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ABSTRACT
Introduction  Early recognition and effective treatment 
of internal bleeding impose a cardinal challenge for 
trauma teams. The reduction of the superior mesenteric 
artery (SMA) blood flow is among the first compensatory 
responses to blood loss, thus being a promising 
candidate as a diagnostic tool for occult haemorrhage. 
Unfortunately, methods for monitoring the SMA flow 
have not been elaborated to date. Nevertheless, animal 
experiments suggest that exhaled methane (CH

4) levels 
correspond to the SMA perfusion. We hypothesise that 
real-time detection of CH4 concentrations in the exhaled 
air is an applicable technique for the early recognition 
of haemorrhage in severely injured patients. We also 
hypothesise that exhaled CH4 levels reflect the volume of 
blood loss more accurately than conventional markers of 
blood loss and shock such as shock index, haemoglobin, 
base deficit, lactate, end-tidal carbon dioxide and 
sublingual microcirculatory indices.
Methods and analysis  One hundred and eleven severely 
injured (Injury Severity Score ≥16), intubated, bleeding 
patients sustaining blunt trauma will be included in 
this prospective observational study. Blood loss will be 
detected with CT and estimated with CT-linked radiologic 
software. Exhaled CH

4 concentrations will be monitored 
by attaching a near-infrared laser technique-based 
photoacoustic spectroscopy apparatus to the exhalation 
outlet of the ventilator on patient arrival. The primary 
outcome is the volume of blood loss. Need for massive 
transfusion and 24-hour mortality will constitute secondary 
outcomes. The relation of exhaled CH

4 to study outcomes 
and its performance in predicting blood loss in comparison 
with conventional shock markers and microcirculatory 
indices will be tested.
Ethics and dissemination  Our protocol (ID: 5400/2021-
SZTE) has been registered on ​ClinicalTrials.​gov 
(NCT04987411) and complies with the Declaration of 
Helsinki and has been approved by the medical ethics 
committee at the University of Szeged (​Ref.​nr.:​121/​2021-​
SZTE RKEB). It is in data collection phase, theresults will be 
shared with the scientific community through publication 
in a peer-reviewed journal.
Trial registration number  NCT04987411; ​ClinicalTrials.​
gov, registered on 27 July 2021.

INTRODUCTION
Despite of the development of trauma care in 
the past decades, approximately one-fourth 
of trauma deaths may be potentially prevent-
able through early medical and surgical 
interventions.1 The majority of potentially 
preventable mortality in patients with trauma 
is related to bleeding1; therefore, early recog-
nition and effective treatment of internal 
bleeding and impending haemorrhagic 
shock (HS) impose a cardinal challenge for 
trauma teams worldwide.

HS can be defined as inadequate organ 
perfusion and tissue oxygenation due to 
blood loss; however, due to the influence of 
different comorbidities and compensatory 
capability of patients, HS may be difficult to 
be defined by objective criteria that can be 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The protocol follows the ‘Strengthening the 
Reporting of Observational studies in Epidemiology’ 
statement and adheres to predefined, strict method-
ological, temporal and numerical criteria.

	⇒ The investigators apply near-infrared laser 
technique-based photoacoustic spectroscopy for 
the real-time monitoring of exhaled methane and 
estimate the volume of blood loss with the help of a 
CT-linked software (FSL’s FSLeyes).

	⇒ To provide a comprehensive analysis on the hae-
modynamic state of study participants, the inves-
tigators apply sublingual videomicroscopy besides 
recording conventional shock markers.

	⇒ Correlation analysis will be performed to reveal as-
sociations between blood loss and exhaled methane 
concentrations, while Receiver operating charac-
teristic (ROC)-analysis will be applied to determine 
whether methane levels could predict mortality and 
massive blood transfusion.

	⇒ The current protocol does not allow researchers to 
investigate the effect of prehospital treatment and 
alcohol consumption on exhaled methane levels; 
thus, these factors may influence the results.
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applied to every case. Regarding the detection of HS, 
the challenge lies in identifying its impending presence 
in the preshock state. To date, the initial haemodynamic 
assessment of the injured relies largely on vital signs 
(VS) such as heart rate (HR) and systolic blood pressure 
(SBP) and metabolic markers such as base deficit (BD) 
and lactate.2 3 However, the specificity of VS and meta-
bolic markers for hypovolemia remained questionable, 
since several factors such as medication, alcohol intoxi-
cation, administration of crystalloids (lactated Ringer 
or saline) or even advanced age can diminish their reli-
ability.3–7 Furthermore, the above-mentioned parameters 
are global markers of shock who are influenced posi-
tively by the compensatory mechanisms of the individual 
patient. Consequently, derangements of these indicators 
during bleeding may remain subtle in the preshock state 
and become apparent when it is already too late. Inva-
sive monitoring methods such as pulmonary artery cath-
eterisation offer substantial benefits; however, they are 
hardly applicable during the initial phase of therapy due 
to patient positioning and time factor.8 9 Determining the 
‘gold standard’ for prompt haemodynamic assessment 
and estimation of transfusion need have been the objec-
tive of numerous studies in the past decades. As a result, 
several markers and their combinations (such as PTratio, 
delta pulse pressure, massive transfusion score (MTS) 
and revised MTS) have been investigated and proposed 
as clinical guides.10–13 Additionally, due to the deeper 
understanding of the link between bleeding-associated 
mortality and coagulopathy, research efforts targeting 
trauma-induced coagulopathy are increasing.11 14 Never-
theless, haemorrhage is still responsible for most poten-
tially preventable trauma-related mortality.1

In contrast to global markers of hypoperfusion, 
regional indicators such as intestinal macroperfusion 
and microperfusion reflect on the early, compensatory 
phase of haemorrhage when blood flow becomes redis-
tributed away from non-vital organs such as the gut and 
the skin to maintain adequate cerebral and coronary 
perfusion.15 16 The reduction of mesenteric perfusion is 
among the first compensatory responses to blood loss,17 
thus being a potential revealer of occult haemorrhage 
and early predictor of HS. According to studies on large 
animal models, the superior mesenteric artery (SMA) 
flow displays a significant drop already at 5% loss of total 
blood volume and continues to diminish in parallel with 
ongoing haemorrhage.17 Unfortunately, methods for 
continuous monitoring of the SMA blood flow and down-
stream intestinal microcirculation have not been elabo-
rated to date. Nevertheless, animal experiments suggest 
that exhaled methane (CH4) levels correspond to the 
SMA blood flow,18 making CH4 a promising new clinical 
indicator of haemodynamic deterioration.

We hypothesise that real-time detection of CH4 concen-
trations in the exhaled air is an applicable technique for 
the early recognition of haemorrhage in severely injured 
patients. We also hypothesise that exhaled CH4 levels 
reflect the volume of blood loss more accurately than 

conventional markers of blood loss and shock such as 
shock index (SI), haemoglobin (Hb), BD, lactate, end-
tidal carbon dioxide (EtCO2) and sublingual microcircu-
latory indices.

Methods and analysis

Study design
The present paper is a protocol for a single-centre, 
prospective observational study that will be conducted at 
the University of Szeged, Szeged, Hungary. Our protocol 
was registered to ​ClinicalTrials.​gov on 27 July 2021, 
complies with the Declaration of Helsinki and follows the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) checklist (see additional file 1).

Patient enrolment and inclusion criteria
This prospective study will involve severely injured (Injury 
Severity Score (ISS)  ≥16) patients with haemorrhage 
related to blunt force trauma, aged ≥18 years, intubated 
on scene or on arrival, transported directly to the emer-
gency department of the University of Szeged. Bleeding 
will be confirmed with CT. Patients with penetrating 
trauma or isolated traumatic brain injury will be excluded 
from the analysis. As the present study investigates asso-
ciations between exhaled CH4 and haemorrhage, respi-
ratory causes of CH4-decrease must be recognised. For 
this purpose, the gradient of partial pressure of carbon 
dioxide (PaCO2) and ETCO2 will be evaluated since it 
differs in patients with hypovolemia from patients with 
respiratory distress due to obstructive causes or lung inju-
ries.19–21 Obtaining the PaCO2-ETCO2 gradient does not 
require additional measurements since blood gas anal-
ysis and volumetric capnometry are performed routinely 
in ventilated patients with severe injuries. Furthermore, 
lung injuries will be assessed with CT. The presence of 
acute respiratory distress syndrome (ARDS) or acute lung 
injury (ALI) will be assessed based on The American-
European Consensus Conference Definition of ALI and 
ARDS22 and the Murray Lung Injury Score22; and it will 
entail exclusion from the analysis.

The study will be conducted for an estimated maximum 
of 36 months (between 15 August 2021 and 15 August 
2024). figure 1 (protocol flowchart) includes an overview 
on patient enrolment (A).

Measurement of exhaled CH4 levels
For the measurement of exhaled CH4 concentrations, 
gas chromatography mass spectrometry is considered as 
the gold-standard technique23; however, it does not allow 
continuous monitoring. Real-time monitoring can be 
conducted with selected ion flow tube mass spectrometry, 
proton transfer reaction mass spectrometry, laser spec-
trometry or with photoacoustic spectroscopy (PAS)-based 
sensors.24 PAS is a subclass of optical absorption spectros-
copy measuring optical absorption indirectly through the 
conversion of absorbed light energy into acoustic waves 
due to the thermal expansion of absorbing gas samples. 
The amplitude of the generated sound is directly 
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proportional to the concentration of the absorbing gas 
component. The gas sample passes through the photo-
acoustic cell generating a photoacoustic signal, which is 
detected by a microphone.17

In our study, a near-infrared laser technique-based PAS 
apparatus will be attached to the exhalation outlet of 
the ventilator on arrival of patients, thereby allowing the 
continuous monitoring of exhaled CH4 concentrations.

Estimation of blood loss volume
CT scanning will be performed on a 64-slice GE Revolu-
tion Evo scanner (GE Healthcare, Chicago, Illinois). The 
polytrauma CT protocol complies with the guidelines of 

the European Society of Emergency Radiology.25 Patients 
will be positioned on the examination table with feet 
first, arms placed above the head if possible, unenhanced 
cranial CT, (un)enhanced cervical spine CT, unenhanced, 
arterial and venous phase imaging of the trunk (chest, 
upper and lower abdomen and pelvis). The protocol will 
be tailored to the patient’s need, special protocols such as 
urography and angiography may be employed.

The volume of the bleeding will be evaluated on the 
unenhanced CT scans. Clinical qualitative image analysis 
will be carried out on an eRad PACS system (V.8.1, Green-
ville SC), on Eizo Radiforce RX850 displays (Hakusan, 
Ishikawa, Japan). The quantitative analysis of the volume 
of the bleeding will be determined manually, a region of 
interest will be drawn on the hyperdense blood slice by 
slice. The volume of the bleeding will be determined by 
multiplying the number of the voxels by the volume of 
a single voxel. The manual bleeding segmentation will 
be carried out by FSL’s (https://fsl.fmrib.ox.ac.uk/fsl/​
fslwiki) FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/​
FSLeyes) software.

Videomicroscopy of the sublingual mucosa
The direct visualisation of peripheral microcircula-
tory networks with videomicroscopy (VM) is a suitable 
method for providing information on compensatory 
circulatory redistribution in shock, and on the thera-
peutic response of patients on haemodynamic resuscita-
tion.26–29 VM uses handheld microscopes that can detect 
red blood cells flowing in capillaries when placed on 
mucosal surfaces.26 30 31 Multiple generations of videomi-
croscopic techniques including orthogonal polarisation 
spectral imaging (OPSI), sidestream dark field imaging 
and incident dark field imaging are available for clini-
cians and researchers.26 As VM requires easily accessible 
mucosal surface, the investigation of the sublingual 
region is a reasonable approach if haemodynamic coher-
ence between the microcirculatory systems of the gut and 
the sublingual mucosa is presumed. Although there is 
evidence for a relation between the two regional micro-
circulatory systems,28 32 reactions of the sublingual micro-
perfusion to haemodynamic changes are considered to 
be significantly slower than the response of more distal 
gastrointestinal regions.17

In our study, OPSI technique (Cytoscan A/R, Cytomet-
rics) will be used to visualise the microcirculation of the 
sublingual mucosa of the participants. The sublingual 
capillary network and capillary blood flow of each patient 
will be recorded and saved to hard drive as 20 s-long video 
clips. The video clips will be evaluated independently 
by two investigators and the De Backer score (DBS), 
perfused vessel density (PVD), microvascular flow index 
(MFI) and heterogeneity index (HI) of the participants 
will be determined. DBS refers to capillary density and 
can be calculated by using the principle that vessel density 
is proportional to the number of vessels crossing arbitrary 
lines.33 Only vessels with a diameter of 20 µm or less will be 
considered as capillaries. The blood flow of the individual 

Figure 1  Protocol flowchart. (A) Aspects of patient 
enrolment and reasons for exclusion are demonstrated. 
Severely injured (ISS≥16), blunt trauma patients with bleeding 
will be enrolled into our study. CT will be used to detect 
the presence and evaluate the severity of bleeding, and for 
aiding the assessment of injury severity. Signed informed 
consent from patients or their surrogates will be required for 
patient enrolment. Inclusion criteria include intubation as the 
exhalation outlet of the ventilator allows the attachment of 
the CH4 detector apparatus, thus the continuous monitoring 
of CH4 levels in breath. Patients with penetrating trauma, 
bleeding outwards, grade II and III fractures, isolated TBI, 
ARDS or ALI will be excluded from the analysis. (B) Study 
participants will undergo a comprehensive haemodynamic 
assessment on arrival, which consists of evaluation of 
VS (HR, SBP), ETCO2, ABG (BD, lactate), laboratory tests 
(Hb, Hct), VM of the sublingual mucosa using orthogonal 
polarisation spectral imaging, eFAST, and polytrauma 
CT. With the help of these parameters, a detailed dataset 
describing the haemodynamic state of the participants will 
be provided. Exhaled CH4 concentrations will be monitored 
with a near-infrared laser technique-based PAS apparatus. 
(C) Our clinical outcomes will include the volume of blood 
that patients have already lost at the time of their arrival, 
the need for a MBT, and 24-hour mortality. To calculate to 
volume of blood loss, a CT-linked radiologic software will 
be used. Associations between exhaled CH4 concentrations 
and clinical outcomes will be assessed. ABG, arterial blood 
gas; ALI, acute lung injury; ARDS, acute respiratory distress 
syndrome; BD, base deficit; CH4, methane; eFAST, extended 
focused assessment with sonography for trauma; ETCO2, 
end-tidal carbon dioxide; Hb, haemoglobin; Hct, hematocrit; 
HR, heart rate; ISS, Injury Severity Score; PAS, photoacoustic 
spectroscopy; SBP, systolic blood pressure; TBI, traumatic 
brain injury; VM, videomicroscopy; vs, vital signs.
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capillaries will be characterised as continuous (contin-
uous flow for 20 s), intermittent (no flow for at least 10 s), 
sluggish (slow blood flow) or absent (no perfusion); and 
PVD will be calculated by multiplying vessel density by 
the proportion of continuously perfused vessels.34 The 
MFI refers to perfusion quality and can be determined by 
dividing the recorded view into four quadrants, assigning 
a number for each quadrant based on the predominant 
type of blood flow (0=absent, 1=intermittent, 2=sluggish, 
3=continuous) and calculating the average value from 
the numbers.35 The HI describes perfusion heterogeneity 
by dividing the difference between the highest MFI and 
the lowest MFI by the mean MFI.17 34 Through providing 
DBS, PVD, MFI and HI, the sublingual microcirculation 
of each patient will be described quantitatively. Disagree-
ments between the two independent investigators will be 
resolved by consensus.

Recorded variables
Demographic data and comorbidities of the participants 
will be documented ideally on admission. In case of an 
unidentified patient, surrogates must be disclosed and 
contacted within 24 hours to obtain demographic data 
and informed consent.

Variables reflecting the haemodynamic condition of 
patients will be recorded on arrival, as demonstrated in 
figure  1B and table  1 (Documentation plan). HR, SBP, 
SI, BD, lactate, Hb, haematocrit (Hct), ETCO2, results of 
extended focused assessment with sonography for trauma 
and indices of sublingual microcirculation (DBS, PVD, 
MFI, HI) will serve to provide a detailed view on the circu-
latory status of the patients.

Controlling VS including HR and SBP is essential in 
the severely injured. Dividing HR with SBP displays SI, a 
ratio which is commonly used in addition to traditional 
VS in emergency medicine. Although the SI is often in 
the normal range (0.5–0.7) in the compensatory phase 
of shock, SI >1.0 has been found to predict increased 
mortality risk, need for massive blood transfusion (MBT) 
and admission to intensive care unit.36 Additionally, a 
register analysis with a large patient number found the 
performances of SI-based and BD-based hypovolemic 
shock classification equal in predicting transfusion 
requirement.37

Blood gas analysis is a promptly available method for 
acquiring BD and lactate values within minutes. Both 
metabolic markers are useful indicators in cases where 
bleeding is suspected. The current Advanced Trauma 
Life Support (ATLS) guidance on HS emphasises the 
importance of BD by associating explicit BD values with 
explicit percentages of blood loss, while the alterations 
of VS are only described subjectively, without quantifi-
cation.2 Furthermore, several studies support the supe-
riority of BD over VS in indicating haemorrhage.38 39 In 
contrast to BD, which is a calculated metabolic marker, 
lactate is a direct byproduct of anaerobic metabo-
lism during shock.40 Although ATLS does not refer to 
lactate as an indicator of severity in the classification of 

hypovolemic shock, numerous studies reported its ability 
to predict mortality, massive transfusion and the need 
for damage control laparotomy.41–44 Modern blood gas 
analysers often have incorporated technology allowing 
the measurement of Hb, nevertheless, it is also accessible 

Table 1  Documentation plan

Patient 
arrival

24 hours 
after arrival

Informed consent from surrogates X  �

Recording demographic data (age, 
sex) and comorbidities

X  �

Recording VS (HR, SBP) and 
calculating SI

X X

Recording ETCO2 X  �

eFAST X  �

CT (confirming, localising and 
quantifying haemorrhage)

X  �

Listing and assessing all injuries X  �

Determining ISS X  �

Assessment for eligibility X  �

Arterial blood gas (including BD and 
lactate)

X X

Laboratory testing of venous blood 
(including Hb, Hct)

X X

Assessment of sublingual 
microcirculation with VM (calculating 
DBS, PVD, MFI, HI)

X X

Recording exhaled CH4 
concentration

X X

Recording vasopressors (type, dose 
and time of administration)

X X

Recording MBT  �  X

Recording 24-hour mortality  �  X

Key measures of the protocol and their timing are shown. 
Informed consent will be obtained from patient surrogates on 
admission. Demographic data, comorbidities will be recorded. 
A comprehensive haemodynamic assessment will be carried 
out on arrival, including the evaluation of VS (HR, SBP), ETCO2, 
arterial blood gas analysis (BD, lactate), laboratory tests (Hb, 
Hct), VM of the sublingual mucosa using orthogonal polarisation 
spectral imaging, and eFAST. CT will be used to detect and 
assess bleeding and to aid the recognition of all injuries for ISS 
scoring. Vital signs, blood gas parameters, laboratory markers 
and indices of sublingual microcirculation (DBS, PVD, MFI, HI) will 
also be documented at 24 hours post-admission. Exhaled CH4 
concentrations will be monitored and recorded on arrival and at 24 
hours. The documentation will include MBT and mortality.
BD, base deficit; CH4, methane; DBS, De Backer score; 
eFAST, extended focused assessment with sonography for 
trauma; ETCO2, end-tidal carbon dioxide; Hb, haemoglobin; 
Hct, haematocrit; HI, heterogeneity index; HR, heart rate; 
ISS, Injury Severity Score; MBT, massive blood transfusion; 
MFI, microvascular flow index; PVD, perfused vessel density; 
ROC, Receiver operating characteristic; ROTEM, rotational 
thromboelastometry ; SBP, systolic blood pressure; SI, Shock 
Index; VM, videomicroscopy; VS, vital signs.
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through standard laboratory testing. Low Hb or Hct 
are widely and interchangeably used as indicators of 
severe bleeding. Although their value in the early phase 
of haemorrhage remains controversial, most trauma 
patients with severe bleeding display a significant drop 
in Hb and Hct values within the first 30 min of patient 
arrival.45 46

Monitoring EtCO2 is indispensable in intubated 
trauma patients. Although capnography was used initially 
only for the confirmation of proper tracheal tube place-
ment, due to its association with cardiac output, it has 
proven to be useful in many clinical scenarios including 
severe trauma.47 In addition to the role in ascertaining 
the effectiveness of chest compressions during cardio-
pulmonary resuscitation, EtCO2 has been reported to 
reflect mortality, transfusion need and fluid responsive-
ness after injury.47–50 Similarly to CH4, EtCO2 is an easily 
measurable exhaled gas that provides information on 
the circulatory status of patients. However, according 
to our theory, monitoring CH4 levels allows clinicians 
to detect haemorrhage in a much earlier phase, when 
cardiac output is still in the normal range due to compen-
satory mechanisms. The reduction of splanchnic perfu-
sion is one of the earliest responses to blood loss; thus, 
the consecutive fall in exhaled CH4 concentration may 
already indicate bleeding when ETCO2 stays in the refer-
ence range.

After the primary assessment and stabilisation, CT is 
the modality of choice as it allows the identification of the 
source and estimation of blood loss volume, and it can 
also detect small amounts of blood.

The need for MBT and 24-hour mortality will be 
recorded. The present study defines MBT according to 
ATLS, as more than 10 units of transfused packed red 
blood cells (pRBC) within the first 24 hours of admis-
sion or more than 4 units in 1 hour.2 Some studies accept 
other criteria such as the replacement of one entire blood 
volume within 24 hours, or the replacement of 50% of 
total blood volume within 3 hours as well51; however, we 
use criteria listed by ATLS due to practical considerations. 
It is important to mention that our institution uses a rota-
tional thromboelastometry (ROTEM)-based strategy for 
the transfusion of blood products, which may reduce the 
number of pRBCs used.

In addition to the above-discussed parameters, the 
use of vasopressors including the type of drug, dose 
and time of administration will be recorded since they 
may influence microcirculatory indices and splanchnic 
perfusion.52–54

Data will be stored in electronic database and super-
vised by the principal investigator (PH). The detailed 
documentation plan is shown in table 1.

Patient and public involvement
Patients and public were not specifically involved in 
designing the protocol and choosing the methods and 
outcome measures.

Study outcomes
The primary outcome in our study is the volume of blood 
loss. The association between the volume of blood loss and 
the concentration of CH4 in exhaled breath on admission 
stands in the focus of our research. Additionally, exhaled 
CH4 will be compared with SI, BD, lactate, Hb, EtCO2 
and microcirculatory indices (DBS, PVD, MFI, HI), with 
respect to their ability to reflect the extent of blood loss on 
patient arrival. If exhaled CH4 displays higher predictive 
performance than the above-mentioned shock markers, it 
would strongly suggest the utility of CH4 measurements in 
clinical practice considering its prompt availability, non-
invasive nature and suitability for continuous monitoring. 
The need for MBT and 24-hour mortality will constitute 
secondary outcomes.

Statistical methods
Hypothesis
The alternative hypothesis for the primary outcome 
presumes an association (Pearson correlation at least 0.3 
or larger) between exhaled CH4 levels and the volume of 
blood loss.

Sample size calculation
Sample size calculation was performed with G*Power 
V.3.9.1.7 software. The estimation was based on the signif-
icance test for the correlation coefficient. We expect the 
magnitude of the correlation coefficient to be at least 0.3. 
Thus, 111 subjects are needed to reject the null hypoth-
esis that this correlation coefficient equals zero with the 
probability (power) of 0.95. The significance level is 
α=0.05.

Statistical analyses
Statistical analyses will be performed using SPSS V.25.0 
(IBM Corporation, Chicago, Illinois). P values p<0.05 will 
be regarded as statistically significant. Normality test will 
be carried out with the Shapiro-Wilk test. Continuous 
variables will be expressed as mean±SD, 95% CIs for 
normally distributed variables and median and IQR for 
non-normally distributed variables, respectively. Signifi-
cance test for the correlation coefficient will be applied 
for primary and secondary analyses. Possible non-linear 
relationship will be analysed using linear regression and 
a non-linear (polynomial regression). Regression models 
will be compared with F test. To investigate the associa-
tion between exhaled CH4 concentrations and the need 
for MBT and 24-hour mortality, respectively, receiver 
operating characteristic (ROC)-analysis will be applied.

Summary
CH4 is an intrinsically non-toxic, combustible gas.55 56 
According to a widely accepted perspective, CH4 in the 
human body originates mainly from anaerobic metha-
nogenic intestinal microorganisms.57 Due to its physico-
chemical properties, it can enter freely to the mesenteric 
microcirculation, and exhaled CH4 concentrations may 
correspond to the perfusion rate of the gastrointestinal 
tract.58 The reduction of mesenteric blood flow is among 
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the first compensatory responses to haemorrhage; there-
fore, it may indicate occult bleeding and impending HS 
earlier than conventional markers of blood loss such as 
VS, Hb, lactate or BD. Furthermore, it may allow the 
better monitoring of early therapeutic responses as a 
promptly available, non-invasive, highly sensitive method. 
To the best of our knowledge, the present study is the first 
protocol for investigating the associations of exhaled CH4 
levels and haemorrhage in severely injured patients.

Ethics and dissemination
Our protocol complies with the Declaration of Helsinki 
and has been approved by the local medical ethics 
committee at the University of Szeged (Regional and 
Institutional Review Board of Human Investigations) 
under reference number 121/2021-SZTE RKEB. The 
examinations that are not part of routine trauma care 
(measurement of exhaled CH4, VM of the sublingual 
mucosa) are non-invasive and take only minimal time to 
perform; thus, they will not hinder patient care, even if 
the patient needs emergent surgery.

Our research studies patients who may be incapable 
of providing informed consent due to their condition; 
however, in these cases, surrogates are provided a consent 
form and information sheet, and they have the opportu-
nity to consult one of the investigators. The information 
sheet contains information about the rationale, design, 
methods, outcomes and dissemination of the study.

Personal information, photographs or other material 
that might identify the participants will not be published. 
Personal data will not be given out without the permis-
sion of our patients or their surrogates.

Currently, the study is in recruitment phase. On 
completion of the research, the results will be reported 
according to the STROBE guidelines and will be shared 
with the scientific community through publication in a 
peer-reviewed journal. The results will also be presented 
at national and international conferences. In case of a 
significant association between exhaled CH4 levels and 
blood loss volume, the Hungarian Trauma Society and 
leading trauma surgeons of the country will be contacted 
to initiate a national multicentre study.
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