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Abstract
Aim: Waterbirds are important dispersal vectors of multicellular organisms; however, 
no study to date has focused on their potential role in dispersing aquatic microbial 
communities. We explicitly studied endozoochory of prokaryotes and unicellular mi-
croeukaryotes by waterbirds using DNA metabarcoding. By directly comparing the 
dispersed set of organisms to the source pool of a natural metacommunity, we aimed 
at a realistic estimate of the importance of waterbird zoochory for natural microbial 
communities.
Location: Temporary saline soda pans in Austria and Hungary.
Taxon: Prokaryotes and unicellular microeukaryotes.
Methods: In 2017 and 2018, water samples were collected from a network of 25 tem-
porary ponds along with fresh droppings of five waterbird species including the domi-
nant greylag goose (Anser anser). Prokaryotic and microeukaryotic communities were 
identified via 16S and 18S rRNA gene amplicon sequencing. After quality filtering of 
sequence reads, pro- and microeukaryotic amplicon sequence variant (ASV) composi-
tions were compared between the aquatic and dropping samples, across years and 
waterbird species.
Results: 28% of the dominant aquatic prokaryotic and 19% of the microeukaryotic 
ASVs were transported by A. anser. ASV richness was lower, but compositional varia-
tion was higher in A. anser droppings than in aquatic communities, probably resulting 
from stochastic pick-up from multiple aquatic habitats. The composition of prokary-
otic ASVs in bird droppings differed among the 2 years and reflected the actual aquatic 
communities. The dispersed set of microbes were largely similar among the waterbird 
species except for the planktivore filter-feeder northern shoveler (Spatula clypeata), 
which dispersed more microeukaryotes than the other waterbirds.
Main conclusions: Using an amplicon sequencing approach to characterize aquatic 
microorganisms in waterbird droppings and in the associated environment, our study 
provides strong evidence for endozoochory of natural communities. These results 
imply that waterbirds may be crucial in maintaining ecological connectivity between 
aquatic habitats at the level of microbial communities.
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1  |  INTRODUCTION

Dispersal is a key process connecting habitats, thereby sustaining 
gene flow (Clobert et al., 2012), biodiversity (Leibold et al., 2004) and 
ecosystem functions (Bannar-Martin et al., 2018; Zobel et al., 2006). 
For a long time, prokaryotes, together with unicellular and small 
multicellular eukaryotes have been considered to have a cosmopol-
itan distribution and their communities were assumed to be driven 
only by local environmental and biotic factors (Baas-Becking, 1934; 
Beijerinck, 1913). However, recent studies (e.g., Cho & Tiedje, 2000; 
Martiny et al., 2006; Telford et al., 2006; Zinger et al., 2014) benefit-
ing from the rapid development of community sequencing methods 
led to a paradigm shift by providing evidence for biogeographical 
patterns and increased recognition of the importance of spatial pro-
cesses in microorganisms (Langenheder & Lindström,  2019; Mony 
et al.,  2020; Ptacnik et al.,  2010; van der Gast,  2015; Vyverman 
et al., 2007). This has finally placed microbes in the same metacom-
munity framework that has been already well established for macro-
organisms (Leibold & Chase, 2018).

Hence, the importance of passive dispersal for microor-
ganisms is now acknowledged. Dispersal can occur by wind 
(Genitsaris et al.,  2011; Sharma et al.,  2007), water currents (Luef 
et al., 2007), animals (Figuerola & Green, 2002a; Green et al., 2008; 
Valls et al.,  2017) and human activities (Reise et al.,  1999; Ruiz 
et al., 2000). But despite the increasing interest in microbial disper-
sal and the availability of modern molecular techniques, zoochory 
is still largely neglected in this respect. Although there is evidence 
for waterbirds being effective short- and long-distance dispersal 
agents of macrophytes, macroinvertebrates, zooplankton and ver-
tebrates (Brochet, Gauthier-Clerc, Guillemain, et al., 2010; Figuerola 
et al., 2003; Figuerola & Green, 2002b; Lovas-Kiss et al., 2019, 2020; 
Reynolds & Cumming, 2016; Silva et al., 2019; Viana et al., 2013a, 
2013b), waterbird-mediated dispersal of unicellular microorganisms 
(especially bacteria) is poorly understood. There is evidence for the 
transport of viruses (Blagodatski et al.,  2021) and microorganisms 
exemplified mainly by the dispersal of single and/or pathogenic mi-
crobial taxa (Briscoe et al., 2021; Garmyn et al., 2012; Hartikainen 
et al., 2016; Jarma et al., 2021; Lewis et al., 2014) or their co-dispersal 
with their infected hosts (Okamura et al., 2019). However, no studies 
to date investigated the dispersal potential of waterbirds for natural 
aquatic microbial communities by performing a direct comparison of 
natural communities to taxa dispersed by waterbirds.

Here, we carry out an extensive study on the role of waterbirds 
as dispersal agents of aquatic pro- and eukaryotic unicellular micro-
organisms with the help of high-throughput DNA sequencing. Our 
study area is a landscape of saline temporary ponds, representing 
a well-delineated habitat network. The characteristic species of the 
waterbird community in the area is greylag goose (Anser anser), with 

more than 6000 individuals (Wendelin & Dvorak, 2020). This spe-
cies is known to be a regular large-bodied visitor of aquatic habi-
tats, moving in flocks of up to 750 individuals (McKay et al., 2006). 
It has been suggested that they may contribute significantly to the 
transport of passively dispersing organisms across aquatic habitats 
(García-Álvarez et al., 2015; Green et al., 2002). However, we lack 
empirical data to assess their actual role as dispersal agents for mi-
crobial organisms.

In line with this, our main objective is to investigate the poten-
tial of zoochory by waterbirds for dispersing microorganisms among 
local habitats in a metacommunity. Specifically, our first aim is to 
reveal what proportion of the amplicon sequence variants (ASV, a 
proxy for microbial species/taxa), occurring in the aquatic habitats, 
can be found in droppings of the dominant waterbird of the region, 
A. anser. Here, we also investigate whether the microbial communi-
ties detected in the bird droppings reflect a possible change of the 
communities in the aquatic habitats over time. And finally, we assess 
the dispersal potential of A. anser relative to three other waterbird 
species with different feeding habits and habitat use in the same 
landscape.

2  | MATERIALS AND METHODS

2.1  |  Sampling and sample processing

The study area (~200 km2, Horváth et al., 2016) in the cross-border 
region of Austria and Hungary is characterized by a dense cluster of 
temporary saline ponds (soda pans). These habitats form a habitat 
network relatively isolated from freshwater habitats or other soda 
pans in the central and eastern regions of Hungary (Tóth et al., 2014). 
The clumped nature of this pondscape, with shallow (≤1 m) and hy-
pertrophic aquatic habitats (Boros, 2017), offers excellent feeding 
grounds for invertivorous waterbirds (Horváth et al.,  2013) and 
breeding sites for several other species, including greylag geese 
(Anser anser, Dvorak et al., 2020; Wendelin & Dvorak, 2020). The re-
gion is legally protected as part of two national parks (Neusiedlersee-
Seewinkel in Austria and Fertő-Hanság in Hungary), designated as 
Important Bird Area (BirdLife International, 2021a, 2021b) and part 
of a UNESCO World Heritage site (Fertő/Neusiedlersee Cultural 
Landscape).

We collected water samples from 25 soda pans in two con-
secutive years (3–6 April 2017 and 2–4 April 2018; Figure  1), 
representing all habitats that held water in both years (hereafter 
aquatic community samples). The sampled habitats are situated 
within 17 km (largest distance between two habitats), thereby rep-
resenting a region where waterbirds can regularly move around 
on a daily basis (Bell,  1988; Boos et al.,  2019; Link et al.,  2011; 

K E Y WO RD S
aquatic microorganisms, bacteria, connectivity, dispersal, DNA metabarcoding, endozoochory, 
phytoplankton, protists
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Nilsson & Persson, 1992). From each soda pan, a total of 20 L of 
water was collected from 20 different points using a 1-litre plastic 
beaker (thus collecting a pooled sample from the largest possible 
area) and sieved through a 100-μm mesh plankton net to remove 
large zooplankton and filamentous algae which would hinder the 
detection of unicellular organisms during amplicon sequencing. 
Sampling of water was carried out by wading so that we gently col-
lected water from the undisturbed areas in front of us. For further 
processing, 1  L of the composite sieved water was immediately 
delivered to the laboratory in a glass bottle in a cool box. As many 
of the studied soda pans have high turbidity and high prokaryotic 
or algal cell numbers (107–109 cells ml−1, Boros,  2017; Kirschner 
et al., 2002), for molecular analysis, 1–50 ml of water (depending 
on turbidity, as Secchi depth ranged from 0.3 to 44 cm) was fil-
tered through a nitrocellulose membrane filter (Ø 47 mm) with a 

pore size of 0.22 μm until clogging. Thereafter, filters were stored 
at −20°C until DNA extraction.

Simultaneously, we collected fresh waterbird droppings at 
all sites that hosted a monospecific flock of waterbirds. We ap-
proached the birds roosting on dry mudflats or grasslands on 
the shores or right next to the soda pans and once they took 
off, fresh droppings were collected in sterile cryogenic vials and 
immediately frozen on dry ice. Droppings at least 1-metre apart 
were collected thereby ensuring an individual being sampled only 
once (Lovas-Kiss et al., 2018). To scrape off any soil or plant ma-
terial and pick up the faecal sample, we used the vial and its cap, 
in which the given sample was stored. This way we avoided the 
potential contamination due to long-term exposure to, for exam-
ple, wind-dispersed propagules and also avoided possible cross-
contamination with a shared sampling equipment. Bird droppings 
were stored at −20°C until further processing. In 2017, a total of 
64 droppings from Anser anser, Calidris pugnax, Recurvirostra avo-
setta, Spatula clypeata, while in 2018, altogether 70 droppings 
from A. anser and A. albifrons were collected with this method 
(Figure 1). The feeding mode of the waterbird species is summa-
rized in Table S1.

We used the two datasets (aquatic communities and bird drop-
pings) to compare the possible dispersal provided by waterbirds 
with the implicit limitation that we cannot differentiate between 
viable propagules and non-viable remnants of the original microor-
ganisms. At the moment, there is no single culturing method that 
could have been applied for waterbird droppings without being ex-
tremely selective for the emerging microbes and hence we decided 
to sequence the samples as a whole (as in Hartikainen et al., 2016 
and Jarma et al.,  2021). Although this can mean an overestimate 
for the ratio of successfully dispersed taxa, it can still provide a 
critical first estimate of what might be transported by the birds, 
especially given by their inefficient digestion (Frisch et al.,  2007; 
Green & Sánchez,  2006; Lovas-Kiss et al.,  2020) and short reten-
tion times (Brochet, Guillemain, Gauthier-Clerc, et al., 2010; Sánchez 
et al., 2012).

2.2  | DNA isolation, amplification, sequencing and 
amplicon data analysis

DNA extraction from the filters and waterbird droppings was per-
formed after the sampling campaign in 2018 using the PowerSoil® 
DNA Isolation Kit (MO BIO Laboratories Inc.). Extracted DNA sam-
ples were sent to LGC Genomics (Berlin, Germany) to carry out 
prokaryotic 16S rRNA and microeukaryotic 18S rRNA gene amplifi-
cation and sequencing on an Illumina MiSeq platform. Analysis of se-
quence reads along with quality filtering steps was performed using 
mothur v. 1.43.0 (Schloss et al., 2009). A more detailed description 
of DNA isolation, amplification, sequencing and amplicon data anal-
ysis is provided in the Supporting Information (Data S1), including 
the selection protocol to only retain reads belonging to unicellular 
organisms.

F IGURE  1 Map of the region and the sampling sites. Projection 
of the map is EPSG:4326 (WGS84). All the soda pans from which 
samples were collected are indicated with blue polygons, while 
symbols highlight the spots where bird dropping samples were 
collected. The number of collected bird dropping samples is 
indicated in brackets
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2.3  |  Statistical analysis

We used the rarefied 16S (hereinafter referred to as prokaryotes) 
and 18S (microeukaryotes) community datasets separately in all our 
analyses. As our main aim was to quantify the potential dispersal of 
aquatic microorganisms by waterbirds, we excluded those organisms 
(both prokaryotes and microeukaryotes) that are likely not members 
of the natural aquatic community, but are more likely to be terres-
trial taxa, parasites of waterbirds or members of the gut microbiome. 
Accordingly, in case of both the aquatic community samples and the 
bird droppings, we only used ASVs that were present at least in one 
aquatic community sample with ≥1% relative abundance ('aquatic 
subset'). Since the subsetting resulted in different read numbers 
per sample, we converted the reads (hereafter abundances) to rela-
tive abundances prior to the statistical analyses. In the main part of 
the manuscript, we used only these aquatic subsets. This subset-
ting was carried out separately for prokaryotes and microeukary-
otes. The resulting aquatic subset of waterbird droppings contained 
1.9% (±4.1%) of the original prokaryotic and 4.5% (±6.8%) of the 
microeukaryotic ASV abundances in these samples. The subset 
of aquatic communities contained 71.0% (±12.7%) of the original 
prokaryotic and 84.2% (±9.1%) of the microeukaryotic ASV abun-
dances detected in the unselected datasets. The unselected ASV 
sets, the aquatic subsets and the related list of taxa were presented 
for both prokaryotes and microeukaryotes as supplementary data 
(Tables S2–S9).

For a quantitative assessment of waterbird dispersal potential in 
the pondscape, we only used A. anser samples, being the only spe-
cies from which we could collect samples in both years. To exclude a 
potential bias arising from the different sampling effort in soda pans 
vs bird droppings, a random re-sampling was performed based on 
the lowest sample size for both prokaryotes (n = 19) and microeu-
karyotes (n = 9) per sample group, resulting in a total of 76 pro- and 
36 microeukaryote samples used in these comparisons.

To estimate the possible significant effect of sample type (A. 
anser droppings vs aquatic communities) and sampling year (2017 
vs. 2018) on the local ASV richness (α-diversity) and compositional 
change among samples (Whittaker's β-diversity: β = γ/α), nonpara-
metric Scheirer–Ray–Hare test with an interaction term was run 
using the 'rcompanion' v. 2.4.6 package (Mangiafico, 2021), followed 
by Dunn's post-hoc test for pairwise comparisons with 'FSA' v. 0.9.1 
package (Ogle et al., 2021) where p-values were adjusted with the 
Benjamini–Hochberg method.

We created stacked barplots to illustrate the quantitative differ-
ences of the higher-order prokaryotic and eukaryotic taxa among 
the sample groups. Prior to this, third-level taxon names were as-
signed to the ASVs detected in the samples, thereafter ASV abun-
dances belonging to the same taxon were summed up and expressed 
as relative abundance in each sample group. Taxa that did not reach 
4% relative abundance at least in one of the four sample groups were 
combined in the category 'Other'.

Principal coordinate analysis (PCoA) was performed to illustrate 
the separation of samples according to sample type and sampling year 

with the 'vegan' v. 2.5–7 package (Oksanen et al., 2020). To test for 
significant differences in the same dataset, two-way PERMANOVA 
with an interaction term (based on 2000 permutations) was carried 
out, followed by a pairwise comparison of the four sample groups 
(based on 2000 permutations) with the 'pairwiseAdonis' v. 0.0.1 
package (Arbizu, 2017). We ran additional SIMPER analyses to de-
termine which ASVs are the most responsible for the dissimilarities 
among sample types and sampling years. To provide comparable re-
sults, PCoA, PERMANOVA, pairwise comparison and SIMPER were 
all run based on Bray–Curtis dissimilarity calculated from ASV rela-
tive abundance data.

We repeated our analyses based on the unselected datasets (i.e., 
without selecting for aquatic taxa) and presented those results in 
the Supporting Information (Tables S11, S14, Figures S1, S2, S4–S6, 
S9–S10). To standardize sample sizes, re-sampling was carried out 
also for the unselected dataset of prokaryotes (n = 25) and microeu-
karyotes (n = 10) based on the lowest sample size resulting in a total 
of 100 pro- and 40 microeukaryote samples.

To compare prokaryotic and microeukaryotic ASV richness in 
each sample group (droppings of different waterbird species and 
aquatic community samples from both years), we applied sample-
size-based rarefaction and extrapolation approach (Chao et al., 2014) 
using 'iNEXT' v. 2.0.20 package (Hsieh et al., 2020). The 95% con-
fidence intervals were constructed by bootstrapping (based on 50 
bootstrap replications).

To reveal whether different waterbird species transport differ-
ent microbial communities, and whether they differ among the two 
sampling years, we performed separate PCoA analyses including the 
waterbird species from which samples were collected in at least one 
year (sample numbers after re-sampling the amplicon data are pre-
sented in Table S1).

We excluded R. avosetta from the comparative analyses of dif-
ferent waterbird species and aquatic community samples due to 
the low number of samples (Table S1). However, we present the raw 
sequence reads in the data depository and the ASV sets with the 
related taxonomic list as supplementary files (Tables S2–S9) for each 
of the five waterbird species.

All analyses focusing on community composition were further-
more repeated for incidence data based on Sørensen dissimilarity.

Statistical analyses were carried out using R v. 4.1.1 statistical 
software (R Core Team, 2021).

3  |  RESULTS

We found a consistent difference between the number of prokary-
otic and microeukaryotic ASVs in the two main sample types (Anser 
anser droppings and aquatic communities) after rarefaction. Local 
ASV richness (α-diversity) was significantly higher in the aquatic 
community samples (in both years), while compositional variation 
(β-diversity) was higher among the A. anser samples, especially in 
prokaryotes. In line with the local richness, regional ASV richness (γ) 
was also higher in the aquatic communities in both prokaryotes and 
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microeukaryotes. In general, there was no remarkable difference 
in the diversity metrics between the two sampling years (Figure 2, 
Table  S10); however, in 2017, microeukaryotic β-diversity did not 
differ significantly between the two sample types (aquatic commu-
nity and A. anser droppings). When repeating the analyses for the 
unselected prokaryotic and microeukaryotic community datasets 
(thereby also including the gut microbiome, possible parasites of 
waterbirds and other terrestrial microorganisms), patterns of α- and 
γ-diversity were similar to the results based on the aquatic subset 
(i.e., less ASVs in A. anser samples independent of sampling year); 
however, β-diversity was low in case of both sample types in both 
years (Figure S1, Table S11).

In line with this, the majority of ASVs were found only in the 
aquatic habitats, with most ASVs shared between years (Figure 3, 
Venn diagrams). Even so, we detected a considerable proportion 
of ASVs present in aquatic habitats also in the A. anser samples: 
28% of the prokaryotic and 19% of the microeukaryotic ASVs were 
shared among both types of samples, with 19%–19% (2017 and 

2018, prokaryotes) and 9%–10% (2017 and 2018, microeukaryotes) 
of ASVs being shared among birds and aquatic communities within 
the same year (Figure 3). Among prokaryotes, 9% of the ASV were 
found in all four sample groups (both sample types in both years; 
Figure  3a). Compared to this, the share of microeukaryotic ASVs 
present in all four sample groups was low (3%) (Figure  3b). In the 
unselected community datasets, trends and differences were similar 
to those observed in our aquatic data subsets, except for the high 
number of ASVs unique to A. anser samples (33% for prokaryotes 
and 26% for microeukaryotes) (Figure S2).

At the level of major taxonomic units, all four sample groups were 
dominated by the same phylogenetic groups, both in prokaryotes 
and microeukaryotes (Figure  3, barplots). Gammaproteobacteria, 
Bacteroidia and Alphaproteobacteria were the most abundant clas-
sified prokaryotes, making up 26%–31% of the ASV abundances 
found in the aquatic communities and 53%–76% in the A. anser 
samples. However, some taxa such as Bacilli and Thermoleophilia 
were abundant in the aquatic communities in both years (9%–10% 

F IGURE  2 α-, β- and γ-diversity of the prokaryotic (a) and microeukaryotic (b) aquatic subsets in aquatic communities and Anser anser 
droppings in 2017 and 2018. Different letters indicate statistically significant differences in α- and β-diversity at a significance level of 
padj <0.05 based on Dunn's pairwise post-hoc test. Pairwise γ-diversity comparisons are presented as part of Figure 5
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together), but were either completely missing (Bacilli in 2018) 
or represented only with very low abundances (0.03%–0.3% to-
gether) in the A. anser droppings. In contrast, the relative abun-
dance of Gammaproteobacteria was higher in the A. anser droppings 
(41%–60%) compared to the aquatic community samples (7%–8%, 
Figure 3a).

In microeukaryotes, Chlorophyta, Apicomplexa and Fungi were 
the most abundant among the classified taxonomic groups, alto-
gether representing 29%–31% of the ASV abundances in the aquatic 
communities and 20%–29% in the A. anser droppings. There were 
also several groups that were abundant in the aquatic communi-
ties in both years (15%–22% together) but were not characteristic 
in the A. anser samples (0%–0.3% together), for example, Cercozoa, 
Katablepharidophyta and Ochrophyta. However, Opalozoa was rep-
resented with higher abundance in A. anser samples (9%–19%) than 
in the aquatic communities (0.2%–1%) (Figure 3b).

On the PCoA plots, the difference between aquatic communi-
ties and A. anser droppings was stronger for prokaryotes as com-
pared to microeukaryotic communities (Figure 4). At the same time, 
the PERMANOVA tests resulted in a significant effect of sample 
type in both cases (Table 1). Both prokaryotic and microeukaryotic 
samples were less separated by year (Figure  4), which was in line 

with the stronger effect (indicated by higher R2 values) of sample 
type compared to year (though both were significant) based on 
PERMANOVA tests (Table 1). Pairwise comparisons of the four sam-
ple groups showed similar significant differences with overall higher 
R2 values for pairs of different sample types in prokaryotes, while 
in microeukaryotes the difference was significant only for the pairs 
of different sample types (A. anser or aquatic communities; Table 1). 
A subsequent SIMPER analysis (Table  S12) showed that the ASVs 
most responsible for these differences belonged to the dominant 
higher-order taxa (Figure 3) and there was a complete overlap be-
tween the ASVs most responsible for the differences in sample type 
and sampling year (Table  S12). The general patterns in the PCoA, 
PERMANOVA and pairwise comparisons repeated for the incidence 
and unselected data subsets were highly similar in both prokaryotes 
and microeukaryotes with clearer differences among sample types 
and sampling years (Tables S13–S14, Figures S3–S5).

We finally compared the richness (Figure 5, Figure S6) and com-
position (Figures S7–S10) of microbes detected in the droppings of 
four waterbird species. Similar to the results based on rarefaction 
for A. anser droppings (Figures 2–3), only a fraction of the total spe-
cies pool was recaptured in each waterbird species, but the actual 
proportion changed with species. C. pugnax transported a similar 

F IGURE  3 Number of prokaryotic (a) and microeukaryotic (b) ASVs (above) shared among sample types (aquatic community and Anser 
anser dropping) and years, and the relative abundance of higher-order taxa (below) in the aquatic subsets
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fraction of microeukaryotic ASVs as geese (A. anser), both as indi-
viduals (mean richness) and collectively (the latter evidenced by re-
gional extrapolated richness). Compared to them, S. clypeata proved 
to be much more efficient dispersal agents for microeukaryotes, 

dispersing almost twice as many ASVs as a same-sized group of any 
of the other species (Figure 5b). Furthermore, we essentially found a 
similar number of microeukaryotic ASVs per S. clypeata dropping as 
in a random aquatic sample (Figure 5b). PCoA ordinations both with 
abundance- and incidence-based data also showed a clear separa-
tion of S. clypeata from the rest of the waterbirds (Figures S7b–S8b).

The comparison of waterbird species yielded somewhat differ-
ent results for prokaryotes, where S. clypeata droppings no longer 
hosted significantly higher ASV richness than most of the other spe-
cies (except for A. albifrons), and showed a large compositional over-
lap with communities potentially dispersed by C. pugnax (Figure S7a). 
Due to low read numbers for microeukaryotes in case of A. albifrons, 
in the two goose species, A. anser and A. albifrons, we could only 
compare the composition of prokaryotes in their droppings, where 
the difference we found was negligible (Figures S7a–S8a). While the 
overall composition of the detected set of prokaryotes was very 
similar among individual birds (Figures  S7a–S8a), A. albifrons col-
lectively transported a significantly lower diversity of prokaryotic 
ASVs: approximately only the half of those found in A. anser drop-
pings (Figure 5a).

In the unselected datasets, the prokaryotic and microeukaryotic 
communities transported by different bird species were much more 
distinct (Figures  S9–S10), but even there, A. anser and A. albifrons 
samples showed high similarity.

4  | DISCUSSION

The main novelty of our study is twofold. First, it represents the first 
comprehensive study on the role waterbirds play in the dispersal of 
aquatic microorganisms using an amplicon sequencing approach tar-
geting communities of prokaryotes and unicellular microeukaryotes. 
We provided evidence that waterbirds potentially can disperse all 
major aquatic groups from bacteria through phytoplankton to pro-
tozoa. Second, we directly compared microorganisms from water-
bird droppings to the source pool (natural aquatic communities), 
thereby being able to investigate the share and identity of aquatic 
microbes readily transported by waterbirds. In this confined set of 
aquatic habitats (i.e. metacommunity), we indeed found a consider-
able share of aquatic communities detected in waterbird droppings. 
Although the difference among sample types (aquatic communities 
and A. anser droppings) was in general more conspicuous, the actual 
set of prokaryote ASVs detected in the bird droppings also showed 
differences between the 2 years, where the potentially dispersed set 
of microbes reflected the actual aquatic communities. This provided 
further evidence for the dispersal potential of waterbirds. Finally, 
the communities detected in the droppings of different waterbird 
species showed high similarities (regardless of their lifestyle), with 
a number of specific differences. The implications of our results 
showed minor sensitivity to the selection methods (unselected 
dataset or aquatic subset) or data type (abundance or incidence), 
and were largely consistent across prokaryotes and microeukary-
otes. Altogether, our study provided the first explicit quantitative 

F IGURE  4 PCoA biplot of aquatic community and Anser anser 
dropping samples collected in 2017 and 2018. The analysis is 
based on the aquatic subset (relative abundance data, Bray–Curtis 
dissimilarity) of prokaryotic (a) and microeukaryotic (b) communities
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evidence clearly supporting that waterbirds are so far overlooked, 
yet potentially important dispersal agents of natural communities of 
aquatic microorganisms.

Prokaryotic and microeukaryotic communities of the aquatic 
subset were typical for soda lakes and pans of the region (Sinclair 
et al.,  2015; Szabó et al.,  2017, 2020). We found that 28% of the 
prokaryotic and 19% of the aquatic microeukaryotic ASVs were 
also present in the droppings of the dominant waterbirds species 
of the region, A. anser. Instead of dispersing a single or only a lim-
ited number of aquatic taxa, most of the major taxonomic groups of 
the aquatic communities were well represented in the A. anser drop-
pings. In waterbirds, gut retention time is short (Brochet, Guillemain, 
Gauthier-Clerc, et al., 2010; Sánchez et al., 2012), which can contrib-
ute to a large share of undigested microorganisms. In extreme cases, 
even live plants (Silva et al., 2018), diatoms (Atkinson, 1971, 1980), 
aquatic invertebrates (Frisch et al., 2007; Green & Sánchez, 2006) 
and gelatinous fish eggs (Lovas-Kiss et al.,  2020) can survive 

waterbird gut passage. Compared to them, the survival of microor-
ganisms should be even higher, given their evolutionary adaptations 
to adverse conditions such as extreme values of pH, desiccation or 
UV radiation (Potts, 1999; Rainey et al., 2005; Schleper et al., 1995). 
Even though we did not test the viability of the detected microbes 
directly, these altogether make it highly likely that the ASVs we 
found included viable cells and hence indicate the possibility of suc-
cessful dispersal events.

We found that community composition of microbes, that is, both 
the prokaryotic and microeukaryotic communities in the aquatic 
samples, and the dispersed ASV set in A. anser droppings were dif-
ferent between the two years. Besides, the difference in aquatic pro-
karyotic communities was also reflected by the communities found 
in the droppings (as evidenced by the PCoA plots). These altogether 
indicate that the set of potentially dispersed prokaryotes reflects 
the natural microbial communities available in the local aquatic hab-
itats at the given time. That is, our observations confirm the previ-
ous assumption that internal dispersal depends on the availability of 
aquatic (food) organisms (e.g., Brochet, Guillemain, Fritz, et al., 2010; 
Frisch et al., 2007), which can vary in time, and is likely facilitated by 
the weak digestion efficiency mentioned above.

Even though A. anser do not feed directly from the water but 
rather consume seeds, stems and leaves of aquatic macrophytes and 
terrestrial plants (Middleton & van der Valk, 1987), they can pick up 
microbes while drinking, while feeding on aquatic macrophytes, or 
even while preening their damp feathers after bathing. Our results 
showed that this feeding mode still makes them potentially efficient 
dispersal agents for aquatic microbial metacommunities. At the same 
time, we showed a high heterogeneity of prokaryotic and microeu-
karyotic ASV composition across bird droppings, indicating stochas-
tic pickup by the individual birds. Although the difference in local 
and regional richness between droppings and aquatic communities 
was still remarkable, the compositional variation among droppings 
was moderated when A. anser gut microbiota was also considered, 
leading us to the conclusion that the gut microorganism composition 
of A. anser is specific to the species. This is in line with the findings 
of Laviad-Shitrit et al. (2019) that waterbird species host unique gut 
bacterial communities.

We found that not only A. anser but the other three bird species 
can also transport a considerable share of the natural microbial com-
munities present in the ponds. While we found some differences be-
tween the waterbird species, these were not completely congruent 
with their feeding habits and habitat use. In spite of the terrestrial 
feeding habit of A. anser, the number of aquatic ASVs transported 
by them was largely comparable to those found in C. pugnax that 
prefer to feed in the shallow shoreline regions of ponds (Baccetti 
et al., 1998) and may directly consume biofilm communities as shown 
for multiple Calidris spp. (Kuwae et al., 2008, 2012). According to our 
results, they all can disperse quite similar microeukaryotic communi-
ties across aquatic habitats.

When considering the potentially dispersed prokaryotes, we did 
not find remarkable differences among the different bird species, 
neither in ASV richness nor in composition. A. anser and A. albifrons 

F IGURE  5 Accumulation curves with extrapolated ASV richness 
estimates (dashed lines) and 95% confidence intervals for the 
aquatic subsets of prokaryotes (a) and microeukaryotes (b) detected 
in the droppings of four waterbird species compared to the aquatic 
communities
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transported quite similar prokaryotic communities and their gut mi-
crobiome also seems to be largely the same, which is not surprising 
given that both have a predominantly terrestrial herbivorous feed-
ing habit (Ely & Raveling,  2011; Middleton & van der Valk,  1987). 
Nevertheless, of the two, A. anser hosted a higher number of ASVs 
in their droppings, which implies that it might have a more important 
role in the endozoochory of prokaryotes.

The only species that showed marked differences from the rest 
of the waterbirds was S. clypeata. They not only transported differ-
ent microeukaryotic communities, but also captured a much larger 
fraction of the aquatic source pool; therefore, they can be con-
sidered as the most effective dispersal agents. However, in terms 
of transporting prokaryotes, they were no longer so prominent. A 
reasonable explanation for our observations can be that S. clypeata, 
unlike the other waterbirds we studied, is a planktivore species siev-
ing plankton from the open water (Matsubara et al., 1994). The low 
interlamellar distances in its specialized spoon-shaped bill enable an 
effective accumulation of aquatic microorganisms even smaller than 
500 μm (Gurd,  2007; Kooloos et al.,  1989). Thus, microeukaryotes 
and their propagules of this size can be easily captured and concen-
trated, whereas bacterioplankton with a smaller size fraction proba-
bly flows through their lamellae.

Altogether, our results are based on a representative comparison 
of equal sample sizes across aquatic habitats and bird droppings. We 
proved that within small-scale pond and lake networks (10–20 km), 
waterbirds can be important dispersal agents of both prokaryotes 
and microeukaryotes, given that the spatial scale of such pondscapes 
coincides with the local daily movements of waterbirds, including 
A. anser (Bell, 1988; Boos et al., 2019; Link et al., 2011; Nilsson & 
Persson, 1992). As the study region might host up to hundreds of 
thousands of waterbirds (Dick et al., 1994), which themselves might 
defecate even up to 80 times per day (Oláh, 2003; Sterbetz, 1992), 
their overall contribution to biotic connectivity is expected to be 
immense, eventually being able to transport most members of the 
aquatic microbial metacommunity among the habitats.

Finally, the results of this study have important implications also 
for dispersal over larger spatial scales. According to their flight speed 
and gut retention times, waterbirds are able to transport their intes-
tinal contents over thousands of kilometres during migration (Viana 
et al., 2013a, 2013b, 2016), and therefore can be important dispersal 
agents of aquatic microorganisms not only on regional but even on 
continental scales. By dispersing microorganisms, they can have a 
significant role in forming biodiversity patterns and sustaining eco-
system functions where the importance of microbes is indisputable 
(Bell et al., 2005; Graham et al., 2016; Wohl et al., 2004).
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