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Abstract—The efficient management of autonomous 

mushroom production plants requires the model of growth rate 

of mushrooms. Photos of the plants are used as input for the 

growth models, which then predict the development of 

individual mushrooms. Recently machine learning techniques 

have been successfully applied to create such models. For the 

machine learning systems, however, large number of training 

samples are required. The training samples include photos of 

the plant and also ground truth markers indicating the position 

and size of the mushrooms on the photo. In this paper an image 

processing system is introduced, which is able to create good 

quality ground truth from sequences of images of the plant. The 

proposed system can automatically detect the mushroom 

positions and sizes on each of the pictures, but also allows user 

intervention to minimize the number of detection errors.  

Keywords—image processing, object detection, computer 

vision, mushroom cultivation 

I. INTRODUCTION 

In precision agriculture machine learning techniques are 
widely used to improve crop quality, e.g. using weather 
prediction, providing pest prevention, or maintaining optimal 
conditions in greenhouses [1]-[8]. Machine learning 
techniques have been successful to forecast various events 
based on time series, e.g. in weather and climate modelling 
[9], business [10], finance [11], and lately crop growth 
modelling [5]-[8] as well.  

In mushroom production, technological greenhouses are 
used, where optimal parameters can be precisely adjusted [5]. 
Recently machine learning systems have been proposed to 
detect and measure mushrooms, and estimate their growth rate 
[5], [6]. To allow the training of machine learning systems, 
however, a large number of training samples are required, e.g. 
in the form of a series of photos showing the evaluation of the 
crop, with the synchronized timeline of various measured 
environmental parameters possibly affecting the growth rate 
(e.g. temperature or humidity). The training samples must 
include the ground truth, e.g. for the photos the mushrooms 
must be identified for the learning system, e.g. in the form of 
parameters center and radius. The generation of ground truth 
is burdensome, especially for large number of samples. In this 
paper an image processing system is proposed, which aids the 
creation of good quality ground truth data from sequences of 
images of the plant. The proposed system models mushroom 

as a circle, and can automatically detect the position and radius 
of each mushroom on each of the pictures. The system also 
allows user intervention to minimize the number of detection 
errors. 

The outline of the paper is the following: Section II will 
provide the outline of the system and explains the mode of 
operation. In Section III the main components will be 
introduced. Section IV illustrates the operation of the system. 
Section V concludes the paper.  

II. SYSTEM OPERATION 

The input of the system is a series of photos taken on the 
crop, as illustrated in Fig. 1. The photos are taken so that the 
growth of the mushrooms is observable, but the difference is 
not too large. In practice one photo in each hour gives good 
results. The operation of the system is based on the following 
trivial observation: large mushrooms are easier to detect than 
small ones. Thus, the processing of images is started from the 
last one, where the mushrooms are the largest. In the first 
phase all mushrooms with considerable size are detected on 
the latest image. In the second operation phase, stepping 
backwards, the mushrooms are tracked on each image. In the 
second phase information, found in the previous image, is 
used to locate the mushrooms. 

The concept is illustrated in Fig. 1, where the input images 
are denoted by 𝐼1, 𝐼2, … , 𝐼𝑁. In phase #1 the last image 𝐼𝑁 is 
processed. Notice that in this phase the only input is the image. 
The output of the processing is a vector 𝑷𝑁  of estimated circle 
positions, where each position includes the center and radius 
of one circle, corresponding to a mushroom. In Fig. 1, four 
mushrooms are detected, the detections are shown as red 
circles. 

In phase #2, the remaining of the images are processed in 
reverse order, i.e. 𝐼𝑁−1, 𝐼𝑁−2, … , 𝐼1. The result of each step is a 
vector of positions, similarly to phase #1. When image 𝐼𝑛 is 
processed, the output is 𝑷𝑛 , and the input also includes the 
result vector 𝑷𝑛+1 of the previous processing step.  

Notices: 

mailto:simon.gyula@amk.uni-obuda.hu
mailto:vakulya.gergely@amk.uni-obuda.hu


• As Fig. 1 illustrates, the processing is performed in 
reverse order. 

• The lengths of the result vectors are the same, 
determined in phase #1. If the size of a mushroom 
becomes too small to detect, its position is still 
maintained in the next processing steps.  

III. SYSTEM COMPONENTS 

In this Section the image processing tools will be 
introduced. 

A. Image Preprocessing 

The input of phase #1 is the last image 𝐼𝑁 . In the 
preprocessing step the image is converted to a grayscale image 
( 𝐼𝐺𝑅𝐴𝑌 ). To highlight the edges on the image, the image 
gradient is computed (𝐼𝐺𝑅𝐴𝐷). Finally, the gradient image is 

binarized (𝐼𝐵𝐼𝑁). The steps of the preprocessing are illustrated 
in Fig. 2.  

B. Phase One 

In phase #1 circles are searched for in the binary image 
𝐼𝐵𝐼𝑁 . For circle finding, the classical method is the Circle-
Hough-transformation (CHT) [12], which is able to find 
circles with a given radius on binary images. Extensions of the 
Hough-transform allow the search of various shapes [13]. 
Also, circles with different radii can be searched, with iterative 
usage of the CHT. The Phase Coding Method (PCM) uses a 
scale-invariant kernel operator, thus it provides more efficient 
implementation in case the radius is not known [14]. The 
MATLAB Image Processing Toolbox contains 
implementations for both CHT and PCM [15]. The 
performance of the methods is illustrated in Fig. 3.  

The input of the circle search was the binary image 𝐼𝐵𝐼𝑁, 
but the figure also contains the grayscale image 𝐼𝐺𝑅𝐴𝑌 to ease 
visual evaluation. Both methods have a sensitivity parameter, 
where higher values close to 1 allow detection of more circles. 
The examples shown in Fig. 3 allow the following 
conclusions: 

• Small sensitivity values provide fewer false 
detections but also may miss real targets. 

• Large sensitivity values provide a great amount of 
false detections but the chance of mission a target is 
smaller. 

 

Fig. 1. The concept of image processing 
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Fig. 2.  The image preprocessing steps 
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Since the general circle search algorithms cannot provide 
robust detection by themselves, they are used to provide initial 
estimates, which are further evaluated. The sensitivity S is set 
high enough to provide a rich set of detections, with 
potentially no misses. The initial estimates filtered and pruned 
as follows: 

The quality of the circle edge is measured by three 
quantities 𝑄𝑝𝑒𝑟 , 𝑄𝑝𝑙𝑎𝑡𝑒 , and 𝑄𝑐𝑜𝑙𝑜𝑟 . The perimeter quality 

index 𝑄𝑝𝑒𝑟  of a circle with center C and radius R is calculated 

as follows: 

 𝑄𝑝𝑒𝑟 =
𝑁𝑤ℎ𝑖𝑡𝑒−𝑝𝑒𝑟

2𝑅𝜋
, () 

where 𝑁𝑤ℎ𝑖𝑡𝑒−𝑝𝑒𝑟  is the number of white pixels in 𝐼𝐵𝐼𝑁 along 

the circle drawn at center C and radius R. Obviously, 𝑄𝑝𝑒𝑟  

measures the ratio of white pixels of the current circle and the 
ideal circle (C,R) and shows the “fullness” of the circle. A full 
circle has 𝑄𝑝𝑒𝑟 = 1, while a circle with fewer white pixels 

along the ideal perimeter has 𝑄𝑝𝑒𝑟 < 1. 

The plate quality of the circle measures the ratio of the 
black pixels and the total number of pixels inside (C,R) in 
𝐼𝐵𝐼𝑁 , as follows: 

 𝑄𝑝𝑙𝑎𝑡𝑒 =
𝑁𝑏𝑙𝑎𝑐𝑘−𝑝𝑙𝑎𝑡𝑒

2𝑅𝜋
, () 

where 𝑁𝑏𝑙𝑎𝑐𝑘−𝑝𝑙𝑎𝑡𝑒 is the number of black pixels. High plate 

quality value close to 1 indicates that almost all of the pixels 
inside the circle are black, i.e. there is no significant change of 
color inside the circle. An ideal round mushroom would have 
𝑁𝑏𝑙𝑎𝑐𝑘−𝑝𝑙𝑎𝑡𝑒 = 1, while a false detection on the mycelium has 

small plate quality. 

The color index measures the average brightness 𝐼𝑚𝑒𝑎𝑛 of 
the circle in image 𝐼𝐺𝑅𝐴𝑌 . The color quality is defined as 
follows: 

 𝑄𝑐𝑜𝑙𝑜𝑟 = 𝐼𝑝𝑙𝑎𝑡𝑒/𝐼𝑚𝑎𝑥 , () 

where 𝐼𝑚𝑎𝑥 is the maximum possible value of the brightness 
(e.g. in an 8-bit picture 𝐼𝑚𝑎𝑥 = 255). White mushrooms have 
high, while the ground and the mycelium have low brightness 
values.  

Using quantities 𝑄𝑝𝑒𝑟 , 𝑄𝑝𝑙𝑎𝑡𝑒 , and 𝑄𝑐𝑜𝑙𝑜𝑟 , each circle is 

tested. If all three quantities are higher than experimentally 
defined values 𝐿𝑝𝑒𝑟 , 𝐿𝑝𝑙𝑎𝑡𝑒 , and 𝐿𝑐𝑜𝑙𝑜𝑟 , respectively, then the 

circle is accepted, otherwise rejected. To each of the accepted 
circles a combined quality index 𝑄 is assigned:  

 𝑄𝑐𝑜𝑚𝑏 = 𝜇𝑝𝑒𝑟𝑄𝑝𝑒𝑟 + 𝜇𝑝𝑙𝑎𝑡𝑒𝑄𝑝𝑙𝑎𝑡𝑒 + 𝜇𝑐𝑜𝑙𝑜𝑟𝑄𝑐𝑜𝑙𝑜𝑟 , () 

where weighting factors 𝜇𝑝𝑒𝑟 ,  𝜇𝑝𝑙𝑎𝑡𝑒 ,  and 𝜇𝑐𝑜𝑙𝑜𝑟  are set 

experimentally.  

After the quality check the pruning is performed. Initially, 
the candidate set A contains all of the accepted circles with 
their quality indices, while the output set B is empty. The core 
of the pruning algorithm is the following: 

Step 1. Select circle C with the highest * in A. 

Step 2. Move C from A to B. 

Step 3. Remove circles from A, which are covered by C.  

Repeat Steps 1-3 until A is empty. 

The pruning is performed in two rounds. In the first round 
the pruning algorithm is run with * = 𝑄𝑐𝑜𝑚𝑏 . Then the output 
of the first round is moved to the candidate set, and the pruning 
algorithm is repeated with * = R. The output set of the second 
round constitute the final output 𝑷𝑁 of phase #1.  

Notice that user intervention is possible at the end of 
phase #1. Here the found circles may be adjusted, deleted, or 
new circles may be added to  𝑷𝑁. 

C. Phase Two 

The output of phase #1 provided an initial set of circle 
estimates 𝑷𝑁  on image 𝐼𝑁 , as shown in Fig. 1. In phase #2 
images are processed in backward direction, and the search on 
image 𝐼𝑛 is performed using the results 𝑷𝑛+1. Since no new 
mushrooms can appear backwards in time, and the size and 

 

Fig. 3.  The perfromance of the circle finder aloritms CHT and PCM, with 

various sensitivity values S.  

Fig. 4.  Estimation of a circle’s radius and quality at a given center (x,y). 



position of existing mushrooms do not change significantly 
from one image to another, the search in image 𝐼𝑛  is 
concentrated to positions and sizes 𝑷𝑛+1 found in image  𝐼𝑛+1.  

The search process for one particular mushroom is 
illustrated in Fig. 4. The position of this mushroom on image 
𝐼𝑛+1  is 𝑷𝑛+1 = (𝐶𝑛+1 , 𝑅𝑛+1 ). We assume that for position 
𝑷𝑛 = (𝐶𝑛 , 𝑅𝑛 ) the following constraints are true: 

 |𝐶𝑛+1 − 𝐶𝑛| ≤ Δ𝐶, () 

and 

 0 ≤ 𝑅𝑛+1 − 𝑅𝑛 ≤ Δ𝑅 () 

Constraint (5) expresses the fact that the change of the 
center position of a mushroom is limited, the limit being Δ𝐶. 
Notice that this change may happen because of the uneven 
growth of a mushroom, or a mushroom may be pushed by 
another touching mushroom, and estimation inaccuracies also 
can result a small shift.  

Constraint (6) expresses the fact the radius of a mushroom 
increases in time. The limit of increase between two images is 
limited by parameter Δ𝑅.  

The core circle finding algorithm is the following: 

Input: a central point 𝐶 in the vicinity of 𝐶𝑛+1 . 

Step 1. On image 𝐼𝑛 measure the distance of every white 
pixels from 𝐶. The distance of pixel 𝑖 from 𝐶 is 𝑑𝑖, as shown 
on the left-hand side of Fig. 4.  

Step 2. Create the 𝐻(𝐶, 𝑑) histogram of distances, with 
bin size 𝑏 equal to the required resolution (e.g. one pixel), so 
that  𝐻(𝐶, 𝑑) counts the number of white pixels on a circle 
with center 𝐶 and radius between 𝑑 − 𝑏 and 𝑑 + 𝑏.  

Step 3. Create a weighted histogram 𝐻𝑤(𝐶, 𝑑), as follows: 

 𝐻𝑤(𝐶, 𝑑) =
𝐻(𝑐,𝑑)

2𝛱𝑑
, () 

which defines the ratio of the actual number and the maximum 
number of white pixels on the circle. 𝐻𝑤(𝐶, 𝑑) is illustrated 
on the right-hand side of Fig. 4. The closer 𝐻𝑤  is to 1 the 
“more perfect” the circle is.  

Step 4. Search for the maximum of 𝐻𝑤 in the region of 
𝑅𝑛+1 − Δ𝑅 ≤ 𝑑 ≤ 𝑅𝑛+1 . Thus the radius of the best circle 
with center 𝐶 is estimated as follows: 

 𝑅𝑛(𝐶) = argmax
𝑅𝑛+1−Δ𝑅≤𝑑≤𝑅𝑛+1

𝐻𝑤(𝐶, 𝑑), () 

The quality 𝑄 of circle is defined as follows: 

 𝑀(𝐶) = max
𝑅𝑛+1−Δ𝑅≤𝑑≤𝑅𝑛+1

𝐻𝑤(𝑑), () 

The algorithm defined by steps 1-4 provides the best 
radius, given the center 𝐶 of the circle. During the estimation 
process these steps are repeated starting from different values 

of 𝐶 = 𝐶𝑘, such that |𝐶𝑛+1 − 𝐶𝑘|, so that the region around 
𝐶𝑛+1  is searched with the required resolution (e.g. 1 pixel). 
The best estimate will define the new estimated circle:  

 𝐶𝑛 = argmax
|𝐶𝑛+1 −𝐶𝑘|≤Δ𝐶

𝑀(𝐶𝑘), () 

and the radius is 𝑅𝑛(𝐶𝑛), using (7). 

Notice that he circle finder solution used in phase #2 is not 
suitable for general circle finding, since it accepts any circular 
portion of a white are as a solution. Since the previous steps 
already provides a good estimate, it is used to fine-tune the 
solution.  

 
(a) 

(b) 

(c) 

 
(d) 

Fig. 5.  Example processing. (a) input image 𝐼60  and phase #1 detection 

results for 10 ≤ 𝑅 ≤ 60, (b) manually corrected results, (c)-(d) phase #2 

results for images 𝐼30 and 𝐼1 



IV. EXPERIMENTS 

A. Image collection 

The data collection device contained a Raspberry Pi 4 
mini-PC with 4GB RAM and two BME280 temperature, 
humidity, and barometer sensor modules. The images were 
taken with an Intel RealSense SR305 RGBD camera and 
saved to a flash drive. Every day a backup was created in a 
private cloud. The camera provided a VGA size depth map 
and a Full HD color image. The depth sensing of SR305 is 
based on structured light projection, where a known pattern is 
projected into the scene and by evaluating how this pattern 
deforms, the depth information is computed in the range of 0.2 
- 1.5m. However, the compost albedo number is very low. 
Thus, most of the infrared light from the depth camera is 
absorbed by the compost. Since there is no reflection in these 
places, the depth map contains zeros there. The data collection 
device was placed ~700mm above the mushroom growing 
bed. The illumination was solved using neutral white LEDs. 
Two meters of LED stripe are used with 20W total power. A 
50W power supply provided the energy supply, and an IP67-
protected servomotor helped to open and close a camera 
protector cover. The data collection equipment had to 
withstand several environmental challenges: 100% relative 
humidity, 70 degrees Celsius temperature, and a corrosive 
environment during the 48-hour-long sterilization between 
cultivation cycles. Fig 6. Shows the image collection device 
installed in the mushroom house.  

 

Fig. 6. Automatic image collection device mounted over the mushroom 

growing bed 

B. Image Processing 

An example processing is shown in Fig. 5. The pictures 
were taken in a mushroom cultivation facility over 60 hours. 
One picture was taken in each hour, producing input 𝐼1 … 𝐼60. 
The last picture 𝐼60 is shown in Figs. 5(a) and 5(b), while 𝐼30 
and 𝐼1 are shown in Figs. 5(c) and 5(d), respectively.  

Phase #1 results are shown in Fig. 5(a) as red circles.. A 
few misdetections an inaccurate detections can be observed, 
which were manually corrected, as shown in Fig. 5(b). This 
was the input of phase #2. Two further frames are shown in 
the illustration: 𝐼30  was taken in the middle of the growing 
process, while 𝐼1 is the first stage. The detections are shown 
with red circles.  

The advantages of the proposed approach are clearly 
visible in Fig. 5(d). here the small mushrooms are hard to 
detect and distinguished from the background pattern. Using 
detection results from later frames makes the process much 
more reliable.  

CONCLUSIONS 

In this paper a semi/automatic image processing system 
was prosed to detect mushroom in a sequence of pictures taken 
on the plant. The proposed method contains two phases: in 
phase #1 the last image with the largest mushrooms is used 

and sufficiently large items are detected. In phase #1 classical 
circle-finding methods were used with specially tailored 
scoring and pruning mechanism. In phase #2, proceeding in 
backward direction in time, detection results of later images 
are utilized to find smaller items in the image, presumably 
nearly at the same position with almost the same size. In 
phase #2 a histogram-based detection was utilized to find 
items in the near vicinity of their presumed location.  

The proposed method is intended to be utilized in the 
ground-truth generation phase of machine learning 
algorithms, which can provide growth models for mushroom 
crops.  
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