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Abstract—Malfunctions, congestions, and accidents occur in
every railway system from time to time, which influences the
railway traffic on a given section of the system. The disturbance
may cause inconvenience for several passengers and disruption
in rail freight. Both the schedule and route of the affected trains
must be modified to avoid further congestion and minimalize
delays. The rigidity of the railway system (e.g., single tracks, vast
distances without a service station, no viable alternative in case
of malfunction) poses restrictions, unlike other transportation
systems. Replanning schedules and train routes (called the
railway rescheduling problem) is complex and demanding, even
for human operators, as one must consider numerous factors.
Thus, finding a satisfying solution poses a significant challenge.
This paper presents a MARL-base (Multi-Agent Reinforcement
Learning) solution that shows great potential for tackling this
problem, even in the case of multiple connected stations.

Index Terms—Traffic Control, Reinforcement Learning, Intel-
ligent Transportation Systems, Multi-Agent Systems

I. INTRODUCTION

A. Motivation

Rail transport has long been an essential and indispensable
part of the transportation infrastructure in all countries, re-
cently, with the growing importance of environmental aware-
ness and sustainable development especially so. The increase
in rail traffic, transport volume, and speed can significantly
achieve a more sustainable transportation system. For instance,
the European Union’s main objectives include ”greening”
freight and transport by doubling rail traffic by 2050 and using
new innovative data and artificial-intelligence-driven solutions
in the rail sector, as formulated in the European Commission’s
plans for the future [1]. A more detailed discussion of such
technologies can be found in [2]. Reinforcement learning
(RL) is a valuable optimization method, and a promising AI-
based tool for sequential decision-making problems in the
transportation industry [3]. This work aims to solve the railway
rescheduling problem with an RL-based approach.

B. Related work

The authors in [4] propose a neighborhood search algorithm
to solve the rescheduling problem in case of metro system
failures. [5] shows it can work on a real network. One can

also utilize tabu search to solve the rescheduling problem,
which minimizes delays by calculating optimal train sequences
[6]. The alternate graph method is suitable to solve the
problem as well [7]. Another option is to use the mixed
linear integer programming method, as the authors suggest
in [8]. OpenTrack environment can provide a base for the
implementation [9]. Another viable approach would be the
Monte-Carlo tree search procedure, which can find a conflict-
free route in a short time [10]. Using a graph representation
and a Deep Q-Network (DQN) leads to a solution as well [11],
[12]. In some applications, such as a closed metro network,
Q-learning can even provide an energy-optimal solution.

C. Contribution

The paper proposes a Multi-Agent Deep Reinforcement-
Learning-based solution (MADRL) to the real-time rail
rescheduling problem with two different state representations.
The first is a two-dimensional image-like representation, and
the second contains the same information as a single vector.
The control policy is formulated using a CNN and a dense
neural network. Given the complexity of the real-world prob-
lem, many different objectives can be utilized. Our primary
focus is to avoid deadlocks (i.e., congestion that cannot be
solved by simple route changes). It is also desirable that
trains reach their destination as efficiently as possible, within
minimal travel time. Deadlock occurs when trains running
opposite each other simultaneously use the same track section.
None of them can choose another route at a switching point.
One of the trains would have to reverse to allow traffic to
continue. The aim is to solve the problem without deadlocks
and with minimum journey times. Another main objective of
this work is to find ways to support generalization, so the most
significant contribution is the introduction of virtual agents.
Generalization is an essential property of neural networks, i.e.,
after solving a given problem, the same network can solve a
similar but more complex issue. The following sections show
how a neural network can be trained using a single station
that can later solve multiple consecutive stations with virtual
agents.



II. METHODOLOGY

A. Reinforcement learning

Reinforcement learning (RL) is an area of machine learning,
which gained tremendous interest recently thanks to its won-
derfull results in several fields [13], [14]. Unlike supervised
and unsupervised methods, it does not learn from a predefined
set of data but from experimentation and experience from
interacting with an environment in a trial-and-error-based
manner [15], [16]. RL is residing on the border of control
theory and data science. While interacting with a complex
environment, the agent searches for an optimal control strategy
(policy). The policy is established based on the positive or
negative reward it receives from the environment and the
agent’s current state. Since the agent’s goal is to maximize the
cumulated reward over the episodes. In Deep Reinforcement
Learning, the neural network incorporates the policy, and the
control policy development is a matter of tuning the network’s
weights. Figure 1 shows the RL training loop.

Fig. 1. RL learning loop

In MADRL, several agents participate in solving a control
problem in a shared environment, i.e., several agents make
decisions in parallel, working on a shared problem. The agents
interact with the environment and, in many cases, with each
other. Simultaneous decision-making creates a demanding
learning process due to the increased dimensionality and the
scalar reward system. In this paper, the learning concept allows
agents to go through the learning process individually while
the function approximator performs the computations for one
agent at a time. This is called the independent-learner MARL
approach. The core of this concept is that one Neural Network
is trained, and the state representation is created from the
aspect of all agents individually interacting in the environment.
The representation is designed to allow agents to distinguish
between walls and other agents but still handle them as a part
of the environment.

B. Deep Q-Network algorithm

The learning process tunes the neural network’s weights,
representing the connections of neurons, which is the case in
real biological neural systems. The ultimate goal is to ensure
the network can select the appropriate action for a given agent

based on the agent’s current state. For that, the well-known
Deep Q-Network algorithm is used, which tries to approximate
the cumulated reward of each action in every state. This goal
is achieved by utilizing the Bellman equation that allows
calculating target-values for the formulated regression problem
that once again is the approximation of the cumulated reward
for every action in every state:

Q(st, at; θt) = rt+1 + γmax
a

Q(st+1, at; θ
−
t ) (1)

where st is the current state at time t, at is the chosen
step also at time t. γ is the discount factor, indicating the
extent to which the agent wants to learn from the distant
future and its emphasis on the possibility of future rewards.
If the value of γ is 0, the agent does not care about future
potential, and only those actions that produce an immediate
good outcome receive a good value. When γ approaches 1, the
agent places increasing importance on future reward values. It
is an important tradeoff. The strategy needs to keep the more
distant consequences of the actions in mind to the right extent.
θ contains the values of the weights of the main network, while
θ− contains the values of the target network. Finally, rt+1 is
the reward value received from the environment at time t+1.
As can be seen, the new value depends on the current reward
value and the future reward value to the extent of the discount
factor. Since the current reward is always highly weighted,
the net constantly moves towards the appropriate output by
combining its current and past experience.

III. ENVIRONMENT

Modeling the environment is a significant part of the learn-
ing process since the agent learns the appropriate behavior by
observing the environment and the patterns of change in it.
Choosing a concise representation is recommended to make
the teaching process more effective. The first state representa-
tion is two-dimensional and image-like, and the second is one-
dimensional. Both models contain the layout, the destination,
the position of the current decisionmaker, and all the other
agents inside the same station, with a distinction based on
directionality (traveling in the positive or negative direction).
The station model includes two end positions (destinations),
one for trains traveling in the positive direction (right) and
one for trains traveling in the negative direction (left). Only
the agent traveling in the appropriate direction can choose one
of the two branching paths (tracks) when reaching a switch
since trains are prohibited from traveling backward.

1) Action space: At each step, the agent can choose be-
tween four directions (right, left, up, down) or decide to
wait. In a potential deadlock situation, frequently, the only
viable option is to wait for another train to pass. Therefore
the action space is augmented with a fifth waiting action,
where the agent does not move in any direction. With this
action space, the agent can choose an unavailable move in a
given cell, which may not seem efficient initially. This design
aims to teach the agents to select the correct action from the
possible actions in a given position. This way, a given step



represents the same meaning regardless of the current position,
which supports generalization. Thus, the current state of our
action space is independent of the others and consistent with
the representation. The one-dimensional representation works
similarly. However, it does not contain walls. There are no
invalid directions. The agent can choose to move forward
(at intersections in two directions) or wait, as in the two-
dimensional case.

2) Two-dimensional representation: Figure 2 highlights the
different types of information indicated with different values
in the representation.

Fig. 2. Two-dimensional state representation

Grey indicates the free path, and black shows the walls.
The five types of information that shall govern the formulation
of a control policy are marked with white on every picture.
The upper right image shows the agent’s position. To help the
agents determine the correct action choices, a wall is raised (so
to say) in every situation to prevent the agent from traveling
backward. It only appears in the representation, marked by
white in the upper left picture. The left middle image contains
the destination, which is also crucial information. The remain-
ing two pictures indicate the agents traveling in positive and
in negative directions, respectively.

3) One-dimensional representation: The one-dimensional
representation (Fig. The one-dimensional representation (Fig.
3) contains the same valuable information without the walls
being present. The first line indicates the self and the goal
position, and the remaining two are the agents traveling in the
same and the opposite direction, respectively. The vector con-
sists of three parts to make the representation more separable
for the agent. Based on experience, loose representation helps
separate the state space, accelerates convergence, and might
even improve the final results. The more compact portrayal
of the environment lets us have a higher information density
and a less complex state space. However, due to the spatial
information, the convolutional net with the two-dimensional
representation might be able to generalize over different
topologies, which is not the case in the one-dimensional
version. Figure 2 and Figure 3 show the same traffic situation.

Fig. 3. One-dimensional state representation

A. Virtual agents

The main contribution of this paper is the introduction of
virtual agents. One of the primary goals of our work is to
support generalization, i.e., to ensure that after training on
a simple problem, the neural network can solve a problem
of higher complexity. In the present case, the goal was to
ensure that the neural network could solve the rescheduling
problem in a significant proportion of two connected stations
after learning on a single station. All agents have to be aware
of their station. The fundamental problem with connecting sta-
tions is the need for the agents’ awareness of other stations. It
makes generalization of the representation considerably more
challenging and the state space extensively more complex
(also dependent on the number of stations). Virtual agents are
introduced to overcome this problem. If an agent can only
see its own station, it can be dangerous to move to another
station, as this may lead to a deadlock situation. However,
it is sufficient for an agent to know whether the path to the
next station is free or if continuing the journey would result in
deadlock. A single agent can block the track or a combination
of agents at the next station, traveling in the opposite direction,
as in the scenario in Fig. 4.

Fig. 4. Example of virtual agent

Fig. 4 shows two consecutive stations. By reaching the lower
right cell of the left station, the agent is transferred to the right
station, and the lower left cell of the right station leads to the
left station. In this Example, the agents moving to the right
(marked by blue) block all available paths. Consequently, a
deadlock would occur if the yellow agent continues its journey
toward the lower left corner (negative destination). Instead of
including other stations, only the virtual agent (marked by
green) is present in the yellow agent’s representation (on the
agent’s own station); thus, it is sufficient to see only the current
station for every agent. It is also important to note that the
virtual agent occurs in the representation the same way an



ordinary agent traveling in the opposite direction would occur.

B. Reward strategy

Another critical element to successful training is the reward
strategy. Agents use the reward value to get feedback on how
good or bad a given step is in reaching the known goal of the
process. While the state representation lets them know what
the world looks like around them, the reward value indicates
whether they are moving in the right direction in that world. If
they receive a positive reward, they are more likely to take that
step, but if the agents receive a negative reward (punishment),
they are less likely to take that step again.

1) Fully competitive strategy: Agents get a negative reward
for each step, so the more they take, the more negative points
they accumulate. The agent that reaches its goal gets a large
positive reward minus the negative amount collected for the
steps taken so far. In effect, the number of steps scales the size
of the final reward earned by the agent. If an agent creates
a deadlock situation, it receives a large negative reward to
discourage actions that result in a deadlock.

reward =


rd, deadlock
rc − rs, successful completion
−rs, exceeding step limit

Where rd is a large negative reward, rc is a large positive
reward, and rs is a step-dependent reward, subtracted from
the reward for successful completion. If agents run out of
maximum steps, they receive a negative reward equal to that
number of steps. Such reward strategy implements the concept
of full competitive learning, i.e., every agent receives a reward
independently of one another. Each agent wants to achieve
their own goal without paying attention to the others or the
common goal.

2) Cooperative strategy: Although initial success is
achieved with the previous concept, an improvement to the
reward strategy is inevitable and beneficial for obtaining the
common goal. While each agent’s goal is to reach their
destination, the common goal is for everyone to reach the
destination without disruption. Suppose an agent gets to its
destination, but other agents cannot complete the episode,
perhaps running into a deadlock. In that case, the shared
state space includes a pattern in which an agent receives
a positive reward, even though other agents blocking each
other’s paths made successful completion impossible. To avoid
this, a fourth, neutral type of reward is introduced, which does
not punish the agent that successfully completes the episode
but does not reward it since the common goal is not met.

reward =


rd, deadlock
rc − rs, successful completion for all agents
rn, successful completion for given agent
−rs, exceeding step limit

Where the notation is unchanged, but the neutral reward rn is
introduced.

IV. RESULTS

This section presents the learning process and evaluation
results using the methods and concepts described above.
The authors illustrate the training concept and, in turn, the
improvement in successful generalization ability.

A. Initial concept

In the first attempt, each episode starts by randomly choos-
ing two agent positions and the direction of progress, also
randomly. The only constraint is that the initial position cannot
be a deadlock situation, in which case the agents wouldn’t
have a chance to solve the problem. Agent positions are always
randomly selected, and a maximum step count (is also set. The
first rewarding strategy described by section III-B1) is applied
during the training. Ince a deadlock situation means failure to
reach the goal for both agents, it is unnecessary to consider
the common goal. The common goal automatically becomes
unachievable together with the individual goal of both agents if
deadlock occurs. Figure 5 shows the Convergence for different
representations.

Fig. 5. Convergence of different representations

Although the convergence differs between representations,
the final trained network achieved 100% efficiency in solving
the original problem (One station, two agents) in both cases.
The random seed is different during evaluation and training.
It was anticipated that the one-dimensional version would
be quicker to converge because of its simplicity, which is
precisely what happened. The next step was to connect two
stations with two agents on both to see how the networks could
generalize. Table I shows the rate of successful completion.

TABLE I
SUCCESS RATE OF THE FIRST ATTEMPT

Representation Succes rate
Two agents, One station Two agents, Two stations

2D 100% 63.42%
1D 100% 70.26%

This paper focuses on generalization; hence the goal of
the trained network is to solve the rescheduling task with



a high success rate on two stations. As seen from the table
above, the agents could complete the original task without
any problems, and they also found a suitable solution for
two stations at a much higher rate than a random agent
would. However, a higher success rate is expected. The one-
dimensional representation can solve the task more efficiently,
presumably due to the simpler state space. The histogram in
Fig. 6 shows the number of steps required for both agents to
reach their destination in two stations.

Fig. 6. Number of steps taken until completion (Initial concept)

The one-dimensional representation performs better, but not
outstandingly so. The are a total of four agents in play. The
connection of the stations acts as a bottleneck since only one
agent can cross at a time. The fact that most scenarios are
solved within 35 steps, and all of them are solved within 40
steps, lets us believe that the solution usually is of minimal or
close to minimal step count. Examination of individual cases
supports that too.

B. Expansion and diversification of state space
As mentioned in the previous section, since the environment

is designed to support generalization, the aim is to achieve a
success rate higher than 70% (as with the initial concept).
Examination of failed episodes revealed the critical problem
of the higher number of agents. Although two agents are at
each station at the beginning, this number can quickly increase
during the episode. This is problematic because it creates
several situations where the state space contains unknown
patterns. All agents have seen only one other agent in their
station before; hence they are unprepared to meet traffic
situations with 2-3 other agents, especially in cases where
the required behavior is unlike any they had to apply during
training. For instance, take a look at Fig. 7. In this case, the
agent at coordinates (4, 4) traveling towards the right side
will cause a deadlock by choosing the shorter path. With
two agents present, choosing the shorter path is the optimal
solution unless an agent with the opposite orientation already
blocks it. Now the path is not blocked. If said agent continues,
the two positive agents together will block all routes for the
negative agent. The training process didn’t prepare the agents
for the underlying logic of the situation.

As a next step, an attempt is made to extend the state
space by training the neural network using three agents and

Fig. 7. Three agent conflict

evaluating the change of success by applying the new network
to the same problem. A crucial difference in the concept is
the following. While in the first case, there is no need for
a distinction between the common goal and the goal of each
agent, in the present case, two agents may run into a deadlock,
making it impossible to meet the common goal. Still, the third
one can evade them and achieve its own goal by reaching the
destination. The higher number of agents has necessitated the
introduction of a new reward strategy (described in section
III-B2). The state space extension changed the two success
rates to 85.56% from the original 63.42% with the image-like
representation. While 86.44% from 70.26% in the case of the
vector representation. The success of completion seems to lie
within the sophistication of the state space, so the number of
agents is also randomized in the following. At the beginning
of each episode, one, two, three, or four agents are initialized
with equal chance, and then, as before, each of their positions
is also randomly determined. Figure 8 shows the convergence.

Fig. 8. Convergence of the improved concept

Again, the one-dimensional representation converges
quicker, although by a smaller margin than before. In both
cases, a dip is observable, with a slight fluctuation. The random
number of agents can explain it, and adding diversity to the
state space imposes a more significant challenge on the neural
network to find adequate patterns. The two representations
converge to a similar value. Although the overall convergence
seems to be slower, the success rate has increased an additional
3.67% and 6.49%, as seen in Table II.

The more than 90% success rate indicates a great potential



TABLE II
COMPARISON OF SUCCESS RATES

Representation Succes rate
Two agents Three agents Varying agents

2D 63.42% 85.56% 89.23%
1D 70.26% 86.44% 92.93%

Results of evaluation on two stations

for generalization. Figure 9 shows the number of steps to
assess effectiveness. The substantive test again is two stations
with two agents. This neural network is more successful
than the previous ones; however, no substantial difference is
observable between the number of steps taken, indicating that
the efficiency is much alike. A slight difference is that the
chart seems flatter, and the number of steps is more evenly
distributed. A likely explanation is that the more complex
traffic situations take more steps to solve, and most of the
scenarios that the first network can not solve but the second
can, are more complex.

Fig. 9. Number of steps taken until completion (Refined concept)

C. Future improvements

Careful examination showed that the driving cause of unsuc-
cessful episodes is agents taking specific steps simultaneously.
For example, take two stations and one agent at both stations.
The path is blocked if agents step into the connecting section
between the stations. Suppose both agents are on the last cell
before the connecting section. Since the path is not blocked
from either direction, no virtual agents are present; hence, the
agents step into the last section simultaneously, resulting in
a deadlock. To resolve such conflicts, deeper communication
between agents is under development so that they can negotiate
the priority of passing.

V. CONCLUSION

The paper presented a solution for real-time railway
rescheduling based on Multi-Agent Deep Reinforcement
Learning. It provides a detailed comparison between the two
different state representations. The reader can walk through
the thought process that guided the improvement in concept
and implementation by expanding and diversifying the initial
state space. The results have demonstrated that virtual agents

support generalization immensely. Agents need to know only
their own station instead of the entire environment, avoiding
the rapid growth in dimensionality with the increased number
of stations. This paper can be considered a proof of concept
study on the virtual agent concept. This concept is planned to
be explored further in future studies.
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