

1.2. Main results. We investigate the weight and the number of edges
on the shortest-weight path between two uniformly picked vertices x and y.
Let Γxy denote the set of all π paths in G(n, κ) between x and y. Denote
the weight of the shortest-weight path by

(1.9) Pn = min
π∈Γxy

∑
e∈π

Xe,

where Xe is the exponential edge weight attached to edge e in the construc-
tion of G(n, κ). Let Hn denote the number of edges or hopcount of this
path. If the two vertices are in different components of the graph, then let
Pn,Hn = ∞. The following theorem describes the asymptotic behavior of
these two quantities.

Theorem 1.4 (Asymptotics of Hopcount & Shortest weight). Let (S, µ)
be an arbitrary ground space and κ be a uniformly continuous, quasi-irreducible,
graphical kernel on (S, µ) that satisfies supκ(x, y) <∞ and∫

S
κ(x, y)dµ(y) = λ̃+ 1 <∞ for a.e. x ∈ S.

Then the hopcount Hn and the minimal weight Pn between two uniformly
chosen vertices, conditioned on being connected, satisfyHn − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

, Pn −
1

λ̃
log n

 d−→ (Z,L),

where Z is a standard normal variable. Furthermore, L is a non-degenerate
real valued random variable whose distribution can be precisely determined
from the behavior of the multi-type branching process that arises when ex-
ploring a component of G(n, κ).

A possible extension is to have κ depend on n. In this case we have a
sequence of matrices An, each satisfying Assumption 1.3 with λ̃n as the sum
of the rows. Then we can trivially extend our theorems in the following form:
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Corollary 1.5. If limn→∞ λ̃n = λ̃ <∞ then for the hopcount we haveHn − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

, Pn −
1

λ̃
log n

 d−→ (Z,L),

where Z and L are as in Theorem 1.4.

It is interesting to compare these results with its counterpart where there
are no edge weights. Then of course Hn = Pn. Theorem 3.14 of [9] in our
context says that in this case the typical distance between two vertices in the
giant component still scales as log n, but with a different constant: 1/ log(λ̃+
1). Comparing the constants, we see that

1

λ̃
<

1

log(1 + λ̃)
<
λ̃+ 1

λ̃
.

This shows that by adding edge weights the structure of the graph changes.
Along the shortest-weight path more vertices are visited (Hn) than on the
path with the least number of vertices. At the same time the weight of the
path (Pn) becomes smaller than the number of edges on the path with the
least number of vertices. The figure below illustrates this, where the red
path is the shortest-weight path while the green is the one with the least
number of vertices.

x y

shortest path with-
out edge weights

shortest path with
edge weights

other paths

Similarly as in [5] we also investigate the dense regime, where lim λ̃n =∞,
i.e. the average degree tends to infinity. In this case whp any two vertices
are connected, so the giant component contains n(1−o(1)) vertices (see [9]).
Again comparing with the counterpart without edge weights, the change
in the graph structure is even more significant. Without edge weights the
graph is ultra small, meaning that graph distances between uniformly chosen
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vertices are o(log n). However with the addition of edge weights the following
theorem states that even the magnitudes do not coincide. We get the same
type of behavior as observed in the sparse setting, which means that on the
shortest-weight path many more vertices are visited.

Theorem 1.6 (Dense setting). Under Assumption 1.3 and lim
n→∞

λ̃n =

∞, then we haveHn − λ̃n+1

λ̃n
log n

√
log n

, λ̃nPn − log n

 d−→ (Z, L̃),

where Z is a standard normal variable, L̃ is equal in distribution to the sum
of independent random variables Y1 +Y2−Y3, with Yi i.i.d. standard Gumbel

random variables. Further, we can substitute λ̃n+1

λ̃n
in the centraling of the

hopcount by 1 if and only if λ̃n/
√

log n→∞.

1.3. Sketch of proofs. When searching for the shortest-weight path be-
tween two vertices, the intuitive picture to keep in mind is to let fluid per-
colate at a constant rate simultaneously from each vertex. After time τ the
flow from x contains the vertices whose shortest-weight path is at most τ
from x. It is standard to relate this exploration process of the neighborhood
of a vertex to a branching process (BP). The generation and lifetime of a
particle in a BP corresponds to its hopcount and weight of optimal path in
the exploration process. Section 2 introduces a continuous-time multi-type
branching process that arises naturally in an exploration process of the giant
component of G(n, κ). An analog of the main results is proved in Theorem
2.2 in the BP setting.

For the results to carry through we need an embedding of the BP into the
IHRG. This is dealt with in Section 3. The vertices of the BP and the vertices
of the IHRG need to be identified with one another with high probability.
To achieve this labels are assigned to the vertices according to their type
in such a way that we can rule out loop and multiple edges in the IHRG.
To deal with the problem of cycles in the graph, the notion of thinning is
introduced on branching processes.

Intuitively it is clear that when the two flows of fluid collide, then the
shortest-weight path between x and y has been found. Thus it is crucial
to determine when the connection actually happens. The random time of
the collision will be referred to as the connection time Cxy. In the figure
below, the fluids flow continuously and the vertices vx and vy denote the
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last wetted vertices (along the shortest path) by the flows from x and y
respectively before time Cxy.

x yvx
vy

A(vx) Exp(1) A(vy)

G(vx) +1 G(vy)

weight of
path

number of
edges

Colliding flows of
fluid

Let G(vx) denote the number of edges between the source x and vertex vx
and A(vx) the weight of this path. Then for the hopcount Hn(x, y) and for
the weight Pn(x, y) of the shortest-weight path we get that

Hn(x, y) = G(vx) +G(vy) + 1,

Pn(x, y) = A(vx) +A(vy) + Exp(1).

The problem is that we can’t let the fluids flow continuously, but only in
discrete steps as new vertices are wetted by the flows. Thus, the sum of
the path length plus the remaining edge-weight between vx and vy must be
minimized over all possible choices of last vertices vx and vy. The rigorous
treatment of the connection time is done in Section 4

After these preparations we begin Section 5 with the proof of Theorem
1.6 for finite-type graphs. To prove the main result in the general setting a
sequence of finite partitions of S is used. The approximating step function on
S×S will be given by the average of the kernel κ determined by the partition.
This ensures that if κ is homogeneous then so are all of its approximations.

1.4. Related work. First passage percolation has been investigated on
various models, such as the integer lattice, the mean-field model, configura-
tion model, graphs with i.i.d. vertex degrees both without edge weights (see
e.g. [3, 8, 9, 11, 12, 18, 19, 21, 22]) and with exponential weights (see e.g.
[2, 4, 5, 13–15]). The list of results are far from complete, we only attempt
to discuss the ones directly related to the present paper.
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The IHRG model was extensively investigated by Bollobás, Janson and
Riordan in [9] from many different aspects, including typical distances with-
out edge weights. We already showed what effect the addition of edge weights
has on the structure of the graph in Subsection 1.2. Many other models are
closely related to the IHRG model, for full details see [9, Sections 4 and 16].

The classical supercritical Erdős-Rényi (ER) random graph G(n, c/n)
(c > 1) is the special case when |S| = 1. Our results generalize the FPP re-
sults of Bhamidi, van der Hofstad and Hooghiemstra on ER random graphs
with i.i.d. exponential edge weights in [5]. Finite-type graphs were previously
studied by Soderberg [20].

A restrictive, yet natural class of inhomogeneous random graphs is the
rank-1 class. The kernel κ has the special form κ(x, y) = φ(x)φ(y), where
the positive function φ on S can be interpreted as the ”activity” of a type-
x vertex. In the Chung-Lu model each vertex i is given a positive weight
wi and the edge probabilities pij are given by pij := wiwj/`n, where `n =∑n

i=1wi. Norros and Reittu [18] give results on the existence and size of
a giant component with random wi. For deterministic wi, Chung and Lu
[10, 11] show that, under certain conditions, (without edge weights) the
typical distance between two vertices is log n/ log d̄, where d̄ =

∑
w2
i /`n.

A closely related model is the generalized random graph introduced by
Britton, Deijfen and Martin-Löf [21] with edge probabilities pij = wiwj/(n+
wiwj). They show that conditioned on the vertex degrees, the resulting graph
is uniformly distributed over all graphs with the given degree sequence. As a
result Bhamidi, van der Hofstad and Hooghiemstra in [6] prove FPP results
for the latter two models with general continuous edge weights. This is a
corollary of their result for the configuration model.

2. Multi-type branching processes. In this section we collect the
needed properties of the branching process that arises when exploring a
component of G(n, κ). Let us define a multi-type continuous time branching
process with type space S, where a particle of type x ∈ S, when it splits,
gives birth to a set of offsprings distributed as a Poisson process on S with
intensity measure κ(x, y)dµ(y). That is, the number of children with types in
a subset S ⊂ S has a Poisson distribution with mean

∫
S κ(x, y)dµ(y). Each

offspring lives for an Exp(1) amount of time independently of everything
else. We denote this branching process with root of type s up to time t by
Ψs
κ(t). For a set E ∈ S, DEm and AEm stands for the set of dead and alive

particles after the m-th split whose type belongs to the set E ∈ S. For E = S
we simply write Dm and Am, respectively. Similarly, SEm and NE

m stand for
the number of alive and dead individuals with type in the set E ∈ S, and
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we simply write Sm for E = S. Let us also write τm for the time of the m-th
split.

The branching process Ψx
κ arises naturally when exploring a component of

G(n, κ), analogously to that of the exploration of FPP on the Erdős-Rényi
graph. In this exploration process no size-biasing of the degrees happens,
due to the independence of edges.

Analogous to the lines of [9], we define an integral operator, whose norm
establishes a direct connection with the emergence of a giant component in
the random graph G(n, κ) and the survival of Ψκ. Let

(2.1) (Tκf)(x) :=

∫
S
κ(x, y)f(y)dµ(y),

for any measurable function f such that this integral is defined. The norm
of Tκ is

‖Tκ‖ := sup {‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1} ≤ ∞,

where ‖ · ‖2 is the norm of L2(S, µ).
In the finite-type case each type-t particle gives birth to a Poisson number

of type s children with parameter λst = κ(s, t)µ(t), so in this case Tκf =
(A+ I)f with A defined in (1.7). Easy calculations yields the norm:

‖Tκ‖ = ‖A+ I‖ = λ̃+ 1,

where the last equality holds because of Assumption 1.3.
Let us recall Theorem 3.1 of [9]: a giant component emerges in G(n, κn)

with κn → κ and its corresponding branching process survives with positive
probability if and only if ‖Tκ‖ > 1. This is why we assumed throughout that
λ̃ > 0. More precisely, the survival probability of the branching process is
the maximal solution to the functional equation ρ(x) = 1− exp{−Tκρ(x)}.
Under assumption (AG), the maximal solution is independent of the type
ρ(x) = ρ = 1− exp{−(λ̃+ 1)ρ}.

Throughout the proofs, we will mainly work with finite-type case S =
{1, . . . , r} given with the mean-offspring matrix A in (1.7). Recall that π
stands for the normalized left main eigenvector of A (i.e. π is a probability
measure on S). We will need the following limit theorems for Ssm and N s

m,
the number of alive and dead individuals of a given type s ∈ S: (these results
do not require Assumption (1.3)), and all can be found in Athreya-Ney [1].

Theorem 2.1 (BP-asymptotics). For a finite-type continuous time Branch-
ing Process as defined above,
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(i) On the set of non-extinction as m→∞

(2.2) lim
m→∞

(
S1
m, . . . , S

r
m

)
λ̃m

= π a.s. ,

(ii) and similarly

(2.3)

(
N1
m, . . . , N

r
m

)
m

a.s.−→ π.

As a consequence we also get that

(2.4)
1

m
Sm → λ̃, and

Stm
Sm

=
(2.2)−→ πs a.s.

Estimates can also be given for the magnitude of the error terms in (2.4).

More precisely, the exponent of the error terms is of order 0.5∧
(
Re(λ2)/λ̃

)
,

where λ2 is the eigenvalue of A with second largest real part. If this quotient
is less then 1/2, then (Sm− λ̃m)/

√
m and (Stm− λ̃πtm)/

√
m tends to a mul-

tidimensional normal random variable. For details we refer to [16, Theorems
3.22-24.]. We will later make use of these in some of our arguments.

The generation of a particle in the Branching Process corresponds to the
hopcount of the vertex in the IHRG. Thus, when we establish the connection
between the exploration processes of x and y, the hopcount of the vertices
at the connection are needed. We will later see that the generation of the
particles in the two BP-s will be only independent when conditioned on their
type. The following lemma for the multi-type BP will handle these issues:

Theorem 2.2 (Generation of a uniformly picked particle in a given type-
-set). Let GEm denote the generation of a uniformly picked individual from
AE(m), E ⊂ S. Then, conditioned on survival, the following holds for
m→∞:

(2.5)
GEm − λ̃+1

λ̃
logm√

λ̃+1

λ̃
logm

d−→ Z,

where Z is a standard normal variable.

Thus, the generation of a uniformly picked alive of a given type follows a
central limit theorem with parameters independent of the type. The lemma
is a consequence of the result by Kharlamov [17]. He proved the result in
continuous time (i.e. for GEt ), for an arbitrary set of types E ∈ S under the
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conditions that the type-distribution is tending to the stationary π exponen-
tially fast in time and that the expectation and variance of the generation
of the density of type y individuals after unit time for any type y ∈ S
is uniformly bounded in y. These conditions clearly hold if the life-time is
exponential and the total number of children is Poi(λ̃+ 1).

To get the result from continuous time to discrete time, one needs to
replace t by the m-th split time τm and use aperiodicity of the types along
generations.

For the asymptotic behavior of split times τm we cite again [1]:

Theorem 2.3.

(2.6) τm −
1

λ̃
logm

a.s.−→ − 1

λ̃
log

(
1

λ̃
W

)
on the set of non-extinction, and Px(W > 0) = ρ(x). The distribution of
W is given by distribution of the limit of the continuous time martingale

limt→∞ e
−λ̃t|St| = W , where St is vector of alive particles in Ψκ(t).

Under assumption (1.3), it is not hard to see that the distribution of W
is independent of the initial type x, and is the same as for a single-type
BP with Poi(λ̃) offsprings. Further, E(W ) = 1 and the moment generating
function MW (t) of W satisfies the functional equation

(2.7) MW (t) =

∫ ∞
0

exp
{

(λ̃+ 1)
(
MW (te−λ̃y)− 1

)}
e−ydy.

In some calculations, we will need the following lemma for the total num-
ber of alive individuals. This lemma is slightly stronger than what follows
from the almost sure convergence, and in fact this is the crucial element
which is missing for the general A matrix case, i.e. without the Assumption
(1.3).

Lemma 2.4. [Summable error terms for Sj ] Let us suppose Assumption
1.3 holds. Then, Conditioned on the survival, there exists a constant C > 0
such that

(2.8) |Sj − λ̃j| ≤ C(j log j)1/2 ∀j ≥ log logm

holds with high probability.

The lemma is the direct analog of [5, Proposition 3.7]. The heuristics
of the proof is the following: The total number of alives at the split times
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is just a random walk on Z with independent Poi(λ̃ + 1) − 1 increments,
but conditioning on survival destroys this independence. However, with a
coupling argument we can reduce the error probabilities to the independent
case as follows. First condition on the first log logm steps of the walk to stay
positive. On this event, the random walk is whp close to its expected value,
and hitting zero from this point has exponentially small probability. Then,
after the log logm-th step we can forget about the conditioning on survival
and work with independent Poi(λ̃ + 1) − 1 increments. For these, a simple
large deviation estimate already yields a summable error term in j for the
events in (2.8).

3. Embedding the BP into the IHRG. This section relates the
exploration process of the neighborhood of a vertex in the inhomogeneous
random graph (IHRG) model G(n, κ) of Section 1 and the branching process
Ψκ of Section 2 to one another. To obtain an embedding, we give each
BP-particle a label (= the vertex it corresponds) to get a continuous-time
labeled BP (CTLBP) on which we define thinning. This procedure basically
deals with the problem of finding the shortest weight path amongst multiple
possible paths between any two given vertices.

3.1. Labeled branching processes. The first step is to determine for a
particle in Ψκ to which vertex of the graph G(n, κ) it corresponds. Thus,
we describe continuous-time labeled branching processes (CTLBP). By as-
signing labels to the individuals in Ψκ according to their type, we will be
able to couple the BP to the exploration of G(n, κ) from a given initial
vertex. Fix n ≥ 1 and denote the set of labels (vertices of the graph) by
[n] = {1, 2, . . . , n}. It is important to distinguish the labels according to the
types, so [n] is the disjoint union of the sets of labels [n](1), . . . , [n](r), where
there are nt different labels in [n](t). An individual of type s in Ψκ will be
assigned a label from [n](s).

The construction goes as follows. Assume that the root of the BP is of
type s. Assign the label i0 ∈ [n](s) to it. The root immediately dies and gives
birth to a random number ηst of type t offspring, for each t ∈ S. By (1.2),
we get that the distribution of the number of type t neighbors of a type s
vertex in G(n, κ) is

ηst
d
= Bin

(
nt − δst,

κ(s, t)

n

)
.

For t 6= s, the ηst ”new” individuals of type t are assigned different labels
from [n](t) drawn without replacement uniformly at random. For t = s,
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we choose the labels the same way from [n](s)\i0. Further, by denoting the
number of children of the j-th dying particle in the BP by DBin

j , we see
that conditioned on the event that the j-th split is of a type s vertex, the
distribution of DBin

j is a sum of independent random variables

(3.1) D
Bin,(s)
j = ηs1 + ηs2 + . . .+ ηsr.

Since the edge weights are exponential, each offspring lives for an exponen-
tially distributed random time with rate one, then dies and gives birth to its
children, thus the natural embedding requires a continuous time multi-type
BP with offspring distribution given in (3.1). We denote this BP up to time
t by ΨBin

κ (t).
For the number of alive vertices after the m-th split we write SBinm =

DBin
1 +. . .+DBin

m −(m−1). Due to the memoryless property of the exponen-
tial distribution, the next vertex (m+ 1-st) to split is uniformly distributed
among the SBinm alive vertices.

Inductively, the individual that splits at the j-th split time can be uni-
formly chosen from the SBinj alive vertices. Assume it is of type s̃ with label
ij . It gives birth to ηs̃t offspring of type t and choose ηs̃t different labels from
[n](t) for t 6= s̃ and ηs̃s̃ different labels from [n](s̃)\ij for t = s̃.

Lemma 3.1 (Coupling error to Poi offsprings). The multi-type branching
processes ΨBin

κ and Ψκ (described at the beginning of Section 2 ) can be
coupled until the m-th split with error

P
[
∃j ≤ m, DBin

j 6= DPoi
j

]
≤ m

n
(λ̃+ 1) maxκ(1 + o(1)).

As a consequence we immediately get that the time of the m-th split and the
generation of a uniformly picked alive particle in a given type-set E ∈ S
can be coupled in the two processes with the same upper bound for the error
probability.

Proof. By the usual coupling of Binomial and Poisson distribution, we
can couple ηst in (3.1) to ξst ∼Poi(λst) distribution with a coupling error of
nt(κ(s, t)2/n2) = λstκ(s, t)(1+o(1))/n. Under the assumption that maxκ <
∞, the coupling to Poisson offspring distribution of a single split has an error
at most maxκ(λ̃ + 1)/n. Summing up the error terms up to m yields the
statement. Clearly the error probabilities P[GBin,Em 6= GPoi,Em ] and P[τBinm 6=
τPoim ] can be bounded from above by the error probability that the coupling
fails between the two BP-s up to the m-th step.
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As a consequence of the lemma, we apply the above described labeling
procedure to Ψκ, to embed it in G(n, κ), and the error term stays small
until we do o(n/(λ̃+ 1)) steps. However, there is another error arising from
the embedding: By assigning the labels the above described way, we rule
out the possibility of loop edges and multiple edges between vertices during
an exploration of G(n, κ). The error of the coupling may arise from cycles:
we have to find the shortest weight path amongst multiple possible paths
between any two given vertices. We handle this problem by thinning Ψκ.

1
2

6

7

5

7

4

5

7

3
1

3

4

6
5

Marked BP

1

2

3

4

5

6 7

G(n, κ)

• Marks of siblings are
different
• Parent-offspring marks

are different

3.2. Thinning the branching process. The notion of thinning is intro-
duced on branching processes to identify the shortest weight path between
any two given vertices. The percolating fluid first reaches y along the short-
est path, then other paths are found later whenever the label of y reappears
in the labeling procedure. Thus, we only have to keep track of the first
occurrences of each label.

In terms of the CTLBP this means that when we reach a label

ik ∈ D(k − 1) := {i0, i1, . . . , ik−1},

then we found a cycle in the exploration of the IHRG. The longer paths are
irrelevant, thus we delete ik and the whole subtree starting from it in Ψκ.
We call the label ik and its subtree thinned. As a result we only keep the
shortest weight paths between pairs of vertices. We refer to the resulting
process as thΨκ.
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For a fixed n, the total number of labels is finite (= n), so a.s. at some
random time all labels will have appeared. This means that thΨκ dies out
a.s., and at this time we found the minimal weight spanning tree of a com-
ponent of G(n, κ). It is clear that for each t ≥ 0, the set of labels reached
in thΨκ(t) and the set of vertices reached by time t in G(n, κ) are equal in
distribution. So we arrive at:

Lemma 3.2 (FPP on G(n, κ) is thinned CTLBP). For any fixed n ≥ 1,
consider thΨκ and G(n, κ) as defined above. Then for any i0 ∈ [n], the
weight Pn(i0, j) and the hopcount Hn(i0, j) of the shortest weight path be-
tween vertices i0, j ∈ [n] in G(n, κ) is equal in distribution to the weight and
hopcount of the shortest weight path between the root i0 and j in thΨκ.

Remark 3.3. We did not use that the edge weights are exponentially
distributed. So Lemma 3.2 holds for i.i.d. edge weights with arbitrary con-
tinuous distribution supported on (0,∞).

To make the intuitive picture of colliding flows of fluid precise we formally
introduce the notion of shortest-weight trees SWTk, for k ≥ 1. Since we
cannot follow the progress continuously in time, we keep track of the flows
at each split time τk. With a slight misuse of notation, let D(k) and A(k)
stand for the collection of dead and alive labels of the vertices that the flow
reaches up to and including time τk (as a list, with multiple occurrences).
Clearly |A(k)| = Sk. Let SWT0 = ({i0}, τ0 = 0), and define

(3.2) SWTk = (D(k),A(k), {τ0, τ1, . . . , τk}) , k ≥ 1.

The CTLBP Ψκ(t) can be uniquely reconstructed from the sequence (SWTk)
∞
k=1.

Note that SWTk contains all the labels in Ψκ, also the thinned labels and
possibly some multiple labels among alive vertices. When we investigate the
collision of the two flows from x and from y later, we want to avoid the case
that this connection happens at thinned vertices in the BP-s. Thus, we will
need an upper bound on the proportion of thinned alive labels of a given
type.

Lemma 3.4 (Expected number of thinned alive labels). Fix k ≥ 1 and
denote by At(k) and thAt(k) the number of alive and thinned alive particles
of type t ∈ S after the k-th split in the CTLBP. Then under Assumption 1.3

(3.3) E

[
thAt(k)

At(k)

]
≤ λ̃+ 1

λ̃

k

n
(1 + o(1)).
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Proof. We calculate the number of alive thinned vertices of type-t by
checking whether the particle that splits at time τj is thinned, then see how
many type-t alive descendants it has in its subtree at the k-th split. Denoting
these descendants by Aij→tj (k) and the type of ij by t(ij) we get that

(3.4) thAt(k) =
k∑
j=1

∑
s∈S
|Aij→tj (k)|11 [ij is thinned|t(ij) = s] 11 [t(ij) = s] .

Let us further introduce

Au→tj (k) = {v ∈ At(k) : v is a descendant of w with w ∈ Au(j + 1)}.

For |Aij→tj (k)| we can argue that if the j-th particle to split was of type-s, it
had ηsu type-u children, then by symmetry and by the memoryless property
of the lifetimes we have that

E
[
Aij→tj (k)

∣∣ ηsu,Au(j),Au→tj (k)
]

=
∑
u∈S

ηsu
|Au(j + 1)|

|Au→tj (k)|.

Combining this and (3.4) with the fact that the event that ij is thinned and
Aij→t(k) are conditionally independent yields that the expectation in (3.3)
can be bounded from above by

k∑
j=1

∑
s,u∈S

E

[
ηsu

|Au(j + 1)|
|Au→tj (k)|
|At(k)|

]
P
[
ij is thinned

∣∣ t(ij) = s
]︸ ︷︷ ︸

(∗)

P [t(ij) = s]︸ ︷︷ ︸
(�)

.

Recall that N
(t)
k denotes the number of splits of type-t vertices among the

first k splits and there are nt different marks that correspond to vertices of
type-t. The conditional probability in (∗) can be bounded simply by N s

k/ns,
while (�) equals Stj/Sj . Thus

E

[
thAt(k)

At(k)

]
≤

k∑
j=1

∑
s,u∈S

E

[
ηsu
Suj

|Au→tj (k)|
|At(k)|

]
N s
j

ns

Stj
Sj

=

k∑
j=1

∑
s,u∈S

κ(s, u)µu

λ̃(j + 1)πu

|Au→tj (k)|
|At(k)|

π2
s

µs

j

n
(1 + o(1)),

where we used (1.5), (2.2), (2.3) and (2.4). Under Assumption 1.3 π = µ
(see (1.8)) and using the symmetry of κ the above expression simplifies to

1

λ̃

k∑
j=1

1

n

∑
u∈S

|Au→tj (k)|
|At(k)|

∑
s∈S

κ(u, s)µs︸ ︷︷ ︸
λ̃+1

(1 + o(1)) =
λ̃+ 1

λ̃

k

n
(1 + o(1)).
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We show a similar result to the assertion of Lemma 3.4 for the number
of multiple labels among A(k). We need to guarantee that the number of
different labels in the set Ak is approximately the same as the size of the
set, Sk. More precisely,

Lemma 3.5 (Expected number of multiple labels). For all k ≥ 1 and
t ∈ S, the number of different labels of alive vertices after the k-th split

(3.5) |At(k)| = Stk

(
1− λ̃πt

2µt

k

n

)
.

Proof. When assigning labels to new vertices of type t we prescribed
some constraints on the set [n](t) from which we choose its label. We can
dominate this by repeatedly choosing from [n](t) without any constraints.
From (2.2) we know that Stk = λ̃πtk(1+o(1)). So let us sample λ̃πtk(1+o(1))
marks from [n](t) with replacement. For i ∈ [n](t) let Xi be the number of
times i was chosen, thus Xi ∼ Bin(λ̃πtk(1 + o(1)), 1/nt). The probability
that i is chosen at least twice is

P [Xi ≥ 2] = 1−P [Xi = 0]−P [Xi = 1] =
λ̃2π2

t

2

k2

n2
t

+O

(
k3

n3
t

)
.

Thus for the expected number of type-t multiple labels

E

 ∑
i∈[n](t)

11 [Xi ≥ 2]

 =
∑

i∈[n](t)

P [Xi ≥ 2] =
λ̃2π2

t

2µt

k2

n
+ o(1).

The claim immediately follows since the number of different labels equals the
number of alive vertices Stk = λ̃πtk(1 + o(1)) minus the multiple labels.

4. Connection time. In this section we rigorously examine the intu-
itive picture of colliding flows. For technical reasons we do not let the fluids
flow simultaneously from both vertices, rather we let the fluid flow from x
until it reaches some an = o(n) vertices, then we ”freeze” it, and start a flow
from y until the random time of connection, i.e. when the two flows collide.

The exploration process from x until the split time τxan is coded in SWT xan
(see (3.2)). Afterwards, the flow from y can only connect to the flow from x
via an alive vertex in SWT xan . So when assigning the labels to the vertices in
the BP from y we must leave out the labels Dx(an) from the possible labels
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[n]. A possible collision edge appears when a label from Ax(an) appears
among the labels in Dy(k). The first possible collision edge appears at split

C
(1)
n = min{k ≥ 0 : Ax(an) ∩Dy(k) 6= ∅} at time τy

C
(1)
n

. The i-th appears at

split

(4.1) C(i)
n = min{k ≥ C(i−1)

n : |Ax(an) ∩ Dy(k)| = i}, at time τy
C

(i)
n

.

Thus the weight of a path between x and y is τxan + τy
C

(i)
n

+ Ei, where Ei

is the remaining lifetime of the possible collision edge after time τxan . From

the memoryless property of the weights it follows that Ei
d
= Exp(1). So the

actual connection happens through the possible collision edge that minimizes
the expression τy

C
(i)
n

+ Ei. Thus the shortest weight path equals

(4.2) Pn = τxan + min
i

{
τy
C

(i)
n

+ Ei

}
.

Let us denote the split which minimizes the above expression by Ccon
n . The

figure below illustrates the connection time.

τan τCcon
n

τ
C

(1)
n

x y

Connection time

vertices in
Ax(an)

vertices in
Dx(an)

optimal
path

first colli-
sion edge

SWT (x) SWT (y)

To be able to determine the distribution of the minimum in (4.2), we need

a handle on the size of C
(i)
n . The following proposition, roughly speaking,

states that all the possible collision edges appear at O(n/an) time with some
random constant.

Proposition 4.1 (PPP limit of collision edges). Denote a homogeneous
Poisson Point Process with intensity λ by PPP(λ) and let λ̂ = λ̃

∑
s∈S π

2
s/µs.
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Conditioned on the event that both CTLBPs survive, the point process{
C

(i)
n an
n

}
i

d−→ PPP(λ̂) as n→∞,

where λ̂ simplifies to rate λ̃ under Assumption 1.3.

Proof. We first show by induction that for fix n

C
(i)
n an
n

d
= Gamma(i, λ̂n), where(4.3)

λ̂n =
n

an

∑
s∈S

Sx,san
ns

πs(1 + o(1)) + o(1).

For C
(1)
n we can write

P

[
C(1)
n > x

n

an

]
=

xn/an∏
j=1

E
[
P
[
C(1)
n > j

∣∣C(1)
n > j − 1,Fj−1

]]
,

where Fj−1 is the σ-algebra generated by SWT xan and SWT yj−1. To calculate

P
[
Cn > j

∣∣Cn > j − 1,Fj−1

]
we have to sum over the types in SWT y and

find the probability that it does not connect to an alive vertex in SWT x of
the same type. Below we use the result of Lemma 3.5, and we substitute the
number of different marks in Ax,t(an) by Sx,tan , and neglect the error factor
of order (1− (λ̃an)/n) along the lines. This error can be included in the o(1)
term of the last line of the display below.

P

[
C(1)
n >

xn

an

]
=

xn/an∏
j=1

[∑
t∈S

Sy,tj−1

Syj−1

(
1− Sx,tan

nt

)]
=

xn/an∏
j=1

[
1−

∑
t∈S

Sy,tj−1

Syj−1

Sx,tan
nt

]

= exp

(
− x n

an

∑
t∈S

Sx,tan
nt
· an
xn

xn/an∑
j=1

Sy,tj−1

Syj−1︸ ︷︷ ︸
(∗)

+o(1)

)
,

where (∗) equals πt(1+o(1)) by (2.4). So C
(1)
n an
n

d
= Exp(λ̂n) = Gamma(1, λ̂n).
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From the induction hypothesis

P

[
C(i+1)
n >

xn

an

]
=

∫ x

0
P

[
C(i+1)
n >

xn

an

∣∣ C(i)
n an
n

= s+ o(1)

]
λ̂ins

i−1

(i− 1)!
e−λ̂nsds+ P

[
C(i)
n >

xn

an

]

=

∫ x

0

xn/an∏
j=sn/an

[
1−

∑
t∈S

Sy,tj−1

Syj−1

Sx,tan
nt

]
λ̂ins

i−1

(i− 1)!
e−λ̂nsds+ P

[
C(i)
n >

xn

an

]

=
λ̂inx

i

i!
e−λ̂nx + P

[
C(i)
n >

xn

an

]
.

Differentiating the cdf of C
(i+1)
n an/n with respect to x yields the pdf of

Gamma(i+ 1, λ̂n), which proves (4.3). Thus for fixed n the point process{
C

(i)
n an
n

}
i

is a PPP(λ̂n).

From (1.5) and (2.2) it follows that λ̂n
a.s.−→ λ̂ as n→∞. The weak conver-

gence now immediately follows.

This result shows that when finding the shortest path it makes no dif-
ference to let the fluids flow simultaneously or to delay one of them. When
they flow simultaneously, the number of vertices explored by both flows is of
order

√
n which is optimal in the sense that in every other case the explored

vertices are of larger magnitude.
We will see in Subsection 5.1 that to determine the distribution of τCcon

n
+

Econ we need the following.

Lemma 4.2. Let (Pi)i denote the points of a PPP (1) process and inde-

pendent of that, Ei
d
= Exp(1), also independent. Then

min
i

{
1

λ̃
logPi + Ei

}
d
= − 1

λ̃
X +

1

λ̃
log(λ̃+ 1),

where X follows a standard Gumbel distribution, i.e. P [X ≤ x] = ee
−x

.

Proof. For convenience let Xi ∼ 1

λ̃
logPi. We will calculate the tail
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distribution of the minimum by conditioning on the Poisson points first:

P

[
min
i
Xi + Ei ≥ z

]
= E [P [∀i Xi + Ei > z|X1, X2 . . . ]]

= E

[∏
i

e−(z−Xi)+

]

= E

 ∏
i:Pi<eλ̃z

e−z(Pi)
1

λ̃


Now, the number of Poisson points Z in the interval [0, eλ̃z] follows a

Poisson random variable with parameter eλ̃z. Conditioning on this number

Z, the points Pi, i ≤ Z are independent and uniform in the interval [0, eλ̃z].
Thus, we can calculate the expected value of the product on the right hand
side of the previous display as follows:

E

 ∏
i:Pi<eλ̃z

e−z(Pi)
1

λ̃

 = E

[
E

[
e−zU

1

λ̃
i

]Z]

= E

( λ̃

λ̃+ 1

)Z = exp

{
eλ̃z

(
1− λ̃

λ̃+ 1

)}
.

It is easy to see that if X is a standard Gumbel random variable with
P(X ≤ x) = e−e

−x
, then P(−aX + b > x) = e−e

x/ae−b/a . Thus, here with
a = 1

λ̃
and b = 1

λ̃
log(λ̃+ 1) we get the claim.

We finish the section with a result that shows that the index i where the
minimum is taken is stochastically bounded by a Geometric distribution of
parameter 1/(λ̃+ 1).

Lemma 4.3. The probability that the shortest weight path is not among
the first k collision edges is decaying exponentially in k, i.e.

P
[
arg(C(i)

n = Ccon
n ) > k

]
≤

(
λ̃

λ̃+ 1

)k
.

As a consequence of the lemma we immediately get that the distribution
of the rescaled connection time is stochastically dominated by a sum of in-
dependent exponentials with parameter i up to a geometric random variable
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independent of them, namely

(4.4) P con
n :=

anC
con
n

n
≤

N∑
i=1

Ẽi,

where N ∼ Geo( 1

λ̃+1
) and independently Ẽi-s are independent Exp(1)-s.

Proof of Lemma 4.3. We use again the notation Xi ∼ 1

λ̃
log(Pi), where

Pi is the i-th point in a PPP( 1) process. To show that the minimum is taken
at an index at least k + 1, we will condition on the value of the minimum
(=z) and also on the value of the Xk+1 = c with z ≥ c. Thus we have

P [arg min > k] = P

[
min
i≤k

(Xi + Ei) > min
j≥k+1

(Xj + Ej)

]
= E

[
P

[
∀i ≤ k, Ei > z −Xi

∣∣∣∣Xk+1 = c, min
j≥k+1

(Xj + Ej) = z

]]

= E

E
∏
i≤k

e−(z−Xi)|Xk+1 = c,min = z

 .
Now Xk+1 = c means that the k + 1-th point in the Poisson process is

Pk+1 = eλ̃c. Conditioning on this information means that the first k points
have the same distribution as Ui, i = 1, . . . , k independent uniform points

on [0, eλ̃c]. Thus, the expectation can be calculated as follows:

E

∏
i≤k

e−(z−Xi)|Xk+1 = c

 =
∏
i≤k

E

[
e−zU

1

λ̃
i

]
=

(
ec−z

λ̃

λ̃+ 1

)k
.

Then clearly we have

P [arg min > k] =

(
λ̃

λ̃+ 1

)k
E

[
E

[
ek(c−z)|Xj+1 = c, min

j≥k+1
= z

]]

≤

(
λ̃

λ̃+ 1

)k
,

where the last inequality comes from the fact that z − c ≥ 0 almost surely.
This is trivial since the sequence of Xj-s are increasing, Xj ≥ Xk+1 for all
j ≥ k + 1. Thus, z = min

j≥k+1
Xj + Ej ≥ Xk+1 = c.
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5. Proof of main results. We begin the section with the proof of
Theorem 1.4 for finite-type graphs. We continue with the discussion of ap-
proximating kernels and then prove Theorem 1.4 in the general setting. The
section is concluded with the proof of Theorem 1.6. The proofs are analo-
gous to the ones in [5]. The idea of using approximating kernels comes from
[9, Section 7].

5.1. Proof of Theorem 1.4: finite-type setting. Let (S, µ) be an arbi-
trary finite-type ground space and κ a kernel that satisfies Assumption 1.3.
We first argue that the probability that the shortest weight path contains
thinned vertices -i.e. it is not a real shortest path - is o(1). Denote the split
of a type-t vertex by t†, the event that the connection happens by con and
recall that Ax,t(k) is the collection of labels of alive type-t vertices after the
k-th split in the flow of x.

From a simple union bound, the probability that the connection happens
through a thinned alive vertex v can be bounded from above by∑

t∈S

(
P
[
v ∈ thAx,t(an)

]
+ P

[
v ∈ thAy,t(Ccon

n )
])

P [con, t†] .

Using Lemma 3.4 with k = an and k = Ccon
n respectively yields that this

term equals

∑
t∈S

Sy,tCcon
n

SCcon
n

(
λ̃+ 1

λ̃

(
an
n

+
Ccon
n

n− an

)
(1 + o(1))

)

=
λ̃+ 1

λ̃

(
an
n

+
n

n− an
P con
n

an

)
(1 + o(1))→ 0 as n→∞.

We divide in the flow of y by n − an since the labels are chosen from
[n] \ Dx(an). Further note that by Lemma 3.5, in the proof of Lemma 3.4
|Ax,t(an)| can be replaced by Sx,tan = πtan(1 + o(1)).

Then, to get the second line we used that anC
con
n /n ∼ P con

n , is tight by
(4.4). This shows that if an/n and 1/an are both tending to zero, - i.e. for all
an = o(n), the shortest weight path whp. does not contain a thinned vertex.

Now we turn to determine the distribution of the shortest weight path.
We know from (4.2) that

(5.1) Pn = τxan + min
i

{
τy
C

(i)
n

+ Ei

}
.

In Ψκ(t), the rescaled total number of alive individuals, Mt = eλ̃t|S(t)| is a
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martingale. Thus, τk can be expressed as

(5.2) τk = − 1

λ̃
log

Mτk

λ̃
+

1

λ̃
log

Sk

λ̃k
+

1

λ̃
log k.

Applying this formula to the minimum in (5.1) we have

min
i

{
τ
C

(i)
n

+ Ei

}
= min

i

{
− 1

λ̃
log

 λ̂My
τ
C
(i)
n

λ̃

+
1

λ̃
log

 Sy
C

(i)
n

λ̃C
(i)
n


+

1

λ̃
log
(
λ̂C(i)

n

)
+ Ei

}
.

For i fixed, n → ∞, λ̂C
(i)
n == n

an
λ̂Pi → ∞ and thus conditioned on sur-

vival of the branching process, τ
C

(i)
n
→∞ holds as well, implying My

τ
C
(i)
n

→

(W y|W y > 0) := Ŵ y a.s. and in L2, and Sy
C

(i)
n

/(λ̃C
(i)
n ) → 1 also a.s.. Fur-

ther, we also know from Lemma 4.1 that the law of (λ̂Pi)i converges to a
PPP (1) process. Thus, the minimum becomes asymptotically as n→∞

min
i
{τ
C

(i)
n

+ Ei} = − 1

λ̃
log

Ŵ yλ̂

λ̃
+

1

λ̃
log

n

an
+ min

i

{
1

λ̃
log(λ̂Pi) + Ei

}
.

For the last term we can apply Lemma 4.2 to get

(5.3) min
i
{τ
C

(i)
n

+ Ei} = − 1

λ̃
log

Ŵ yλ̂

λ̃(λ̃+ 1)
+

1

λ̃
log

n

an
− 1

λ̃
X.

with X denoting a standard Gumbel random variable. We can also use
that under Assumption 1.3 λ̂ = λ̃. Further, applying (5.2) and (5.3) to the
expressions in (5.1), we arrive at

Pn =
1

λ̃
log n− 1

λ̃
log Ŵ xŴ y − 1

λ̃
X +

1

λ̃
log
(
λ̃(λ̃+ 1)

)
,

with X being a standard Gumbel random variable, Ŵ z, z = x, y denoting

the limiting random variable of the (independent) martingales e−λ̃t|S(t)z| in
Ψz
κ, z = x, y conditioned on non-extinction. We know that W i > 0 a.s. on

non-extinction of the processes, so these quantities are well-defined.

Now we turn to the derivation of the limit theorem for the hopcount Hn.
We start first proving that the hopcount of the connecting vertices in the
processes Ψx

κ and Ψy
κ are independent conditioned on their types. We remind

the reader that first the flow of x is constructed, which is then frozen at time
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an. (Ax,t(an),Dx,t(an)) denotes the labels of the alive and dead vertices
of type t, respectively. Now the evolution of the flow of y conditioned on
SWT x(an) is as follows: leaving out the labels in Dx(an), each time a vertex
splits in Ψy

κ, the label of its type-t children are picked uniformly at random
without replacement amongst the possible labels of the corresponding type.

Lemma 5.1. We have the following statements given the event of

{Collision happens from SWT (y) to SWT (x) at the Cn-th split at a type t vertex },

1. the label vC at which this happens is uniform among all labels in Ax, tan .
2. Further, the hopcounts Gx,tan , Gy,tCn are independent given that the colli-

sion happens at a type t vertex.
3. The distribution of Gx,tan and Gy,tCn is the same as of a uniformly picked

type t alive individual in the processes Axan and AyCn .

Proof. The first two statement of the Lemma is a straightforward con-
sequence of the following urn-problem: In an urn there are M balls of type A
(alive) and N balls of type U (untouched), each of them labeled. We do the
following procedure: in the k-th step we draw dk balls without replacement,
add the label of type A and type U balls to sets LA and LU , respectively,
and then put them back top the urn. Thus, LA(k) consists of all the labels
of type-A balls which has been drawn before or at step k. It is easy to show
that at any time, the content of the set LA and LU is a uniformly picked
set of size |LA| and |LB| among all the labels in A and B, respectively. In
particular, for every label v ∈ A we have

P[v /∈ LA(k)] =
∏
j≤k

(
1− dj

M +N

)
.

Now let A = Ax,tan and U = [nt]\(Dx,tan ∪A
x,t
an . Then, LA(k)∪LU (k) = Ay,t(k).

The previous argument says that at any time, the labels in LA = Ay,t∩Ax,t
are uniformly picked from the labels of Ax,t. The possible collision edges
between the processes x and y are established such that in each step k with
some probability pk (which is the probability that the next dying particle in
Ψy
κ is of type t), we pick a uniform label among LA(k)∪LU (k), and check if

it is of type A. Clearly, whenever this holds true, a possible collision edge is
formed in the two shortest weight trees. Also, it is clear from the previous
argument that conditioned on the picked label to be in LA(k), the label of it
is a uniformly picked label among Ax,tan , (and clearly also uniform in LA(k)).
Further, the step k when a label of type A enters LA is independent of the
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label itself, thus the generation of the label at the connection in SWT x and
in SWT y are independent and equal to the generation of a uniformly picked
alive individual of type t.

Now we are ready to determine the limit distribution of the hopcount.
Let Gz,tk denote the generation of a uniformly picked alive individual of type
t in Az(k), z = x, y, and recall the definition of Ccon

n . Then we have

Hn =
∑
t∈S

11{Ccon
n ∩ t †}

(
Gx,tan +Gy,tCcon

n

)
.

Thus

Hn − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

=
∑
t∈S

11{Ccon
n ∩ t †}

Gx,tan − λ̃+1

λ̃
log an√

λ̃+1

λ̃
log an

·

√
log an
log n

+
∑
t∈S

11{Ccon
n ∩ t†}

Gy,tCcon
n
− λ̃+1

λ̃
logCcon

n√
λ̃+1

λ̃
logCcon

n

·

√
logCcon

n

log n

+

λ̃+1

λ̃
log
(
Ccon
n an
n

)
√

λ̃+1

λ̃
log n

.

First use that conditioned on Ccon
n and the type, the two terms containing

Gz,t∗ converge to independent standard normal variables (independently of
the type). Further, recall the the distributional bound on P con

n = Ccon
n an/n

in (4.4) to see that the last term tends to zero. Lemma 5.1 ensures the
independence of the two limiting normal variables, thus we get the following
distributional limit of the right hand side of the last display:

N

(
0,

log an
log n

)
+N

0,
log
(
nP con

n
an

)
log n

→ N(0, 1).

Combining this with Lemma 4.3 and (4.4) we get that the last term
vanishes as n → ∞ and the variance of the normal distribution is also
tending to 1.

5.2. Approximation of kernels. For a sequence of partitions of S a se-
quence of regular finitary approximating kernels will be defined, each satis-
fying (AG). In the regular finitary case we may assume that the type space
S is finite (the regular finitary case and the finite-type case differ only in
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notation). Furthermore, we can assume that µs > 0 for every s ∈ S, however
an argument is needed. We cannot simply ignore such types, since measure
zero sets can alter G(n, κ) significantly. We can argue as follows, [9].

Suppose that µs = 0 for some s ∈ S. Start by redefining the kernel
κ′(s, t) = κ′(t, s) := maxκ for every t ∈ S and leaving it alone otherwise.
Then define a new probability measure µ′ by shifting some small mass η over
to s from the other types. Clearly µ′t > 0 for every t ∈ S. Possibly the types
of some of the vertices changes, so change them correspondingly. This way
we obtain a vertex space ν ′ = (S, µ′, (x′n)n≥1) with kernel κ′. It is not hard
to see that we can couple G(n, κ) and G′(n, κ′) so that G(n, κ) ⊆ G′(n, κ′).
Finally, letting η → 0, the norm of Tκ′ with respect to µ′ tends to the norm
of Tκ′ with respect to µ, which is equal to the norm of Tκ, since κ = κ′ a.e.
Iterating for other measure-0 types, we can see that it suffices to consider
cases where µt > 0 ∀t ∈ S.

We continue with the definitions of the approximating kernels. Given a
sequence of finite partitions αm = {Am1, . . . , AmMm}, m ≥ 1, of S and an
x ∈ S, we define im(x) as the element of αm in which x falls, formally
x ∈ Am,im(x). As usual, diam(A) denotes sup{d(x, y) : x, y ∈ A} for A ⊂ S,
where d is the metric on our metric space S. Lemma 7.1 of [9] states that
for any ground space (S, µ) there exists a sequence of finite partitions of S
such that

1) each Ami is a µ-continuity set,
2) for each m, αm+1 refines αm,
3) for a.e. x ∈ S, diam(Am,im(x))→ 0, as m→∞.

For such a sequence of partitions we can define a sequence of approxima-
tions of κ by taking its average on each Ami ×Amj :

(5.4) κ̄m(x, y) :=
1

µ(Am,im(x)) · µ(Am,im(y))

∫∫
Am,im(x)×Am,im(y)

κ(s, t)dµ(s)dµ(t).

If κ is continuous a.e. then property 3) implies that κ̄m(x, y) → κ(x, y) for
a.e. every (x, y) ∈ S2. To be able to apply our theorems for finite-type kernels
we need to guarantee that Assumption 1.3 holds for all κ̄m. Thus, considering
κ̄m as a finite-type kernel with respect to the partition (Am1, . . . , AmMm),
the row sums of κ̄m weighted by µ must be equal to some constant cm.
In fact easy calculations show that independently of the partition sequence
or the ground space, only using assumption (AG) and the fact that κ is
symmetric, this holds with cm ≡ λ̃+ 1.
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5.3. Proof of Theorem 1.4: general setting. The extension of the proof for
general (S, µ) goes with usual discretization techniques, however, one must
be careful with the error terms to maintain the distributional convergence.

Let (S, µ) be an arbitrary ground space and kernel κ satisfies the condi-
tions of the theorem. These define the sequence of random graphs (G(n, κ))n≥1.
Take any sequence of finite partitions Pm = {Am1, . . . , AmMm}, m ≥ 1,
that satisfy properties 1), 2) and 3) described in Subsection 5.2. For each
m, consider the finite type approximating kernel κ̄m defined in (5.4), with
ground space (Sm, µ) (where |Sm| = Mm). As a result we obtain the se-
quence (G(n, κ̄m))n,m≥1. Note that in the proofs for finite type kernels none
of the estimates depend on µt or the cardinality of Sm, so all the error terms
are uniform. The condition supκ(x, y) < ∞ is necessary because it is used
in the proof of Lemma 3.1.

To prove the results we let n andm tend to∞ simultaneously in a carefully
chosen way. For fixed m, from the proof of [7, Lemma 2.1 and Theorem 3.1]
it is easy to see that
(5.5)∣∣∣∣∣∣P

Hm(n)
n − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

< x

− Φ(x)

∣∣∣∣∣∣ ≤ C(λ̃)

 1√
log an

+
1√

log n
an

 ,

where C(λ̃) is a λ̃-dependent constant. Thus, with the choice an =
√
n we

get the error of order 1/
√

log n.
To be able to couple the graphs G(n, κ) and G(n, κ̄m), we need a fine

relation between κ(x, y) and κ̄m(x, y). Since κ is uniformly continuous, ∃εm
s.t. for all x, y, and all (u, v) ∈ Am,im(x) ×Am,im(y) :

κ̄m(u, v) ≤ κ(x, y)(1± εm) if |u− x| < δm and |v − y| < δm,

where diam(Am,im(x)) < δm and diam(Am,im(y)) < δm. Abbreviate Am,im(x)

by Amx. In G(n, κ) the edge-probability between two vertices of types x
and y is κ(x, y)/n, while in G(n, κ̄m), between types Amx and Amy this
probability is κ̄m(x, y)/n ∈ κ(x, y)(1± εm). Thus

P [11 [{x, y} ∈ e(G(n, κ))] 6= 11 [{Amx, Amy} ∈ e(G(n, κ̄m))]] ≤ 2εm
n
.

Summing over all possible edges, we find for the edge sets that

(5.6) P [e(G(n, κ)) 6= e(G(n, κ̄m))] ≤ 2n2εm
2n

= nεm.

For a fix m. The δm and uniform continuity of κ defines εm. Let

m(n) := inf
{
m : εmn

√
log n ≤ 1

}
.
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Then, for all m > m(n), the coupling between G(n, κ̄m) and G(n, κ) fails
only with probability less than 1/

√
log n. Under the coupling, also for the

hopcount we have

P
[
Hn 6= Hm(n)

n

]
≤ 1/

√
log n = o(1).

Combining this error bound with the one in (5.5) we obtain that

P

Hn − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

< x


= P

Hm(n)
n − λ̃+1

λ̃
log n√

λ̃+1

λ̃
log n

< x
∣∣Hn = Hm(n)

n

 (1− o(1)) + P
[
Hn 6= Hm(n)

n

]
= Φ(x)

(
1−O

(√
log n

−1
))

+ C(λ̃)/
√

log n+ 1/
√

log n.

Finally letting n → ∞ (thus m(n) → ∞ also), we obtain the desired result
for the hopcount.

Now we turn to the proof of the convergence of the shortest weight path.
To avoid conflicting notation we will denote Pn(κ) the shortest weight path
belonging to G(n, κ). We can use the same coupling argument as for the
hopcount to get the estimate

P
[
Pn(κ) 6= Pn(κ̄m(n))

]
≤ 1√

log n

We know from the finite type case that

Pn(κ̄m(n))−
1

λ̃
log n

d−→ − 1

λ̃
Ŵ x

(m(n))Ŵ
y
(m(n)) −

1

λ̃
X,

where X is a standard Gumbel variable, Ŵ i
(m(n)), i = x, y is i.i.d. random

variables, distributed as the limit of the martingales arising from the branch-
ing processes with kernel κ̄m(n), conditioned on being positive. Since for all

m, the row sums of κ̄m equals λ̃ i.e. each particle has a Poi(λ̃) total number
of children, it is not hard to see that the limit of the martingales

W(m(n))
d≡W.

This finishes the proof of the distributional convergence of the shortest
weight path.
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Remark 5.2. Besides Lemma 2.4, this is the other spot where the gen-
eralization for κ not satisfying Assumption (AG) would fail: to get the
distributional convergence without Assumption (AG), we should show that
W(m(n)) →W . But the relation of the limits of the approximating Branching
Process martingales is not clear at this point to us.

5.4. Proof of Theorem 1.6: dense setting. In the dense setting, where
λ̃n →∞, we have a sequence of kernels κn, n = 1, 2, . . .. The type t neighbors

of a type s vertex have distribution η
(n)
st

d
= Bin(nt − δst, κn(s, t)/n). We

avoid the coupling with Poisson random variables done in Lemma 3.1 by
immediately applying the CLT result of [17] to Ψκn where the offspring

distribution (D
(n)
i |type s splits) is the sum of independent binomial random

variables η
(n)
st , t ∈ S. We will apply a similar argument than the one in

the general case. Namely, we get that in Ψκn , for a uniformly picked type-t
individual at step k∣∣∣∣∣∣P

G(n),t
k − λ̃n+1

λ̃n
log k√

λ̃n+1

λ̃
log k

< x

− Φ(x)

∣∣∣∣∣∣ ≤ C(λ̃)
1√

log k
,

which, when considering the connection of the flows at k = an and Ccon
n =

Θ(n/an), will yield an error term of 1/
√

log n for Hn. Considering λ̃n →∞,
the term (λ̃n + 1)/λ̃n → 1 in the denominator and this immediately yields
the desired result for the hopcount in Theorem 1.6.

The centering constant can be replaced by log n if and only if ( λ̃n+1

λ̃n
−

1)
√

log n→ 0, or equivalently
√

log n = o(λ̃n).
To prove the part concerning the length shortest-weight path, with the

limit taken diagonally, we need to be a bit more careful to determine the
distribution of the split times τan and τCcon

n
. Since the time between two

consecutive splits given the number of alive individuals in the BP is just the
minimum of that many independent exponential random variables, we have
for every m

(5.7) τm
d
=

m∑
i=1

Ei/S
(n)
i ,

with Ei i.i.d. Exp(1). Now let ξ(1), . . . , ξ(r), ξ1, ξ2, . . . denote independent

standard normal random variables. Recall that D
(n)
i denotes the number of
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children of the i-th dying particle. Then, by the CLT we have

(D
(n)
i |type s splits)

d−→
∑
t∈S

(
λ

(n)
st +

√
λ

(n)
st · ξ(t)

)
d
= λ̃n + 1 +

√
λ̃n + 1 · ξi.

From here, with the usual notation S
(n)
i =

∑i
j=1D

(n)
j − (i− 1):

S
(n)
i

d−→ iλ̃n + 1 +

√
i(λ̃n + 1) · ξ̃i.

Applying this result to (5.7) yields λ̃nτm ≈
∑m

i=1Ei/i.
Notice that the sequence Em/m,Em−1/m− 1, . . . , E1/1 gives in distribu-

tion the spacings of the exponential random variables E1, . . . , Em. So the
sum

∑m
i=1Ei/i is equal in distribution to a random variable Bm that is

the maximum of m independent exponentially distributed random variables
with rate 1. The distribution function of Bm is

P [Bm ≤ x] =
(
1− e−x

)m
.

From here we find that

P
[
λ̃nτ

(x)
an − log an ≤ x

]
= P [Ban ≤ x+ log an] =

(
1− e−(x+log an)

)an
= exp

(
−e−x +O(1/an)

)
→ exp

(
−e−x

)
= Λ(x),

where Λ denotes the distribution function of a standard Gumbel random
variable. Similarly to the proof in Section 5.1, we conclude that

(λ̃nτ
(x)
an − log an, λ̃nτ

(y)
Ccon
n
− logCcon

n )
d−→ (Y1, Y2),

where Y1 and Y2 are two independent copies of a standard Gumbel ran-
dom variable. From Theorem (5.1) we get that by the continuous mapping
theorem

(5.8)

λ̃nPn − log n
d
= λ̃nτ

(x)
an − log an︸ ︷︷ ︸

d−→Y1

− log
n

an

+ min
i

{
λ̃nτ

(y)

C
(i)
n

− logC(i)
n︸ ︷︷ ︸

d−→Y2

+λ̃n

(
1

λ̃n
logC(i)

n + Ei

)}
.

Now using Proposition 4.1 to see that C
(i)
n = n/anP

(i)
n , with P

(i)
n PPP(λ̂n)

points, and then Lemma 4.2 yields that the last term in the minimum equals

λ̃n min
i

{
1

λ̃n
logC(i)

n + Ei

}
= log

n

an
−X3 + log

(λ̃n + 1)

λ̂n
,
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with X3 a standard Gumbel variable. Then, under Assumption 1.3 λ̂n = λ̃n,
thus the last term vanishes in the limit. Combining this with (5.8) finishes
the proof.
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erdős-rényi random graph. Combinatorics, Probability and Computing, 20:683–707,
2011.

[6] S. Bhamidi, R. van der Hofstad, and G. Hooghimstra. Universality for first passage
percolation on sparse random graphs. arXiv:1210.6839 [math.PR], 2012.

[7] W.J. Bühler. Generations and degree of relationship in supercritical markov branch-
ing processes. Probability Theory and Related Fields, 18(2):141–152, 1971.

[8] B. Bollobás and W. F. de la Vega. The diameter of random regular graphs. Combi-
natorica, 2(2):125–134, 1982.

[9] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous
random graphs. Random Struct Algor, 31:3–122, 2007.

[10] F. Chung and L. Lu. Connected components in random graphs with given expected
degree sequences. Ann. Comb., 6:125–145, 2002.

[11] F. Chung and L. Lu. The average distance in a random graph with given expected
degrees. Internet Math., 1:91–113, 2003.

[12] D. Fernholz and V. Ramachandran. The diameter of sparse random graphs. Random
Structures and Algorithms, 31:482–516, 2007.

[13] Marc Lelarge Hamed Amini. The diameter of weighted random graphs.
arXiv:1112.6330 [math.PR], 2011.

[14] C. Howard. Models of first-passage percolation in probability on discrete structures.
pages 125–173, 2004.

[15] S. Janson. One, two and three times log n/n for paths in a complete graph with
random weights. Combinatorics, Probability and Computing, 8(4):347–361, 1999.

[16] Svante Janson. Functional limit theorems for multitype branching processes and
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