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Abstract 

Kinship analysis from very low-coverage ancient sequences has been possible up 
to the second degree with large uncertainties. We propose a new, accurate, and fast 
method, correctKin, to estimate the kinship coefficient and the confidence interval 
using low-coverage ancient data. We perform simulations and also validate correctKin 
on experimental modern and ancient data with widely different genome coverages 
(0.12×–11.9×) using samples with known family relations and known/unknown 
population structure. Based on our results, correctKin allows for the reliable identifica-
tion of relatedness up to the 4th degree from variable/low-coverage ancient or badly 
degraded forensic whole genome sequencing data.
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Background
Kinship analysis is a method for determination of the familial relationship between 
individuals from genome data. The kinship coefficient is defined as the probability that 
two homologous alleles drawn from each of two individuals are the result of identity by 
descent (IBD). This is a classic measurement of relatedness [1, 2]. Several algorithms 
have been developed to perform kinship analysis [3] including GERMLINE [4], fastIBD 
[5], GRAB [6], and ANGSD [7]. These are based on different strategies and metrics of 
IBD segments for calculating relatedness from microarray or WGS data. Distinguishing 
IBD which represents familial relatedness from identity-by-state (IBS) that represents 
population relatedness is difficult as both result in genetic similarity based on shared 
alleles. Despite the biological variation in IBD sharing due to the outcome of the sto-
chastic nature of recombination and segregation during meiosis in gametogenesis, it is 
possible to infer kinship up to the 5–6th degree of relatedness from microarray or deeply 
typed WGS data. Achieving such a high level of certainty also requires an appropriate 
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set of reference data (except for methods like KING [8] or IBIS [9]), and clever algo-
rithms that account for biological variations resulting from familial (IBD) and popula-
tion relatedness (IBS).

Recently huge genomic datasets have been generated from ancient samples in order 
to uncover the genetic relations of ancient and modern populations. From this data, it 
is also of high interest to study the family organization of ancient populations. However, 
analyzing ancient DNA (aDNA) poses additional difficulties due to the widely different 
but generally low genome coverage and postmortem damage (PMD) observed in these 
samples. The aDNA databases usually contain sequence data between 0.05 and 3× aver-
age genome coverage [10–12], since the sequencing of ancient samples with low endoge-
nous DNA content is still challenging and costly. Differences in coverage and only partial 
overlap of genetic markers between samples can lead to significant bias when compar-
ing the frequencies and genotype likelihoods of genetic variants, leading to uncertainties 
of the inferred genotype probabilities. An additional problem in the analysis of ancient 
data is that in most cases there is limited or no information on the appropriate reference 
population data to distinguish IBD from IBS.

In the present study, we wanted to address the difficulties of low-coverage aDNA 
data and dissect the main factors that affect kinship calculations. To overcome typing 
bias, random sampling of one allele per site (pseudo-haploid calling) was used success-
fully in aDNA studies [13–22]. In order to compare diploid and pseudo-haploid data-
sets, heterozygous alleles of diploid data need to be random pseudo-haploidized (RpsH) 
by randomly assigning heterozygote alleles as either homozygote reference (REF) or 
homozygote alternative (ALT). Although rare alleles can offer significant improvement 
in some kinship calculation methods when analyzing high-quality WGS data, genotype 
calling from the whole human genome could lead to excessive, variable amounts of false 
positive calls from low-coverage, degraded aDNA datasets. To minimize this bias, we 
restricted our analysis to the already known biallelic, high-frequency, and population-
informative SNPs of the V42.2 1240K Allen Ancient DNA Resource (AADR) dataset 
[23]. To address the issue of unknown reference populations, we used the PC-Relate 
algorithm [24]. In the presence of unspecified population structure, this algorithm pro-
poses a principal component-based, model-free approach for estimating kinship coeffi-
cients and IBD sharing probabilities. We applied a combination of techniques to mitigate 
genotyping uncertainties and tested their effects and limitations on kinship analysis of 
low-coverage ancient sequences. We used simulation to downsample fully genotyped 
real NGS data to examine the effect of partial marker overlap between samples and we 
also explored the effect of reference population choice on the kinship coefficient calcula-
tion. Based on our results, we developed a new computational approach which can reli-
ably calculate corrected kinship coefficient from poorly genotyped data.

Here we offer guidelines and a list of the necessary bioinformatics tools required to 
calculate the corrected kinship coefficient. These guidelines overcome the technical 
limitations of generally low genome coverage, postmortem damage, genotyping uncer-
tainties, and the partial overlapping of genetic markers between samples. As a proof of 
concept, we validated our proposed methodology on both experimental modern and 
ancient data with widely different genome coverages, using samples with known family 
relations and known or unknown population structure.
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Results
To use marker counts similar to aDNA data, all modern dataset were downsampled to 
the autosomal marker positions of the 1240K SNP set of the AADR dataset [23] in all of 
our simulations.

The effect of random pseudo‑haploidization (RPsH) on PCA calculations

Since the selected kinship methodology, PC-Relate, applies principal component analy-
sis (PCA) to identify population structure, we first tested the effect of RPsH on PCA. We 
selected the British (GBR), Toscani (TSI), Iberian (IBS), and Finnish (FIN) populations 
from the 1000 Genome Project Phase 3 (1KG phase 3) dataset (404 samples) and rand-
omized the diploid dataset with three different seeds. We performed smartpca analysis 
on the original diploid and the three random pseudo-haploidized dataset. According to 
our results, RPsH does not alter the PCA calculations significantly (Additional file 1: Fig-
ure S1).

The effect of random pseudo‑haploidization (RPsH) on kinship coefficient calculation

We assessed the effect of RPsH on kinship calculation by selecting 509 individuals from 
five populations with different population structure from the 1KG phase 3 dataset [25]. 
The five populations were as follows: FIN, GBR, TSI, Han (HAN), and Utah residents 
with Northern and Western European ancestry (CEU). In our experiments, we gener-
ated 100 different pseudo-haploid datasets from the original diploid data using different 
random seeds.

To study exclusively the effect of RPsH on kinship coefficient calculation, we included 
sample duplicates with different random pseudo-haploidization. This setup does not 
exclude differences between the genome structure of the test sample and the reference 
population, thus we selected random individuals from the GBR (HG00244.SG), FIN 
(HG00356.SG), CEU (NA12763.SG, NA12775.SG), and TSI (NA20798.SG) populations. 
This allowed us to overcome the interference of other effects, such as skewed recom-
bination/segregation, differences in sequence alignment, genotyping, genome compo-
sition, or the population structure between the relatives. This idealized experimental 
setup is the equivalent of the monozygotic twin kinship relation, in forensics referred to 
as sample matching, while the maximal expected kinship coefficient (0.5) allows for the 
most sensitive analysis.

To study the effect of RPsH on true first/second-order relatives, we also selected 
samples with known family relations from the 1KG phase 3 dataset. (a) HG00702-
HG00657 a parent-child relation from a Han population, where exactly 50% of genome 
is shared between the two samples, (b) NA20526-NA20792 siblings from a TSI popu-
lation, where 50% of the genome comes from the same parents; however, a different 
subset of the markers are found in the sibs due to segregation and recombination, and 
(c) HG00124-HG00119 second-order relatives from a GBR population, where statisti-
cally 25% of genomes are shared. We calculated the kinship coefficient for each of the 
selected relatives (kin1/kin2) using their own reference population for the 100 different 
randomization and calculated the mean and the standard deviation of the estimated kin-
ship coefficients. Knowing the expected kinship coefficients (0.5 for sample match, 0.25 
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for 1st-, 0.125 for 2nd-degree relations), we were able to validate that RPsH does not 
significantly alter the calculated kinship coefficient in these settings (Additional file 2: 
Table S1).

The effect of overlapping marker fraction on the kinship coefficient calculation

The original PC-Relate algorithm was created to analyze modern fully genotyped diploid 
samples. However, in the case of ancient data, genome coverage and partial genotyping 
is one of the factors that has the greatest variability between samples. Kinship coefficient 
calculation is based on the IBD segments shared between two samples which can only 
be assessed at marker positions where both samples are genotyped. To investigate the 
effect of this factor, we defined a metric called overlapping marker fraction. We calculate 
this metric by dividing the number of markers where both samples are genotyped with 
the total number of markers in the dataset (1240K).

Using the 100 random pseudo-haploidized fully typed dataset of the previous experi-
ment, we randomly depleted the markers between the selected sample dups and true 
1KG relatives to a marker overlap fraction between 5 and 100% using different random 
seeds. We calculated the mean and SD of the estimated kinship coefficients between the 
selected sample pairs of the different randomizations for each overlap fraction (Addi-
tional file 2: Table S1). We visualized the mean and SD of the uncorrected kinship coef-
ficients of a sample dup (CEU; NA12775.SG), a known first-degree relation (HAN, 
HG00702-HG00657) and a true second-degree relation (GBR, HG00119.SG-HG00124.
SG) in Fig. 1A.

The results revealed that the kinship coefficient is a linear function of the marker over-
lap fraction. This allows a simple method for correcting the kinship coefficient value for 
low-coverage genomes by dividing the estimated kinship coefficient with the marker 
overlap fraction between the two samples. According to our simulation, the correction 
of estimated kinship coefficient for sparsely genotyped data resulted in reproducible 
kinship estimation regardless of the overlap fraction (Fig.  1B). As expected, low par-
tially overlapping subset of markers would lead to less complete representation of the 

Fig. 1  The mean and the 95% confidence interval of the A uncorrected and B corrected kinship coefficient 
between selected 1KG individuals (sample dup, known 1st and 2nd degree) at different marker overlap 
fractions
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reference population and the test individuals thus regression of IBD/IBS based on the 
PC-Relate algorithm would have higher SD at low marker counts. Although the marker 
overlap fraction correction differs more than one magnitude between very low and high 
marker overlap fraction sample pairs, the analysis shows (Additional file 2: Table S1) that 
the correction itself does not introduce overall bias (the mean is statistically the same) 
and does not significantly multiply the error rate (4× increase in SD at 20× correction 
factor). Our results suggest that the increased SD of the method are likely due to the 
higher uncertainty of PCA.

The effect of genotyping errors on the corrected kinship coefficient

We tested the effect of genotyping errors using the same dataset and sample dups/known 
first- and second-degree 1KG relatives as in the previous experiments. We simulated 4 
scenarios: (1) only post mortem damage, (2) only endogenous contamination (using a 
random YRI individual as the contaminant), (3) only exogenous contamination, and (4) 
equal combination of the first three sources of genotype errors. In each scenario, we had 
approximately twice as many genotyping errors per individual introduced as in a typical 
aDNA dataset (see “Methods”). We calculated the mean and SD of the corrected kinship 
coefficients (Additional file 3: Table S2) between the selected samples. We visualized the 
mean and 95% confidence interval of the corrected kinship coefficients of the selected 
sample dup (CEU; NA12775.SG), true first-degree relation (HAN; HG00702-HG00657), 
and true second-degree relation (GBR; HG00119.SG-HG00124.SG) in Fig. 2.

In general, genotyping errors lower the mean and increase the SD of estimated kinship 
coefficient. The decrease in the corrected coefficients was proportional to the expected 
kinship coefficients. The largest effect (~9.6% lower kinship coefficient) was seen in case 
of the exogenous contamination. We speculate that it was likely due to the fact that in 
this scenario (although the genotyping error affects different subset of markers in differ-
ent samples) the states of the markers were uniformly set to the homozygote major state 

Fig. 2  Effect of different aDNA-related genotype errors on the corrected kinship coefficient. In the last 
case (mixed error), we introduced an equal amount of post mortem damage, exogenous and endogenous 
contamination in the simulated data. The points represent the mean, and the error bars represent the 95% 
confidence interval of the corrected kinship coefficient between selected 1KG individuals (sample dup, 
known first and second degree)
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leading to higher bias than that of random flip of minor/major state in different sam-
ples in the other scenarios. In our simulations even at the applied relatively high error 
rates (compared to experimental aDNA error rate), the largest effect was still signifi-
cantly smaller than the 50% difference of expected kinship coefficients between different 
degrees of relations thus the estimated degree of relatedness for the analyzed relatives 
remained the same. However, we have to note that skewed IBD sharing and high geno-
typing error in the test individuals could lead to false (one-degree higher) classification 
of the analyzed relation.

The effect of reference population selection on kinship analysis

In this analysis, we wanted to investigate the scenario in which proper reference pop-
ulation is unknown or unavailable which is often the case for ancient samples. Using 
the same public 1KG phase 3 dataset and the three known relatives HG00702-HG00657 
parent-child of Han population, NA20526-NA20792 siblings of TSI population, and 
HG00124-HG00119 second-order relatives of GBR population, we investigated the 
effect of the reference population on the calculated kinship coefficients. We tested 
three different scenarios: (1) the reference population was the same as that to which the 
selected individual belonged to; (2) the reference population was from a different super-
population (AFR); (3) the reference population was from the same super-population as 
the selected individual (JPT for Han, IBS for TSI, FIN for GBR) (Fig. 3, Additional file 1: 
Figure S2). To study the effect of overlapping marker fractions in these more complex 
cases, the selected sample pairs were also marker depleted in the range of 100 to 5% 
overlap fractions.

The results revealed that a reference population with significantly different genetic 
background, like African for European samples, strongly corrupts the results. In this 
experimental setup, we lack a proper number of unrelated references; hence, IBS frac-
tions are likely not represented and cannot be properly regressed out. Furthermore, 
when only a couple non-AFR individuals are included in the analysis depending on 

Fig. 3  The effect of reference population choice and marker overlap fraction on the corrected kinship 
coefficients between known 1st–2nd-degree 1KG relatives. A The samples’ own populations used as 
references. B The AFR super-population was used for each sample
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the marker overlap fraction, the EUR/EAS-specific markers are mostly excluded as 
the PCAngsd implementation uses a default 0.05 MAF marker pruning. Thus, at low 
marker overlap, mainly the AFR-specific markers are kept while at higher maker over-
lap slightly more EUR/EAS-specific markers are also included in the analysis. Based 
on the used marker set, the optimal number of eigenvectors and the underlying PCA-
based regression of IBS components are expected to be different. We speculate that 
these differences could be the likely cause of the observed non-linear kinship coef-
ficient estimates in Fig. 3B.

Using a super-population with similar genetic background to the sample gives very 
similar results as if its own reference population were used (Additional file 1: Figure S2).

Effect of reference population selection on kinship analysis in a complex admixed family 

with multiple ethnic relations

To assess the choice of reference population in the kinship analysis of admixed indi-
viduals (often the case in ancient populations), we analyzed a complex admixed Cabo 
Verdean-Hungarian family with known pedigree. In this family, we had multiple old 
as well as recent admixes resulting in various admix component ratio individuals. 
WGS data was available for siblings (1st order), differently admixed half-sibs (2nd 
order), and 5th-order relatives as shown in Additional file 7: Figure S3.

We tested two scenarios: the reference population was (1) only African (AFR) rep-
resenting the majority of the admix sources in the tested samples; (2) both African 
and European (EUR) populations were included. Additionally, we performed marker 
depletion to investigate the effect of coverage in this complex scenario (Fig. 4).

The results in Fig. 4 demonstrate that in order to obtain realistic coefficient values 
in case of a complex admixture, a combined set of reference populations is required 
representing the population structure of all ancestors. Using just the majority source 
as reference significantly distorts the result.

Fig. 4  The effect of reference population choice and marker overlap fraction on the calculated kinship 
coefficient in a complex admixed modern family with 1st- (sibs), 2nd- (half-sibs), and 5th-degree relations, 
where individuals originated from populations with largely different genetic structure. Markers were depleted 
between the relatives to 5–100% overlap fractions. A The reference population was a combined set of 
AFR+EUR populations. B The reference populations were AFR populations
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To test whether random haploidization alters the kinship coefficient calculation com-
pared to the better phased diploid data in this complex admixed case, we also performed 
this analysis from the original diploid dataset (Additional file 4: Table S3) with the AFR 
+ EUR reference population. It was confirmed again that even in such complex admixed 
family, the differences due to RPsH were negligible.

Statistical validation, assessment of technical errors

We selected EUR and EAS individuals from 1KG phase 3 dataset (n=1020) and esti-
mated the kinship coefficients between these individuals. Although there are a few true 
relatives in the selected individuals, the overwhelming majority of pairwise relations are 
expected to be unrelated, thus representing the variance of technical error of the whole 
analysis. To test the effect of overlapping genotyping fraction on the mean and stand-
ard error of the corrected kinship coefficient, we randomly depleted the marker set in 
these individuals between 100,000 markers and the fully typed marker count (~1.2M), 
amounting to 10–100% of the marker count of the original dataset. Using RPsH, we also 
created a pseudo-haploid dataset for comparison. We calculated the pairwise kinship 
coefficient matrix and corrected the estimated kinship coefficients by the marker overlap 
fraction. Using the pairwise matrix of 1020 individuals, we plotted the 519,690 kinship 
coefficients between all combinations of individuals for the diploid and haploid dataset 
(Fig. 5).

The variance of the corrected kinship coefficient depends on the marker overlap frac-
tion between the test individuals (Fig. 5). Since the marker overlap fractions between any 
two ancient samples are different applying a pre-defined kinship coefficient threshold 
to identify relatives would lead to decreased sensitivity or specificity depending on the 
marker overlap fraction. In other words, the statistical power to differentiate relatives 
from unrelated depends on the marker overlap fraction and the same threshold should 

Fig. 5  Corrected kinship coefficients calculated between 1020 EUR and EAS individuals from A diploid and 
B haploid dataset. In both cases, individuals were marker depleted between 100,000 and 1.2M markers to 
simulate partially typed data. The red line represents 6 sigma threshold from the mean. Individual kinship 
coefficients below the threshold are displayed as small black dots, while individuals above the threshold 
are displayed as larger blue dots. In case of haploid data, we marked all kinship coefficients that were above 
the 6 sigma threshold in the diploid dataset for better comparison. The blue lines show the 99% confidence 
interval of estimated kinship coefficients between unrelated individuals
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not be applied. However, based on the experimental variance of the corrected kinship 
coefficient observed in the analyzed dataset, the Z score (N standard deviation from 
the mean) could be used as a criteria to differentiate relatives from unrelated with the 
same sensitivity and specificity independent of the marker overlap fraction. Since in this 
experiment we could not exclude errors due to missing genome components from the 
reference populations, we used a conservative N=6 sigma threshold to identify biologi-
cal differences. As expected, the haploid dataset resulted in higher variance due to ran-
dom information loss especially at very low (<5%) marker overlap fractions. Although 
the marker overlap fraction correction differs two magnitudes (0.007–0.996) between 
very low and high marker overlap fraction sample pairs, the analysis shows that similar 
to the corrected kinship coefficient between relatives (Additional file  2: Table  S1) the 
correction itself does not significantly multiply the error rate of unrelated samples. Most 
of the technical errors are expected to be the result of using very sparse data to regress 
out IBS to identify IBD fragments by PC-Relate. In spite of the higher variance, the esti-
mated kinship coefficients show very high correlation between the fully typed (~1.2M 
high-quality diploid markers) diploid and the corrected coefficients of the partially typed 
diploid and haploid datasets (R=0.9998 and R=0.9993 respectively) compared to the 
correlation with the uncorrected estimates (R=0.749 and R=0.751; Additional file  5: 
Table  S4). Our result suggests that the applied pseudo-haploidization and correction 
in the marker depleted experimental data does not introduce overall bias. Our method 
identified all known 1st- and 2nd-degree relatives that were included in the analyzed 
subset of 1KG EUR/EAS individuals and indicated a couple of additional distant 3rd or 
4th relatives (Additional file 5: Table S4). Our analysis shows that 4th-degree relatives 
are expected to be above the 6 sigma threshold in the diploid data except at very low 
overlapping marker fractions (<2% ~ 17,000 overlapping markers). In case of haploid 
data, establishment of 3rd-degree relatedness is possible even from low marker overlap 
fractions, and establishment of fourth-degree relatedness is possible when the sample 
pair has >10% marker overlap fraction (equal to roughly ~85,000 markers). However, in 
case of 4th-degree relatives depending on the overlapping genotyping fraction, the esti-
mated confidence interval of corrected kinship coefficient, and true biological variation, 
it is expected to have more false positive/negative and uncertain kinship estimations at 
low marker overlap fractions.

Kinship analysis of ancient samples with known relations using kinship coefficient 

correction

To show that our methodology is also suitable for ancient data, we analyzed low-
coverage ancient sequences with known family relations. In the first example, we 
present the analysis of a known father-son (first degree) relation of two Medieval 
samples. From both remains, we had two types of biological samples, bone powder 
taken from the teeth and from the pars petrosa. From the father, we had three parallel 
DNA isolates and NGS libraries, two prepared from pars petrosa and an additional 
one from teeth. From the offspring, we had one DNA isolate and NGS library pre-
pared from both types of biological samples. Altogether, we had 3+2 NGS sequences 
with largely different genome coverages (0.87×–11.9×) from these two ancient indi-
viduals. Accordingly, we assessed the robustness of our correction method on the 6 
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combinations of these datasets. We present the uncorrected and corrected kinship 
coefficients calculated from this data in Table 1.

In the second example, we reanalyzed a published group of five related males 
from the Corded Ware Culture (2500–2050 BCE) with first-, second-, third-, and 

Table 1  Correction of kinship coefficient for different genome coverage of ancient samples with 
known first-degree relation. High, medium, and low refer to coverage levels

Sample 1 Sample 2 Marker 
overlap 
fraction

Relation Expected 
kinship 
coeff

Uncorrected 
kinship coeff

Corrected 
kinship 
coeff

Father high Child high 0.933894 First degree 0.25 0.22883 0.24502

Father high Child low 0.377769 First degree 0.25 0.09179 0.24297

Father medium Child high 0.730011 First degree 0.25 0.17604 0.24114

Father medium Child low 0.296127 First degree 0.25 0.07150 0.24144

Father low Child high 0.511753 First degree 0.25 0.12239 0.23915

Father low Child low 0.207545 First degree 0.25 0.05014 0.24160

Father high Father medium 0.778247 Sample matching 0.5 0.38284 0.49193

Father high Father low 0.545866 Sample matching 0.5 0.27020 0.49499

Father medium Father low 0.427389 Sample matching 0.5 0.20863 0.48814

Child high Child low 0.354511 Sample matching 0.5 0.17286 0.48761

Sample Sample type Coverage Typed marker 
count (1240k)

Father high Teeth 11.997 1,148,973

Father mid Petrosa 3.057 896,623

Father low Petrosa 1.546 630,405

Child high Petrosa 5.510 1,075,845

Child low Petrosa 0.879 435,005

Table 2  Kinship analysis of a large ancient Corded Ware family with multiple 1st- to 4th-degree of 
relations

Sample 1 Sample 2 Marker overlap fraction Relation Expected 
kinship 
coeff

Uncorrected 
kinship coeff

Corrected 
kinship 
coeff

I1538 I1541 0.039828 First degree 0.25 0.01036 0.26006

I1540 I1541 0.079863 First degree 0.25 0.01959 0.24534

I1534 I1541 0.047882 Second degree 0.125 0.00715 0.14938

I1538 I1534 0.025735 Second degree 0.125 0.00335 0.13003

I1538 I1540 0.042478 Second degree 0.125 0.00456 0.10730

I1541 I0104 0.216185 Second degree 0.125 0.03394 0.15700

I1534 I1540 0.049813 Third degree 0.0625 0.00405 0.08123

I1538 I0104 0.107634 Third degree 0.0625 0.00846 0.07864

I1540 I0104 0.22405 Third degree 0.0625 0.01812 0.08088

I1534 I0104 0.129456 Fourth degree 0.03125 0.00645 0.04982

Sample ID Coverage Typed marker count 
(1240k)

I0104 4.184 962767

I1534 0.158 164095

I1538 0.126 135269

I1540 0.298 285866

I1541 0.294 276299
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fourth-degree kinship relations [19]. In Table 2, we present the family relations with 
uncorrected and corrected kinship coefficients calculated by our methodology from 
public ancient 1240k data.

These individuals were analyzed in the original READ manuscript [26] where relations 
were identified up to the 2nd degree except the one between I1538 and I1540, and all of 
the 3rd and 4th relations were inferred from only the family relations.

Kinship analysis of ancient samples from the AADR 1240K dataset

We performed kinship analysis on 2136 ancient Eurasian individuals from the AADR 
1240K dataset that had more than 100K genotyped markers. Since no manual curation 
or additional matching reference population was used, we filtered potential relatives 
above 0.046875 corrected kinship coefficient (~3rd–4th degree of kinship). Our analy-
sis identified 410 related individuals in 184 kin groups (Additional file 6: Table S5). All 
sample duplicates (N=26), and joint datasets (N=30) of the same sample were identified. 
Curiously, we identified sample duplicates with different master IDs in the AADR data-
set published in different manuscripts (I1526-NEO232; I7782-NEO298; I8295-NEO230; 
I8296-NEO231) where all four sample pairs were from the same geological site and 
belonged to the same population and haploid typing was identical or nearly identical as 
some branch defining markers were likely missing due to coverage differences. We also 
identified a likely sample mix [27] where two individuals (MJ-15 Ukraine_IA_Western-
Scythian.SG and MJ-35 Ukraine_Cimmerians_o2.SG) had 0.5 corrected kinship coeffi-
cient equivalent with sample match (or monozygotic twin) but had different population 
assignment. All of these individuals had same sex and identical/nearly identical mito-
chondrial and Y haplogroups as well. Furthermore, we identified all of the 111 previ-
ously identified kinship relations from the AADR dataset. Three uncertain (1st or 2nd) 
relatives indicated in the AADR dataset (I8502, I8524; MK5001, MK5004 and KBD001, 
KBD002) could be classified as 2nd-degree relatives by our analysis. We reclassified three 
kin pairs indicated as 1st-degree relatives as 2nd-degree relatives (RISE1163, RISE1169; 
RISE1168, RISE1173 and RISE1168, RISE1169). In addition to the published data, within 
the 184 kin groups our approach indicated 6 new 1st-degree, 108 2nd-degree, 144 3rd-
degree, and 40 4th-degree relations between a total of 279 new relatives (Additional 
file 6: Table S5). In a few cases, when an appropriate reference population was not pre-
sent in the dataset, it is not possible to establish appropriate kinship relations as the IBS 
of minor genetic components cannot be regressed out. Consequently, in those cases, the 
correction resulted in invalid distant 3rd–4th-degree kinship relations highlighted with 
red in Additional file 6: Table S5.

To test the sensitivity of our analysis, we used READ [26] to validate our findings. As 
READ depends on the proper reference population and uses a global threshold to dis-
tinguish between unrelated and potential kins, the join set of 2136 individuals cannot be 
analyzed together. We selected the top 10 populations with the highest number of indi-
viduals and performed the READ analysis separately. READ identified relatives up to the 
2nd degree. In the selected populations, READ identified no additional relatives com-
pared to our methodology. For each identified relative, the degree of kinship was match-
ing between the two methods. In this comparison, our method indicated one additional 
2nd-degree relation (AITI_95_d and AITI_98) that was missed by READ. In this case, the 
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samples have very low genome coverage (0.145× and 0.402×) and only ~0.05% marker 
overlap fraction. While the corrected kinship coefficient was significantly above the 3rd-
degree (0.0625) relation, it was less (0.1004) than the expected 0.125 corresponding to 
2nd degree suggesting that these relatives share less than expected genome portions due 
to true biological variation (Additional file 7: Table S6). We had very similar scenario in 
case of the missed 2nd-degree relation between the I1538 and I1540 CWC individuals 
(Table 2) suggesting that READ is less sensitive when the marker overlap is low and the 
shared genome fraction differs significantly from the statistically expected mean.

Discussion
Identification of relatives from the genomic data of ancestors is of great interest as it 
allows the study of family relationships, but it is also a precondition for most population 
genetic analyses to exclude close relatives from datasets (e.g., ADMIXTURE, PCA). To 
date, the best analysis tools were able to indicate mainly first- and second-degree relat-
edness from very low-coverage ancient samples [26, 28–30]. Based on simulated data, 
lcMLkin can accurately infer kinship up to the 3rd degree from 2× genome coverage 
when the FST is low between the reference population and analyzed data [28]. However, 
the majority of aDNA data is below 2× genome coverage. In these data, most markers 
are represented by one read/genotype only. It is untested whether it is possible to infer 
comparable diploid genotype likelihoods suitable for lcMLkin from very low-coverage 
data. The recent heuristic method READ (Relationship Estimation from Ancient DNA) 
infers relatedness up to 2nd degree from as low as 0.1× coverage sequence data [26]. In 
the most comprehensive AADR ancient genome data set [23], the majority of the indi-
cated kinship relations are 1st degree and the handful of indicated 2nd-degree relations 
in all cases are uncertain. These samples are labeled with 1d.or.2d.rel tag.

Diploid variant calling and genotype likelihood-based methods with the extra infor-
mation of rare alleles allow better phasing and identification of IBD fragments leading 
to improved kinship coefficient estimations from deeply genotyped WGS data. Accord-
ingly, some methods attempt to infer genotype likelihoods or diploid genotype calls 
from low-mid genome coverage (2–4×) data [8, 28, 31]. KING, a method that was devel-
oped to be used for fast and robust kinship coefficient estimation from low amounts of 
fully typed diploid markers (5–150k), can infer up to 3rd-degree relations from approxi-
mately 150k markers or 1st–2nd-degree relation from even as low as 5k diploid markers 
[8]. Even though these tools are used to analyze low marker count ancient samples, the 
assumption implicit in these methods that the data is sufficiently high-quality diploid is 
often false in case of low marker count extremely low-coverage ancient samples. Accord-
ingly, when comparing samples of different genome coverage, the inferred genotype like-
lihoods or diploid variants from low/variable genome coverage samples could lead to 
major bias.

To overcome these difficulties and mitigate the main genotyping biases in case of low-
coverage ancient samples, we used a combination of strategies to account for the effects 
caused by PMD and varying low genome coverage. We used random allele sampling that 
is the gold standard methodology when performing PCA and other population genetic 
analyses on ancient samples, as it leads to statistically equal genotype likelihoods of gen-
otyped markers regardless of the genome coverage. To avoid excessive, variable amounts 
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of false positive variants due to the variable rate of PMD, exogenous DNA contamina-
tion, and technical errors (alignment artifacts), we restricted our analysis to the already 
known biallelic, high-frequency, and population-informative SNPs of the 1240K AADR 
dataset. This strategy perfectly aligned with our choice of kinship analysis method since 
the PC-Relate algorithm uses PCA to differentiate between IBD/IBS fragments.

We have demonstrated that random pseudo-haploidization of data in our analysis 
pipeline does not affect the result of kinship analysis (Additional file 2: Table S1). This is 
also confirmed by the PCA analysis, showing that the same modern individual from dip-
loid or different pseudo-haploidized data had nearly identical PCA components (Addi-
tional file 7: Figure S1).

Overlapping marker fraction, according to our study, is the major factor influencing 
the calculated kinship coefficient of partially genotyped samples in our analysis pipe-
line. Our simulations revealed that the overlapping marker fraction and the calculated 
kinship coefficient had a strong linear correlation (Fig.  1, Additional file  2: Table  S1). 
Although the PC-Relate algorithm does not require the specification of the underlying 
population structure of the analyzed relatives, we have shown that a proper reference set 
is required for the analysis. As expected, the samples’ own reference population resulted 
in proper kinship coefficients, but using reference from a different super-population cor-
rupted the results (Fig. 3). On the other hand, using the samples’ super-population as 
reference resulted in comparable although slightly higher kinship coefficients compared 
to the proper reference population (Additional file 7: Figure S2) proving the robustness 
of the PC-Relate algorithm. This reference bias is not amplified by the applied correction 
for marker overlap (Fig. 4); however, it could lead to the false identification of distant 
relatives. We also tested the effect of reference population choice in a complex Creole/
European admixed Cabo Verdean-Hungarian family with known 1st- to 5th-degree fam-
ily relations. We have shown that the best result is achieved when all super-populations 
of the sources are included in the reference population set (Fig. 4). Comparing the analy-
ses of pseudo-haploid and diploid data for this complex admixed family confirmed the 
robustness of our approach, as we got nearly identical results (Additional file 4: Table S3).

In the statistical evaluation using the downsampled modern diploid/pseudo-haploid 
data, we simulated marker counts similar to aDNA data. We applied the same minimum 
100,000 genotyped markers per individual threshold that was used in the analysis of 2136 
selected ancient individuals from the AADR dataset. This equals roughly 0.08× genome 
coverage considering the ~1.15M autosomal markers of the 1240K marker set. Thus, 
the simulated data had similar marker counts and distribution as the analyzed AADR 
dataset. Accordingly, pairwise marker overlap was <5% (<57,000 markers) between 3.72 
and 3.46% of the analyzed sample pairs (ancient and modern respectively). Our analysis 
shows that when proper reference population is available, the applied method is suit-
able to identify relations up to the 4th degree from low to high coverage mixed samples 
(Fig. 5).

We also confirmed the robustness of our methodology on real ancient data with 
known family relations. Our analysis showed that in the case of a medieval Hungarian 
family, a general modern European reference super-population gave appropriate results. 
Despite the fact that the uncorrected kinship coefficients varied highly due to the dif-
ferent genome coverages, our methodology resulted in reproducible corrected kinship 
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coefficients consistent with the known family relation in each case (Table 1). In the sec-
ond example, we reanalyzed published kinship relations from Corded Ware Culture 
samples [26]. Compared to the READ software which could indicate relations up to the 
second degree of kinship and even missed one second-degree relation, our approach 
could properly identify all relations up to 4th degree from this large ancient family with 
very low/variable genome coverages (0.12×–4.18×), underlining the efficiency and use-
fulness of our approach (Table 2).

Our results exposed both the advantages and the limitations of our method. Although 
RPsH combined with the choice of the 1240K marker set in our study allowed us to over-
come genotyping bias of low-coverage ancient samples, it clearly restricts the analysis to 
populations that are properly represented by these markers. In the PC-Relate algorithm, 
PCA is used to regress out the population-specific IBS components. Using linear regres-
sion to fit individuals to the model, all the remaining non-regressed PC components are 
calculated as IBD. Thus, insufficient amount of reference individuals, improper or miss-
ing population components in the reference, or marker sets that are lacking informative 
markers of the tests lead to underestimation of IBS and inflated kinship coefficient esti-
mation. The greater the difference between the structure of related individuals and the 
reference populations, the greater fraction of IBS is accounted incorrectly as IBD which 
can seriously bias small kinship coefficients representing very distant kinship relations. 
Accordingly, the current 1240K marker set is less suitable for the analysis of extremely 
old samples, and for small isolated populations, because these supposedly have less 
informative markers in this marker set, and also have insufficient reference populations 
in the current genome databases. Furthermore, while PC-Relate kinship coefficient esti-
mator is known to be appropriate even in inbreed populations [24], we have to caution 
that in case of inbreed or small drifting populations extra care has to be taken to con-
firm that the test individuals are analyzed with their own reference population. When no 
prior knowledge exists on the reference population, FST or FastNGSAdmix [32] analysis 
could be used as an objective method to select individuals best matching our test indi-
vidual’s genome structure as a reference population.

Genotyping error simulations show that approximately double error rate compared to 
typical experimental aDNA data leads to 5.4–10.4% proportionally lower corrected kin-
ship coefficient than the expected kinship coefficient in our workflow (Fig. 2, Additional 
file 3: Table S2). The mean corrected kinship coefficient of the validated sample dups and 
1st relatives of the experimental 2136 AADR individual was 0.48 and 0.24 respectively 
(approximately ~4% lower from the expected). This is in accordance with the mean X 
contamination rate (1.28%) of ancient individuals of the AADR V42.2 dataset suggesting 
that our kinship-estimation method can be safely used on typical aDNA data. Neverthe-
less, analysis of highly contaminated (CRITICAL/FAIL) samples containing higher rate 
of genotyping errors (>5%) could lead to underestimation of corrected kinship coeffi-
cient and as a result to underestimation of the degree of relation especially in case when 
the relatives share less than the expected IBD fragments due to true biological variation.

The unsupervised analysis of 2136 ancient individuals of the 1240K AADR dataset 
(Additional file  6: Table  S5) demonstrated that our method can identify real 1st–
4th degree of relatedness from very low-coverage ancient damaged samples and fails 
only when the proper reference population is not present in the dataset. Comparison 
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with READ showed that our method has better sensitivity, offers improved perfor-
mance, and scales better on multi-core machines (Additional file  7: Table  S6). On 
the other hand, our results show that the 1240K marker set was sufficient to prop-
erly analyze 4000-year -old ancient Corded Ware Culture individuals with a modern 
Eurasian reference population, suggesting that the majority of the high-frequency 
EUR informative markers were already present at this age.

According to our results, the used method had slight downward (2–4%) bias in 
the analyzed 1KG dups and first-degree relatives and also in the validated first-
degree ancient samples. However, this downward bias is also present in the kinship 
coefficient estimation of fully typed diploid 1KG relatives suggesting that the orig-
inal PC-Relate algorithm and not the applied correction or pseudo-haploidization 
is accountable for this bias. This is also supported by our simulations on the cor-
rected kinship coefficient calculated from marker depleted pseudo-haploid data 
and the original fully typed diploid data (Additional file  2: Table  S1, Fig.  1B) and 
the very high correlation between the kinship coefficient calculation of marker 
depleted pseudo-haploidized and the original fully typed 1KG data (Additional file 5: 
Table S4). On the other hand, the mean of the corrected kinship coefficient of the 
indicated 2nd-degree relatives (n=119) of experimental AADR data is 0.1274 (Addi-
tional file 6: Table S5) that is a slightly over the expected value (~2% relative differ-
ence) suggesting that the bias could originate from more than a single factor.

Our analysis revealed new possibilities to improve kinship analysis from low-
coverage ancient data. Diploid typing with pre-capture enrichment could result 
in higher sensitivity even at lower marker overlap fraction as seen in Fig.  5. How-
ever, this is only feasible when a sufficient number of individuals are available from 
the matching reference populations. According to our analysis, ~50–100 unrelated 
individuals are sufficient as a reference in case of modern samples. We speculate 
that in case of populations with less complex genome structures (like pre-iron age 
populations), a smaller number of unrelated individuals could likely represent the 
population structure properly. This is also demonstrated in the case of the validated 
relations of the analyzed CWC individuals where the analysis resulted comparable 
kinship coefficient estimates using modern EUR individuals as a reference or the 
25 Czech, Latvian, Estonian, and German CWC individuals of the AADR dataset 
(Table  2, Additional file  6: Table  S5). Alternatively, using larger marker sets would 
increase the number of overlapping markers between individuals resulting in higher 
sensitivity from the already available low-coverage WGS data. The increasing num-
ber of aDNA studies should identify proper reference populations and suitable high-
frequency marker sets for cases that are difficult to analyze at present.

To facilitate the evaluation and use of our approach, we provide a practical work-
flow (Fig. 6, Additional file 8: Note S1) for kinship analysis of low-coverage genome 
data.

Our workflow is based on publicly available free software ANGSD, PLINK, and 
PCAngsd. Additionally, we also provide the correctKin tool [https://​github.​com/​
zmaro​ti/​corre​ctKin] to import and shape data, calculate the pairwise overlapping 
marker fraction, and filter relatives based on the empirical error model.

https://github.com/zmaroti/correctKin
https://github.com/zmaroti/correctKin
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Conclusions
In summary, our proposed methodology is capable of reliably identifying the relatedness 
up to the 4th degree from low-coverage genome data, redefining the limits of kinship 
analysis from low-coverage ancient or badly degraded forensic WGS data.

Methods
Used software and datasets

The software requirements and the detailed instructions to perform the analysis work-
flow from various data sources are described in Additional file 8: Note S1.

In all of our analysis, we used the genome coordinates of 1240K SNP set from Allen 
Ancient DNA Resource (AADR) [23]. For marker overlap simulations, we used two dif-
ferent full-typed modern datasets: the 1000 Genomes Project Phase 3 data [25], and a 
large admixed Cabo Verdean-Hungarian family of known pedigree with first- (siblings), 
second- (half siblings), and fifth-degree relatives from our anonymized clinical biobank. 
The variants of the joint VCF (Variant Call Format) files were filtered for the 1240K SNP 
coordinates and imported into plink 1.9 binary format [33, 34].

Fig. 6  Step-by-step workflow to analyze kinship relation of low-coverage ancient/modern samples from 
various data sources. Additional tools presented in this manuscript are denoted with bold letters
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To test the effect of genome coverage on the estimated kinship coefficients from real 
ancient data, we used our unpublished 1240K genotype data of a known medieval par-
ent offspring. The dataset contains low-coverage partially typed pseudo-haploid geno-
type data from 3+2 separate library preparations from different biological samples of the 
analyzed individuals. We deposited the unpublished medieval datasets in PLINK 1240K 
binary format presented in this manuscript at Zenodo [34].

The public AADR V42.4 1240K dataset [23] was used to validate our methodology on 
a wide variety of ancient individuals. We included only ancient samples with more than 
100K genotyped markers (N=2810). We excluded samples older than 8000BC (N=216) 
as older samples were very few and were lacking proper number of samples as a refer-
ence population (Additional file 7: Figure S4). To avoid analyzing individuals with very 
few and/or inappropriate reference populations, we restricted the analyzed samples by 
their geo location (in between the Longitude -12 – 120 and Latitude 28 – 65) excluding 
458 individuals (Additional file 7: Figure S5). After filtration, the resulting dataset con-
tained 2136 ancient individuals (Additional file 6: Table S5).

New bioinformatics tools

To aid easy importing, manipulating, and analyzing the genotype data in our proposed 
workflow, we created the essential tools:

•	 importHaploCall     to import pseudo-haploid genotype calls from the ANGSD
•	 pseudoHaplo            to perform RPsH using a diploid dataset
•	 markerOverlap        to calculate the pairwise marker overlap fraction matrix
•	 filterRelates to correct kinship coefficient, and filter relatives based on error model 

and/or hard kinship coefficient threshold

To study the effect of partially genotyped markers in a controlled fashion and compar-
ing results with the analysis of the fully genotyped modern samples we used

•	 depleteMarkers   to simulate the desired marker overlap fraction between 
selected samples

•	 depleteIndivs           to simulate a random partially genotyped sample cohort

The tools work with the main genotype data formats (PLINK, EIGENSTRAT, PACKE-
DANCESTRYMAP). We documented the usage and options of the new tools with 
command examples in Additional file 8: Note S1. Tools are available in zenodo and the 
GitHub repository (https://​github.​com/​zmaro​ti/​corre​ctKin) [35, 36].

Random pseudo‑haploidization and pairwise overlapping marker fraction calculation

We defined the overlapping marker fraction between two samples as the number of 
markers typed in both samples divided by the number of all markers in the dataset.

Using our “pseudoHaplo” tool, we created 100 randomly pseudo-haploidized datasets 
from the fully typed modern diploid dataset using different random seeds. In all of the 
presented examples, we used our own tool “markerOverlap” to calculate the pairwise 

https://github.com/zmaroti/correctKin
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overlapping marker fraction matrix of samples used for the kinship coefficient correc-
tion [35, 36].

Principal component analysis

We selected the GBR, TSI, IBS, and FIN populations from 1KG dataset (404 samples) 
and randomized the diploid dataset with three different seeds. We performed smartpca 
[37, 38] analysis on the original diploid and the three random pseudo-haploidized data-
set with the “inbreed: YES” option. We used the R (version 4.0.5) [39] and the ggplot2 
R package (3.3.5) [40] to visualize the individuals on the PC1 and PC2 axes (Additional 
file 7: Figure S1).

Simulating the effect of low coverage from fully typed modern datasets

To study the effect of coverage and the resulting lower genotyping percentage on the 
kinship coefficient calculation in a controlled fashion, we used “depleteMarkers” to ran-
domly deplete markers from a fully typed (PLINK, EIGENSTRAT) dataset, resulting in 
the desired percentage of marker overlap between two samples [35, 36]. Using this tool, 
we simulated the overlapping marker fraction in the selected samples in the range of 
5–100% with step of 5 percentages.

To assess the technical error of low/variable coverage data on the whole workflow, 
we selected 1020 fully typed diploid Eurasian samples (CEU, IBS, GBR, FIN, TSI, CDX, 
CHB, CHS, JPT, KHV populations) of the 1KG phase 3 dataset. We applied “depleteIn-
divs” to create a random, partially typed sample cohort with marker count between 
100,000 and the full 1,150,639 markers. From the partially typed diploid dataset, we also 
created a pseudo-haploidized dataset using the “pseudoHaplo” tool [35, 36]. We per-
formed kinship analysis with PCAngsd and corrected the estimated kinship coefficients 
according to the marker overlap fraction of sample pairs on the partially genotyped data-
sets. We compared the results with the estimated kinship coefficients using the original 
fully typed diploid dataset.

Simulation of aDNA‑related genotyping errors

PLINK and EIGENSTRAT data format were designed for biallelic markers. There are 
only 4 possible allelic states (homozygote major allele, homozygote minor allele, hete-
rozygote major/minor, and missing), thus any other nucleotide that is different than the 
minor or major allele cannot be represented and the allelic state of samples with invalid 
alleles are set to the “missing” state at such marker positions.

Based on the data format restriction, the three typical aDNA-related genotype errors 
can be simulated in the following ways for pseudo-haploid PLINK dataset:

•	 Post mortem damage; if the C->T or G->A conversion leads to different nucleotide 
than the minor or major allele, the state is set to “missing,” otherwise, if the minor 
and major alleles are C/T, T/C, G/A or A/G, the homozygote minor and major states 
are flipped.

•	 Exogenous (non-human DNA) contamination; since the exogenous DNA consist 
of mainly DNA of microorganisms (usually in ancestral state), it leads to excessive 
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homozygote major allele, thus random subsets of markers are set to the homozygote 
major allele state.

•	 Endogenous (human DNA) contamination; random subsets of markers are set to the 
state of the same markers genotyped from another sample (theoretically, the largest 
number of SNPs are expected to be flipped in case the population has the largest FST 
from the test individuals or practically if the test is contaminated with sample from a 
very different population).

From most population genetic analyses, highly contaminated samples are excluded. In 
the comprehensive AADR ancient dataset, the following criteria is used to mark bad-
quality sequences:

•	 ANGSD X contamination (applicable only for males) 0.02–0.05="QUESTIONA-
BLE", >0.05="QUESTIONABLE_CRITICAL" or "FAIL”.

•	 mtcontam <0.8 is "QUESTIONABLE_CRITICAL", 0.8-0.95 is "QUESTIONABLE", 
and 0.95–0.98 is recorded but "PASS", gets overridden by ANGSD X contamination.

Accordingly, the 1240K v42.2 AADR dataset (n=3589 ancient samples) 157 is marked 
CRITICAL/FAIL (>5% error rate), while the mean of the X contamination rate of all 
ancient samples is 1.28%.

We simulated the three different errors separately and also made a mixed case where 
all three error types were introduced in equal amount leading to the same total error 
rate. In all cases, we had maximum total genotyping error rate of 5% (the threshold of 
CRITICAL/FAIL tag of the AADR criteria). Accordingly, each sample had random 0–5% 
genotyping error, leading to an overall ~2.5% genotype error rate of the whole dataset 
that is roughly the double of the genotyping error rate of the experimental AADR aDNA 
dataset. In each simulation, we used 100 different randomizations with different random 
seed and calculated the mean and SD of the corrected kinship coefficients.

Uncorrected kinship coefficient estimation

Kinship coefficient estimation was performed by the PCAngsd [41] software (version 
0.99) from the ANGSD package [7] that implements a fast parallelized kinship calcula-
tion from PLINK or EIGENSTRAT format based on the PC-Relate algorithm [24] with 
the “-inbreed 1 -kinship” parameters.
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