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An integrated cell atlas of the lung in health 
and disease

Single-cell technologies have transformed our understanding of human 
tissues. Yet, studies typically capture only a limited number of donors and 
disagree on cell type definitions. Integrating many single-cell datasets can 
address these limitations of individual studies and capture the variability 
present in the population. Here we present the integrated Human Lung 
Cell Atlas (HLCA), combining 49 datasets of the human respiratory system 
into a single atlas spanning over 2.4 million cells from 486 individuals. The 
HLCA presents a consensus cell type re-annotation with matching marker 
genes, including annotations of rare and previously undescribed cell types. 
Leveraging the number and diversity of individuals in the HLCA, we identify 
gene modules that are associated with demographic covariates such as 
age, sex and body mass index, as well as gene modules changing expression 
along the proximal-to-distal axis of the bronchial tree. Mapping new data 
to the HLCA enables rapid data annotation and interpretation. Using the 
HLCA as a reference for the study of disease, we identify shared cell states 
across multiple lung diseases, including SPP1+ profibrotic monocyte-derived 
macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, 
the HLCA serves as an example for the development and use of large-scale, 
cross-dataset organ atlases within the Human Cell Atlas.

Rapid technological improvements over the past decade have allowed 
single-cell datasets to grow both in size and number1. This has led 
consortia, such as the Human Cell Atlas, to pursue the generation of 
large-scale reference atlases of human organs2,3. To advance our under-
standing of health and disease, such atlases must capture variation 
between individuals that is expected to impact the molecular pheno-
types of the cells in a tissue. Whereas the generation of atlases at this 
scale by single research groups is currently not feasible, integrating 
datasets generated by the research community at large will enable 
capture of the diversity of the cellular landscape across individuals.

Several foundational studies have started to map the cellular land-
scape of the healthy human lung4–6. These studies each have a specific 
bias due to their choice of experimental protocol and technologies, and 
are therefore not tailored to serve as a universal reference. The studies 
moreover include only a limited number of samples and individuals, 
thus lacking the scale and diversity to capture the full cellular hetero-
geneity present within the lung as well as across individuals.

Integrated single-cell atlases provide novel insights not obtained 
in individual studies. Recent reference atlases have led to the dis-
covery of unknown cell types7–9, the identification of marker genes 
that are reproducible across studies7,10,11, the comparison of animal 
and in vitro models with human healthy and diseased tissue7,12,13 and 
patient stratification for disease endotypes14,15. However, many cur-
rently available integrated atlases are limited in the number of human 
samples7,8,10–12,16, datasets16 or cell types7,9,12,17,18 per organ, as well as 
donor metadata12,13,17,19,20 (for example, age, body mass index (BMI) 
and smoking status), or focus mainly on a specific disease14,15,17. These 
limitations constrain the potential of atlases to serve as a reference, 
as they fail to represent and catalog the diversity of cellular pheno-
types within the healthy organ and across individuals. Moreover, when 
integrating data from different sources, it is paramount to correctly 
separate technical biases from biologically relevant information. Yet, 
the majority of existing atlases have not assessed the quality of their 
data integration. Nonetheless, successful integration of the available 
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across datasets by mapping the collected cell identity labels for every 
dataset as provided by the data generator to the hierarchical reference 
framework, showing varying cell type proportions per sample (Fig. 2c).

To optimally remove dataset-specific batch effects, we evaluated 
12 different data integration methods on 12 datasets4–6,21–25 (Fig. 2d and 
Supplementary Fig. 1) using our previously established benchmarking 
pipeline28. We used the top-performing integration method, scANVI, to 
create an integrated embedding of all 584,444 cells of 107 individuals 
from the collected datasets: the HLCA core (Fig. 3a).

Consensus cell type annotations based on the HLCA core
A large-scale integrated atlas provides the unique opportunity to 
systematically investigate the consensus in cell type labeling across 
datasets. To identify areas of consensus and disagreement, we itera-
tively clustered the HLCA core and investigated donor diversity and cell 
type label agreement in these clusters using entropy scores (see Meth-
ods). Most clusters contained cells from many donors (Extended Data  
Fig. 1a). Clusters with low donor diversity (n = 14) were largely immune 
cell clusters (n = 13), representing donor- or donor group-specific 
phenotypes. Similarly, a high diversity of (contradictory) cell type 
labels (high label entropy) can identify both annotation disagreements 
between studies and clusters of doublets (Methods). Most clusters (61 
out of 94) showed low label entropy, suggesting overall agreement 
of coarse cell type labels across datasets (Fig. 3b). The remaining 33 
clusters exhibited high label entropy, highlighting cellular phenotypes 
that were differently labeled across datasets (Fig. 3b). For example, the 
immune cluster with the highest label entropy contained many cells 
that were originally mislabeled as monocytes and macrophages but 
were actually type 2 dendritic cells (Fig. 3c and Extended Data Fig. 1b). 
Thus, populations with high label entropy identify mislabeled cell types, 
indicating the need for consensus re-annotation of the integrated atlas.

As a first step to achieve such a consensus on the diversity of cell 
types present in the HLCA core, we performed a full re-annotation of 
the integrated data on the basis of the original annotations and six 

datasets into a single tissue atlas is a critical step in achieving the goals 
of the Human Cell Atlas2.

In this resource, we present an integrated single-cell transcrip-
tomic atlas of the human respiratory system, including the upper and 
lower airways, from published and newly generated datasets (Fig. 1). 
The Human Lung Cell Atlas (HLCA) comprises data from 486 donors 
and 49 datasets, including 2.4 million cells, which we re-annotated 
to generate a consensus cell type reference. The HLCA expands our 
understanding of the healthy lung and its changes in disease and can be 
used as a reference for analyzing future lung data. Together, we provide 
a roadmap for building and using comprehensive, interpretable and 
up-to-date organ- and population-scale cell atlases.

Results
Data integration establishes the HLCA core
To build the HLCA, we collected single-cell RNA sequencing (scRNA-seq)  
data and detailed, harmonized technical, biological and demo-
graphic metadata from 14 datasets (11 published and three unpublis
hed)4–6,21–25,26,27. These datasets include samples from 107 individuals, 
with diversity in age, sex, ethnicity (harmonized as detailed in Meth-
ods), BMI and smoking status (Fig. 2a). Cells were obtained from 166 
tissue samples using a variety of tissue donors, sampling methods, 
experimental protocols and sequencing platforms (Supplementary 
Tables 1 and 2). Anatomical locations of the samples were projected 
onto a one-dimensional (1D) common coordinate framework (CCF), 
representing the proximal (0) to distal (1) axis of the respiratory system, 
to standardize the anatomical location of origin (Fig. 2a and Supple-
mentary Tables 2 and 3).

Consensus definitions of cell types based on single-cell transcrip-
tomic data across studies—particularly of transitional cell states—are 
lacking. To enable supervised data integration and downstream inte-
grated analysis, we harmonized cell type nomenclature by building 
a five-level hierarchical cell identity reference framework (Methods, 
Supplementary Table 4 and Fig. 2b). We then unified cell type labeling 
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Fig. 1 | HLCA study overview. Harmonized cell annotations, raw count data, 
harmonized patient and sample metadata and sample anatomical locations 
encoded into a CCF were collected and generated as input for the HLCA core 
(left). After integration of the core datasets, the atlas was extended by mapping 
35 additional datasets, including disease samples, to the HLCA core, bringing 
the total number of cells in the extended HLCA to 2.4 million (M). The HLCA 
core provides detailed consensus cell annotations with matched consensus cell 

type markers (top right), gene modules associated with technical, demographic 
and anatomical covariates in various cell types (middle right), GWAS-based 
association of lung conditions with cell types (middle right) and a reference 
projection model to annotate new data (middle right) and discover previously 
undescribed cell types, transitional cell states and disease-associated cell states 
(right, bottom).
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expert opinions (consensus annotation; Methods and Fig. 3d). Each of 
the 61 annotated cell types (Supplementary Table 5) was detected in at 
least four datasets out of 14, often in specific parts of the respiratory 
system, and different cell types showed varying fractions of proliferat-
ing (MKI67+) cells (Extended Data Fig. 2a–c). While our consensus cell 
type annotations partly correspond to original labels (41% of cells), 
there were also refinements (28%) and substantial re-annotations  
(31%; Fig. 3e and Supplementary Fig. 2). To robustly characterize the cell 
types, we established a universal set of marker genes that generalizes 
across individuals and studies (Methods, Extended Data Fig. 3 and Sup-
plementary Table 6). The fully re-annotated HLCA core thus combines 
data from a diverse set of studies to provide a carefully curated refer-
ence for cell type annotations and marker genes in healthy lung tissue.

The HLCA recovers rare cell types and identifies novel ones
Rare cell types, such as ionocytes, tuft cells, neuroendocrine cells and 
specific immune cell subsets, are often difficult to identify in individual 
datasets. Yet, combining datasets in the HLCA core provides better 
power for identifying these rare cell types. Ionocytes, tuft and neuroen-
docrine cells make up only 0.08, 0.01 and 0.02% of the cells in the HLCA 
core according to the original labels, and were originally identified in 
only seven, two and four datasets out of 14, respectively. Despite their 
low abundance, these cells formed three separate clusters of the HLCA 
core (Fig. 3f). Our re-annotation increases the number of datasets in 
which these cells are detected up to threefold and identifies both cells 
falsely annotated as monocytes, tuft cells or neuroendocrine cells, 
as well as originally undetected rare cells (Fig. 3f and Supplementary  
Fig. 3a). Importantly, other integration methods tested during our 
benchmarking, such as Harmony29 and Seurat’s RPCA30, failed to sepa-
rate these rare cells into distinct clusters (Supplementary Fig. 3b).

We were further able to detect six cell identities that were not 
previously found in the human lung or were only recently described 
in individual studies. These cell types include migratory dendritic  
cells31,32 (n = 312 cells, expressing CCR7, LAD1 and COL19), hematopoi-
etic stem cells (n = 60, expressing SPINK2, STMN, PRSS57 and CD34), 
 highly proliferative hillock-like epithelial cells not previously reported  
in adult human lung (n = 4,600, expressing KRT6A, KRT13 and KRT14),  
the recently described alveolar type 0 cells (n = 1,440, expressing  
STFPB+, SCGB3A2+, SFTPChigh and SCGB3A1low) and the closely related  
preterminal bronchiole secretory cells (n = 4,393, expressing SFTPB+,  
SCGB3A2+, SFTPClow and SCGB3A1high, together with alveolar type 0 cells  
called transitional club-AT2 cells)33,34 and a subset of smooth muscle  
cells (n = 335) that to our knowledge have not previously been described  
(Fig. 3d,g and Extended Data Fig. 4a–f). These smooth muscle cells, 
predominantly found in the airways, express canonical smooth muscle 
markers (CNN1 and MYH11) and also uniquely and consistently express 
FAM83D across datasets (Extended Data Fig. 4e,f). The HLCA core thus 
enables improved detection and identification of rare cell types, as well 
as the discovery of unknown cell types.

Donor and experimental factors affect gene expression 
profiles
Demographic and other metadata covariates affect cellular transcrip-
tional phenotypes19,25. Better insight into the impact of these covariates 
(for example, sex, BMI and smoking) on cell type gene expression can 
shed light on the contribution of these factors to progression from 
healthy to diseased states. In addition, technical covariates such as 
ribosomal and mitochondrial genes exhibit batch-specific variation 
in expression (Methods and Supplementary Table 7). The diversity in 
demographics (for example, smoking status, age, harmonized ethnic-
ity and BMI) and experimental protocols represented in the HLCA core 
enables us to explore the contribution of each technical or biological 
covariate to cell type-specific gene expression variation (Methods and 
Supplementary Fig. 4). For many cell types, anatomical location is the 
biological variable explaining most of the variance between samples 
(Fig. 4a). Furthermore, sex is most associated with transcriptomic varia-
tion in lymphatic endothelial cells, whereas BMI is most associated with 
variation in B and T cells, harmonized ethnicity in transitional club-AT2 
cells and smoking status in innate lymphoid/natural killer cells. Fur-
thermore, for several cell types (for example, mast, AT1 and smooth 
muscle cells), the tissue dissociation protocol explains most of the 
variance of all technical as well as biological covariates recorded. These 
associations provide a systematic overview of the effects of biological 
and technical factors on the transcriptional state of lung cell types.

To better characterize how biological variables affect cellular 
phenotypes, we modeled their cell type-specific effects on the tran-
scriptome at the gene level (Methods). Sex-related differences in lym-
phatic endothelial cells are dominated by differential expression of 
genes located on the X and Y chromosomes, but also include a decrease 
in IFNAR1 in females (Supplementary Table 8), which may be linked 
to differential interferon responses between the biological sexes35. 
We furthermore found cell type-specific programs that change with 
proximal (low CCF score) to distal (high CCF score) location along the 
respiratory tract (Supplementary Tables 8 and 9). For instance, oxida-
tive phosphorylation (including cytochrome c oxidase genes such as 
COX7A1), antigen presentation by major histocompatibility complex 
class I molecules (including proteasome and protease subunit genes 
such as PSMD14 and PSMB4), signaling by interleukin-1 and tumor 
necrosis factor α, as well as planar cell polarity, were downregulated 
toward more distal locations in secretory, multiciliated and basal cells  
(Fig. 4b). Some gene programs were specific for a subset of airway 
epithelial cell types (for example, cornification and keratinization, 
which were programs that were downregulated in distal multiciliated 
and secretory cells; including genes such as KRT8 and KRT19). The 
changes in airway epithelial cell states toward the terminal airways are 
further illustrated by increased expression of developmental pathway 
genes such as NKX2-1, NFIB, GATA6, BMP4 and SOX9 in multiciliated 
cells along the proximal-to-distal axis (Fig. 4b), whereas basal cells 
decrease in number (Fig. 4c)36. Similarly, several cell types display 

Fig. 2 | Composition and construction of the HLCA core. a, Donor and sample 
composition in the HLCA core for demographic and anatomical variables. 
Donors/samples without annotation are shown as not available (NA; gray bars) 
for each variable. For the anatomical region CCF score, 0 represents the most 
proximal part of the lung and airways (nose) and 1 represents the most distal 
(distal parenchyma). Donors show diversity in ethnicity (harmonized metadata 
proportions: 65% European, 14% African, 2% admixed American, 2% mixed, 2% 
Asian, 0.4% Pacific Islander and 14% unannotated; see Methods), smoking status 
(52% never, 16% former, 15% active and 17% NA), sex (60% male and 40% female), 
age (ranging from 10–76 years) and BMI (20–49; 30% NA). b, Overview of the 
HLCA core cell type composition for the first three levels of cell annotation, 
based on harmonized original labels. In the cell type hierarchy, the lowest level 
(1) consists of the coarsest possible annotations (that is, epithelial (48% of cells), 
immune (38%), endothelial (9%) and stromal (4%)). Higher levels (2–5) recursively 
break up coarser-level labels into finer ones (Methods). Cells were set to ‘none’ 
if no cell type label was available at the level. Cell labels making up less than 

0.02% of all cells are not shown. Overall, 94, 66 and 7% of cells were annotated 
at levels 3, 4 and 5, respectively. c, Cell type composition per sample, based on 
level 2 labels. Samples are ordered by anatomical region CCF score. d, Summary 
of the dataset integration benchmarking results. Batch correction score and 
biological conservation score each show the mean across metrics of that type, 
as shown in Supplementary Fig. 1, with metric scores scaled to range from 0 to 1. 
Both Scanorama and fastMNN were benchmarked on two distinct outputs: the 
integrated gene expression matrix and integrated embedding (see output). The 
methods are ordered by overall score. For each method, the results are shown 
only for their best-performing data preprocessing. Methods marked with an 
asterisk use coarse cell type labels as input. Preprocessing is specified under HVG 
(that is, whether or not genes were subsetted to the 2,000 (HVG) or 6,000 (FULL) 
most highly variable genes before integration) and scaling (whether genes were 
left unscaled or scaled to have a mean of 0 and a standard deviation of 1 across 
all cells). EC, endothelial cell; NK, natural killer; Bioconserv., conservation of 
biological signal.
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transcriptomic changes in donors with increasing BMI (Fig. 4d and 
Supplementary Tables 8 and 9). AT2 cells, secretory cells and alveolar 
macrophages exhibit downregulation of a range of biological processes 
(Supplementary Fig. 5), including cellular respiration, differentiation 
and synthesis of peptides and other molecules. In secretory cells, a 
downregulation of the insulin response pathway is also associated with 
higher BMI, in line with the insulin resistance observed in donors with 
obesity37,38. In alveolar macrophages, inflammatory responses involv-
ing JAK/STAT signaling (previously associated with obesity-induced 
chronic systemic inflammation38) are associated with higher BMI. In 
contrast, in plasma cells, high BMI is associated with downregulation 

of gene sets associated with immune response and upregulation of 
gene sets associated with cellular respiration, the cell cycle and DNA 
repair. This is consistent with obesity being a known risk factor for 
multiple myeloma—a plasma cell malignancy39. Thus, the HLCA enables 
a detailed understanding of the effects of anatomical and demographic 
covariates on the cellular landscape of the lung and their relation  
to disease.

Biological and technical factors can also affect cell type propor-
tions. Indeed, all cell types show changes in abundance as a function 
of anatomical location (Fig. 4c and Extended Data Fig. 5). For exam-
ple, ionocytes are present at comparable proportions in the airway 
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epithelium, from the larger lower airways (CCF score = 0.36) down to 
the distal lobular airways (CCF score = 0.81), while being largely absent 
in the lung parenchyma (CCF score = 0.97). In contrast, neuroendocrine 
cells are predominantly observed in the larger lower airways but are 
absent from more distal parts of the bronchial tree (Fig. 4c). In some 
cases, these proportions are highly dependent on the tissue sampling 
method and the dissociation protocol used (for example, for smooth 
muscle FAM83D+ cells; Extended Data Fig. 5). These observations shed 
light on the effects of biological and technical factors on the abundance 
of cell types in different parts of the lung and can help guide important 
choices in study design.

HLCA-based analysis of lung data highlights new cell types
The HLCA core contains an unprecedented diversity of donors, sam-
pling protocols and cell identities, and can serve as a transcriptomic 
reference for lung research. New datasets can be mapped to this ref-
erence to substantially speed up data analysis by transferring con-
sensus cell identity annotations to the new data. We tested this on a 
recently released multimodal lung dataset40 (Methods, Fig. 6a and 
Extended Data Fig. 6). Overall, the transferred labels were correct in the 
majority of cases, with 68% of the cells correctly labeled, 14% of labels 
incorrectly labeled and 18% set to unknown due to highly uncertain 
labeling (Fig. 5b and Methods). Uncertain labels were observed spe-
cifically in continuous transitions from one cell type to another and 
among cellular identities not present in the HLCA core, including rare 
cell identities (erythrocytes (n = 328), chondrocytes (n = 42), myeli-
nating Schwann cells (n = 7), nonmyelinating Schwann cells (n = 29) 
and nerve-associated fibroblasts (n = 66); Fig. 5b and Extended Data  
Fig. 6d). Taken together, these results show that the HLCA core can be 
used for highly detailed annotation of new datasets, while allowing 
for the identification of unknown cell types in these datasets based 
on label transfer uncertainty.

The HLCA provides crucial context for understanding disease
Single-cell studies of disease rely on adequate, matching control 
samples to allow correct identification of disease-specific changes. 
To demonstrate the ability of the HLCA core to serve as a compre-
hensive healthy control and contextualize disease data, we mapped 
scRNA-seq data from lung cancer samples41 to the HLCA core (Methods 
and Extended Data Fig. 7a–c). Using HLCA label transfer, we correctly 
identified cell states missing from the HLCA core as unknown (cancer 
cells and erythroblasts). The remaining cells were annotated correctly 
in 77%, incorrectly in 1% and as unknown in 22% of cases (Extended 
Data Fig. 7d–g). A finding of the original study was the separation of 
endothelial cells into tumor-associated and normal cells41. Clustering 
of the projected dataset with the HLCA reference showed that cells 
expressing the suggested tumor-associated marker ACKR1 were also 
abundant in healthy tissue from the HLCA core, specifically in venous 
endothelial cells (both pulmonary and systemic, Fig. 5c and Supple-
mentary Fig. 6a–c). This suggests that ACKR1 is a general marker of 
venous endothelial cells rather than a tumor-specific endothelial cell 
marker. Similarly, the reported normal endothelial cell marker EDNRB 

characterizes aerocyte capillary endothelial cells, both in tumor and 
in healthy tissue (Fig. 5c and Supplementary Fig. 6d). As endothelial 
cell numbers in the original study were low, correctly identifying and 
distinguishing these cell types without a larger healthy reference is 
challenging. Thus, by serving as a comprehensive healthy control, 
the HLCA prevents misinterpretation of limitations in sampling and 
experimental design as meaningful differences between healthy and 
diseased tissue.

In addition, the HLCA can provide context to the results of 
large-scale genetic studies of disease. Genome-wide association studies 
(GWASs) link disease with specific genomic variants that may confer 
an increased risk of disease. Previous studies have linked such variants 
to cell type-specific mechanistic hypotheses, which are often lacking 
in the initial association study. Yet, these studies fail to include all 
known lung cell types in their cell type reference42,43. To demonstrate 
the value of the HLCA core in contextualizing genetic data, we mapped 
association results from four GWASs of lung function or disease44–47 
to the HLCA core cell types, by testing significant enrichment of both 
weakly and strongly disease-associated variants in regions of genes 
that characterize each cell type48 (Fig. 5d, Supplementary Fig. 7 and 
Methods). We show that genomic variants linked to lung function 
(forced vital capacity) are associated with smooth muscle (adjusted 
P value (Padj) = 0.07), alveolar fibroblasts (Padj = 0.07), peribronchial 
fibroblasts (Padj = 0.07) and myofibroblasts (Padj = 0.07), suggesting 
that these fibroblast subtypes play a causative role in inherited dif-
ferences in lung function. We further find a significant association of 
lung T cells with asthma-associated single-nucleotide polymorphisms 
(SNPs) (Padj = 0.005). Lung adenocarcinoma-associated variants trend 
towards AT2 cells (Padj = 0.18) and myofibroblasts are significantly asso-
ciated with chronic obstructive pulmonary disease (COPD) GWAS SNPs 
(Padj = 0.04). Thus, by linking genetic predispositions to lung cell types, 
the HLCA core serves as a valuable resource with which to improve our 
understanding of lung function and disease.

Finally, the HLCA can be used as a reference for cell type deconvolu-
tion of bulk RNA expression samples, which have been shown to reflect 
cell type proportions more accurately than scRNA-seq datasets49. 
Inferring cell type proportions from bulk RNA samples from nasal 
brushings and bronchial biopsies using the HLCA core (Supplementary 
Table 10, Supplementary Fig. 8a and Methods) revealed no signifi-
cant cell type compositional changes associated with corticosteroid 
inhalation50 or asthma51, respectively (Supplementary Fig. 8b,c and 
Supplementary Table 11). In contrast, we find that the proportion of 
capillary endothelial cells in lung resection tissue from the Lung Tis-
sue Database52 is higher in samples from patients with severe COPD 
(GOLD stage 3 or 4) than in those from non-COPD controls matched 
for age and smoking history (Padj = 0.0004). Conversely, alveolar and 
interstitial macrophages, AT2 cells and dendritic cells decrease in pro-
portion (Fig. 5e, Supplementary Fig. 8d and Supplementary Table 11;  
Padj = 0.0007, 0.0003, 0.005 and 3.21 × 10−6, respectively). Finally, 
smooth muscle shows the largest shift in proportion, increasing sig-
nificantly in patients with severe COPD (P = 1.85 × 10−6) in line with 
previous work53. As deconvolution of bulk samples using the HLCA can 

Fig. 3 | The HLCA core conserves detailed biology and enables consensus-
driven annotation. a, A UMAP of the integrated HLCA, colored by level 1 
annotation. b, Cluster label disagreement (label entropy) of Leiden 3 clusters 
of the HLCA. The HLCA was split into three parts (immune, epithelial and 
endothelial/stromal) for ease of visualization. Cells from every cluster are 
colored by label entropy. Clusters with less than 20% of cells annotated at level 
3 are colored gray. c, Cell type label composition of the immune cluster with the 
most label disagreement (left), with original labels (middle left) and matching 
manual re-annotations (middle right). A zoom-in on the UMAP from b shows the 
final re-annotations (right). d, UMAPs of the immune, epithelial and endothelial/
stromal parts of the HLCA core with cell annotations from the expert manual 
re-annotation. e, Percentage of cells originally labeled correctly, mislabeled or 

underlabeled (that is, only labeled at a coarser level) compared with final manual 
re-annotations. The percentages were calculated per manual annotation, as 
well as across all cells (right bar). f, UMAP of HLCA clusters annotated as rare 
epithelial cell types (that is, ionocytes, neuroendocrine cells and tuft cells). Final 
annotations, original labels and the study of origin are shown (top), as well as the 
expression of ionocyte marker FOXI1, tuft cell marker LRMP and neuroendocrine 
marker CALCA (bottom). g, Log-normalized expression of the migratory 
dendritic cell marker CCR7 in cells identified during re-annotation as migratory 
dendritic cells, versus other dendritic cells. AT, alveolar type; DC, dendritic cell; 
FB, fibroblast; Mph, macrophage; MT, metallothionein; SM, smooth muscle; 
SMG, submucosal gland; TB, terminal bronchiole.
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reveal disease-specific changes in cell type composition, we provide 
publicly available preprocessed cell type signature matrices based on 
the HLCA core (https://github.com/LungCellAtlas/HLCA).

Extending the HLCA by projecting new data
As knowledge of cell types in the lung expands, and the sizes of newly 
generated datasets increase, annotations in the HLCA core will need 
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to be further refined. The HLCA and its annotations can be updated by 
learning from new data projected onto the reference. We simulated such 
an HLCA update using the previously projected healthy lung dataset, 
specifically focusing on the cell identities that were distinguished based 
on their tissue location in matched spatial transcriptomic data (spa-
tially annotated cell types)40. These cell identities were present at very 
low frequencies (median: 0.005% of all cells; Supplementary Fig. 9a).  

Both spatially annotated mesenchymal cell types with more than 40 
cells (immune-recruiting fibroblasts and chondrocytes) and two rare 
cell types (myelinating Schwann cells and perineurial nerve-associated 
fibroblasts) were recovered in distinct clusters (spatially annotated 
clusters), and three of these (all except chondrocytes) also contained 
cells from the HLCA core, thereby enabling a refinement of existing 
HLCA core annotations using the spatial context from the projected 
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technical (left) and biological covariates (right). Cell types are ordered by the 
number of samples in which they were detected. Only cell types present in 
at least 40 samples are shown. Tissue sampling method represents the way a 
sample was obtained (for example, surgical resection or nasal brush). Donor 
status represents the state of the donor at the moment of sample collection (for 
example, organ donor, diseased alive or healthy alive). The heatmap is masked 
gray where fewer than 40 samples were annotated for a specific covariate or 
where only one value was observed for all samples for that cell type. b, Selection 
of gene sets that are significantly associated with anatomical location CCF score, 
in different airway epithelial cell types. All gene set names are Gene Ontology 
biological process (GO: BP) terms. Sets upregulated toward distal lungs are 
shown in green, whereas sets downregulated are shown in blue. The full name 
of the term marked by an asterisk is ‘Antigen processing and presentation of 

exogenous peptide antigen via MHC-I’. c, Cell type proportions per sample, along 
the proximal-to-distal axis of the respiratory system. The lowest and highest 
CCF scores shown (0.36 and 0.97) represent the most proximal and most distal 
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major histocompatibility complex class I; TNF, tumor necrosis factor.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | June 2023 | 1563–1577 1570

Resource https://doi.org/10.1038/s41591-023-02327-2

dataset (Fig. 5f and Supplementary Fig. 9b,c). In this manner the HLCA 
core and its annotations can be refined by mapping new datasets to 
the atlas and incorporating annotations from these new datasets into 
the reference.

Mapping data to the HLCA highlights disease-related states
To extend the atlas and include samples from lung disease, we mapped 
1,797,714 cells from 380 healthy and diseased individuals from 37 data-
sets (four unpublished and 33 published21,24,26,27,33,40,41,54–70) to the HLCA 
core using scArches71, bringing the HLCA to a total of 2.4 million cells 
from 486 individuals (Fig. 6a and Supplementary Table 1). Label transfer 
from the HLCA core to the newly mapped datasets enabled detailed 
cell type annotation across datasets even for rare cells, including 2,048 
migratory dendritic cells identified across 28 datasets with label trans-
fer, whereas this cell type was originally labeled in only two of 12 labeled 
datasets (Extended Data Fig. 8).

Out of 37 new datasets, 27 were observed to map well to the HLCA, 
as evaluated by the mean label transfer uncertainty score (Fig. 6b, Sup-
plementary Fig. 10a and Methods). The remaining ten datasets were 
often from coronavirus disease 2019 (COVID-19) studies or, unlike the 
HLCA core, contained pediatric samples (Fig. 6b,c and Supplementary 
Fig. 10b). In these datasets, higher uncertainty values may be attrib-
utable to true biological differences between the mapped data and 
the HLCA core adult, healthy lung samples. Overall, the successfully 
mapped datasets include disease samples, as well as single-nucleus and 
single-cell data from multiple chemistries (Fig. 6b), demonstrating the 
potential of the HLCA core as a universal reference.

Pulmonary diseases are characterized by the emergence of unique 
disease-associated transcriptional phenotypes4,21,22,24,72. We observed 
higher levels of label transfer uncertainty in datasets from diseased 
lungs (Fig. 6b, condition), possibly flagging cell types changed in 
response to disease. Specifically, labels of alveolar fibroblasts and 
alveolar macrophages, which interact to form a dysregulated cellular 
circuit in idiopathic pulmonary fibrosis (IPFs)21,22,24, are transferred 
with higher uncertainty in IPF samples than in samples from healthy 
controls from the same dataset64 (Fig. 6d and Extended Data Fig. 9a,b). 
Furthermore, uncertainty scores separate cells—derived from donors 
with IPF—within these cell types into more and less affected subsets: the 
genes more highly expressed in the high-uncertainty subset are also 
lowly expressed in healthy samples (Fig. 6e). Genes downregulated in 
high-uncertainty IPF macrophages are associated with homeostatic 
functions of tissue-resident alveolar macrophages and lipid metabo-
lism (PPARG, FABP4 and others)22,24,58, while upregulated genes are 
associated with extracellular matrix remodeling and scar formation 
in the context of lung fibrosis (SPP1, PLA2G7 and CCL2; Supplementary 
Tables 12 and 13 and Extended Data Fig. 9b,c)22,24,58. Thus, the HLCA 
core can be used to annotate new data, identify previously unreported 

populations, and—using label transfer uncertainty scores—help to 
detect disease-affected cell states and corresponding gene expres-
sion programs. This vastly speeds up analysis and interpretation of 
new data, automatically prioritizing the most relevant populations. 
Automated mapping of new data to the HLCA core can be done by any 
user via an interactive web portal (https://github.com/LungCellAtlas/ 
HLCA) or using code tutorials as provided online.

The HLCA reveals common aberrant cell states across diseases
Similar to healthy cellular states, the HLCA can provide insight into 
disease-specific states that are consistent across demographics and 
experimental protocols. To demonstrate this, we determined which 
cell types are consistently affected by IPF across datasets, extending 
the previous IPF analysis to five independent datasets. We found that 
cells labeled as alveolar fibroblasts consistently show high uncertainty 
levels in IPF samples compared with controls across all mapped IPF 
datasets that include controls58,62,64 (Extended Data Fig. 10a). Clustering 
of alveolar fibroblasts from the HLCA core and all IPF datasets21,24,58,62,64 
shows that cells from patients with IPF predominantly cluster together 
in a single cluster (Fig. 6f,g and Extended Data Fig. 10b) characterized 
by high expression of genes previously associated with IPF64,73,74 (CCL2, 
COL1A1, CTHRC1 and MMP19), as well as further fibrosis-associated 
markers (SERPINE1, an inhibitor of extracellular matrix breakdown75, 
and HIF1A, a chronic hypoxia response gene76; Fig. 6h and Supplemen-
tary Table 14). These marker genes are consistently expressed across 
datasets (Extended Data Fig. 10c), confirming that the identification 
of this IPF-specific alveolar fibroblast state is reproducible.

The HLCA contains data across more than ten lung diseases, 
providing the unique opportunity to discover cellular states shared 
across diseases. Discovering such common diseased cellular states 
could improve our understanding of lung diseases and accelerate 
the identification of effective treatments. For example, profibrotic 
SPP1+ monocyte-derived macrophages (MDMs) have previously been 
reported in COVID-19, IPF and cancer26,77,78. To test whether similar 
cross-disease MDM states could be discovered in the HLCA, we per-
formed clustering of all MDMs from the HLCA (Fig. 6i). We identified 
four main MDM subtypes (Methods and Supplementary Table 15), 
each showing distinct gene expression and disease enrichment pat-
terns, and representing different stages of monocyte-to-MDM dif-
ferentiation and adaptation to the disease microenvironment. First, 
an early and inflammatory MDM state was observed that was high in 
the expression of CCL2, a gene involved in the recruitment of immune 
cells. This cluster predominantly contained cells from bronchoalveolar 
lavage fluid samples collected early during the course of COVID-19 
pneumonia (cluster 2; IL1RNhigh and S100A12high; Fig. 6i–k and Extended 
Data Fig. 10d–h). We further observed an MDM subset expressing 
inflammation and phagocytosis-associated genes (cluster 4; CCL18, 

Fig. 5 | The HLCA core serves as a reference for label transfer and data 
contextualization. a, UMAP of the jointly embedded HLCA core (gray) and the 
projected healthy lung dataset (colored by label transfer uncertainty). HLCA 
cell types surrounding regions of high uncertainty are labeled. b, Percentage 
of cells from the newly mapped healthy lung dataset that are annotated either 
correctly or incorrectly by label transfer annotation or annotated as unknown, 
split by original cell type label (number of cells in parentheses). Cell type labels 
not present in the HLCA are boxed. c, Top, percentage of cells derived from 
tumor tissue, per endothelial cell cluster from the joint HLCA core and lung 
cancer data embedding. Only clusters with at least ten tumor cells are shown. 
Clusters are named based on the dominant HLCA core cell type annotation in 
the cluster. Middle, box plot showing the expression of EDNRB in endothelial 
cell clusters, split by tissue source. Bottom, as in the middle plot but for 
the expression of ACKR1. Numbers of cells per group were as follows: 6,574 
(endothelial cell aerocyte capillary), 7,379 (endothelial cell arterial (I)), 10,906 
(endothelial cell general capillary (I)), 3,440 (endothelial cell general capillary 
(II)), 2,859 (endothelial cell general capillary (III)), 6,318 (endothelial cell venous 

pulmonary) and 7,161 (endothelial cell venous systemic). d, Association of HLCA 
cell types with four different lung phenotypes based on previously performed 
GWASs. The horizontal dashed lines indicate a significance threshold of α = 0.05. 
P values were calculated using linkage disequilibrium score regression (Methods) 
and multiple testing corrected with the Benjamini–Hochberg procedure. e, Cell 
type proportions in lung bulk expression samples as estimated from HLCA-based 
cell type deconvolution, comparing controls (n = 281) versus donors with severe 
COPD (GOLD stage 3/4; n = 83). f, UMAP of fibroblast-dominated clusters from 
the jointly embedded HLCA core and mapped healthy lung dataset, colored by 
spatial cluster, with cells outside of the indicated clusters colored in gray. For 
all boxplots, the boxes show the median and interquartile range. Data points 
more than 1.5 times the interquartile range outside the low and high quartile are 
considered outliers. In c, these are not shown (see Supplementary Fig. 6 for full 
results), whereas in e, they are shown. Whiskers extend to the furthest nonoutlier 
point. corr., corrected; FVC, forced vital capacity; MAIT cells, mucosal-associated 
invariant T cells; NKT cells, natural killer T cells.
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IL18, C1QA and TREM2) and enriched for samples from patients with 
COVID-19 pneumonia, as well as samples from patients with lung car-
cinoma (Fig. 6i–k and Extended Data Fig. 10d–h). A third MDM subset 
represented a more differentiated MDM phenotype, as indicated by 
the expression of MARCO and MCEMP1, dominated by cells from non-
diseased samples (cluster 3; Fig. 6i–k and Extended Data Fig. 10d,f). 

The final MDM subset was dominated by IPF samples. Interestingly, 
this cluster was also enriched for cells from patients who died late in 
the course of COVID-19 and developed post-COVID-19 lung fibrosis, 
as well as cells from patients with lung carcinoma (cluster 0; Fig. 6i–k 
and Extended Data Fig. 10g–i). This multidisease cluster is marked by 
high expression of SPP1, LPL and CHIT1—markers that have been shown 
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to play a causal role in the development of lung fibrosis22,79–81 (Fig. 6k), 
one of which (CHIT1) is currently being investigated as a therapeutic 
target for IPF82. The expression of these markers is consistent across 
diseases and studies (Extended Data Fig. 10f), suggesting that also in 
cancer and late-stage COVID-19 samples a subset of MDMs adopt a 
fibrosis-associated phenotype. Together, this analysis shows that the 
HLCA enables a better understanding of cellular states shared between 
diseases and thereby has the potential to accelerate the discovery of 
effective disease treatments.

Discussion
In this study, we built the HLCA: an integrated reference atlas of the 
human respiratory system. While previous studies have described the 
cellular heterogeneity within the human lung4–6,24,58, study-specific 
biases due to experimental design and a limited number of sampled 
individuals constrain their capacity to capture population variation 
and serve as a universal reference. The HLCA integrates data from 
49 datasets to produce such a reference of 2.4 million cells, covering 
all major lung scRNA-seq studies published to date. The core of this 
atlas consists of a fully integrated healthy reference of 14 datasets with 
61 cell identities, including rare and novel cell types, representing a 
data-derived consensus annotation of the cellular landscape of the 
human lung. We leveraged the unprecedented complexity of the HLCA 
to recover cell type-specific gene modules associated with covariates 
such as lung anatomical location, age, sex, BMI and smoking status. 
By projecting data onto the HLCA, we showed that the HLCA enables 
a fast and detailed annotation of new datasets, as well as the identifica-
tion of unique, disease-associated cell states and cell states common 
to multiple diseases. The HLCA is publicly available as a resource for 
the community, together with an online platform for automated map-
ping of new data. Taken together, the HLCA is a universal reference for 
single-cell lung research that promises to accelerate future studies into 
pulmonary health and disease.

The ultimate goal of a human lung cell atlas reference is to pro-
vide a comprehensive overview of all cells in the healthy human lung, 
as well as their variation from individual to individual. Despite its 
overall diversity, the HLCA is limited by the biological, demographic 
and experimental diversity in the foundational single-cell studies. 
For example, 65% of the HLCA core data are from individuals of 
European harmonized ethnicity, highlighting the urgent need for 
diversification of the population sampled in lung studies. Moreo-
ver, ethnicity metadata were based on self-reports and harmonized 
across datasets, which is an imperfect approach to representing 
the diversity of the atlas. SNP-based inference of genetic ancestry 
constitutes a more objective and therefore preferable approach to 
the grouping of individuals based on genetic background and would 

aid in better assessing the genetic diversity captured in the atlas. 
Overall, more diverse samples will enrich the atlas, diversify captured 
cell identities and improve the quality of the HLCA as a reference 
for new datasets. Such a reference will also enable comparison with 
model systems such as mice, cell lines or organoids, although further 
method development may be required to map across diverse in vitro 
and clinical datasets.

The constituent datasets of the HLCA vary widely in experimental 
design, such as the sample handling protocol or single-cell platform 
used, causing dataset-specific batch effects. The quality of the HLCA 
hinges on the choice of data integration method, with methods such 
as Seurat’s RPCA30 and Harmony29 failing to correctly group rare cell 
identities into separate clusters. Nevertheless, also in the HLCA, cer-
tain subsets of T cells (regulatory T cells and γδ T cells) could not be 
identified as separate clusters, showing the limitations of the current 
HLCA in capturing cellular heterogeneity for a subset of immune cell 
types. Mapping additional datasets with high-resolution annotations 
(for example, derived from multimodal data) could provide the power 
to detect these cell identities in the atlas. Indeed, the HLCA must be 
viewed as a live resource that requires continuous updates. While 
we showed that mapping new, spatially annotated data to the HLCA 
core can refine HLCA annotations, this new knowledge must be con-
solidated by regular updates of the HLCA with new datasets (includ-
ing epigenomic, spatial and imaging data) and refinements of HLCA 
annotations based on additional expert opinions. Thereby, the HLCA 
can serve as a community- and data-driven platform for open discus-
sion on lung cell identities as the respiratory community progresses 
in charting the cellular landscape of the lung. In this process, we envi-
sion that the HLCA will be completed in two phases: first on the level 
of cellular variation (when no new consensus cell types can be found) 
and then in the description of individual variation (when population 
diversity is fully represented).

Taken together, the HLCA provides a central single-cell refer-
ence of unprecedented size. It offers a model framework for build-
ing integrated, consensus-based, population-scale atlases for other 
organs within the Human Cell Atlas. The HLCA is publicly available, and 
combined with an open-access platform to map new datasets to the 
atlas, this resource paves the way toward a better and more complete 
understanding of both health and disease in the human lung.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41591-023-02327-2.

Fig. 6 | The extended HLCA enables the identification of disease-associated 
cell states. a, UMAP of the extended HLCA colored by coarse annotation (HLCA 
core) or in gray (cells mapped to the core). b, Uncertainty of label transfer from 
the HLCA core to newly mapped datasets, categorized by several experimental 
or biological features. Categories with fewer than two instances are not shown. 
The numbers of datasets per category were as follows: 30 cells, 7 nuclei, 23 
healthy, 5 IPF, 3 CF, 3 carcinoma, 4 ILD, 8 surgical resection, 7 donor lung, 12 lung 
explant, 6 bronchoalveolar lavage fluid, 4 autopsy, 9 10x 5′, 31 10x 3′, 4 Drop-Seq 
and 3 Seq-Well. c, Bottom, mean label transfer uncertainty per mapped healthy 
lung sample in the HLCA extension, grouped into age bins and colored by study. 
The numbers of mapped samples per age bin were as follows: 43 for 0–10 years, 
33 for 10–20 years, 31 for 20–30 years, 23 for 30–40 years, 19 for 40–50 years, 
12 for 50–60 years, 9 for 60–70 years, 8 for 70–80 years and 2 for 80–90 years. 
Top, bar plot showing the number of donors per age group in the HLCA core. 
d, Violin plot of label transfer uncertainty per transferred cell type label for 
a single mapped IPF dataset64, split into cells from healthy donors (blue) and 
donors with IPF (orange). e, Uncertainty-based disease signature scores among 
alveolar fibroblasts and alveolar macrophages, split into cells from control 

donors (n = 10,453 and 1,812, respectively), and low-uncertainty cells (n = 1,419 
and 200, respectively) and high-uncertainty cells (n = 1,172 and 162, respectively) 
from donors with IPF. f, UMAP embedding of alveolar fibroblasts (labeled with 
manual annotation (core) or label transfer (five IPF datasets)) colored by Leiden 
cluster. g, Composition of the clusters shown in f by study, with cells from control 
samples colored in gray. h, Expression of marker genes for IPF-enriched cluster 
0 per alveolar fibroblast cluster. Cluster 5 was excluded as 96% of its cells were 
from a single donor. i, UMAP of all MDMs in the HLCA, colored by Leiden cluster. 
j, Composition of the MDM clusters from i by disease. k, Expression of cluster 
marker genes among all MDM clusters excluding donor-specific clusters 5 and 6. 
For h and k, mean counts were normalized such that the highest group mean was 
set to 1 for each gene. For b, c and e, the boxes show the median and interquartile 
range. Data points more than 1.5 times the interquartile range outside the low and 
high quartile are considered outliers. Whiskers extend to the furthest nonoutlier 
point. BALF, bronchoalveolar lavage fluid; CF, cystic fibrosis; Drop-Seq, droplet 
sequencing; ILD, interstitial lung disease; Mph, macrophages; SM, smooth 
muscle; uncert., uncertainty.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02327-2


Nature Medicine | Volume 29 | June 2023 | 1563–1577 1574

Resource https://doi.org/10.1038/s41591-023-02327-2

References
1.	 Angerer, P. et al. Single cells make big data: new challenges  

and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 
85–91 (2017).

2.	 Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
3.	 HuBMAP Consortium. The human body at cellular resolution: the 

NIH Human Biomolecular Atlas Program. Nature 574,  
187–192 (2019).

4.	 Vieira Braga, F. A. et al. A cellular census of human lungs  
identifies novel cell states in health and in asthma. Nat. Med. 25, 
1153–1163 (2019).

5.	 Travaglini, K. J. et al. A molecular cell atlas of the human lung 
from single-cell RNA sequencing. Nature 587, 619–625 (2020).

6.	 Deprez, M. et al. A single-cell atlas of the human healthy airways. 
Am. J. Respir. Crit. Care Med. 15, 1636–1645 (2020).

7.	 Hrovatin, K. et al. Delineating mouse β-cell identity during lifetime 
and in diabetes with a single cell atlas. Preprint at bioRxiv  
https://doi.org/10.1101/2022.12.22.521557 (2022).

8.	 Steuernagel, L. et al. HypoMap—a unified single-cell gene 
expression atlas of the murine hypothalamus. Nat. Metab. 4, 
1402–1419 (2022).

9.	 Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells 
of the human lung. Circulation 144, 286–302 (2021).

10.	 Novella-Rausell, C., Grudniewska, M., Peters, D. J. M. & Mahfouz, 
A. A comprehensive mouse kidney atlas enables rare cell 
population characterization and robust marker discovery. Preprint 
at bioRxiv https://doi.org/10.1101/2022.07.02.498501 (2022).

11.	 Herpelinck, T. et al. An integrated single-cell atlas of the skeleton 
from development through adulthood. Preprint at bioRxiv  
https://doi.org/10.1101/2022.03.14.484345 (2022).

12.	 Buechler, M. B. et al. Cross-tissue organization of the fibroblast 
lineage. Nature 593, 575–579 (2021).

13.	 Swamy, V. S., Fufa, T. D., Hufnagel, R. B. & McGaughey, D. M. 
Building the mega single-cell transcriptome ocular meta-atlas. 
Gigascience 10, giab061 (2021).

14.	 Ruiz-Moreno, C. et al. Harmonized single-cell landscape, 
intercellular crosstalk and tumor architecture of glioblastoma. 
Preprint at bioRxiv https://doi.org/10.1101/2022.08.27.505439 
(2022).

15.	 Salcher, S. et al. High-resolution single-cell atlas reveals diversity 
and plasticity of tissue-resident neutrophils in non-small cell lung 
cancer. Cancer Cell 40, 1503–1520.e8 (2022).

16.	 Hao, Y. et al. Integrated analysis of multimodal single-cell data. 
Cell 184, 3573–3587.e29 (2021).

17.	 Nieto, P. et al. A single-cell tumor immune atlas for precision 
oncology. Genome Res. 31, 1913–1926 (2021).

18.	 Suo, C. et al. Mapping the developing human immune system 
across organs. Science 376, eabo0510 (2022).

19.	 Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2  
entry genes across tissues and demographics. Nat. Med. 27, 
546–559 (2021).

20.	 Li, M. et al. DISCO: a database of Deeply Integrated human 
Single-Cell Omics data. Nucleic Acids Res. 50, D596–D602 (2021).

21.	 Habermann, A. C. et al. Single-cell RNA sequencing reveals 
profibrotic roles of distinct epithelial and mesenchymal lineages 
in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

22.	 Morse, C. et al. Proliferating SPP1/MERTK-expressing 
macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 
1802441 (2019).

23.	 Madissoon, E. et al. scRNA-seq assessment of the human lung, 
spleen, and esophagus tissue stability after cold preservation. 
Genome Biol. 21, 1 (2019).

24.	 Reyfman, P. A. et al. Single-cell transcriptomic analysis of human 
lung provides insights into the pathobiology of pulmonary 
fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

25.	 Goldfarbmuren, K. C. et al. Dissecting the cellular specificity of 
smoking effects and reconstructing lineages in the human airway 
epithelium. Nat. Commun. 11, 2485 (2020).

26.	 Bharat, A. et al. Lung transplantation for patients with severe 
COVID-19. Sci. Transl. Med. 12, eabe4282 (2020).

27.	 Natri et al. Cell type-specific and disease-associated eQTL in the  
human lung. Preprint at bioRxiv https://doi.org/10.1101/2023. 
03.17.533161 (2023).

28.	 Luecken, M. D. et al. Benchmarking atlas-level data integration in 
single-cell genomics. Nat. Methods 19, 41–50 (2021).

29.	 Korsunsky, I. et al. Fast, sensitive and accurate integration of 
single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

30.	 Stuart, T. et al. Comprehensive integration of single-cell data. Cell 
177, 1888–1902.e21 (2019).

31.	 Förster, R. et al. CCR7 coordinates the primary immune response 
by establishing functional microenvironments in secondary 
lymphoid organs. Cell 99, 23–33 (1999).

32.	 Hauser, M. A. Inflammation-induced CCR7 oligomers form 
scaffolds to integrate distinct signaling pathways for efficient cell 
migration. Immunity 44, 59–72 (2016).

33.	 Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps 
and lineage hierarchies reveal a bipotent progenitor. Nature 604, 
111–119 (2022).

34.	 Basil, M. C. et al. Human distal airways contain a multipotent 
secretory cell that can regenerate alveoli. Nature 604,  
120–126 (2022).

35.	 Pujantell, M. & Altfeld, M. Consequences of sex differences in 
type I IFN responses for the regulation of antiviral immunity.  
Front. Immunol. 13, 986840 (2022).

36.	 Boers, J. E., Ambergen, A. W. & Thunnissen, F. B. Number and 
proliferation of basal and parabasal cells in normal human airway 
epithelium. Am. J. Respir. Crit. Care Med. 157, 2000–2006 (1998).

37.	 Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking 
obesity to insulin resistance and type 2 diabetes. Nature 444, 
840–846 (2006).

38.	 Zatterale, F. et al. Chronic adipose tissue inflammation linking 
obesity to insulin resistance and type 2 diabetes. Front. Physiol. 
10, 1607 (2019).

39.	 Parikh, R., Tariq, S. M., Marinac, C. R. & Shah, U. A. A 
comprehensive review of the impact of obesity on plasma cell 
disorders. Leukemia 36, 301–314 (2021).

40.	 Madissoon, E. et al. A spatially resolved atlas of the human lung 
characterizes a gland-associated immune niche. Nat. Genet. 55, 
66–77 (2023).

41.	 Lambrechts, D. et al. Phenotype molding of stromal cells in the 
lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

42.	 Zhang, K. A single-cell atlas of chromatin accessibility in the 
human genome. Cell 184, 5985–6001.e19 (2021).

43.	 Eraslan, G. et al. Single-nucleus cross-tissue molecular reference 
maps toward understanding disease gene function. Science 376, 
eabl4290 (2022).

44.	 Han, Y. et al. Genome-wide analysis highlights contribution of 
immune system pathways to the genetic architecture of asthma. 
Nat. Commun. 11, 1776 (2020).

45.	 McKay, J. D. et al. Large-scale association analysis identifies new 
lung cancer susceptibility loci and heterogeneity in genetic 
susceptibility across histological subtypes. Nat. Genet. 49, 
1126–1132 (2017).

46.	 Sakornsakolpat, P. et al. Genetic landscape of chronic obstructive 
pulmonary disease identifies heterogeneous cell-type and 
phenotype associations. Nat. Genet. 51, 494–505 (2019).

47.	 Shrine, N. et al. New genetic signals for lung function highlight 
pathways and chronic obstructive pulmonary disease 
associations across multiple ancestries. Nat. Genet. 51,  
481–493 (2019).

http://www.nature.com/naturemedicine
https://doi.org/10.1101/2022.12.22.521557
https://doi.org/10.1101/2022.12.22.521557
https://doi.org/10.1101/2022.07.02.498501
https://doi.org/10.1101/2022.03.14.484345
https://doi.org/10.1101/2022.03.14.484345
https://doi.org/10.1101/2022.08.27.505439
https://doi.org/10.1101/2023.03.17.533161
https://doi.org/10.1101/2023.03.17.533161


Nature Medicine | Volume 29 | June 2023 | 1563–1577 1575

Resource https://doi.org/10.1038/s41591-023-02327-2

48.	 Finucane, H. K. et al. Heritability enrichment of specifically 
expressed genes identifies disease-relevant tissues and cell 
types. Nat. Genet. 50, 621–629 (2018).

49.	 Denisenko, E. et al. Systematic assessment of tissue dissociation 
and storage biases in single-cell and single-nucleus RNA-seq 
workflows. Genome Biol. 21, 130 (2020).

50.	 Boudewijn, I. M. et al. Nasal gene expression changes with 
inhaled corticosteroid treatment in asthma. Allergy 75,  
191–194 (2020).

51.	 Roffel, M. P. et al. Identification of asthma-associated microRNAs 
in bronchial biopsies. Eur. Respir. J. 59, 2101294 (2022).

52.	 Hao, K. et al. Lung eQTLs to help reveal the molecular 
underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).

53.	 Chung, K. F. The role of airway smooth muscle in the 
pathogenesis of airway wall remodeling in chronic obstructive 
pulmonary disease. Proc. Am. Thorac. Soc. 2, 347–354 (2005).

54.	 Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are 
primarily expressed in bronchial transient secretory cells. EMBO J. 
39, e105114 (2020).

55.	 Carraro, G. et al. Transcriptional analysis of cystic fibrosis airways 
at single-cell resolution reveals altered epithelial cell states and 
composition. Nat. Med. 27, 806–814 (2021).

56.	 Guo, M. et al. Single-cell transcriptomic analysis identifies a 
unique pulmonary lymphangioleiomyomatosis cell. Am. J. Respir. 
Crit. Care Med. 202, 1373–1387 (2020).

57.	 Mould, K. J. et al. Airspace macrophages and monocytes exist in 
transcriptionally distinct subsets in healthy adults. Am. J. Respir. 
Crit. Care Med. 203, 946–956 (2021).

58.	 Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and 
aberrant lung-resident cell populations in idiopathic pulmonary 
fibrosis. Sci. Adv. 6, eaba1983 (2020).

59.	 Wauters, E. et al. Discriminating mild from critical COVID-19 
by innate and adaptive immune single-cell profiling of 
bronchoalveolar lavages. Cell Res. 31, 272–290 (2021).

60.	 Valenzi, E. et al. Single-cell analysis reveals fibroblast 
heterogeneity and myofibroblasts in systemic 
sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 
1379–1387 (2019).

61.	 Laughney, A. M. et al. Regenerative lineages and 
immune-mediated pruning in lung cancer metastasis. Nat. Med. 
26, 259–269 (2020).

62.	 Mayr, C. H. et al. Integrative analysis of cell state changes in lung 
fibrosis with peripheral protein biomarkers. EMBO Mol. Med. 13, 
e12871 (2021).

63.	 Ordovas-Montanes, J. et al. Allergic inflammatory memory 
in human respiratory epithelial progenitor cells. Nature 560, 
649–654 (2018).

64.	 Tsukui, T. et al. Collagen-producing lung cell atlas identifies 
multiple subsets with distinct localization and relevance to 
fibrosis. Nat. Commun. 11, 1920 (2020).

65.	 Szabo, P. A. et al. Single-cell transcriptomics of human T cells 
reveals tissue and activation signatures in health and disease. Nat. 
Commun. 10, 4706 (2019).

66.	 Wang, A. et al. Single-cell multiomic profiling of human lungs 
reveals cell-type-specific and age-dynamic control of SARS-CoV2 
host genes. eLife 9, e62522 (2020).

67.	 Grant, R. A. et al. Circuits between infected macrophages and 
T cells in SARS-CoV-2 pneumonia. Nature 590, 635–641 (2021).

68.	 Liao, M. et al. Single-cell landscape of bronchoalveolar immune 
cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

69.	 Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 
pathology and cellular targets. Nature 595, 107–113 (2021).

70.	 Yoshida, M. et al. Local and systemic responses to SARS-CoV-2 
infection in children and adults. Nature 602, 321–327 (2022).

71.	 Lotfollahi, M. et al. Mapping single-cell data to reference atlases 
by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

72.	 Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional 
stem cell state that persists in human lung fibrosis. Nat. Commun. 
11, 3559 (2020).

73.	 Jara, P. et al. Matrix metalloproteinase (MMP)-19-deficient 
fibroblasts display a profibrotic phenotype. Am. J. Physiol. Lung 
Cell. Mol. Physiol. 308, L511–L522 (2015).

74.	 Moore, B. B. et al. Protection from pulmonary fibrosis in the 
absence of CCR2 signaling. J. Immunol. 167, 4368–4377 (2001).

75.	 Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. 
Physiol. 227, 493–507 (2012).

76.	 Xiong, A. & Liu, Y. Targeting hypoxia inducible factors-1α as a 
novel therapy in fibrosis. Front. Pharmacol. 8, 326 (2017).

77.	 Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macro
phage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021).

78.	 Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of 
tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

79.	 Lee, C. M. et al. Chitinase 1 regulates pulmonary fibrosis by 
modulating TGF-β/SMAD7 pathway via TGFBRAP1 and FOXO3. Life 
Sci. Alliance 2, e201900350 (2019).

80.	 Lee, C. G. et al. Chitinase 1 is a biomarker for and therapeutic 
target in scleroderma-associated interstitial lung disease that 
augments TGF-β1 signaling. J. Immunol. 189, 2635–2644 (2012).

81.	 Joshi, H. et al. L-plastin enhances NLRP3 inflammasome assembly 
and bleomycin-induced lung fibrosis. Cell Rep. 38, 110507 (2022).

82.	 Sklepkiewicz, P. Inhibition of CHIT1 as a novel therapeutic 
approach in idiopathic pulmonary fibrosis. Eur. J. Pharmacol. 919, 
174792 (2022).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Lisa Sikkema    1,2, Ciro Ramírez-Suástegui1,3,63, Daniel C. Strobl1,4,63, Tessa E. Gillett    5,6,63, Luke Zappia    1,7,63, 
Elo Madissoon8,63, Nikolay S. Markov    9,63, Laure-Emmanuelle Zaragosi    10,63, Yuge Ji1,2, Meshal Ansari1,11, 
Marie-Jeanne Arguel    10, Leonie Apperloo6,12, Martin Banchero6,12, Christophe Bécavin    10, Marijn Berg6,12, 
Evgeny Chichelnitskiy13, Mei-i Chung14, Antoine Collin10,15, Aurore C. A. Gay    6,12, Janine Gote-Schniering11, 
Baharak Hooshiar Kashani11, Kemal Inecik    1,2, Manu Jain9, Theodore S. Kapellos11,16, Tessa M. Kole6,17, Sylvie Leroy18, 
Christoph H. Mayr11, Amanda J. Oliver    8, Michael von Papen    19, Lance Peter14, Chase J. Taylor20, Thomas Walzthoeni21, 

http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9686-6295
http://orcid.org/0000-0002-5447-1727
http://orcid.org/0000-0001-7744-8565
http://orcid.org/0000-0002-3659-4387
http://orcid.org/0000-0001-6747-7928
http://orcid.org/0000-0002-8725-2555
http://orcid.org/0000-0003-1555-3153
http://orcid.org/0000-0002-1593-2674
http://orcid.org/0000-0001-7379-9093
http://orcid.org/0000-0003-1690-9027
http://orcid.org/0000-0001-5030-1643


Nature Medicine | Volume 29 | June 2023 | 1563–1577 1576

Resource https://doi.org/10.1038/s41591-023-02327-2

Chuan Xu8, Linh T. Bui    14, Carlo De Donno1, Leander Dony    1,2,22, Alen Faiz6,23, Minzhe Guo    24,25, Austin J. Gutierrez    14, 
Lukas Heumos1,2,11, Ni Huang8, Ignacio L. Ibarra    1, Nathan D. Jackson26, Preetish Kadur Lakshminarasimha Murthy27,28, 
Mohammad Lotfollahi    1,8, Tracy Tabib29, Carlos Talavera-López1,30, Kyle J. Travaglini    31,32,33, Anna Wilbrey-Clark8, 
Kaylee B. Worlock    34, Masahiro Yoshida    34, Lung Biological Network Consortium*, Maarten van den Berge6,17, 
Yohan Bossé    35, Tushar J. Desai    36, Oliver Eickelberg37, Naftali Kaminski    38, Mark A. Krasnow    31,32, 
Robert Lafyatis    29, Marko Z. Nikolic    34, Joseph E. Powell39,40, Jayaraj Rajagopal41, Mauricio Rojas42, 
Orit Rozenblatt-Rosen    43,44, Max A. Seibold    26,45,46, Dean Sheppard    47, Douglas P. Shepherd48, Don D. Sin    49, 
Wim Timens    6,12, Alexander M. Tsankov50, Jeffrey Whitsett    24, Yan Xu    24, Nicholas E. Banovich14, Pascal Barbry    10,15, 
Thu Elizabeth Duong    51, Christine S. Falk13, Kerstin B. Meyer    8, Jonathan A. Kropski    20,52, Dana Pe’er    32,53, 
Herbert B. Schiller    11, Purushothama Rao Tata    27, Joachim L. Schultze16,54, Sara A. Teichmann    8,55, 
Alexander V. Misharin    9,64, Martijn C. Nawijn    6,12,64, Malte D. Luecken    1,11,64   & Fabian J. Theis    1,2,7,64 

1Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany. 2TUM School of Life Sciences, 
Technical University of Munich, Munich, Germany. 3La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. 4Institute of Clinical Chemistry and 
Pathobiochemistry, TUM School of Medicine, Technical University of Munich, Munich, Germany. 5Experimental Pulmonary and Inflammatory Research, 
Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands. 6Groningen 
Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 7Department of 
Mathematics, Technical University of Munich, Garching, Germany. 8Wellcome Sanger Institute, Hinxton, Cambridge, UK. 9Division of Pulmonary and 
Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. 10Institut de Pharmacologie Moléculaire et Cellulaire, 
Université Côte d’Azur and Centre National de la Recherche Scientifique, Valbonne, France. 11Institute of Lung Health and Immunity (a member of the 
German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany. 
12Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 13Institute for 
Transplant Immunology, Hannover Medical School, Hannover, Germany. 14Translational Genomics Research Institute, Phoenix, AZ, USA. 153IA Côte d’Azur, 
Nice, France. 16Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany. 17Department of 
Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 18Pulmonology Department, Fédération 
Hospitalo-Universitaire OncoAge, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, Nice, France. 19Research, Development and Innovation, 
Comma Soft, Bonn, Germany. 20Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical 
Center, Nashville, TN, USA. 21Core Facility Genomics, Helmholtz Center Munich, Munich, Germany. 22Department of Translational Psychiatry, Max Planck 
Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry, Munich, Germany. 23School of Life Sciences, Respiratory 
Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, Australia. 24Division of Neonatology and Pulmonary Biology, Cincinnati 
Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA. 25Department of Pediatrics, University of Cincinnati 
College of Medicine, Cincinnati, OH, US. 26Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA. 27Department of Cell 
Biology, Duke University School of Medicine, Durham, NC, USA. 28Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, 
Chicago, IL, USA. 29Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.  
30Division of Infectious Diseases and Tropical Medicine, Klinikum der Lüdwig-Maximilians-Universität, Munich, Germany. 31Department of Biochemistry, 
Stanford University School of Medicine, Stanford, CA, USA. 32Howard Hughes Medical Institute, Chevy Chase, MD, USA. 33Allen Institute for Brain 
Science, Seattle, WA, USA. 34Department of Respiratory Medicine, Division of Medicine, University College London, London, UK. 35Institut Universitaire 
de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada. 36Department 
of Medicine, Stanford University School of Medicine, Stanford, CA, USA. 37Division of Pulmonary, Allergy, and Critical Care Medicine, University of 
Pittsburgh, Pittsburgh, PA, USA. 38Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA. 39Garvan Institute of 
Medical Research, Sydney,  New South Wales, Australia. 40Cellular Genomics Futures Institute, University of New South Wales, Sydney,  New South 
Wales, Australia. 41Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA. 42Department of 
Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA. 43Klarman Cell Observatory, 
Broad Institute of Harvard and MIT, Cambridge, MA, USA. 44Cellular and Tissue Genomics, Genentech, South San Francisco, CA, USA. 45Department 
of Pediatrics, National Jewish Health, Denver, CO, USA. 46Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of 
Medicine, Aurora, CO, USA. 47Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, 
CA, USA. 48Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA. 49Centre for Heart Lung Innovation, St. 
Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada. 50Department of Genetics and Genomic Sciences, Icahn School 
of Medicine at Mount Sinai, New York, NY, USA. 51Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, 
CA, USA. 52Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. 53Computational and Systems Biology Program, 
Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 54PRECISE Platform for Single Cell Genomics and Epigenomics, 
Deutsches Zentrum für Neurodegenerative Erkrankungen and University of Bonn, Bonn, Germany. 55Department of Physics, Cavendish Laboratory, 
University of Cambridge, Cambridge, UK. 63These authors contributed equally: Ciro Ramírez-Suástegui, Daniel C. Strobl, Tessa E. Gillett, Luke Zappia,  
Elo Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi. 64These authors jointly supervised this work: Alexander V. Misharin, Martijn C. Nawijn, 
Malte D. Luecken, Fabian J. Theis. *A list of authors and their affiliations appears at the end of the paper.  e-mail: malte.luecken@helmholtz-munich.de; 
fabian.theis@helmholtz-munich.de

Lung Biological Network Consortium

Yuexin Chen11, James S. Hagood56, Ahmed Agami11, Peter Horvath57,58, Joakim Lundeberg59, Charles-Hugo Marquette18, 
Gloria Pryhuber60, Chistos Samakovlis61, Xin Sun62, Lorraine B. Ware20 & Kun Zhang62

http://www.nature.com/naturemedicine
http://orcid.org/0000-0003-3152-8978
http://orcid.org/0000-0001-5697-6991
http://orcid.org/0000-0002-5502-9172
http://orcid.org/0000-0003-2977-2189
http://orcid.org/0000-0002-0582-002X
http://orcid.org/0000-0001-6858-7985
http://orcid.org/0000-0003-3164-6448
http://orcid.org/0000-0002-5656-7634
http://orcid.org/0000-0002-3521-5322
http://orcid.org/0000-0002-3067-3711
http://orcid.org/0000-0002-8794-5319
http://orcid.org/0000-0001-5917-4601
http://orcid.org/0000-0002-1976-5471
http://orcid.org/0000-0002-9398-5034
http://orcid.org/0000-0001-6304-6848
http://orcid.org/0000-0001-6313-3570
http://orcid.org/0000-0002-8685-4263
http://orcid.org/0000-0002-6277-2036
http://orcid.org/0000-0002-0756-6643
http://orcid.org/0000-0002-4146-6363
http://orcid.org/0000-0003-1668-5174
http://orcid.org/0000-0003-2025-027X
http://orcid.org/0000-0001-9632-6483
http://orcid.org/0000-0001-7122-4448
http://orcid.org/0000-0001-5906-1498
http://orcid.org/0000-0002-8923-1344
http://orcid.org/0000-0002-9259-8817
http://orcid.org/0000-0001-9498-7034
http://orcid.org/0000-0003-4837-0337
http://orcid.org/0000-0002-6294-6366
http://orcid.org/0000-0003-2879-3789
http://orcid.org/0000-0003-3372-6521
http://orcid.org/0000-0001-7464-7921
http://orcid.org/0000-0002-2419-1943
mailto:malte.luecken@helmholtz-munich.de
mailto:fabian.theis@helmholtz-munich.de


Nature Medicine | Volume 29 | June 2023 | 1563–1577 1577

Resource https://doi.org/10.1038/s41591-023-02327-2

56Department of Pediatrics (Pulmonology), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 57Biological Research Centre, Szeged, 
Hungary. 58Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. 59Department of Gene Technology, KTH Royal Institute of 
Technology, Stockholm, Sweden. 60Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA. 61Lab and Department of 
Molecular Bioscience, Stockholm University, Stockholm, Sweden. 62University of California, San Diego, La Jolla, CA, USA. 

http://www.nature.com/naturemedicine


Nature Medicine

Resource https://doi.org/10.1038/s41591-023-02327-2

Methods
Ethics approval and consent
Ethics approval information per study was as follows. For the pooled 
data from refs. 21,27, approval was given by the Vanderbilt Institutional 
Review Board (IRB) (numbers 060165 and 171657) and Western IRB 
(number 20181836). All samples were collected from declined organ 
donors who were also consented for research. For ref. 6, the study was 
approved by the Comité de Protection des Personnes Sud Est IV 
(approval number 17/081). Informed written consent was obtained 
from all participants involved. For Jain_Misharin_2021 (A.V.M., M.J. and 
N.S.M., newly generated dataset), the protocol was approved by the 
Northwestern University IRB (STU00214826). Written informed con-
sent was obtained from all study participants. For ref. 5, patient tissues 
were obtained under a protocol approved by Stanford University’s 
Human Subjects Research Compliance Office (IRB 15166). Informed 
consent was obtained from each patient before surgery. For ref. 22, 
healthy control lungs were obtained under a protocol approved by the 
University of Pittsburgh Committee for Oversight of Research and 
Clinical Training Involving Decedents (CORID protocol 718) and fol-
lowing rejection as candidate donors for transplant (IRB STUDY 
19100326). For ref. 23, tissue samples were obtained from the Cam-
bridge Biorepository for Translational Medicine (CBTM) with approval 
from the National Research Ethics Services (NRES) Committee of East 
of England—Cambridge South (15/EE/0152). Tissue samples were 
obtained with informed consent from the donor families. For ref. 26, 
the protocol was approved by the Northwestern University IRB 
(STU00212120). Written informed consent was obtained from all indi-
viduals in the study. For the pooled data from ref. 4 and associated 
unpublished data, the protocol was approved by the IRB (Algemeen 
Beoordelings- en Registratieformulier number NL69765.042.19). 
Patients gave informed consent. For ref. 25, the National Jewish Health 
IRB approved the research under IRB protocols HS-3209 and HS-2240. 
Informed consent was obtained from authorized family members of 
all donors. For ref. 4, approval was given by the NRES Committee of 
East of England—Cambridge South (Research Ethics Committee (REC) 
reference: 15/EE/0152). Informed consent for use of the tissue was 
obtained from the donors’ families. For Barbry_unpubl (P.B., L.-E.Z., 
M.J.A., A.C., C.B. et al., newly generated dataset), the protocol was 
approved by the Centre Hospitalier Universitaire de Nice. Nasal and 
tracheobronchial samples were collected from patients with IPF after 
obtaining their informed consent. For ref. 26, approved was given by 
the IRB of Northwestern University (STU00212120, STU00213177, 
STU00212511 and STU00212579). For inclusion in this study, patients 
or their designated medical power of attorney provided informed 
consent. For Duong_lungMAP_unpubl (T.E.D., K.Z., X.S., J.S.H. and G.P., 
newly generated dataset), all postmortem human donor lung samples 
were obtained from the Biorepository for Investigation of Neonatal 
Diseases of the Lung (BRINDL), supported by the National Heart, Lung, 
and Blood Institute (NHLBI) LungMAP Human Tissue Core housed at 
the University of Rochester. Consent can be found on the repository’s 
website (brindl.urmc.rochester.edu/). For ref. 54, the study was con-
ducted in accordance with the Declaration of Helsinki and Department 
of Health and Human Services Belmont Report. The use of biomaterial 
and data for this study was approved by the local ethics committee of 
the Medical Faculty Heidelberg (S-270/2001 and S-538/2012). All indi-
viduals gave informed consent for inclusion before they participated 
in the study. For ref. 55, human lung tissues were procured under each 
institution’s approved IRB protocol (numbers 00035396 (Cedars-Sinai 
Medical Center), 03-1396 (University of North Carolina at Chapel Hill), 
1172286 (Cystic Fibrosis Foundation and WIRB-Copernicus Group 
Western IRB) and 16-000742 (University of California, Los Angeles)). 
Informed consent was obtained from lung donors or their authorized 
representatives. For ref. 57, the study was approved and monitored by 
the National Jewish Health IRB (FWA00000778). Written informed 
consent was obtained from all participants. For ref. 58, the study 

protocol was approved by the Partners Healthcare IRB (protocol 
2011P002419). For ref. 60, lung tissue was obtained under a protocol 
approved by the University of Pittsburgh IRB (IRB STUDY 19100326) 
during transplantation surgery. For ref. 59, the study was conducted 
according to the principles expressed in the Declaration of Helsinki. 
Ethical approval was obtained from Ethics Committee Research UZ/
KU Leuven (S63881). All participants provided written informed con-
sent for sample collection and subsequent analyses. For ref. 40, 
approval was given by the NRES Committee of East of England—Cam-
bridge South (15/EE/0152). The CBTM operates in accordance with UK 
Human Tissue Authority guidelines. Samples were obtained from 
deceased transplant organ donors by the CBTM with informed consent 
from the donor families. For ref. 70, ethical approval was given through 
the Living Airway Biobank, administered through the University Col-
lege London Great Ormond Street Institute of Child Health (REC refer-
ence: 19/NW/0171; Integrated Research Application System (IRAS) 
project ID: 261511; North West Liverpool East REC), REC reference 18/
SC/0514 (IRAS project ID: 245471; South Central Hampshire B REC; 
administered through the University College London Hospitals NHS 
Foundation Trust), REC reference 18/EE/0150 (IRAS project ID: 236570; 
East of England—Cambridge Central REC; administered through Great 
Ormond Street Hospital NHS Foundation Trust) and REC reference 08/
H0308/267 (administered through the Cambridge University Hospitals 
NHS Foundation Trust), as well as by the local R&D departments at all 
hospitals. All of the study participants or their surrogates provided 
informed consent. For ref. 61, all protocols were reviewed and approved 
by the IRB at the Memorial Sloan Kettering Cancer Center (IRB protocol 
14-091). Noninvolved lung, tumor tissues and metastatic lesions were 
obtained from patients with lung adenocarcinoma undergoing resec-
tion surgery at the Memorial Sloan Kettering Cancer Center after 
obtaining informed consent. For ref. 69, samples underwent IRB review 
and approval at the institutions where they were originally collected. 
Specifically, the Dana-Farber Cancer Institute approved protocol 
13-416, the partners Massachusetts General Hospital and Brigham and 
Women’s Hospital approved protocols 2020P000804, 2020P000849 
and 2015P002215, the Beth Israel Deaconess Medical Center approved 
protocols 2020P000406 and 2020P000418 and New York Presbyterian 
Hospital/Columbia University Irving Medical Center approved proto-
cols IRB-AAAT0785, IRB-AAAB2667 and IRB-AAAS7370. Secondary 
analysis of samples at the Broad Institute was covered under Massa-
chusetts Institute of Technology IRB protocols 1603505962 and 
1612793224, or the Not Human Subjects Research protocol ORSP-3635. 
Donor identities were encoded at the hospitals before shipping to or 
sharing with the Broad Institute for sample processing or data analysis, 
respectively. For ref. 62, the study was approved by the local ethics 
committee of the Ludwig Maximilian University of Munich (EK 333-10 
and 382-10). Written informed consent was obtained from all patients. 
For Schiller_2021 (H.B.S., J.G.-S., C.H.M., B.H.K., M.A. et al., newly gener-
ated dataset), the study was approved by the local ethics committee 
of the Ludwig Maximilian University of Munich (EK 333-10 and 382-10). 
Written informed consent was obtained from all patients. For Schultze_
unpubl ( J.L.S., C.S.F., T.S.K. and E.C., newly generated dataset), human 
lung tissue was available for research purposes following ethical 
approval from Hannover Medical School (ethical vote of the German 
Centre for Lung Research (DZL) number 7414, 2017). All patients in this 
study provided written informed consent for sample collection and 
data analysis. For ref. 63, samples were obtained under the Cells and 
Mediators IRB protocol (2003P002088). All individuals provided writ-
ten informed consent. For ref. 64, the studies described were con-
ducted according to the principles of the Declaration of Helsinki. The 
study was approved by the University of California, San Francisco IRB. 
Written informed consent was obtained from all individuals.  
For ref. 65, peripheral blood was obtained from healthy consenting 
adult volunteers by venipuncture through a protocol approved by the 
Columbia University IRB. All relevant ethical regulations for work with 
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human participants were complied with. For ref. 66, donor lung samples 
were provided through the federal United Network for Organ Sharing 
via the National Disease Research Interchange and International Insti-
tute for the Advancement of Medicine and entered into the NHLBI 
LungMAP BRINDL at the University of Rochester Medical Center, over-
seen by the IRB as RSRB00047606. For for the pooled data from ref. 33 
and associated unpublished data, human lung tissue collection was 
approved by the Duke University IRB (Pro00082379) and University 
of North Carolina Biomedical IRB (03-1396) under exempt protocols. 
Consent was obtained to use human tissues for research purposes. For 
ref. 41, the study was approved by the local ethics committee at Uni-
versity Hospitals Leuven (B322201422081) and all of the relevant ethical 
regulations were complied with. Only patients with untreated, primary, 
nonmetastatic lung tumors who underwent lung lobe resection with 
curative intent and who provided informed consent were included in 
this study. For ref. 67, all of the research involving human participants 
was approved by the Northwestern University IRB. Samples from 
patients with COVID-19, viral pneumonia and other pneumonia, as well 
as controls without pneumonia, were collected from participants 
enrolled in the Successful Clinical Response in Pneumonia Therapy 
study STU00204868. All study participants or their surrogates  
provided informed consent. For ref. 56, the IRB of the University of 
Cincinnati College of Medicine approved all human-relevant studies. 
For ref. 68, the study was conducted according to the principles 
expressed in the Declaration of Helsinki. Ethical approval was obtained 
from the REC of Shenzhen Third People’s Hospital (2020-112). All par-
ticipants provided written informed consent for sample collection and 
subsequent analyses. Further study details can be found in Supplemen-
tary Table 1.

Single-cell sequencing and preprocessing of data
Several previously unpublished datasets were used for the HLCA and 
generated as follows.

Barbry_unpubl. Participants recruited by the Pneumology Unit of Nice 
University Hospital were sampled between 1 and 15 December 2020. 
The full procedure, including patient inclusion criteria, is detailed at 
https://www.clinicaltrials.gov/ct2/show/NCT04529993. Nasal and 
tracheobronchial samples were collected from patients with IPF after 
obtaining their informed consent, following a protocol approved by 
the Centre Hospitalier Universitaire de Nice. The data were derived 
from the clinical trial registered at ClinicalTrials.gov under reference 
NCT04529993. This study was described as an interventional study 
instead of an observational study because the participants were vol-
unteers and all assigned to a specific bronchoscopy not related to 
routine medical care. Participants were prospectively assigned to a 
procedure (bronchoscopy) according to a specific protocol to assess 
our ability to sample the airway. No other procedures were included 
in this study. Metadata of the donors’ sex was based on self-report. 
The libraries were prepared as described in Deprez et al.6 and yielded 
an average of 61,000 ± 11,000 cells per sample, with a viability above 
95%. The single-cell suspension was used to generate single-cell librar-
ies following the v3.1 protocol for 3′ chemistry from 10x Genomics 
(CG000204). Sequencing was performed on a NextSeq 500/550 
sequencer (Illumina). Raw sequencing data were processed using the 
Cell Ranger 6.0.0 pipeline, with the reference genome GRCh38 and 
annotation using Ensembl98. For each sample, cells with fewer than 
200 transcripts or more than 40,000 transcripts were filtered out, as 
well as genes expressed in fewer than three cells. Normalization and 
log transformation were done using the standard Scanpy83 pipeline. 
Principal component analysis (PCA) was performed on 1,000 highly 
variable genes (HVGs) to compute 50 principal components, and the 
Louvain algorithm was used for clustering. These clusters were then 
annotated by hand for each sample. Raw counts and the thus obtained 
cell annotations were used as input for the HLCA.

Schiller_2021. Tumor-free, uninvolved lung samples (peritumor tis-
sues) were obtained during tumor resections at the lung specialist 
clinic Asklepios Fachkliniken München-Gauting and accessed through 
the bioArchive of the Comprehensive Pneumology Center in Munich. 
The study was approved by the local ethics committee of the Ludwig 
Maximilian University of Munich (EK 333-10 and 382-10), and written 
informed consent was obtained from all patients. All fresh tissues from 
patients in a given time frame without any specific selection criteria 
were included, and only patients with obvious chronic lung disease as 
comorbidity based on their lung function parameters before tumor 
resection were excluded. Metadata of the donors’ sex were based on 
self-report.

Single-cell suspensions for scRNA-seq were generated as previ-
ously described62. In brief, lung tissue samples were cut into smaller 
pieces, washed with phosphate-buffered saline (PBS) and enzymati-
cally digested using an enzyme mix composed of dispase, collagenase, 
elastase and DNAse for 45 min at 37 °C while shaking. After inactivating 
the enzymatic activity with 10% fetal calf serum (FCS)/PBS, dissociated 
cells were passed through a 70 µm cell strainer, pelleted by centrifuga-
tion (300g; 5 min) and subjected to red blood cell lysis. After stopping 
the lysis with 10% FCS/PBS, the cell suspension was passed through a 
30 µm strainer and pelleted. Cells were resuspended in 10% FCS/PBS, 
assessed for viability and counted using a Neubauer hematocytom-
eter. The cell concentration was adjusted to 1,000 cells per µl and 
~16,000 cells were loaded on a 10x Genomics Chip G with Chromium 
Single Cell 3′ v3.1 gel beads and reagents (3′ GEX v3.1; 10x Genomics). 
Libraries were prepared according to the manufacturer’s protocol 
(CG000204_RevD; 10× Genomics). After a quality check, scRNA-seq 
libraries were pooled and sequenced on a NovaSeq 6000 instrument.

The generation of count matrices was performed using the Cell 
Ranger computational pipeline (v3.1.0; STAR v2.5.3a). The reads were 
aligned to the GRCh38 human reference genome (GRCh38; Ensembl99). 
Downstream analysis was performed using the Scanpy83 package 
(version 1.8.0). We assessed the quality of our libraries and excluded 
barcodes with fewer than 300 genes detected, while retaining those 
with a number of transcripts between 500 and 30,000. Furthermore, 
cells with a high proportion (>15%) of transcript counts derived from 
mitochondrial-encoded genes were removed. Genes were considered if 
they were expressed in at least five cells. Raw counts of cells that passed 
filtering were used as input for the HLCA.

Duong_lungMAP_unpubl. All postmortem human donor lung samples 
were obtained from BRINDL, supported by the NHLBI LungMAP Human 
Tissue Core housed at the University of Rochester. Consent, tissue 
acquisition and storage protocols can be found on the repository’s 
website (brindl.urmc.rochester.edu/). Data were collected as part of 
the Human Biomolecular Atlas Program (HuBMAP). Metadata of the 
donor’s sex were based on self-report. For isolation of single nuclei, ten 
cryosections (40 µm thickness) from O.C.T.-embedded tissue blocks 
stored at −80 °C were shipped on dry ice and processed according to 
a published protocol84. Single-nucleus RNA-seq was completed using 
10x Chromium Single Cell 3’ Reagent Kits v3, according to a published 
protocol84,85. Raw sequencing data were processed using the 10x Cell 
Ranger v3 pipeline and the GRCh38 reference genome. For down-
stream analysis, mitochondrial transcripts and doublets identified by 
DoubletDetection86 version 2.4.0 were removed. Samples were then 
combined and cell barcodes were filtered based on the genes detected 
(>200 and <7,500) and the gene unique molecular identifier (UMI) ratio 
(gene.vs.molecule.cell.filter function) using Pagoda2 (github.com/
hms-dbmi/pagoda2). Also using Pagoda2 for clustering, counts were 
normalized to total counts per nucleus. For batch correction, gene 
expression was scaled to dataset average expression. After variance 
normalization, all significantly variant genes (n = 4,519) were used for 
PCA. Clustering was done at different k values (50, 100 or 200) using the 
top 50 principal components and the infomap community detection 
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algorithm. Then, principal component and cluster annotations were 
imported into Seurat30 version 4.0.0. Differentially expressed genes 
for all clusters were generated for each k resolution using Seurat 
FindAllMarkers (only.pos = TRUE, max.cells.per.ident = 1000, logfc.
threshold = 0.25, min.pct = 0.25). Clusters were manually annotated 
based on distinct differentially expressed marker genes. Raw counts 
and the thus obtained cell annotations were used as input for the HLCA.

Pooled data from ref. 4 and unpublished data. These data were a 
combination of published4 and unpublished data. In both cases, healthy 
volunteers were recruited for bronchoscopy at the University Medical 
Center in Groningen after giving informed consent and according 
to the protocol approved by the IRB (ABR number NL69765.042.19). 
Inclusion criteria and tissue processing were performed as previously 
described4. In short, all donors were 20–65 years old and had a history 
of smoking <10 pack-years. Metadata of the donors’ sex were based 
on self-report. To exclude respiratory disease, the following criteria 
were used: absent history of asthma or COPD; no use of asthma- or 
COPD-related medication; a negative provocation test (concentration 
of methacholine that provokes a 20% decrease in the forced expiratory 
volume in 1 s (FEV1) > 8 mg ml−1); no airflow obstruction (FEV1/forced 
vital capacity ≥ 70%); and an absence of lung function impairment 
(that is, FEV1 ≥ 80% predicted). All donors underwent a bronchoscopy 
under sedation using a standardized protocol87. Nasal brushes were 
obtained from the lateral inferior turbinate in a subset of the volun-
teers immediately before bronchoscopy using a Cyto-Pak CytoSoft 
nasal brush (Medical Packaging Corporation). Six macroscopically 
adequate endobronchial biopsies were collected for this study, located 
between the third and sixth generation of the right lower and mid-
dle lobe. Bronchial brushes were obtained from a different airway at 
similar anatomical locations using a Cellebrity bronchial brush (Boston 
Scientific). Extracted biopsies and bronchial and nasal brushes were 
processed directly, with a maximum of 1 h delay. Bronchial biopsies 
were chopped biopsies using a single-edge razor blade. A single-cell 
solution was obtained by tissue digestion using 1 mg ml−1 collagenase 
D and 0.1 mg ml−1 DNase I (Roche) in Hanks’ Balanced Salt Solution 
(Lonza) at 37 °C for 1 h with gentle agitation for both nasal brushes and 
bronchial biopsies. Single-cell suspensions were filtered and forced 
using a 70 µm nylon cell strainer (Falcon), followed by centrifugation 
at 550g and 4 °C for 5 min and one wash with PBS containing 1% bovine 
serum albumin (BSA; Sigma–Aldrich). The single-cell suspensions used 
for 10x Genomics scRNA-seq analysis were cleared of red blood cells 
using a red blood cell lysis buffer (eBioscience) followed by live cell 
counting and loading of 10,000 cells per lane. We used 10x Genom-
ics Chromium Single Cell 3′ Reagent Kits v2 and v3 according to the 
manufacturers’ instructions. Raw sequencing data were processed 
using the Cell Ranger 3.1.0-based HLCA pipeline, with the reference 
genome GRCh38 and annotation using Ensembl98. Ambient RNA cor-
rection was performed with FastCAR88, using an empty library cutoff 
of 100 UMI and a maximum allowed contamination chance of 0.05, 
ignoring the mitochondrial RNA. Data were merged and processed 
using Seurat30, filtering to libraries with >500 UMIs and >200 genes 
and to the libraries containing the lowest 95% of mitochondrial RNA 
per sample and <25% mitochondrial RNA, normalized using sctrans-
form89 while regressing out variation correlating with the percentage 
of mitochondrial RNA per cell. In general, 15 principal components 
were used for the clustering, at a resolution of 0.5 to facilitate manual 
annotation of the dataset. Clusters in the final object that were driven 
by single donors were removed. Raw counts and cell annotations were 
used as input for the HLCA.

Jain_Misharin_2021. Nasal epithelial samples were collected from 
healthy volunteers who provided informed consent at Northwestern 
Medicine in Chicago. The protocol was approved by the Northwestern 
University IRB (STU00214826). Healthy volunteers were recruited to 

match a cohort of patients with cystic fibrosis for the ongoing study 
at Northwestern University (with M.J. as the principal investigator). 
In both studies, A.V.M. did not influence participant recruitment and 
did not introduce biases in sample selection. Metadata of the donors’ 
sex were based on self-report. Briefly, donors were seated and asked 
to extend their neck. A nasal curette (Rhino-Pro; VWR) was inserted 
into either nare and gently slid in the direction of posterior to anterior 
~1 cm along the lateral inferior turbinate. Five curettes were obtained 
per participant. The curette tip was then cut and placed in 2 ml hypo-
thermosol and stored at 4 C until processing. A single-cell suspension 
was generated using the cold-active dispase protocol reported by 
Deprez et al.6 and Zaragosi and Barbry90 with slight modification. 
Specifically, ethylenediaminetetraacetic acid (EDTA) was omitted and 
cells were dispersed by pipetting 20 times every 5 min using a 1 ml tip 
instead of tritration using a 21/23 G needle. The final concentration of 
protease from Bacillus licheniformis was 10 mg ml−1. The total diges-
tion time was 30 min. Following the wash in 4 ml 0.5% BSA in PBS and 
centrifugation at 400g for 10 min, cells were resuspended in 0.5% 
BSA in PBS and counted using a Nexcelom K2 Cellometer with acrid-
ine orange/propidium iodide reagent. This protocol typically yields 
~300–500,000 cells with a viability of >95%. The resulting single-cell 
suspension was then used to generate single-cell libraries following the 
protocol for 5′ V1 (CG000086 Rev M; 10x Genomics) or V2 chemistry 
(CG000331 Rev A; 10x Genomics). Excess cells from two of the samples 
were pooled together to generate one additional single-cell library. 
After a quality check, the libraries were pooled and sequenced on a 
NovaSeq 6000 instrument. Raw sequencing data were processed using 
the Cell Ranger 3.1.0 pipeline, with the reference genome GRCh38 and 
annotation using Ensembl98. To assign sample information to cells in 
the single-cell library prepared from two samples, we ran souporcell91 
version 2.0 for that library and two libraries that were prepared from 
these samples separately. We used common genetic variants prepared 
by the souporcell authors to separate cells into two groups by genotype 
for each library, and Pearson correlation between the identified geno-
types across libraries to establish correspondence between genotype 
and sample. Cell annotations were assigned to cell clusters based on 
expert interpretation of marker genes for each cluster. Cell clusters 
were derived with the Seurat30 version 3.2 workflow in which samples 
were normalized with sctransform89, 3,000 HVGs were selected and 
integrated and clusters were derived from 30 principal components 
using the Louvain algorithm with default parameters. Clusters with a 
low number of UMIs and high expression of ribosomal or mitochondrial 
genes were excluded as low quality. Raw counts and the thus obtained 
cell annotations were used as input for the HLCA.

Schultze_unpubl. Human lung tissue wabus available for research 
purposes following ethical approval from Hannover Medical School 
(Nr. 7414, 2017). All patients in this study provided written informed 
consent for sample collection and data analyses. At Hannover Medical 
School, patients with lung cancer were recruited in the course of their 
operation (that is, surgical tumor resection was performed according 
to the ethical vote of the German Centre for Lung Research, ethical vote 
7414 and data safety guidelines). There was no bias in patient recruit-
ment since the samples were collected as fresh native tissue following 
surgical tumor resection and according to the availability of surplus 
adjacent nonmalignant lung tissue, which was resected in parallel to the 
tumor tissue. Metadata of the donors’ sex were based on self-report or 
reported by medical professionals during consenting. Fresh adjacent 
normal tumor-free lung tissues from patients with non-small cell lung 
cancer tumors were obtained by the Lung Research group (D. Jonigk, 
Pathology, Hannover Medical School) and processed for single-cell iso-
lation immediately. Lung tissue was chopped with a scalpel and scissors 
and digested using BD Tumor Dissociation Reagent (BD Biosciences) 
for 30 min in a 37 °C water bath. The digestion was stopped with 1% FCS 
and 2 mM EDTA in PBS without Ca2+/Mg2+ and cells were filtered over 
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a 70 µm cell strainer (BD Falcon). Erythrocytes were removed using a 
human MACSxpress Erythrocyte Depletion Kit (Miltenyi Biotec) and 
cells were filtered using a 40 µm cell strainer (BD Falcon). The viability 
of the cells was assessed microscopically and by flow cytometry using 
a LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (Invitrogen) and was 
~84%. The single-cell suspension was processed for scRNA-seq and 
library preparation with the Seq-Well protocol92. Library pools with 
fewer than 100 cells were discarded and merged into one object. The 
Seurat v3.2 pipeline was used to further analyze the data. Genes in 
fewer than five cells in the dataset, as well as the mitochondrial genes 
MT-RNR1 and MT-RNR2, were removed. Cells with fewer than 200 genes 
were discarded, whereas cells with <5% mitochondrial genes or <30% 
intronic reads were kept for further analysis. The data were log nor-
malized and 2,000 variable genes were calculated for each sample for 
integration with Seurat’s Canonical Correlation Analysis algorithm93. 
The data were scaled, 50 principle components were selected and the 
data were clustered with 0.6 resolution. Cluster annotation revealed a 
low-quality cluster that was subsequently removed and the process (the 
calculation of variable genes, calculation of 30 principal components, 
clustering with 0.4 resolution) was repeated. Raw counts of the cells 
that passed all filtering were provided as input for the HLCA.

HLCA core data collection
To accommodate data protection legislation, scRNA-seq datasets of 
healthy lung tissue were shared by dataset generators as raw count 
matrices, thereby obviating the need to share genetic information. 
Count matrices were generated using varying software (Supplementary 
Table 1). Previously published scRNA-seq data were partly realigned 
by the dataset generators: the raw sequencing data of four previously 
published studies were realigned to GRCh38 using Ensembl84 for the 
HLCA5,6,25,40. For two of these studies5,6, the Cell Ranger 3.1.0-based HLCA 
pipeline was used for realignment. For the remaining two25,40, data were 
processed as previously described25,40, but with the reference genome 
and genome annotation adapted to the HLCA (GRCh38; Ensembl84). 
All other datasets in the HLCA core were originally already aligned to 
GRCh38 (Ensembl84) except data from ref. 22 (GRCh38; Ensembl93) 
(Supplementary Table 1). For ref. 6, the count matrices provided had 
ambient RNA removed, as described previously.

Metadata collection (HLCA core)
For all of the datasets from the HLCA core, a preformatted sample 
metadata form was filled out by the dataset providers for every sam-
ple, containing metadata such as the ID of the donor from whom the 
sample came, the donor’s self-reported ethnicity, the type of sample, 
the sequencing platform and so on (Supplementary Table 2). Ethnic-
ity metadata were based on self-reported ethnicity for live donors or 
retrieved from medical records or assigned by the organ procurement 
team in the case of organ donors, as collected in the individual studies. 
For donor ethnicity, the following categories of self-reported ethnic-
ity were used during metadata collection: Black, white, Latino, Asian, 
Pacific Islander and mixed. To conform to pre-existing 1,000 Genomes 
ancestry superpopulations94, these self-reported ethnicity categories 
were then harmonized with the superpopulation categories as fol-
lows: Black was categorized as African, white as European and Latino 
as admixed American, while keeping the category Asian (merging 
the superpopulations East Asians and South Asians as this granular-
ity was missing from the collected self-reported ethnicity data) and 
keeping Pacific Islander, as this category did not correspond to any 
of the superpopulations but does constitute a separate population 
in HANCESTRO95. We refer to the resulting categories as harmonized 
ethnicity. Both self-reported ethnicity (as collected) and harmonized 
ethnicity per donor are detailed in Supplementary Table 2. Cell type 
annotations from dataset providers were included in all datasets. For 
tissue dissociation protocols, protocols were grouped based on: (1) 
enzyme(s) used for tissue dissociation; and (2) the digestion time in 

cases where large differences were observed between protocols (that 
is, cold protease protocols were split into two groups: 30–60 min 
versus overnight).

General data preprocessing for the HLCA core
Patients with lung conditions affecting larger parts of the lung, such 
as asthma or pulmonary fibrosis, were excluded from the HLCA core 
and later added to the extended atlas. For the HLCA core, all matrices 
were gene filtered based on Cell Ranger Ensembl84 gene-type filtering96 
(resulting in 33,694 gene IDs). Cells with fewer than 200 genes detected 
were removed (removing 2,335 cells and 21 extra erythrocytes with 
close to 200 genes expressed as these hampered SCRAN normaliza-
tion; see below), along with genes expressed in fewer than ten cells 
(removing 5,167 out of 33,694 genes).

Total count normalization with SCRAN
To normalize for differences in total UMI counts per cell, we performed 
SCRAN normalization97. Since SCRAN assumes that at least half of the 
genes in the data being normalized are not differentially expressed 
between subgroups of cells, we performed SCRAN normalization 
within clusters. To this end, we first performed total count normaliza-
tion, by dividing each count by its cell’s total count and multiplying by 
10,000. We then performed a log transformation using natural log and 
pseudocount 1. A PCA was subsequently performed. Using the first 50 
principal components, a neighborhood graph was calculated with the 
number of neighbors set to k = 15. Data were subsequently clustered 
with Louvain clustering at a resolution of r = 0.5. SCRAN normalization 
was then performed on the raw counts, using the Louvain clusters as 
input clusters and with the minimum mean (library size adjusted) aver-
age count of genes to be used for normalization set to 0.1. The resulting 
size factors were used for normalization. For the final HLCA (and not the 
benchmarking subset), cells with abnormally low size factors (<0.01) 
or abnormally high total counts after normalization (>10 × 105) were 
removed from the data (267 cells in total).

Cell type reference creation and metadata harmonization
To harmonize cell type labels from different datasets in the HLCA core, 
a common reference was created to which original cell type labels were 
mapped (Supplementary Table 4). To accommodate labels at different 
levels of detail, the cell type reference was made hierarchical, with level 
1 containing the coarsest possible labels (immune, epithelial and so 
on) and level 5 containing the finest possible labels (for example, naive 
CD4 T cells). Levels were created in a data-driven fashion, recursively 
breaking up coarser-level labels into finer ones where finer labels were 
available.

To map anatomical location to a 1D CCF score that could be used 
for modeling, a distinction was made between upper and lower airways. 
First, an anatomical coordinate score was applied to the upper airways, 
starting at 0 and increasing linearly (with a value of 0.5) between each 
of the following anatomical locations: inferior turbinate, nasophar-
ynx, oropharnyx, vesibula and larynx. The trachea received the next 
anatomical coordinate score using the same linear increment as in the 
upper airways (a score of 2.5). In the lower airways, the coordinate score 
within the bronchial tree was based on the generation airway, with the 
trachea being the first generation and the total number of generations 
assumed to be 23 (ref. 98). The alveolar sac was assigned the coordinate 
score of the 23rd generation airway. The coordinate score of each gen-
eration airway was calculated by taking the log2 value of the generation 
and adding it to the score of the trachea. Using this methodology, the 
alveolus received an anatomical coordinate score of 7.02. To calculate 
the final CCF coordinate, the coordinate scores (ranging from 0 to 7.02) 
were scaled to a value between 0 (inferior turbinate) and 1 (alveolus). 
Samples were then mapped to this coordinate system using the best 
approximation of the sampling location for each of the samples of the 
core HLCA (Supplementary Table 3).
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Data integration benchmarking
For computational efficiency, benchmarking was performed on a 
subset of the total atlas, including data from ten studies split into 13 
datasets (ref. 22 was split into 10xv1 and 10xv2 data; ref. 25 was split into 
10xv2 and 10xv3 data; and the pooled data from ref. 21 and associated 
unpublished data were split into two based on the processing site). The 
data came from 72 donors, 124 samples and 372,111 cells. Preprocess-
ing of the benchmarking data included the filtering of cells (minimum 
number of total UMI counts: 500) and genes (minimum number of cells 
expressing the gene: 5).

For integration benchmarking, the scIB benchmarking framework 
was used99 with default integration parameter settings unless otherwise 
specified. All benchmarked methods except scGen (that is, BBKNN, 
ComBat, Conos, fas99 tMNN, Harmony, Scanorama, scANVI, scVI and 
Seurat RPCA) were run at least twice: on the 2,000 most HVGs; and on 
the 6,000 most HVGs. Of these methods, all that did not require raw 
counts as input were run twice on each gene set: once with gene counts 
scaled to have a mean of 0 and standard deviation of 1; and once with 
unscaled gene counts. scVI and scANVI, which require raw counts as 
input, were not run on scaled gene counts. scGen was only tested on 
2,000 unscaled HVGs. For HVG selection, first, HVGs were calculated 
per dataset using Cell Ranger-based HVG selection100 (default param-
eter settings: min_disp=0.5, min_mean=0.0125, max_mean=3, span=0.3, 
n_bins=20). Then, genes that were highly variable in all datasets were 
considered overall highly variable, followed by genes highly variable 
in all datasets but one, in all datasets but two and so on until a predeter-
mined number of genes were selected (2,000 or 6,000 genes).

For scANVI and scVI, genes were subset to the HVG set and the 
resulting raw count matrix was used as input. For all other methods, 
SCRAN-normalized (as described above) data were used. Genes 
were then subset to the precalculated HVG sets. For integration of 
gene-scaled data, all genes were scaled to have mean of 0 and standard 
deviation of 1.

Two integration methods allowed for input of cell type labels to 
guide the integration: scGen and scANVI. As labels, level 3 harmonized 
cell type labels were used (Supplementary Table 4), except for blood 
vessel endothelial, fibroblast lineage, mesothelial and smooth muscle 
cells, for which we used level 2 labels. Since scGen does not accept 
unlabeled cells, cells that did not have annotations available at these 
levels (that is, cells annotated as cycling, epithelial, stromal or lymphoid 
cells with no further annotations; 4,499 cells in total) were left out of 
the benchmarking data.

The dataset rather than the donor of the sample was used as the 
batch parameter. The maximum memory usage was set to 376 Gb and 
all methods requiring more memory were excluded from the analysis. 
The quality of each of the integrations was scored using 12 metrics, with 
four metrics measuring the batch correction quality and eight metrics 
quantifying the conservation of biological signal after integration (Sup-
plementary Fig. 1; metrics previously described28). Overall scores were 
computed by taking a 0.4:0.6 weighted mean of batch effect removal 
to biological variation conservation (bioconservation), respectively. 
Methods were ranked based on overall score (Supplementary Fig. 1).

Splitting of studies into datasets
For integration of the data into the HLCA core, we first determined for 
which cases studies had to be split into separate datasets (which were 
treated as batches during integration). Reasons for possible splitting 
were: (1) different 10x versions used within a study (for example, 10xv2 
versus 10xv3); or (2) the processing of samples at different institutes 
within a study. To determine whether these covariates caused batch 
effects within a study, we performed principal component regression101. 
To this end, we preprocessed single studies separately (total count 
normalization to median total counts across cells and subsequent PCA 
with 50 principal components). For each study, we then calculated the 
fraction of the variance in the first 50 principal components that could 

be explained (PCexpl) by the covariate of interest (that is, 10x version or 
processing institute):

PCexpl =
∑50

i=1 var (cov)

∑50
i=1 var (PCi)

where var(PCi|cov) is the variance in scores for the ith principal com-
ponent across cells that can be explained by the covariate under con-
sideration, based on a linear regression.

Then, 10x version or processing institute assignments were ran-
domly shuffled between samples and PCexpl was calculated for the 
randomized covariate. This was repeated over ten random shufflings 
and the mean and standard deviation of PCexpl were then calculated for 
the covariate. If the nonrandomized PCexpl was more than 1.5 standard 
deviations above the randomized PCexpl, we considered the covariate a 
source of batch effect and split the study into separate datasets. Thus, 
both Jain_Misharin_2021 and ref. 22 were split into 10xv1 and 10xv2; ref. 
25 was split into 10xv2 and 10xv3; and ref. 21 and its pooled unpublished 
data were not split based on 10x version nor on processing location.

Integration of HLCA core datasets with scANVI
For integration of the datasets into the HLCA core, coarse cell type 
labels were used as described for integration benchmarking (AT1, 
AT2, arterial endothelial cell, B cell lineage, basal, bronchial vessel 1, 
bronchial vessel 2, capillary, multiciliated, dendritic, fibroblast lineage, 
KRT5−KRT17+ epithelial, lymphatic endothelial cell, macrophages, mast 
cells, megakaryocytes, mesothelium, monocytes, neutrophils, natural 
killer/natural killer T cells, proliferating cells, rare, secretory, smooth 
muscle, squamous, submucosal secretory, T cell lineage, venous and 
unlabeled), except cells with lacking annotations were set to unlabeled 
instead of being removed. scANVI was run on the raw counts of the 
2,000 most HVGs (calculated as described above), using datasets as 
the batch variable to enable the conservation of interindividual varia-
tion. The following parameter settings were used: number of layers: 2; 
number of latent dimensions: 30; encode covariates: True; deeply inject 
covariates: False; use layer norm: both; use batch norm: none; gene 
likelihood: nb; n epochs unsupervised: 500; n epochs semi-supervised: 
200; and frequency: 1. For the unsupervised training, the following 
early-stopping parameters were used: early stopping metric: elbo; 
save best state metric: elbo; patience: 10; threshold: 0; reduce lr on 
plateau: True; lr patience: 8; and lr_factor: 0.1. For the semisupervised 
training, the following early-stopping parameter settings were used: 
early stopping metric: accuracy; save best state metric: accuracy; on: 
full dataset; patience: 10; threshold: 0.001; reduce lr on plateau: True; 
lr_patience: 8; and lr_factor: 0.1. The integrated latent embedding 
generated by scANVI was used for downstream analysis (clustering 
and visualization). For gene-level analyses (differential expression and 
covariate effect modeling), uncorrected counts were used.

UMAP embedding and clustering
To cluster the cells in the HLCA core, a nearest neighbor graph was 
calculated based on the 30 latent dimensions that were obtained from 
the scANVI output, with the number of neighbors set to k = 30. This 
choice of k, while improving clustering robustness, could impair the 
detection of very rare cell types. Coarse Leiden clustering was done on 
the graph with a resolution of r = 0.01. For each of the resulting level 1 
clusters, a new neighbor graph was calculated using scANVIs 30 latent 
dimensions, with the number of neighbors again set to k = 30. Based 
on the new neighbor graph, each cluster was clustered into smaller 
level 2 clusters with Leiden clustering at a resolution of r = 0.2. The 
same was done for levels 3 and 4 and (where needed) 5, with k set to 
15, 10 and 10, respectively, and the resolution set to 0.2. Clusters were 
named based on their parent clusters and sister clusters (for example, 
cluster 1.2 is the third biggest subcluster (starting at 0) of cluster 1).  
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For visualization, a 2D UMAP102 of the atlas was generated based on the 
30 nearest neighbors graph.

Calculating cluster entropy of cell type labels and donors
To quantify cluster cell type label disagreement for a specific level of 
annotation, the label Shannon entropy was calculated on the cell type 
label distribution per cluster as

−
k
∑
i=1

p (xi) log [p (xi)] ,

where x1…xk are the set of labels at that annotation level and p(xi) is 
the fraction of cells in the cluster that was labeled as xi. Cells without a 
label at the level under consideration were not included in the entropy 
calculation. If <20% of cells were labeled at the level under considera-
tion, the entropy was set to not available for the figures. The entropy 
of donors per cluster (that is, diversity of donors in a cluster) was cal-
culated in the same way.

Thresholds for high label/donor entropy and doublet clusters
To set a threshold for high label entropy, we calculated the label entropy 
of a hypothetical cluster with 75% of cells given one label and 25% of 
cells given another label, as a cluster with <75% of cells with the same 
label suggests substantial disagreement in terms of cell type labeling. 
Clusters with a label entropy above that level (0.56) were considered to 
have high label entropy. Six small clusters with high label entropy even 
at the coarsest level of annotation highlighted doublet populations 
(identified via simultaneous expression of lineage-specific marker 
genes; for example, expression of both epithelial (AT2) and stromal 
(smooth muscle) marker genes) not labeled as such in the original 
datasets. These clusters were removed from the HLCA core, bringing 
the total number of clusters to 94. To set a threshold for low donor 
entropy, we calculated the label entropy for a hypothetical cluster with 
95% of cells from one donor and the remaining 5% of cells distributed 
over all other donors, as clusters with >95% of the cells from the same 
cluster could be considered single-donor clusters, possibly caused by 
remaining batch effects or by donor-specific biology that is difficult to 
interpret. Clusters with a donor entropy below that level (0.43) were 
considered clusters with low donor entropy.

Rare cell type analysis
To determine how well rare cell types (ionocytes, neuroendocrine cells 
and tuft cells) were clustered together and separate from other cell 
types after integration, we calculated recall (the percentage of all cells 
annotated as a specific rare cell type that were grouped into the cluster) 
and precision (the percentage of cells from the cluster that were anno-
tated as a specific rare cell type) for all level 3 clusters. Nested clustering 
on Harmony29,102 and Seurat’s RPCA30 output was done based on PCA of 
the corrected gene counts, recalculating the principal components for 
every parent cluster when performing clustering into smaller children 
clusters, with clustering performed as described above under ‘UMAP 
embedding and clustering’. The level 3 clusters with the highest sensi-
tivity for each cell type are included in Supplementary Fig. 3b.

Manual cell type annotation
Re-annotation of cells in the HLCA core was done by six investigators 
with expertise in lung biology (E.M., M.C.N., A.V.M., L.-E.Z., N.E.B. and 
J.A.K.) based on original annotations and differentially expressed genes 
of the HLCA core clusters. Annotation was done per cluster, using finer 
clusters where these represented specific known cell types or states 
rather than donor-specific variation. Annotations of cell identities 
were hierarchical (as was the harmonized cell type reference) and each 
cluster was annotated at the finest known level, whereafter coarser 
levels could automatically be inferred (for example, a cell annotated 
as a CD8+ T cell was then automatically annotated as of T cell lineage 

at level 3, lymphoid cell lineage at level 2 and immune cell lineage at 
level 1). The number of cells per cell type is shown for all levels in Sup-
plementary Table 5.

Mislabeling of original cells was identified by comparing final 
annotations with original harmonized labels and checking whether 
these were contradictory (and not only done at different levels of 
detail). Out of 61 final cell types, 18 included mostly mislabeled cells, 
12 of which were previously known cell types. Despite consisting of 
mostly mislabeled cells from the original datasets, individual experts 
agreed on the annotation of these cell types: for all previously known 
cell types with a high proportion of mislabeled cells, the majority of 
experts agreed on the final annotation for the atlas, or only differed in 
the granularity of annotation.

Marker gene selection
Marker genes were calculated based on per-sample, per-cell-type 
pseudo-bulks, calculating the mean (normalized and log-transformed) 
expression per pseudo-bulk for every gene. Pseudo-bulks were only 
calculated for a sample if it had at least ten cells of the cell type under 
consideration. An exception was made for cell types with fewer than 
100 cells in total, for which the minimum number of cells per sample 
was set to 3. Pseudo-bulks rather than cell-level counts were used to 
ensure equal weighing of every sample in the differential expression 
test, thus statistically testing cell type-specific changes in expression 
that were significant across samples rather than cells. As pseudo-bulks 
represent the mean of a repeated draw from a single distribution, based 
on the central limit theorem, we expect pseudo-bulk gene counts to 
be normally distributed, and a t-test was therefore used to test differ-
ential gene expression, comparing a single cell type with all other cell 
types in the atlas (marker iteration 1). To further filter out differentially 
expressed genes that were not consistently expressed across samples, 
we applied a filtering step to remove genes expressed in <80% of the 
pseudo-bulks, or genes expressed in <50% of cells per pseudo-bulk 
(with the filtering based on the mean across pseudo-bulks). Similarly, 
to ensure specificity of gene expression, additional filtering was done 
to remove genes expressed in >20% of other pseudo-bulks. For many 
cell types, marker genes unique to a single cell type across the entire 
atlas could not be found. To nonetheless collect a robust and unique set 
of marker genes for every cell type, a hierarchical approach was taken, 
subsetting the atlas to four compartments (epithelial, endothelial, 
immune and stromal, for each of which a marker set was calculated) 
before calculating cell type-specific marker genes and filtering on 
uniqueness only within the compartment (marker iteration 2). When 
necessary, a second subsetting step was done, now subsetting to the 
next coarsest cell type set within the compartment (for example, lym-
phatic endothelial cells) and repeating the same procedure (marker 
iteration 3). Finally, filtering criteria were loosened for the remain-
ing cell types for which no unique markers could be found in any of 
the iterations (marker iterations 4 and 5). Exact filtering parameters 
per iteration can be found in Supplementary Table 16. For lymphatic 
endothelial cell subtypes, one subtype contained sufficient cells for 
only a single sample, hampering a pseudo-bulk-based approach. There-
fore, lymphatic endothelial cell subset markers (mature, differentiat-
ing and proliferating) were chosen based on known literature, after 
checking consistency with expression patterns observed in the HLCA 
lymphatic endothelial cells.

Variance between individuals explained by covariates
To quantify the extent to which different technical and biological 
covariates correlated with interindividual variation in the atlas, we 
calculated the variance explained by each covariate for each cell type. 
We first split the data in the HLCA core by cell type annotation, merg-
ing substates of a single cell type into one (Supplementary Table 5; 
includes the number of cells per cell type). For every cell type, we 
excluded samples that had fewer than ten cells of the sample. We then 
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summarized covariate values per sample for every cell type depend-
ing on the variable, taking the mean across cells from a sample for 
scANVI latent components (integration results), UMI counts per cell 
and fractions of mitochondrial UMIs, while for all other covariates (for 
example, BMI and tissue sampling method) each sample had only one 
value; therefore, these values were used.

Next, we performed principal component regression on every 
covariate, as described previously (see the section ‘Splitting of studies 
into datasets’), but now using scANVI latent component scores instead 
of principal component scores for the regression, yielding a fraction 
of latent component variance explained per covariate. Samples that 
did not have a value for a given covariate (for example, where the BMI 
was not recorded for the donor) were excluded from the regression. 
Categorical covariates were converted to dummy variables. Cell type–
covariate pairs for which only one value was observed for the covariate 
were excluded from the analysis.

Quantification of the correlation or dependence between vari-
ables within a cell type and identification of the minimum number 
of samples needed to control for spurious correlation are described 
below.

Covariate dependence for interindividual variance
To check the extent to which covariates correlated with each other, 
thereby possibly acting as confounders in the principal component 
regression scores, we determined dependence between all covariate 
pairs for every cell type. If at least one covariate was continuous, we 
calculated the fraction of variance in the continuous covariate that 
could be explained by the other covariate (dummying categorical 
covariates) and took the square root (equal to Pearson’s r for two con-
tinuous covariates). For two categorical covariates, if both covariates 
had more than two unique values, we calculated normalized mutual 
information between the covariates using scikit-learn103, since a linear 
regression between these two covariates is not possible.

Finding the minimum number of samples for variance 
modeling
To control for spurious correlations between interindividual cell type 
variation and covariates due to low sample numbers, we assessed the 
relationship between sample number and mean variance explained 
across all covariates for every cell type. We found that for cell types 
sampled in fewer than 40 samples the mean variance explained across 
all covariates showed a high negative correlation with the number of 
samples (Supplementary Fig. 4a). We reasoned that for these cell types 
correlations between interindividual variation and our covariates were 
inflated due to undersampling. Moreover, we note that at lower sample 
numbers technical and biological covariates often strongly correlate 
with each other across donors (Supplementary Fig. 4c). This might lead 
to the attribution of true biological variation to technical covariates, 
and vice versa, complicating the interpretation of observed interin-
dividual cell type variation. Consequently, we consider 40 a recom-
mended minimum number of samples to avoid spurious correlations 
between observed interindividual variation and tested covariates, and 
excluded results from cell types with fewer samples.

Cell type filtering covariate encoding for gene-level modeling
To select cell types for which covariate effects could be confidently 
modeled at the gene level, we followed the same procedure for every 
cell type: we filtered out all genes that were expressed in fewer than 
50 cells and all samples that had fewer than ten cells of the cell type. 
We furthermore filtered out datasets with fewer than two donors and 
refrained from modeling categories in covariates that had fewer than 
three donors in their category for that cell type.

We encoded smoking status as a continuous covariate, setting 
never to 0, former to 0.5 and current to 1. Anatomical region was 
encoded into anatomical region CCF scores as described earlier.  

As we noted that changes from the nose to the rest of the airways and 
lungs were often independent from continuous changes observed in 
the lungs only, we encoded nasal as a separate covariate, setting sam-
ples from the nose to 1 and all others to 0. BMI and age were rescaled, 
such that the 10th percentile of observed values across the atlas was 
set to 0 and the 90th percentile was set to 1 (25 and 64 years for age, 
respectively, and 21.32 and 36,86 for BMI).

To determine whether covariance between covariates was low 
enough for modeling, we calculated the variance inflation factor (VIF) 
between covariates at the donor level. The VIF quantifies multicollin-
earity among covariates of an ordinary least squares regression and a 
high VIF indicates strong linear dependence between variables. If the 
VIF was higher than 5 for any covariate for a specific cell type, we con-
cluded that covariance was too high and excluded that cell type from 
the modeling. As many cell types lacked sufficient representation of 
harmonized ethnicities other than European, including harmonized 
ethnicity in the analysis simultaneously decreased the samples that 
could be included in the analysis to only those with ethnicity annota-
tions; hence, we excluded harmonized ethnicity from the modeling.

Modeling gene-level interindividual variation and GSEA
To model the effects of demographic and anatomical covariates (sex, 
age, BMI, harmonized ethnicity, smoking status and anatomical loca-
tion of the sample) on gene expression, we employed a generalized 
linear mixed model. We used sample-level pseudo-bulks (split by cell 
type), since the covariates modeled also varied at the sample or donor 
level and not at the cell level. Modeling these covariates at the cell level 
(that is, treating single cells as independent samples even when they 
come from the same sample) has been shown to inflate P values104,105. 
First, we split the lung cell atlas by cell type annotation, pooling detailed 
annotations into one subtype (for example, grouping all lymphatic 
endothelial cell subtypes into one) (Supplementary Table 5; includes 
the number of cells per cell type). Subsequent filtering, covariate 
encoding and exclusion of cell types due to covariate dependence are 
described above.

Gene counts were summed across cells for every sample, within 
cell type. Sample-wise sums (that is, pseudo-bulks) were normalized 
using edgeR’s calcNormFactors function, using default parameter 
settings. We then used voom106, a method designed for bulk RNA-seq 
that estimates observation-specific gene variances and incorporates 
these into the modeling. Specifically, we used a voom extension (dif-
ferential expression testing with linear mixed models) that allows for 
mixed-effects modeling and modeled gene expression as:

log [normcount] ∼ 1 + age + sex + BMI + smoking + nose + CCF score

+ (1|dataset)

where dataset is treated as a random effect to correct for 
dataset-specific changes in expression and all other effects are modeled 
as fixed effects. Resulting P values were corrected for multiple testing 
within every covariate using the Benjamini–Hochberg procedure.

To identify more systematic patterns across genes and changes 
happening at the gene set level, a gene set enrichment analysis was 
performed using correlation-adjusted mean-rank gene set tests107. 
The analysis was performed in R using the cameraPR function in the 
limma package108, with the differential expression test statistic. Gene 
Ontology biological process terms109,110 were tested separately for each 
comparison. These sets were obtained from MSigDB (version 7.1)111, as 
provided by the Walter and Eliza Hall Institute (https://bioinf.wehi.edu. 
au/MSigDB/index.html).

Mapping of GWAS results to the HLCA cell types
To stratify GWAS results from several lung diseases by lung cell type, we 
applied stratified linkage disequilibrium score regression in single cells 
(sc-LDSC)48. sc-LDSC can link GWAS results to cell types by calculating, 
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for each cell type, whether disease-associated variants are enriched in 
genomic regions of cell-type specific genes (i.e. the region of each gene 
and its surrounding base pairs), while taking into account the genetic 
signal of proximal linkage disequilibrium-associated regions. Here 
cell-type specific genes are defined as genes differentially expressed in 
the cell type of interest48. In contrast with simple enrichment testing of 
only significantly disease-associated genes from a GWAS among genes 
differentially expressed in a cell type, this method takes into account 
all SNPs included in the GWAS. Thus, consistent enrichment of weakly 
disease-associated genes (that would not individually pass significance 
tests) in a cell type could still lead to a significant association between 
the disease and the cell type. In this way, sc-LDSC provides more sta-
tistical power to detect associations between cell types and heritable 
phenotypes such as lung diseases.

To perform sc-LDSC on the HLCA, first a differential gene expres-
sion test was performed for every grouped cell type (Supplementary 
Table 5) in the HLCA using a Wilcoxon rank-sum test, testing against 
the rest of the atlas. The top 1,000 most significant genes with posi-
tive fold changes were stored as genes characterizing that cell type 
(cell type genes) and used as input for LDSC48. Gene coordinates of cell 
type genes were obtained based on the GRCh37.13 genome annotation. 
For SNP data (names, locations and linkage-related information), the 
1000 Genomes European reference (GRCh37) was used, as previously 
described48. Only SNPs from the HapMap 3 project were included 
in the analysis. For identification of SNPs in the vicinity of cell type 
genes, we used a window size of 100,000 base pairs. Genes from X 
and Y chromosomes, as well as human leukocyte antigen genes, were 
excluded because of their unusual genetic architecture and linkage 
patterns. For linkage disequilibrium score calculation, a 1 cM window 
was used. Significance of the link between a phenotype and a cell type 
was calculated using LDSC48. P values yielded by LDSC were corrected 
for multiple testing for every disease tested using the Benjamini–Hoch-
berg correction procedure. As a negative control, the analysis was per-
formed with a GWAS of depression and no cell types were found to be 
significant (Supplementary Fig. 7). The numbers of cases and controls 
per GWAS study were as follows: n = 2,668 cases and 8,591 controls for 
IPF; n = 35,735 cases and 222,076 controls for COPD; n = 11,273 cases 
and 55,483 controls for lung adenocarcinoma; n = 321,047 individuals 
for lung function; n = 88,486 cases and 447,859 controls for asthma; 
and n = 113,769 cases and 208,811 controls for depression (used as 
negative control).

Generating cell type signature matrices for deconvolution
To enable deconvolution of bulk expression data on the basis of 
the HLCA, HLCA cell type signature matrices were generated. One 
generic-purpose signature matrix was created per sublocation of the 
respiratory system (that is, one parenchyma, one airway and one nose 
tissue matrix; Supplementary Table 10). Additionally, a script to gen-
erate custom reference sets from the HLCA data is provided together 
with the HLCA code on GitHub (https://github.com/LungCellAtlas/
HLCA) to tailor the deconvolution signature matrix to any specific 
research question.

Cell types were included in the bulk deconvolution signature 
matrix on the basis of cell proportions (constituting >2% of cells within 
samples of the corresponding tissue in the HLCA core). In addition, 
cell types were merged when they were deemed too transcriptionally 
similar. For each included cell type, 200 cells were randomly sampled 
from the HLCA core, while all cells were included for cell types with 
fewer than 200 cells present in the HLCA core. Cells were sampled from 
the matching anatomical location (for example, nose T cells rather 
than parenchymal T cells were used for the nose signature matrix). 
Signature matrices were constructed using CIBERSORTx112 (version 1.0) 
according to default settings, and no cross-platform batch correction 
was applied. The reference data were optimized by deconvolution of 
pseudo-bulk samples constructed from the HLCA core data, assessing 

deconvolution performance per included cell type based on the cor-
relation of predicted proportions with ground truth composition 
(Supplementary Fig. 8a).

The following cell types were included in the deconvolution: 
endothelial cell arterial, endothelial cell capillary, lymphatic endothe-
lial cell, basal and secretory (merged), multiciliated lineage, AT2, B 
cell lineage, innate lymphoid cell (ILC) natural killer and T cell lineage 
(merged), dendritic cells, alveolar macrophages, interstitial mac-
rophages, mast cells, fibroblast lineage, smooth muscle, endothelial 
cell venous and monocytes (for the parenchyma); basal resting and 
suprabasal (merged), multiciliated lineage, club, goblet, dendritic 
cells, hillock like and T cell lineage (for the nose); and endothelial cell 
venous, CD4 T cells, fibroblasts, smooth muscle, basal and secretory 
(merged), multiciliated lineage, endothelial cell capillary, interstitial 
macrophages, B cell lineage, natural killer cells, CD8 T cells, dendritic 
cells, alveolar macrophages, mast cells and monocytes (for the air-
way). Capillary endothelial cells and interstitial macrophages (airway) 
were excluded from statistical testing due to poor performance in the 
benchmark. Venous endothelial cells and monocytes (parenchyma), 
hillock-like cells and T cell lineage cells (nose) and B cell lineage cells, 
natural killer cells, CD8 T cells, dendritic cells, alveolar macrophages, 
mast cells and monocytes (airways) were excluded from statistical 
testing due to >60% zero proportions.

Deconvolution of bulk expression data using the HLCA core
The parenchymal signature matrix was used to deconvolve RNA expres-
sion data of samples from the Lung Tissue Database52 (GEO accession 
number GSE23546) using only lung tissue samples from patients with 
COPD GOLD stages 3 and 4 (n = 27 and 56, respectively) and matched 
controls (n = 281). The Lung Tissue Database dataset was run on the 
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microarray plat-
form (HuRSTA-2a520709; GPL10379). As this platform has multiple 
probe sets for each gene, we focused on the probe sets that were 
derived from curated RefSeq records (with NM_ accession prefixes) 
when present to maximize the accuracy of the deconvolution. Where 
genes did not have probe sets based on curated RefSeq records or had 
multiple probe sets mapping to curated RefSeq records, the probe 
set with the highest average microarray intensity across samples was 
selected. Quantile normalization of the data and subsequent deconvo-
lution were performed using CIBERSORTx. A Wilcoxon rank-sum test 
between control and GOLD stage 3/4 samples was performed to iden-
tify statistically significant compositional changes in advanced-stage 
COPD compared with control tissue. GOLD 3/4 and control samples 
were matched for age and smoking history. Cell types with >60% of 
samples predicted to have a proportion of zero were excluded from the 
Wilcoxon test, as the high number of tied ranks (zeros in both groups) 
would result in inflated P values. P values were multiple testing cor-
rected using the Benjamini–Hochberg procedure.

The same procedure was followed for a dataset of nasal brush bulk 
RNA-seq samples from asthmatic donors pre- and postinhalation of 
corticosteroids (n = 54 and 26, respectively)50 and a dataset of airway 
biopsy bulk RNA-seq samples from asthmatic donors and controls 
(n = 95 and 38, respectively)51. As these consisted of RNA-seq data, no 
quantile normalization was applied.

Extension of the HLCA core by mapping of new data
To map unseen scRNA-seq and single-nucleus RNA-seq data to the 
HLCA, we used scArches, our transfer learning-based method that 
enables mapping of new data to an existing reference atlas71. scArches 
trains an adaptor added to a reference embedding model, thereby 
enabling it to generate a common embedding of the new data and the 
reference, allowing reanalysis and de novo clustering of the joint data. 
The data to map were subsetted to the same 2,000 HVGs that were used 
for HLCA integration and embedding, and HVGs that were absent in 
the new data were set to 0 counts for all cells. Raw counts were used as 
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input for scArches, except for the ref. 40 dataset, for which ambient 
RNA removal was run previously on the raw counts. Healthy lung data40 
were split into two datasets: 3′ and 5′ based. Lung cancer data41 were 
also split into two datasets: 10xv1 and 10xv2.

The model that was learned previously for HLCA integration using 
scANVI was used as the basis for the scArches mapping. scArches was 
then run to train adaptor weights that allowed for mapping of new 
data into the existing HLCA embedding, using the following parameter 
settings: freeze-dropout: true; surgery_epochs: 500; train base model: 
false; metrics to monitor: accuracy and elbo; weight-decay: 0; and 
frequency: 1. The following early-stopping criteria were used: early 
stopping metric: elbo; save best state metric: elbo; on: full dataset; 
patience: 10; threshold: 0.001; reduce lr on plateau: True; lr patience: 
8l and lr_factor: 0.1.

Gene name harmonization
To enable cross-dataset gene-level analysis, harmonization of gene 
names from different datasets (using different reference genome builds 
and genome annotations; Supplementary Table 1) was necessary. Both 
annotation sources (for example, Ensembl or RefSeq) and annota-
tion versions (for example, Ensembl release 84 or Ensembl release 91) 
contribute to the variation between different gene naming schemes. 
Therefore, both annotation sources and versions, including outdated 
ones, need to be taken into account to enable the mapping of all gene 
names to a single naming scheme.

For the harmonization of gene names, we aimed to map all original 
gene names to the target scheme HUGO Gene Nomenclature Commit-
tee gene name, corresponding to the Ensembl release 107 publication. 
To find the most likely match between each original gene name and a 
target gene name, we first downloaded Ensembl releases 79 to 107, 
which included for each release: (1) all Ensembl gene IDs from the down-
loaded release (for example, ENSG00000081237.21); (2) corresponding  
Ensembl transcript and protein IDs (for example, ENST00000442510.8  
and ENSP00000411355.3); (3) matching Ensembl IDs from the previous  
release; (4) matching gene IDs from other genome annotation sources 
(for example, RefSeq); and (5) matching gene, transcript and protein 
identifiers from various external resources, such as UniProt, the HUGO 
Gene Nomenclature Committee and the Consensus Coding Sequence 
Project. We then constructed a graph, with each Ensembl ID, other 
genome annotation ID and external resource identifier represented 
by a single node per release. Nodes were then connected based on the 
matching (points 2–5) provided by Ensembl, weighing edges based on 
Ensembl similarity scores where available. For each original gene name 
from the HLCA datasets, the path with the lowest mean edge weight 
from that gene name to a gene name from the target names (Ensembl 
release 107) was selected to find the most likely matching gene name 
from the target (Supplementary Table 17). Genes for which no target 
could be found were excluded from downstream analysis. When multi-
ple genes were matched with the same target gene name, counts from 
the original genes were summed.

Identification of genes associated with common batch effects
To identify the genes most commonly exhibiting batch-specific expres-
sion, the HLCA was split by cell type and a differential expression analy-
sis was performed (based on a Wilcoxon rank-sum test) in each cell 
type, comparing cells from one dataset (batch) with those from all 
other datasets and repeating this for all datasets. Datasets that had 
fewer than ten cells of the cell type or fewer than three samples with 
cells of the cell type were excluded from the test. For each test, genes 
were filtered such that only genes that were significantly upregulated 
were retained. Next, the fraction of included datasets in which a gene 
was significantly upregulated in the cell type (affected dataset fraction) 
was calculated for all genes. To find genes that were often batch effect 
associated across many cell types, the mean of the affected dataset 
fractions was calculated across cell types for each gene.

Cell type label transfer from the HLCA core to new datasets
To perform label transfer from the HLCA core to the mapped data-
sets from the extended HLCA, we used the scArches k nearest 
neighbor-based label transfer algorithm71. Briefly, a k nearest neighbor 
graph was generated from the joint embedding of the HLCA core and 
the new, mapped dataset, setting the number of neighbors to k = 50. 
Based on the abundance and proximity in a cell’s neighborhood of 
reference cells of different types, the most likely cell type label for 
that cell was selected. Furthermore, a matching uncertainty score was 
calculated based on the consistency of reference annotations among 
the k nearest neighbors of the cell of interest

uc,y,Nc = 1 − p (Y = y|X = c,Nc )

where uc,y,Nc is the uncertainty score for a query cell c with transferred 
label y; Nc is its set of k nearest neighbors; and p(Y = y|X = c, Nc) is the 
weighted (by edge weights) proportion of Nc with label y, as previ-
ously described113. Thus, high consistency in HLCA core annotations 
leads to low uncertainty scores and low consistency (that is, mixing of 
distinct reference annotations) leads to high uncertainty scores. For 
label transfer to lung cancer and healthy, spatially annotated projected 
data (Fig. 5b and Extended Data Fig. 7g), cells with an uncertainty score 
above 0.3 were set to unknown.

Disagreement between original labels and transferred annotations 
(that is, transferred annotations with high certainty but not matching 
the original label) in the data from ref. 40 highlighted three different 
cases: annotations not included in the mapped data (for example, 
preterminal bronchiole secretory cells, which were labeled as club and 
goblet in the mapped data; these may not be incorrect label transfers 
but cannot be verified by label comparison alone); cell types that are 
part of a continuum, with cutoffs between cell types chosen differently 
in the reference than in the projected data (for example, macrophage 
subtypes); and cell types missing in the HLCA core that have high tran-
scriptional similarity to other cell types that are present in the HLCA, 
which was observed for several finely annotated immune cell identities. 
For example, γδ T cells, ILCs, megakaryocytes, natural killer T cells and 
regulatory T cells were not annotated in the HLCA core, as these cell 
types could not be distinguished with confidence in the integrated 
object and were often lacking in the constituent datasets. Indeed, cell 
types from the T cell/ILC/natural killer lineages are known to be particu-
larly difficult to annotate using transcriptomic data only16. Therefore, 
cells annotated with these labels in the projected dataset were largely 
incorrectly annotated as CD4+ T cells, CD8+ T cells and natural killer 
cells through label transfer (Fig. 5b and Extended Data Fig. 6e)

Calibration of uncertainty cutoff for classifying as unknown
For the extended atlas, we calibrated the uncertainty score cutoff 
by determining which uncertainty levels indicate possible failure of 
label transfer. To determine the uncertainty score at which technical 
variability from residual batch effects impairs correct label transfer, 
we evaluated how label transfer performed at the level of datasets, as 
these predominantly differ in experimental design. To determine an 
uncertainty threshold indicative of possible failure of label transfer, 
we harmonized original labels for 12 projected datasets54,58,59,64,66 (one 
unpublished: Duong_lungMAP_unpubl) and assessed the correspond-
ence between original labels with the transferred annotations. Only 
cells with level 3 or 4 original annotations were considered, as these 
levels represent informative annotations while not representing the 
finest detail. Level 5 annotations will often display high uncertainty 
levels due to high annotation granularity rather than remaining batch 
effects. To assess the optimal uncertainty cutoff for labeling a new cell 
as unknown, we used these results to generate a receiver operating 
characteristic curve. We chose a cutoff around the elbow point, keeping 
the false positive rate below 0.5 (uncertainty cutoff = 0.2; true positive 
rate = 0.879; false positive rate = 0.495) to best distinguish correct 
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from incorrect label transfers (Supplementary Fig. 10a). False positives 
were either due to incorrect label transfer or incorrect annotations in 
the original datasets. Cells with an uncertainty higher than 0.2 were 
set to unknown.

Identifying clusters with spatially annotated cell types
The ref. 40 study of healthy lung included cell type annotations based 
on matched spatial transcriptomic data. Many of these annotations 
were not present in the HLCA core. To determine whether these spatial 
cell types could still be recovered after mapping to the HLCA core, we 
looked for clusters specifically grouping these cells. We focused on six 
spatial cell types: perineurial nerve-associated fibroblasts; endoneurial 
nerve-associated fibroblasts; immune-recruiting fibroblasts; chon-
drocytes; myelinating Schwann cells; and nonmyelinating Schwann 
cells. As these cell types were often present at very small frequencies, 
we performed clustering at different resolutions to determine whether 
these cells were clustered separately at any of these resolutions. We 
clustered at resolutions of 0.1, 0.2, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 
80 and 100, with the number of neighbors set to k = 30 for resolutions 
under 25 and k = 15 for resolutions of 25 or higher, to enable the detec-
tion of smaller clusters. Minimum recall (the percentage of cells with 
the spatial cell type annotation captured in the cluster) and minimum 
precision (the percentage of cells from ref. 40 in the cluster that had 
the spatial cell type annotation) were both set to 25%. The cluster with 
the highest recall was selected for every spatial cell type (unless this 
cluster decreased precision by >33% compared with the cluster with 
the second highest recall). If the precision of the next best cluster was 
doubled compared with the cluster with the highest recall and recall 
did not decrease by >20%, this cluster was selected.

Disease signature score calculation
To learn disease-specific signatures based on label transfer uncertainty 
scores, cells from the mapped data with the same transferred label 
(either alveolar fibroblasts or alveolar macrophages) were split into 
low-uncertainty cells (<0.2) and high-uncertainty cells (>0.4), excluding 
cells between these extremes (for alveolar fibroblasts, n = 11,119 (<0.2) 
and n = 2,863 (>0.4); for alveolar macrophages, n = 1,770 (<0.2) and 
n = 577 (>0.4)). We then performed a differential expression analysis 
on SCRAN-normalized counts using a Wilcoxon rank-sum test with 
default parameters, comparing high- and low-uncertainty cells. The 
20 most upregulated genes based on log-fold changes were selected 
after filtering out genes with a false discovery rate-corrected P value 
(using the Benjamini–Hochberg procedure) above 0.05 and genes with 
a mean expression below 0.1 in the high-uncertainty group. To calculate 
the score of a cell for the given set of genes, the average expression of 
the set of genes was calculated, after which the average expression 
of a reference set of genes was subtracted from the original average, 
as described previously114. The reference set consists of a randomly 
sampled set of genes for each binned expression value. The resulting 
score was considered the cell’s disease signature score.

Cross-dataset analysis of IPF-associated cell states
To uncover the cell identities affected in IPF, label transfer uncer-
tainty was analyzed for three mapped datasets from the extended 
HLCA58,62,64 that included both IPF and healthy samples. Cell types of 
interest were determined based on the largest increase in mean label 
transfer uncertainty in IPF compared with healthy samples, while 
checking for consistency in increments across the three datasets. This 
highlighted alveolar fibroblasts as the main cell type of interest. To find 
IPF-specific alveolar fibroblast states, all alveolar fibroblasts from the 
abovementioned datasets and two more IPF datasets21,24 (for which 
no healthy data were mapped, as these were already in the core) were 
clustered together with the alveolar fibroblasts from the HLCA core. 
For clustering, a k nearest neighbor graph was calculated on the joint 
scArches-derived 30-dimensional embedding space setting k = 30, 

after which the cells were clustered using the Leiden algorithm with a 
resolution of 0.3. The resolution was chosen such that datasets were 
not isolated in single clusters, thus avoiding clustering driven solely 
by dataset-specific batch effects. One cluster (cluster 5) was small 
(n = 460 cells) and displayed low donor entropy (0.17), indicating that 
it almost exclusively came from a single donor (96% of cells from HLCA 
core donor 390C). It was therefore excluded from further analysis. To 
perform differential gene expression analysis, gene counts were nor-
malized to a total of 7,666 counts (the median number of counts across 
the HLCA) and then log transformed with a pseudocount of 1. Finally, a 
Wilcoxon rank-sum test was used on the normalized data to detect dif-
ferentially expressed genes for cluster 0 (n = 6,765 cells versus a total of 
n = 14,731). The results were filtered such that genes expressed in <30% 
of cells of the cluster of interest were excluded, as well as genes that 
were expressed in >20% of cells outside of the cluster and genes with 
a multiple testing-corrected P value (using the Benjamini–Hochberg 
procedure) above 0.05 (Supplementary Table 14).

Multidisease analysis
To investigate whether the HLCA can be used to identify 
disease-associated cell states shared across multiple diseases, MDMs 
from the HLCA core, together with all cells from the mapped datasets 
labeled as MDMs based on label transfer, were jointly analyzed. Data-
sets and diseases with fewer than 50 MDMs were excluded from the 
analysis. The cells were subsequently clustered as described above for 
the cross-dataset IPF analysis. Finally, a Wilcoxon rank-sum test was 
used on the normalized data to detect differentially expressed genes 
per cluster (number of cells per cluster: n = 64,915 (cluster 0), 47,539 
(cluster 1), 32,027 (cluster 2), 31,097 (cluster 3), 25,267 (cluster 4), 1,998 
(cluster 5) and 307 (cluster 6)). The results were filtered as described 
above (Supplementary Table 15).

Version information
The following tools and versions were used: R (version 4.1.1 for covari-
ate modeling and version 4.0.3 for GSEA); edgeR (version 3.28.1); lme4 
(version 1.1-27.1); LDSC (version 1.0.1); Limma (version 3.46.0); Scanpy 
(version 1.9.1); scArches (version 0.3.5); scIB (version 0.1.1); scikit-learn 
(version 0.24.1); and scvi-tools (scANVI; version 0.8.1).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The HLCA (raw and normalized counts, integrated embedding, cell 
type annotations and clinical and technical metadata) is publicly avail-
able and can be downloaded via cellxgene (https://cellxgene.czisci-
ence.com/collections/6f6d381a-7701-4781-935c-db10d30de293). 
The HLCA core reference model and embedding for the mapping of 
new data to the HLCA can moreover be found on Zenodo (https://
doi.org/10.5281/zenodo.7599104). The original, published data-
sets that were included in the HLCA can also be accessed under GEO 
accession numbers GSE135893, GSE143868, GSE128033, GSE121611, 
GSE134174, GSE150674, GSE151928, GSE136831, GSE128169, GSE171668, 
GSE132771, GSE126030, GSE161382, GSE155249, GSE135851, GSE145926 
and GSE178360, GSE227136, GSE158127, European Genome-phe-
nome Archive study IDs EGAS00001004082, EGAS00001004344, 
EGAD00001005064 and EGAD00001005065 and URLs https://
www.synapse.org/#!Synapse:syn21041850, https://data.humancel-
latlas.org/explore/projects/c4077b3c-5c98-4d26-a614-246d12c2e5d7, 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs001750.v1.p1, https://www.nupulmonary.org/covid-19-ms2/?
ds=full&meta=SampleName, https://figshare.com/articles/dataset/
Single-cell_RNA-Seq_of_human_primary_lung_and_bronchial_epithe-
lium_cells/11981034/1, https://covid19.lambrechtslab.org/downloads/
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Allcells.counts.rds, https://s3.amazonaws.com/dp-lab-data-public/
lung-development-cancer-progression/PATIENT_LUNG_ADENO-
CARCINOMA_ANNOTATED.h5, https://github.com/theislab/2020_
Mayr, https://static-content.springer.com/esm/art%3A10.1038%
2Fs41586-018-0449-8/MediaObjects/41586_2018_449_MOESM4_ESM.
zip, http://blueprint.lambrechtslab.org/#/099de49a-cd68-4db1-82c1-
cc7acd3c6d14/*/welcome and https://www.covid19cellatlas.org/index.
patient.html (see also Supplementary Table 1). GWAS summary statis-
tics of COPD46 (GWAS catalog ID: GCST007692; database of Genotypes 
and Phenotypes (dbGaP) accession number: phs000179.v6.p2), IPF115 
and lung adenocarcinoma45 (GWAS catalog ID: GCST004748; dbGaP 
accession number: phs001273.v3.p2) were made available via the 
dbGaP upon request. Summary statistics of lung function47 (GWAS 
catalog ID: GCST007429), asthma44 (GWAS catalog ID: GCST010043) 
and depression116 (used as a negative control; GWAS catalog ID: 
GCST005902) were publicly available.

Code availability
The HLCA pipeline for processing the sequencing data for counting 
matrices, used for a subset of HLCA datasets (Methods), is available 
at https://github.com/LungCellAtlas/scRNAseq_pipelines. All further 
code used for the HLCA project can be found in the HLCA reproducibil-
ity GitHub repository (https://github.com/LungCellAtlas/HLCA_repro-
ducibility). The landing page of the HLCA, including up-to-date links, 
can be found at https://github.com/LungCellAtlas/HLCA. Automated 
mapping to the HLCA and label transfer can be done with scArches71 
at FASTGenomics (https://beta.fastgenomics.org/p/hlca) or using the 
code and tutorial in the HLCA mapping GitHub repository (https://
github.com/LungCellAtlas/mapping_data_to_the_HLCA). Links to addi-
tional and updated platforms will be published on the HLCA landing 
page (see above). Automated mapping to the HLCA and label transfer 
with Azimuth16,71 (not shown in this manuscript) can be done at azimuth.
hubmapconsortium.org. Label transfer with CellTypist117 (not shown 
in this manuscript) can be done at https://www.celltypist.org/models.
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Extended Data Fig. 1 | HLCA cluster donor diversity and marker expression 
for a cluster with high cell type label disagreement. a, Donor diversity is 
calculated for every cluster as entropy of donor proportions in the cluster, 
with high entropy indicating the cluster contains cells from many different 
donors. Most clusters (80 out of 94) contain cells from many donors (median 47 
donors per cluster, range 2–102), as illustrated by high donor entropy (>0.43), 
whereas 14 clusters show low donor diversity. These are largely immune cell 
clusters (n=13, of which 7 macrophage clusters, 4 T cell clusters and 2 mast cell 

clusters), representing donor- or group-specific phenotypes. Matching cell 
type annotations are shown in Fig. 3d. b, Marker expression among cells from 
the immune cluster with highest disagreement in original cell type labels (high 
‘label entropy’). DC2, monocyte and macrophage marker expression is shown 
for cells from Fig. 3c. Cells are labeled by their final annotation, as well as their 
original label. Log-normalized counts are scaled such that for each gene the 99th 
expression percentile, as calculated among all cells included in the heatmap, is 
set to 1. DC: dendritic cell.
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Extended Data Fig. 2 | HLCA core cell type composition details. a, Percentage 
of cells from each of the 11 studies included in the HLCA core, shown per cell type 
(3 studies include 2 separate datasets). Each cell type was detected in at least 4 
out of 14 datasets, with a median of 11 datasets in which a cell type was detected, 
and a maximum of 14. b, Percentage of cells from each of the three anatomical 

locations, shown per cell type. c, Percentage of cells with at least one UMI count 
for MKI67, a marker gene of proliferating cells, shown per cell type. AT: alveolar 
type. TB: terminal bronchiole. SMG: submucosal gland. DC: dendritic cell. Mph: 
macrophage. NK: natural killer. MT: metallothionein. SM: smooth muscle. EC: 
endothelial cell.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Marker gene expression for all 61 cell types in the 
HLCA core. Expression is shown within each cell type compartment. a, Epithelial 
cell type markers, b, Immune cell type markers, c, Stromal cell type markers, 
d, Endothelial cell type markers. Expression was normalized such that the 
maximum group expression of cells within the compartment for each marker 
was set to 1. Marker gene sets include both sets that mark groups of cell types 

(for example ‘epithelial’) and single cell types (for example ‘basal resting’). For 
each marker gene set, cell types identified by the set are boxed. AT: alveolar 
type. TB: terminal bronchiole. SMG: submucosal gland. DC: dendritic cell. Mph: 
macrophage. NK: natural killer. MT: metallothionein. SM: smooth muscle. EC: 
endothelial cell.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Marker expression of several rare and novel cell 
types detected in the HLCA. a, A UMAP embedding of all cells annotated as 
dendritic cells, colored by final detailed annotation (left), and by expression of 
three migratory DC marker genes (right, CCR7, LAD1, and CCL19). b, Expression 
of migratory DC marker genes from a among migratory DCs (red, right half of 
violins) versus other DCs (gray, left half of violins), split by study. Number of 
migratory DCs per study is specified in the x-axis labels. c, Expression of markers 
for two novel immune cell types (hematopoietic stem cells and migratory DCs, 
found in 9 and 10 out of 11 studies, respectively), shown per stromal cell type. 
d, Expression of markers for three novel epithelial cell types (hillock-like, AT0, 
and pre-TB secretory cells, found in 9, 9, and 11 out of 11 studies, respectively), 

shown per epithelial cell type. Two markers shared between AT0 and pre-TB 
secretory cells are also included. e, Expression of markers for a novel stromal cell 
type (‘smooth muscle FAM83D+’, found in 8 out of 11 studies), including three 
general smooth muscle marker genes and one marker gene uniquely expressed 
in FAM83D+ smooth muscle cells (FAM83D), shown per stromal cell type. For c-e, 
gene counts were normalized such that the maximum expression of a group of 
cells in the plot was set to 1. f, FAM83D expression across stromal cell types. Cells 
annotated as FAM83D+ smooth muscle are split by study. Studies with fewer 
than 3 smooth muscle FAM83D+ cells are not shown. DC: dendritic cell. Mph: 
macrophage. MT: metallothionein. AT: alveolar type. SMG: submucosal gland. 
TB: terminal bronchiole.
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Extended Data Fig. 5 | Cell type proportions per sample along the proximal-
to-distal axis of the lung. All cell types not included in Fig. 4b are shown. The 
lowest and highest CCF score shown (0.36, 0.97) represent the most proximal 
and most distal sampled parts of the respiratory system, respectively (trachea 
and parenchyma), excluding the upper airways. Dots are colored by the 
tissue dissociation protocol and tissue sampling method used for the sample. 

Boxes show median and interquartile range of the proportions. Samples with 
proportions more than 1.5 times the interquartile range away from the high and 
low quartile are considered outliers. Whiskers extend to the furthest non-outlier 
point. n=23, 19, 9 and 90 for CCF score 0.36, 0.72, 0.81 and 0.97, respectively. 
AT: alveolar type. DC: dendritic cell. EC: endothelial cell. NK: natural killer. Mph: 
macrophages. SMG: submucosal gland.
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Extended Data Fig. 6 | Mapping of unseen healthy lung scRNA-seq data 
to the HLCA core. a, UMAP of the jointly embedded HLCA core (dark blue, 
plotted on top) and the newly mapped healthy lung data (gray). b, Same as a, 
but now plotting cells from the HLCA in gray, and cells from the new data on top 
in light blue. c, Same as a, but now coloring cells from the HLCA core by their 
final annotation, and coloring cells from the new data in black. Cells from each 
of the compartments are outlined to ease visual identification of cell types by 
colors. d, Uncertainty of label transfer (ranging from 0 to 1) for cells from the 
mapped data, subdivided by original cell type label. Number of cells per label 
is shown between brackets. Cell labels are ordered by mean uncertainty. Boxes 

of cell labels not present in the HLCA core are colored red. Boxes show median 
and interquartile range of uncertainty. Cells with uncertainties more than 1.5 
times the interquartile range away from the high and low quartile are considered 
outliers and plotted as points. Whiskers extend to the furthest non-outlier 
point. e, Sankey plot of original labels of cells from the mapped dataset versus 
predicted annotations based on label transfer. Cells with uncertainty >0.3 are 
labeled ‘unknown’. AT: alveolar type. DC: dendritic cells. EC: endothelial cells. 
ILCs: innate lymphoid cells. MAIT cells: mucosal-associated invariant T cells. MT: 
metallothionein. Mph: macrophages. NK: natural killer. NKT cells: natural killer  
T cells. SM: smooth muscle. SMG: submucosal gland. TB: terminal bronchiole.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Mapping of unseen lung cancer data to the HLCA. a, 
UMAP of the jointly embedded HLCA (dark blue, plotted on top) and lung cancer 
data (gray). b, Same as a, but now plotting cells from the HLCA core in gray. Cells 
from the mapped data are plotted on top, and colored by the cancer type of the 
patient. c, Same as a, but now coloring cells from the HLCA core by their final final 
annotation, and coloring cells from the mapped cancer data in black. Cells from 
each of the compartments are outlined to ease visual identification of cell types 
by colors. d, Uncertainty of label transfer, shown for all cells from the mapped 
data. Regions dominated by high-uncertainty cells are labeled by the original 
cell type label. Cells from the HLCA core are colored in gray. e, Uncertainty of 
label transfer (ranging from 0 to 1) for the mapped cells, subdivided by original 
cell type label. Number of cells per label is shown between brackets. Boxes of cell 
type labels not present in the HLCA core are colored red. Cell types are ordered 
by mean uncertainty. Boxes show median and interquartile range of uncertainty. 

Cells with uncertainties more than 1.5 times the interquartile range away from 
the high and low quartile are considered outliers and plotted as points. Whiskers 
extend to the furthest non-outlier point. f, Sankey plot of original labels of the 
mapped data versus predicted annotations based on label transfer. Cells with 
uncertainty >0.3 are labeled ‘unknown’. g, Percentage of cells from newly mapped 
healthy lung dataset that are either annotated correctly or incorrectly by label 
transfer annotation (matched at the level of the original labels), or annotated 
as unknown, subdivided by original cell type label. The number of cells in the 
mapped dataset labeled with each label are shown between brackets after cell 
type names. Cell type labels not present in the HLCA are boxed. AT: alveolar 
type. DC: dendritic cells. EC: endothelial cells. MT: metallothionein. Mph: 
macrophages. NK: natural killer. SM: smooth muscle. SMG: submucosal gland. 
TB: terminal bronchiole.
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Extended Data Fig. 8 | Expression of CCR7 among cells annotated as 
migratory DCs by label transfer. Expression of CCR7 is shown for all cells 
that were annotated as migratory DCs with low uncertainty (<0.2) (top) and all 
other cells annotated as DC (bottom) by label transfer from the HLCA core to 
the extended HLCA. Cells are grouped based on study of origin (some studies 

contain multiple datasets). X-tick labels show study, number of cells annotated 
as migratory DCs, and number of total cells (in thousands) per study. CCR7 
counts shown are counts that were normalized based on the total count among 
2000 genes used for mapping to the HLCA core, and then log-transformed. DCs: 
dendritic cells.
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Extended Data Fig. 9 | Transferred labels and matching uncertainty for a 
mapped IPF dataset. a, UMAPs of cells originally labeled as stroma, from a 
mapped IPF dataset56 including both healthy and IPF samples. Cells are labeled 
by annotation transferred from the HLCA core (left), by disease status (middle), 

and by label transfer uncertainty (right). Cells with labels transferred to fewer 
than 10 cells were excluded. b, same as a, but showing cells originally labeled 
as macrophages. c, As b, but now colored by expression of SPP1 and FABP4. SM: 
smooth muscle. Mph: macrophages. DC: dendritic cells.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Disease-specific cellular states and states shared 
across diseases in the extended HLCA. a, Label transfer uncertainty shown per 
cell type, comparing cells from control samples (‘healthy’, blue) to cells from 
IPF samples (orange). Results are shown per dataset, only showing datasets that 
include both control and IPF mapped samples. Alveolar fibroblasts, the cell 
type chosen for downstream analysis, are boxed in red. AT: alveolar type. DC: 
dendritic cell. TB: terminal bronchiole. EC: endothelial cell. Mph: macrophage. 
MT: metallothionein. NK: natural killer. SM: smooth muscle. b, Composition 
of alveolar fibroblast clusters by study. c, Expression of several genes highly 
expressed in IPF-enriched alveolar fibroblast cluster 0, shown per cluster. 

Cluster 0 is split into control (‘Healthy’) and IPF, further subdivided by study. d, 
Composition of monocyte-derived macrophage (MDM) clusters by study. e, As 
d, but by tissue sampling method. f, Expression of MDM cluster marker genes 
shown per cluster, with clusters split into studies. Studies with fewer than 200 
were grouped into ‘Other’ for each cluster. g, Composition of MDM clusters by 
study, subsetted to only cells from donors with COVID-19. h, As g, but by tissue 
sampling method. i, As g, but subsetted to cells from donors with IPF. For c and 
f, mean expressions were normalized such that the highest mean expression 
was set to 1 for each gene. BALF: bronchoalveolar lavage fluid. IPF: idiopathic 
pulmonary fibrosis.
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