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Abstract

The paper aims at analyzing the least squares ranking method for generalized tournaments with

possible missing and multiple paired comparisons. The bilateral relationships may reflect the out-

comes of a sport competition, product comparisons, or evaluation of political candidates and policies.

It is shown that the rating vector can be obtained as a limit point of an iterative process based on the

scores in almost all cases. The calculation is interpreted on an undirected graph with loops attached

to some nodes, revealing that the procedure takes into account not only the given object’s results

but also the strength of objects compared with it. We explore the connection between this method

and another procedure defined for ranking the nodes in a digraph, the positional power measure.

The decomposition of the least squares solution offers a number of ways to modify the method.

Keywords: Preference aggregation, Paired comparison, Ranking, Least squares method, Laplacian

matrix

1 Introduction

Ranking of alternatives is becoming an important tool for individuals, enterprises and nonprofit or-
ganizations to help their decision making processes. In various contexts the necessary information is
available as outcomes of paired comparisons of the objects. Problems of this kind appear in social choice
theory, statistics (Éltető and Köves, 1964; Szulc, 1964), sports (Landau, 1895, 1914; Zermelo, 1928) or
psychology (Thurstone, 1927), to name a few.

There exist two fundamentally different approaches in ranking methodology. The first one seeks
various scoring functions, giving a weight or valuation to all alternatives, that is, they compress the
paired comparison matrix into a single rating vector. The second approach is based on the approximation
of the (generalized) tournament by linear orders (Kemeny, 1959; Slater, 1961), which usually leads to
interesting combinatorial and algorithmic problems (Hudry, 2009). From a theoretical viewpoint these
methods have two great disadvantages: the possible occurrence of multiple optimal solutions and the
difficulties arising in the examination of their (normative) properties (Bouyssou, 2004). Consequently,
we will follow the former approach.

Score seems to be the most obvious rating method: it is obtained by adding the number of victories
for each object. It is an appropriate choice in the case of complete tournaments such that all objects
have set against each other at the same number of occasions. However, there are many situations where
it is unfeasible to get direct information about each pair of alternatives. It implies that the schedule
becomes important since an object compared with weak opponents may score more victories than its
peers facing stronger objects. In this case, for example for Swiss system tournaments, the application of
scores in order to rank the objects can be questioned (Csató, 2013).

In order to take into account the quality of opponents, a large number of scoring procedures have been
suggested, see, for instance, Chebotarev and Shamis (1998a) for a survey of them. Chebotarev and Shamis
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(1999) introduces two classes, the win-loss combining and win-loss unifying procedures, to categorize the
methods proposed in the literature. Win-loss combining procedures can usually be calculated iteratively
on a graph, where the vertices represent the alternatives and the edges reflect the paired comparisons.
Among them, PageRank is one of the most popular (Brin and Page, 1998). Slikker et al. (2012) in-
tegrated its core, the invariant method (Daniels, 1969; Moon and Pullman, 1970) as well as fair bets
(Daniels, 1969; Moon and Pullman, 1970) and λ (Borm et al., 2002) methods into a single framework,
and interpreted them on graphs. Herings et al. (2005) defines another method, the positional power
function for ranking the nodes of directed graphs.

For the other class of win-loss unifying procedures, graph interpretation becomes more difficult since
they treat wins and losses uniformly, therefore the direction of edges do not count. We know only
one result in this field, the iterative calculation of a subclass of the generalized row sum (Chebotarev,
1989, 1994), a parametric family of ranking methods (Shamis, 1994). This paper gives a graph inter-
pretation for the least squares method (Horst, 1932; Morrissey, 1955; Mosteller, 1951; Gulliksen, 1956;
Kaiser and Serlin, 1978) through the use of scores and the comparison structure.

The iterative calculation is similar to the positional power (Herings et al., 2005), which is somewhat
surprising, since the least squares method is defined as an optimization problem, not as an intuition-
based proposal. However, there are two main differences besides the applied approach (win-loss unifying
vs win-loss combining): the role of initial scores and iterated ratings in the calculation, and the choice
of the parameter reflecting the importance of successors in digraphs or objects compared with the given
one.

The graph interpretation also provides a lot of possibilities to modify it, in order to eliminate its
drawbacks from an axiomatic viewpoint (González-Dı́az et al., 2014). We hope that simple calculation
and evident connection with the scores can inspire practical applications, as well as offer an alternative
to the extensively used PageRank method in certain cases. Nevertheless, it should be taken into account
that scientometrics differs from our tournament context since a citation from a journal to another is
advantageous for the latter, but not necessarily unfavourable for the former.

The paper is organized as follows. The setting is presented in Section 2, where two scoring procedures
are introduced, too. Section 3 deals with the least squares method, for which a new iterative solution
method is given. It is used for the decomposition of the rating vector leading to the graph interpretation,
discussed in Section 4. Finally, Section 5 concludes our results.

2 Notations and rating methods

Let N = {X1, X2, . . . , Xn}, n ∈ N be a set of objects and R =
(

R(1), R(2), . . . , R(m)
)

, m ∈ N be an array

representing the outcomes of paired comparisons between the objects, where R(p) (p = 1, 2, . . . ,m) is
an n× n nonnegative matrix corresponding to the pth experiment, round of tournament, questionnary

etc. Matrices R(p) may be defined partially, r
(p)
ij and r

(p)
ji remain unknown if objects Xi and Xj were not

compared in the pth round. A fully defined matrix R(p) is called a complete paired comparison matrix,
while the one with some ’missing’ elements is incomplete. For all pairs of objects compared (Xi, Xj),

r
(p)
ij +r

(p)
ji = 1 is assumed. r

(p)
ij can be interpreted as the likelihood assigned to the event Xi is better than

Xj in the pth round of a tournament. Diagonal elements rii are supposed to be 0 for all i = 1, 2, . . . , n,
but they will not be used for the ranking methods discussed.

Most scoring methods are based on the aggregated paired comparison matrix R = (rij) containing
the sum of the results for all pairs of objects:

rij =

{

0 if r
(p)
ij is not defined for every p = 1, 2, . . . ,m

∑m

p=1, r
(p)
ij

is defined
r
(p)
ij otherwise.

Generally, the outcomes r
(p)
ij can be aggregated by taking a weighted sum, thus associating different

weights on various rounds/experts/areas etc. It makes sense in forecasting sport results, when the latest
paired comparisons are considered to be more important.

The pair (N,R) is called a preference profile. The set of preference profiles is R. This setting is
able to integrate four extra features in addition to those of binary tournaments (complete, weak and
asymmetric binary relations, see (Rubinstein, 1980)):
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• the possibility of ties: rij = rji;

• different preference intensities captured by the likelihood rij/(rij + rji);

• incompleteness as rij is undefined (unknown) for some pairs of objects (Xi, Xj);

• multiple comparisons between objects: r
(p)
ij is known for more than one p.

For example, if only strict binary relations are allowed, then r
(p)
ij ∈ {0, 1} for all p = 1, 2, . . . ,m. This

notation follows Chebotarev and Shamis (1998a) and González-Dı́az et al. (2014).
Regarding the four extensions of the original binary tournament model, the possibility of ties is

an immediate consequence of different preference intensities, a common feature in many situations.
Multiple comparisons can arise naturally from the definition of preference profile. It can be supposed
that incompleteness does not appear in an ideal case; however, we want to allow an expert to avoid
judgement if he/she is not familiar with the two alternatives. The lack of direct information about
paired comparisons may arise when the problem contains a large number of objects or it is too expensive
to compare each pair; the latter is the reason of the emergence of knockout or Swiss system tournaments
in some sports. Another case of incomplete comparisons is the need for predicting the final ranking
before all rounds of a round-robin tournament played.

A rating (scoring) method f is an R → R
n function, fi = f(N,R)i is the rating of object Xi. It

defines a corresponding ranking method ϕ, that is, a (transitive and complete) weak order such that the
objects are arranged according to f : ϕ ranks Xi weakly above Xj if and only if fi ≥ fj. It is denoted
by Xi �ϕ Xj or simply by Xi � Xj , if it is not misleading. This definition of � already determines that
Xi is ranked strictly above Xj if and only if Xi is ranked weakly above Xj, but Xj is not ranked weakly
above Xi: (Xi ≻ Xj) ⇔ [(Xi � Xj) and ¬(Xj � Xi)]. Finally, the ranking can be tied between objects
Xi and Xj : Xi ∼ Xj ⇔ [(Xi � Xj) and (Xj � Xi)]. Ratings give cardinal, and rankings give ordinal
information about the objects. Throughout the paper, the notions of rating and ranking methods will
be used analogously since the discussed ranking procedures are based on rating vectors.

A scoring procedure is neutral if any reindexing of the objects in N preserves their rating. A scoring
procedure is anonymous if any reindexing of the paired comparison matrices R(p) in an arrayR preserves
the ratings of objects. It seems to be quite natural to demand neutrality and anonymity; all rating
procedures discussed here will satisfy these conditions. Note that a method based on the aggregated
paired comparison matrix R is always anonymous. Rating procedures f1 and f2 are called equivalent if
they result in the same ranking.

Ranking of the objects involves two main challenges. The first one is common in all paired comparison
models: the possible appearance of circular triads, when object Xi is better than Xj (that is, rij > rji),
Xj is better than Xk, but Xk is better than Xi. Circular triads generate difficulties in all paired
comparison settings, but, if preference intensities also count, other triplets (Xi, Xj , Xk) may produce
problems. The second issue arises as the consequence of incomplete and multiple comparisons: the
performance of objects compared with Xi strongly influences the observable paired comparison outcomes
rij . For example, if Xi was compared only with Xj , then its rating certainly should depend on the results
of Xj . We will see that this argument can be continued infinitely. Since both problems can occur only
if there is at least three objects, the case n = 2 becomes trivial.

An alternative representation of paired comparisons is the following. The additive paired comparison
matrix A(p) can be derived from R(p) by ’centering’ the outcomes of paired comparisons such that

a
(p)
ij = r

(p)
ij −r

(p)
ji . For undefined comparisons a

(p)
ij is set to 0. Now a

(p)
ji = −a

(p)
ij , A(p) is a skew-symmetric

matrix. It is called consistent if aij = aik + akj for all triplets (Xi, Xj, Xk), and inconsistent if this
condition is not satisfied for some (Xi, Xj , Xk). The aggregated additive paired comparison matrix
A = (aij) is defined analogously by A =

∑m
p=1 A

(p), and will be referred to as the results matrix.
The numbers of comparisons between the objects determine the matches matrix M = (mij):

mij =

{

the number of indices 1 ≤ p ≤ m such that r
(p)
ij is defined if i 6= j

0 if i = j.

M is a symmetric matrix and 0 ≤ mij ≤ m. It is not restrictive to assume that m = maxi,j mij if the
reduced matrix A is analyzed. In most practical applications (and in our setting above) mij ∈ N, but
the whole discussion is valid for mij ∈ R+ as well, this domain choice has no impact on the results. The
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generalization has some significance for example in the above mentioned problem of forecasting sport
results. Here the latest comparisons contain more information about the current form of the player,
which may be addressed by exponential smoothing, a technique usually applied to time series data.

The matches matrix M is called block diagonal and block anti-diagonal, respectively, if it has a
partition N1 ∪N2 = N , |N1| = n1 and |N2| = n2 such that with a possible reordering of the objects

M =

(

M1
n1×n1

0n1×n2

0n2×n1 M2
n2×n2

)

and M =

(

0n1×n1 M1
n1×n2

M2
n2×n1

0n2×n2

)

,

respectively, where the subscripts denote the dimensions of (sub)matrices. Furthermore, di =
∑n

j=1 mij

is the total number of comparisons of object Xi.
Results matrix A and matches matrix M together with the set of objects N determine a ranking

problem (N,A,M) or (A,M) for short. In this modified setting, (aij + mij)/(2mij) ∈ [0, 1] may be
regarded as the likelihood that object Xi defeats Xj .

A ranking problem is called round-robin if mij = 1 for all i 6= j, that is, every object has been
compared with all the others exactly once and di = n− 1 for all i = 1, 2, . . . , n. A round-robin ranking
problem is more general than the binary tournaments of Rubinstein (1980) as it allows for ties (aij =
aji = 0) and preference intensities (aij is not necessarily−1 or 1). A ranking problem is called unweighted
if mij ∈ {0, 1} for all i 6= j, namely, every paired comparison is carried out at most once. Otherwise the
ranking problem is called weighted.

MatrixM can be represented by an undirected multigraphG := (V,E) where vertex set V corresponds
to the object set N , and the number of edges between objects Xi and Xj is equal to mij . Therefore
the set of edges represents the structure of known paired comparisons. The number of edges adjacent
to Xi ∈ N is the degree di of node Xi. A path is a sequence of objects Xk1 , Xk2 , . . . , Xkt

such that
mkℓkℓ+1

> 0 for all ℓ = 1, 2, . . . , t − 1. Two vertices are connected if G contains a path between them.
A graph is said to be connected if every pair of vertices is connected. The adjacency matrix TA of G is
given with the elements tij = 1 if mij > 0 and tij = 0 otherwise.

GraphG is called the comparison multigraph associated with the ranking problem (N,A,M), however,
it is independent of the results of paired comparisons. The Laplacian matrix L = [ℓij ] , i, j = 1, 2, . . . , n
of graph G is an n × n real matrix with ℓij = −mij for all i 6= j and ℓii = di for all i = 1, 2, . . . , n. L
has real and nonnegative eigenvalues (it is positive semidefinite) (Mohar, 1991, Theorem 2.1), denoted
by µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0. Let e ∈ R

n be the unit column vector, that is, ei = 1 for all
i = 1, 2, . . . , n.

Now we define two rating methods for the ranking problem (N,A,M).

Definition 2.1. Row sum rating method: s =
∑m

p=1 s
(p) =

∑m
p=1 A

(p)e = Ae.

Row sum will also be referred to as scores, s is sometimes called the scores vector. The following para-
metric rating procedure was constructed axiomatically by Chebotarev (1989) and thoroughly analyzed
in Chebotarev (1994).

Definition 2.2. Generalized row sum rating method: it is the unique solution x(ε) of the system of
linear equations (I + εL)x(ε) = (1 + εmn)s, where ε ≥ 0 is a parameter, s is the scores vector, I is the
n× n identity matrix, and L is the Laplacian matrix of the comparison multigraph G.

It follows from the definition that this procedure results in the row sum ranking if ε = 0. For larger
parameter values it adjusts the standard scores of objects by accounting for the performance of objects
compared with it, and so on. ε indicates the importance attributed to this correction of scores s.

Both the score and the generalized row sum ratings are well-defined and easily computable from a
system of linear equations for all ranking problems (A,M).

3 The least squares method and its solution

Another approach to ranking is the statistical estimation by identifying hij = 2aij/mij as the realized
difference between the latent valuations of objects Xi and Xj. In the ideal case no randomness is present
and there exists a rating vector q ∈ R

n such that hij = qi−qj for all pairs of objects (Xi, Xj). It requires
the consistency of the results matrix A since 0 = (qi − qj) + (qj − qk) + (qk − qi) = hij + hjk + hki for
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Figure 1: The preference graph of Example 3.1

X1

X3

X5

X2

X4

X6

X7

all (Xi, Xj, Xk). If it is inconsistent, the actual outcome hij may differ from its ’expected value’ qi − qj ,
and it makes sense to apply the following least squared error minimization

min
q∈Rn

∑

Xi,Xj∈N

mij(hij − qi + qj)
2.

This method was discussed by Horst (1932) and Mosteller (1951) in the round-robin case, and was
extended to unweighted problems by Gulliksen (1956) and Kaiser and Serlin (1978). The weighted
case is examined in Bozóki et al. (2014) and González-Dı́az et al. (2014), but it can also be regarded
as unweighted by summation over indices i, j, p (Chebotarev and Shamis, 1999). Clearly, the problem
has an infinite number of solutions because the value of the objective function is the same for q and
q + βe, β ∈ R. A natural normalization is e⊤q = 0. The generalized row sum can be considered as a
Bayesian modification of the least squares estimation (Chebotarev, 1994).

The first-order conditions of optimality give the following system of equations with unconstrained
variables qi ∈ R for all i = 1, 2, . . . , n:



















d1 −m12 −m13 . . . −m1,n−1 −m1,n

−m12 d2 −m23 . . . −m2,n−1 −m2,n

−m31 −m23 d3 . . . −m3,n−1 −m3,n

...
...

...
. . .

...
...

−mn−1,1 −mn−1,2 −mn−1,3 . . . dn−1 −mn−1,n

−mn,1 −mn,2 −mn,3 . . . −mn,n−1 dn





































q1
q2
q3
...

qn−1

qn



















=



















s1
s2
s3
...

sn−1

sn



















,

where di =
∑n

j=1 mij denotes the total number of Xi’s comparisons, and the element in the (i, j) position

(i 6= j) of the coefficient matrix equals −mij. On the right-hand side, si =
∑n

j=1 aij is the score of object
Xi. Due to the convexity of the objective function, the system of linear equations is a sufficient condition
for optimality.

Note that the n× n matrix on the left-hand side is exactly the Laplacian matrix associated with the
comparison multigraph, thus the first-order conditions give Lq = s. L has no inverse as sum of its rows
(and columns) is zero.

Definition 3.1. Least squares rating method: it is the solution q of the system of linear equations
Lq = s and e⊤q = 0.

Corollary 1. The least squares rating can be obtained as a limit of the generalized row sum method if
ε → ∞.

Proof. See Chebotarev and Shamis (1998a, p. 326).

Example 3.1. (Chebotarev, 1994, Example 1) Suppose that the graph on Figure 1 is a preference graph,
reflecting the dominance relation between the objects: aij = mij = 1 if and only if there is an edge from
Xi to Xj.
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The corresponding results, matches matrices and the scores vector are as follows

A =





















0 0 1 0 0 0 0
0 0 0 1 0 0 0
−1 0 0 0 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 1 1
0 0 0 −1 −1 0 −1
0 0 0 0 −1 1 0





















, M =





















0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1
0 0 0 0 1 1 0





















and s =





















1
1
0
0
1

−3
0





















.

The solution for the least squares method is

q =
[

1.810 0.476 0.810 −0.524 −0.190 −1.524 −0.857
]⊤

.

The scores method (s) does not show the strength of objects compared with the given one. However, it
is strange to assume that X1 and X5 have performed equally because the former has beaten the latter
indirectly through X3. Least squares method results in the ordering X1 ≻ X3 ≻ X2 ≻ X5 ≻ X4 ≻ X7 ≻
X6.

Gulliksen (1956, p. 127) notes for the unweighted case that, in general, the first minor of L has
an inverse, which makes it possible to normalize the rating vector by qn = 0 and eliminate the last
equation. After that, the upper-left (n− 1)× (n− 1) submatrix of L denoted by L−1 is taken with the

corresponding first n−1 components of s and q, denoted by s−1 and q−1, respectively. If [L−1]
−1

exists,

then q−1 = [L−1]
−1

s−1. It means that the first n − 1 equations of the system Lq = s remain to be
satisfied if qn = 0 is attached to q−1. The last equation is true because the sum of the first n− 1 rows
of L is the opposite of the last, and similarly, the sum of the elements of s−1 is equal to −sn.

In a round-robin ranking problem [L−1]
−1

can be computed explicitly, it is an (n − 1) × (n − 1)
matrix with 2/n in each diagonal and 1/n in each off-diagonal entry (Gulliksen, 1956, p. 127). The
unique solution is qi =

∑n
j=1 aij/n = si/n, implying that the row sum and least squares rankings

coincide. This property is called score consistency (SCC) by González-Dı́az et al. (2014).
Some connections of the ranking problem and the associated Laplacian matrix L are worth mentioning

here.

Lemma 3.1. For a ranking problem (N,A,M), the following statements are equivalent:

1. Matches matrix M is not block diagonal;

2. Comparison multigraph G is connected;

3. The second smallest eigenvalue µn−1 of L is positive.

Proof. The equivalence of items 1 and 2 is straightforward, since if M is block diagonal, then there is no
edge between the set of objects N1 and N2 and vice versa. 2 ⇔ 3 is proved in (Mohar, 1991, Theorem
2.1): the multiplicity of the Laplacian eigenvalue µn = 0 is equal to the number of components of graph
G.

From the three conditions above connectedness of the comparison multigraph will be used in our
discussion. If some properties are required of graph G, it means that only the appropriate subset of
ranking problems (N,A,M) is considered.

A graph G is called bipartite if its node set N can be divided into two disjoint subsets U and V
such that every edge connects a vertex in U to one in V . Equivalently, a bipartite graph is a graph
without odd-length circles. Notice that a similar lemma can be stated for the other special structure of
the matches matrix: it is block anti-diagonal if and only if the comparison multigraph is bipartite. The
equivalence is due to the fact that the objects can be divided into two groups without comparisons inside
the groups.

Intuitively, uniqueness of the least squares solution should be provided when all objects Xi and Xj

can be compared directly or indirectly, that is, there exists a chain Xi = Xk0 , Xk1 , . . . , Xkt
= Xj such

that for each ℓ ∈ {0, 1, . . . , t− 1}, Xkℓ
has been compared with Xkℓ+1

.
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Proposition 3.1. The least squares rating q is unique if and only if comparison multigraph G is con-
nected.

Proof. In the unweighted case, see Bozóki et al. (2010, Theorem 4). The same theorem was proved by
Kaiser and Serlin (1978, p. 426) in a different way.

The general weighted case is examined in Bozóki et al. (2014) and González-Dı́az et al. (2014).
Chebotarev and Shamis (1999, p. 220) mention this fact without further discussion.

If there is no relation between two groups of objects N1 and N2 as graph G is not connected, then it
seems strange to rank them on the same scale.

Now another solution is given for the least squares problem based on n×nmatrices and n-dimensional
vectors. In this sense it differs from the proposals of Gulliksen (1956) and Bozóki et al. (2010), but it is
similar to the approach of Kaiser and Serlin (1978).

Let I be the n × n identity matrix as before, J be the n × n matrix of 1’s and, with a slight abuse
of notation, 0 be both the n × n matrix and the n-dimensional vector of 0’s. We adjust the Laplacian
matrix in order to eliminate its zero eigenvalue.

Lemma 3.2. Let G be a connected comparison multigraph. Then µn−1 > 0, the matrix L + (1/n)J is
nonsingular with eigenvalues µ1, µ2, . . . , µn−1, 1. If L+ is the Moore-Penrose generalized inverse of L,
then [L+ (1/n)J ]−1 = L+ + (1/n)J .

Proof. This formula is well-known in the literature, it has been rediscovered several times. The first
appearance may be in Sharpe and Styan (1965), see also Rao and Mitra (1971, Theorem 10.1.2) and
Chebotarev and Agaev (2002, Propositions 15 and 16). Here we give a new proof.

The unweighted case is discussed in Gutman and Xiao (2004, Theorems 4 and 5).
For the general weighted version, µn−1 > 0 was proved in Lemma 3.1. It is always possible to

choose the Laplacian eigenvectors to be real, normalized and mutually orthogonal. The eigenvec-
tor corresponding to µn = 0 is of the form u(n) = [1, 1, . . . , 1]

⊤
,u(n) ∈ R

n. Since the eigenvectors

u(k), k = 1, 2, . . . , n − 1, are orthogonal to u(n),
∑n

j=1 u
(k)
j = 0 is satisfied for all k = 1, 2, . . . , n − 1.

Then the extension of the result of Gutman and Xiao (2004, Theorem 4) to multigraphs is obvious
as [L+ (1/n)J ]u(k) = Lu(k) + (1/n)Ju(k) = Lu(k) + 0 = µku

(k) for all k = 1, 2, . . . , n − 1 and
[L+ (1/n)J ]u(n) = Lu(n) +(1/n)Ju(n) = 0+ (1/n)nu(n) = u(n), thus the last eigenvalue of L+(1/n)J
is equal to 1 with the corresponding eigenvector u(n).

Kwiesielewicz (1996) shows that LL+ = L+L = I − (1/n)J is provided in the weighted case, too. It
implies that [L+ (1/n)J ] [L+ + (1/n)J ] = LL+ + 0+ 0+ (1/n)2J2 = I − (1/n)J + (1/n)2nJ = I, since

JL+ = 0 (Kwiesielewicz, 1996, Theorem 4), consequently [L+ (1/n)J ]
−1

= L+ + (1/n)J .

Kaiser and Serlin (1978) use the matrix L + J in the unweighted case to circumvent the singularity
of L.

Theorem 3.1. Let G be a connected comparison multigraph. The unique solution of the least squares
problem is

q = L+s = [L+ (1/n)J ]
−1

s.

Proof. Lemma 3.2 provides the following equivalent transformations of the least squares problem:

Lq = s ⇔ [L+ (1/n)J ]q = s+ (1/n)Jq ⇔ q =
[

L+ + (1/n)J
]

s + (1/n)
[

L+ + (1/n)J
]

Jq.

Since L+J = 0 (Kwiesielewicz, 1996, Theorem 4), J2 = nJ , and Js = (
∑n

i=1 si)e = 0 due to e⊤s =
∑n

i=1 si = 0:
Lq = s ⇔ q = L+s+ (1/n)Jq.

Normalization Jq = 0 can only be done if JL+s = 0, which is satisfied because JL+ = 0.

This solution concept resolves the problem of the singularity of L, while simple calculation is preserved
since L+ can be obtained through the identity L+L = LL+ = I − (1/n)J . Theorem 3.1 is mainly a
technical result, it means a step towards the iterative calculation of the least squares method.

7



4 The iterative calculation of the least squares rating

In this section an iterative process is given for the calculation of the optimal least squares solution.
Gulliksen (1956) offers a similar approach but his method is based on the choice of an arbitrary solution
q and adjusting it according to the error term s − Lq. Our proposal starts with the first estimation
of ratings by the row sums s which will be updated by the scores of objects compared with it, and
so on. It is similar to the rating method called recursive Buchholz, defined on the aggregated paired
comparison matrix R (González-Dı́az et al., 2014). However, the latter uses an ’average’ setting, the
modified scores vector s′ and matches matrix M ′ after division by the number of comparisons di =
∑n

j=1 mij for each Xi. Interestingly, despite the different approach, the recursive Buchholz ranking
coincides with the one obtained from the least squares solution, it gives a rating vector which is the half
of q (González-Dı́az et al., 2014, Proposition 3.1).

Recursive Buchholz is a special case of the recursive performance defined by Brozos-Vázquez et al.
(2008) where uniqueness is proved for any matches matrix M , which is not block diagonal (comparison
multigraph G is connected) and not block anti-diagonal (G is not bipartite). It was shown in Section
3 that the first condition is necessary for the uniqueness of the least squares solution as well, while the
second one requires some comments. A block anti-diagonal matches matrix represents a comparison
structure similar to a ’team tournament’ where the objects (players) have two disjoint subsets (teams)
such that players in one team do not play against their teammates. Thus the ratings of the players in one
team can be calculated only through the ratings of the players in the other team and this cyclic feature
thwarts the convergence of the iteration. An analogous problem will also emerge in our discussion.

A digraph is an irreflexive directed graph consisting of a finite set of nodes N and a collection of
ordered pairs P of these nodes. An edge from node Xi to node Xj represents a dominance relation of the
former over the latter, and is represented by (i, j) ∈ P . In our setting it may be discussed as a ranking
problem (N,A,M), where N is the set of nodes, the elements of the results matrix A are restricted by
aij ∈ {−1, 0, 1} and the matches matrix M is defined by mij = 1 if and only if {(i, j), (j, i)} ∩ P 6= ∅.
Furthermore, aij = 1 ⇔ [(i, j) ∈ P and (j, i) /∈ P ], aij = −1 ⇔ [(j, i) ∈ P and (i, j) /∈ P ], and aij = 0 ⇔
[{(i, j), (j, i)} ∩ P = ∅ or (i, j), (j, i) ∈ P ], but in the latter case there is a match between objects Xi and
Xj , therefore mij = mji = 1. This correspondence is clearly not unique; it can be legitimately argued
that edges in both directions mean two matches between the associated objects.

Herings et al. (2005) define the positional power of nodes in digraphs and prove that it can be obtained
as the limit point of an iterative process. More details about this method will be given later in order to
show its common roots with our iterative solution for the least squares method.

Chebotarev (1994) gives a decomposition of the generalized row sum method by the powers of the
parameter ε. Let µ1 be the greatest eigenvalue of L.

Proposition 4.1. For all 0 < ε < 1/µ1 the generalized row sum rating vector is:

x =

[

∞
∑

k=0

εk(−L)k

]

(1 + εmn)s = (1 + εmn)s− εL(1 + εmn)s+ ε2L2(1 + εmn)s− ε3L3(1 + εmn)s+ . . .

Proof. See Chebotarev (1994, Property 12).

In particular,

xi = si + ε



(mn− di)si +
∑

j 6=i

mijsi



+ o(ε).

A similar decomposition of the least squares rating is based on Theorem 3.1 and on the Neumann
series (Neumann, 1877) of [L+ (1/n)J ]

−1
.

Lemma 4.1. Let B ∈ R
n×n. The following statements are equivalent:

1. The Neumann series
∑∞

k=0 B
k = I +B +B2 +B3 + . . . converges;

2. All eigenvalues λ of B are in the interior of the unit circle, that is, max{|λ| : λy = By} < 1;

3. limn→∞ Bn = 0.
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In which case, (I −B)−1 exists, and

(I −B)
−1

=

∞
∑

k=0

Bk = I +B +B2 +B3 + . . . .

Proof. It is a special case of the theorem for Neumann series in Meyer (2000, p. 618).

In order to decompose the least squares rating vector q, the Neumann series should be applied for
L+(1/n)J used in Theorem 3.1. Therefore, some results are necessary about its eigenvalues. According
to the Geršgorin theorem (Geršgorin, 1931), all eigenvalues of the Laplacian matrix L lie within the
closed interval [0, 2d], where d = max{di : i = 1, 2, . . . , n} is the maximal number of comparisons with
the other objects. In the unweighted case d ≤ n− 1, and for a round-robin ranking problem d = n− 1.

A regular graph is a graph such that every vertex has the same degree. A semiregular bipartite (or
biregular) graph is a bipartite graph, for which every two vertices on the same side of the given partition
have the same degree.

Lemma 4.2. Let G be a graph with a decreasing degree sequence d = d1 ≥ d2 ≥ · · · ≥ dn (di =
∑n

j=1 mij = −
∑

j 6=i ℓij) and L be the Laplacian matrix of G. Then

µ1 ≤ 2d.

If G is connected, equality holds if and only if G is a regular bipartite graph.

Proof. In the unweighted case, µ1 ≤ max{d(u) + d(v)|(u, v) ∈ E(G)} and equality holds if and only if G
is a semiregular bipartite graph (Anderson and Morley, 1985). It carries over to multigraphs since the
number of matches between two objects is nonnegative (Mohar, 1991, Theorem 2.2).

Notice that if the comparison multigraph G of the ranking problem (N,A,M) is regular bipartite,
then M has a block anti-diagonal structure, but the reverse of the implication does not hold.

Let us introduce the n × n real matrix C with cij = −ℓij = mij for all i 6= j and cii = d − ℓii =
d − di = d −

∑n
j=1 mij . C is the same as the matches matrix outside the diagonal, where elements are

increased (except for the object(s) with maximal comparisons) in order to provide that the sum of all
row (and column) is equal. Then L = dI − C, therefore

[L+ (1/n)J ]
−1

= [dI − C + (1/n)J ]
−1

=
1

d

[

I −
1

d

(

C −
1

n
J

)]−1

.

In the following, stochastic matrix (1/d)C is denoted by P .

Theorem 4.1. Let the comparison multigraph be connected, and not regular bipartite. The unique
solution q of the least squares problem is

q =
1

d

∞
∑

k=0

P ks =
1

d

(

s+ P s+ P 2s+ P 3s+ . . .
)

.

Proof. Let λ be an eigenvalue of 1
d

(

C − 1
n
J
)

, namely, λy = 1
d

(

C − 1
n
J
)

y for some y. It implies that

d(1 − λ)y = d
[

I − 1
d

(

C − 1
n
J
)]

y =
(

L+ 1
n
J
)

y. From Lemma 3.2, d(1 − λ) ∈ {µ1, µ2, . . . , µn−1, 1}.
Since µn−1 > 0 also holds, d(1 − λ) > 0, thus λ < 1. As a consequence of Lemma 4.2, we have
d(1 − λ) ≤ 2d, therefore, λ ≥ −1. According to the condition of Theorem 4.1, G is connected, the
equality holds if and only if G is a regular bipartite graph, resulting in the statement: G is not a regular
bipartite comparison multigraph if and only if λ > −1.

Hence all eigenvalues fulfil the requirement −1 < λ < 1, Lemma 4.1 can be applied for the matrix
B = 1

d

(

C − 1
n
J
)

. By applying the Neumann series on Theorem 3.1, we obtain

q = [L+ (1/n)J ]
−1

s =
1

d

[

I −
1

d

(

C −
1

n
J

)]−1

s =
1

d

∞
∑

k=0

Bks =
1

d

∞
∑

k=0

(

P −
1

dn
J

)k

s.

But Js = 0, which leads to
(

P − 1
dn

J
)k

s = P ks, therefore the assertion holds.
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Figure 2: The balanced comparison multigraph of Example 4.1

s1 = 1

s3 = 0

s5 = 1

s2 = 1

s4 = 0

s6 = −3

s7 = 0

For ranking purposes, the multiplier (1/d) > 0 in the decomposition of q is irrelevant. It follows from
Theorem 4.1 that the least squares solution can be obtained as a limit point of an iterative process.

Proposition 4.2. Let the comparison multigraph be connected, and not regular bipartite. The unique
solution of the least squares problem is q = limk→∞ q(k), where

q(0) = (1/d)s,

q(k) = q(k−1) +
1

d
P ks, k = 1, 2, . . . .

Proof. It is the immediate consequence of Theorem 4.1.

The iteration process has an interpretation on graphs. In the following description, the multiplier
1/d in the decomposition of q is disregarded for the sake of simplicity. Let G′ be a graph identical to
the comparison multigraph except that d− di loops are assigned for object Xi. With this modification,
balancedness is achieved with the minimal number of loops, at least one node (with the maximal degree)
has no loops. Graph G′ is said to be the balanced comparison multigraph. It is the same procedure
as balancing the weighted graph G by loops in Chebotarev (2012, p. 1495), where G′ is called the
balanced-graph of G. Note that G′ is connected or regular bipartite if and only if G is connected or
regular bipartite, respectively.

Initially, all objects (nodes) are endowed with an own estimation of performance s, corresponding
to the row sum vector. In the first step, the performance of objects compared with the given one is
taken into account through the edges. P s means the average scores of the objects that were compared
with it (weighted by the number of comparisons, that is, the sum of edges between the two objects).
The introduction of d− di loops on Xi provides that the number of objects reachable on 1-long paths is
exactly d. Now strength of objects compared with the given one is added to the original scores to get
s+ P s.

In the kth step, the average scores of objects available on all k-long paths P ks is added to the previous
rating vector. If G is a connected, and not regular bipartite graph, then this iteration converges to the
least squares ranking due to Theorem 4.1. Example 4.1 illustrates the decomposition of the least squares
rating for the ranking problem analyzed in Example 3.1.

Example 4.1. See the preference graph on Figure 1 and its balanced comparison multigraph on Figure 2.
It is an undirected graph, the number of loops are determined by the differences d− di, [2, 2, 1, 1, 0, 0, 1].
Nodes are labelled by the score of the corresponding object. At the start (dq(0)), every node gets si. In
the 1st step (dq(1)), the scores of nodes reachable on a 1-long path are added with a multiplier 1/d = 1/3.
For example, in the case of X1 it is (2s1 + s3)/d = 2/3.

In the kth iteration, the scores of nodes reachable on a k-long path are added with a multiplier (1/d)k,
where the number of scores taken into account is d

k, analogously. It also implies that the denominator

10



in the fraction of the actual rating q
(k)
i is a divisor of dk+1 for all i = 1, 2, . . . , n. Theorem 4.1 ensures

that this process converges if the comparison multigraph G is not a regular bipartite graph.
The rating vectors obtained in the successive steps of the iteration process are as follows

Iterated ratings q(0) q(1) q(2) q(3) q(10) q(50) q

X1 1/3 5/9 21/27 76/81 1.5075 1.8057 1.8095
X2 1/3 5/9 17/27 56/81 0.6915 0.4800 0.4762
X3 0 2/9 7/27 29/81 0.6178 0.8069 0.8095
X4 0 −2/9 −5/27 −19/81 −0.3535 −0.5211 −0.5238
X5 1/3 0 1/27 −7/81 −0.2092 −0.1912 −0.1905
X6 −1 −8/9 −31/27 −95/81 −1.4450 −1.5231 −1.5238
X7 0 −2/9 −10/27 −40/81 −0.8090 −0.8571 −0.8571

It immediately shows the role of comparisons. For example, the scores of X1, X2 and X5 are equal, how-
ever, their position in the preference graph is significantly different, which can be seen in the subsequent
steps of the iteration. The final ranking emerges only after the 13th step.

Example 4.1 suggests two observations. The first is that ties are usually eliminated after taking the
comparison structure into account, which can be advantageous in practical applications by reducing the
demand for tie-breaking rules. The second is the possibly slow convergence: in order to get the final
ranking of the objects, long paths also may be necessary to consider causing some difficulties in the
interpretation since it is not exactly clear why they still have some importance. Nevertheless, the graph
of Example 3.1 has few edges relative to a round-robin ranking problem, thus it is not surprising that
many iteration steps are required.

Theorem 4.1 has virtually no significance from a computational viewpoint since the least squares
problem can be solved with a modest cost of O(n3) flops (Jiang et al., 2011).

Iterative scoring procedures used for ranking the nodes in a digraph can be traced back to the works
of Wei (1952) and Kendall (1955), called the long-path method by Laslier (1997). It is based on the right
eigenvector corresponding to the largest positive eigenvalue of the adjacency matrix. Moon and Pullman
(1970) shows that the iterative procedure converges to a non-zero vector if the digraph is strongly
connected, namely, there exists a path from Xi to Xj if Xi 6= Xj . According to Chebotarev (1994) and
Herings et al. (2005), the severely restricted domain limits the usefulness of this concept.

This drawback is eliminated by the positional power measure (Herings et al., 2005). Its rating vector
p is the limit point of the sequence

p0 = 0,

pk = TAe+
1

n
TApk−1, k = 1, 2, . . . .

Now the first step (TAe) gives the ’score’ of nodes in a digraph, the number of their successors. Sub-
sequently, each node gets a fraction 1/n of the previous power of its successors and a fixed amount of
1. Herings et al. (2005) do not mention the use of the Neumann series explicitly. However, the decom-

position in the proof of Herings et al. (2005, Lemma 4.2) is based on the equation
[

I − (1/n)TA
]−1

=

I +
∑∞

k=1(1/n)
k
(

TA
)k

as limk→∞(1/n)k
(

TA
)k

= 0.
Besides these common roots, we have identified three differences between the least squares rating

and positional power of nodes in digraphs. The first is in the approach of the two ratings. According to
the concepts of Chebotarev and Shamis (1999), positional power (as well as the Wei-Kendall method)
is a kind of win-loss combining procedure distinguishing the wins and the losses of objects, while least
squares is a win-loss unifying procedure, treating all results uniformly. Here the outcomes of paired
comparisons only appear in the results matrix A, therefore they influence the ranking through s.

The second difference is the role of iterated ratings: for the positional power they are allocated to
the predecessors of nodes, whereas for the least squares, they remain on the objects. On the other side,
positional power adds the original score TAe to the nodes in each step, while the least squares procedure
uses the fixed scores vector s for the adjustment of previous ratings.

The third, maybe the most interesting difference is the choice of parameter 1/a reflecting the impor-
tance of successors in the digraph. Herings et al. (2005) define it somewhat arbitrarily as 1/a = 1/n,
the reciprocal of the number of nodes in the digraph, however, the procedure works for any nonnegative
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numbers less than 1/(n − 1). It would be interesting to see how this parameter 1/a can be increased.
The proof of Herings et al. (2005, Theorem 3.1) certainly works if all nodes have less than a successors.
In such a way the exact definition of a becomes endogenous, similar that of the least squares method,
and the procedure will depend on the structure of the digraph.

It was shown in Theorem 4.1 that for the least squares method the decay parameter 1/d is determined
endogenously by d = max{di : i = 1, 2, . . . , n}, the maximal number of comparisons of any objects and
the iteration process works for all ranking problems (N,A,M) with a connected, and not regular bipartite
comparison multigraph. The proposal of Herings et al. (2005) can also be applied in Theorem 4.1, as
the convergence clearly holds if the parameter 1/c in the iteration is smaller than 1/d, which is provided
if c > m(n − 1). For instance, c = mn is a value analogous to the idea of Herings et al. (2005), but it
obviously differs from the least squares method.

Remark 1. In Theorem 4.1, the decay parameter 1/d is determined endogenously by the decomposition
of L = dI − C. If it becomes larger, the convergence of the Neumann series is not ensured, there will
be more critical cases than regular bipartite graphs. If it is smaller, the iteration converges, however,
loops will always appear in the balanced comparison multigraph G′ and the interpretation becomes more
complicated.

The decomposition of the least squares rating works perfectly for regular graphs without loops. They
are characteristic for some applications, like Swiss-system tournaments, and it is unlikely that such a set
of comparisons results in a bipartite comparison multigraph.

Other graph interpretations of the least squares method may be possible on the basis of the sys-
tem of linear equations q = L+s. For example, a topological interpretation was given for L+ in
Chebotarev and Shamis (1998b, Theorem 3).

Finally, it is worth to compare the graph interpretation above with the one given for the generalized
row sum method by Shamis (1994). The latter calculates the number of k-long routes with an even and
odd number of drains (i.e. sequence of edges with some possible loops) between the objects, where ε
represents the importance attributed to indirect connections, that is, the k-long routes have a weight
of εk. It works for all ε < 1/ [2m(n− 1)]. We think that from a graph-theoretic viewpoint the above
interpretation is more simple, however, the appearance of loops remains a weakness.

5 Concluding remarks

We have shown that the least squares ranking method has a graph interpretation with the exception
of some special cases, when the comparison multigraph is a regular bipartite graph. The rating vector
can be obtained as the limit of an iteration process based on scores and a decay parameter 1/d, where
d = max{di : i = 1, 2, . . . , n} is the maximal number of comparisons, determined endogenously by the
matches matrix M .

Aggregation of the results A =
∑m

p=1 A
(p) eliminates a lot of information regarding the outcomes of

paired comparisons, for instance, aij = a
(1)
ij + a

(2)
ij can be equal to 0 by adding both 1 and −1 or 0 and

0. We do not know of any ranking methods which, besides the aggregated expected value aij , account

for the variance of a
(p)
ij , i.e. the bias from the fact that usually a

(p)
ij is not equal to the average aij/mij .

However, the difference a
(p)
ij − aij/mij can carry some information about the comparison of Xi and Xj :

intuitively, their relative ranking seems to be more stable if a
(p)
ij ≈ aij/mij for all p where r

(p)
ij is known.

A possible way of addressing this reliability of the paired comparisons is through an adjustment of the
number of comparisons between Xi and Xj.

Since digraphs can be incorporated in our setting, it is interesting to connect the decomposition
of the least squares method with the positional power of nodes in weighted digraphs (Herings et al.,
2005). A weighted digraph is defined by the set of nodes and a nonnegative matrix W ∈ R

n×n
+ , where

wij > 0 denotes the weight of edge from Xi to Xj. It is natural to choose aij = wij/(wij + wji) and
mij = wij + wji but in weighted digraphs edges from a node to itself (wii > 0) are also allowed. It
remains an open question what is the relation of the two concepts.

Finally, it follows from Theorem 4.1 that convergence is ensured for all multipliers less than 1/d,
offering a natural way for the generalization of the least squares method. If G is not a bipartite graph,
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the parameter can also be increased. Another promising direction may be the change of exponential
decay.
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ticipants in tournaments by means of rating functions. Journal of Mathematical Economics, 44(11):
1246–1256, 2008.

P. Chebotarev. Generalization of the row sum method for incomplete paired comparisons. Automation
and Remote Control, 50(3):1103–1113, 1989.

P. Chebotarev. Aggregation of preferences by the generalized row sum method. Mathematical Social
Sciences, 27(3):293–320, 1994.

P. Chebotarev. The walk distances in graphs. Discrete Applied Mathematics, 160(10):1484–1500, 2012.

P. Chebotarev and R. Agaev. Forest matrices around the Laplacian matrix. Linear Algebra and its
Applications, 356(1-3):253–274, 2002.

P. Chebotarev and E. Shamis. Characterizations of scoring methods for preference aggregation. Annals
of Operations Research, 80:299–332, 1998a.

P. Chebotarev and E. Shamis. On proximity measures for graph vertices. Automation and Remote
Control, 59:1443–1459, 1998b.

P. Chebotarev and E. Shamis. Preference fusion when the number of alternatives exceeds two: indirect
scoring procedures. Journal of the Franklin Institute, 336(2):205–226, 1999.
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