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Abstract

Based on a family of indefinite unitary representations of the diffeomorphism group of an
oriented smooth 4-manifold, a manifestly covariant 4 dimensional and non-perturbative algebraic
quantum field theory formulation of gravity is exhibited. More precisely among the bounded lin-
ear operators acting on these representation spaces we identify algebraic curvature tensors hence a
net of local quantum observables can be constructed fromC∗-algebras generated by local curvature
tensors and vector fields. This algebraic quantum field theory is extracted from structures provided
by an oriented smooth 4-manifold only hence possesses a diffeomorphism symmetry. In this way
classical general relativity exactly in 4 dimensions naturally embeds into a quantum framework.

Several Hilbert space representations of the theory are found. First a “tautological representa-
tion” of the limiting globalC∗-algebra is constructed allowing to associate to any oriented smooth
4-manifold a von Neumann algebra in a canonical fashion. Secondly, influenced by the Dougan–
Mason approach to gravitational quasilocal energy-momentum, we construct certain representations
what we call “positive mass representations” with unbrokendiffeomorphism symmetry. Thirdly, we
also obtain “classical representaions” with spontaneously broken diffeomorphism symmetry corre-
sponding to the classical limit of the theory which turns outto be general relativity.

Finally we observe that the whole family of “positive mass representations” comprise a 2 di-
mensional conformal field theory in the sense of G. Segal.
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1 Introduction

The outstanding problem of modern theoretical physics is how to unify the obviously successful and
mathematically consistenttheory of general relativitywith the obviously successful but yet mathe-
matically problematicrelativistic quantum field theory. It has been generally believed that these two
fundamental pillars of modern theoretical physics conflicteach other not only in the mathematical tools
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they use but even at a deep foundational level [12]: classical concepts of general relativity such as the
space-time event, the light cone or the event horizon of a black hole are too “sharp” objects from a
quantum theoretic viewpoint meanwhile relativistic quantum field theory is not background indepen-
dent from the aspect of general relativity. We do not attempthere to survey the vast physical and
even mathematical and philosophical literature created bythe unification problem; we just mention that
nowadays the two leading candidates expected to be capable for a sort of unification are string theory
and loop quantum gravity. But surely there is still a long wayahead; nevertheless we have the convic-
tion that one day the language of classical general relativity will sound familiar to quantum theorists
and vice versa i.e., conceptual bridges must exist connecting the two theories.

In this note an effort has been made to embed classical general relativity into a quantum framework.
This quantum framework isalgebraic quantum field theoryformulated by Haag–Kastler and others
during the past decades, cf. [10]. Recently this language also appears to be suitable for formulating
quantum field theory on curved space-time [3, 13] or even quantum gravity [2].

In more detail we will do something very simple here. Namely using structures provided by an
oriented smooth 4-manifoldM only, our overall guiding principle will be seeking unitaryrepresenta-
tions of the corresponding orientation-preserving diffeomorphism group Diff+(M). There is a unique
such representation via pullback on the incomplete space ofsections of∧2M⊗RC. However the nat-
ural scalar product on this space—namely the one given by integration of the wedge product of two
2-forms—is indefinite hence cannot be used to complete the space of smooth 2-forms into a Hilbert
space. Rather in struggling with the completion problem onecomes up with a family of Hilbert spaces
with a common non-degenerate indefinite Hermitian scalar product on them. The bare Hilbert spaces—
i.e., not considered as Diff+(M)-modules—admit decompositionsH +(M)⊕H −(M) into maximal
definite orthogonal Hilbert subspacesH ±(M)with respect to the indefinite scalar product. One can use
this family of Hilbert spaces to discover an interestingC∗-algebra by exploring their spaces of bounded
linear operators. It indeed comes as a surprise (at least to the author) that precisely in 4 dimensions
among these operators one can recognize curvature tensors!This is because of the well-known fact
that the curvature tensorRg of a pseudo-Riemannian 4-manifold(M,g) can be viewed as a section of
End(∧2M⊗RC) i.e., gives rise to a linear operator acting on anyH +(M)⊕H −(M). This permits to
construct a net{U 7→A(U)}UjM whose localC∗-algebras are generated by bundle endomorphisms and
Lie derivatives. These local algebras are generalizationsof the CCR algebra. The construction satisfies
the naturally generalized Haag–Kastler axioms [10, pp. 105-107] leading to an algebraic quantum field
theory in which Poincaré symmetry is replaced with full diffeomorphism symmetry (if the diffeomor-
phism group is regarded as the physical symmetry group of general relativity and not its gauge group).
As a result classical general relativity effortlessly embeds into a quantum framework if one interprets
classical curvature tensors as quantum observables. The appearence of the curvature tensor as a local
quantum observable is reasonable even from the physical viewpoint: in local gravitational physics the
metric tensor has no direct physical meaning only its curvature can cause local physical effects such as
tidal forces. Moreover if one wishes, at least in principle,the metric i.e., the geometry locally can be
reconstructed from its curvature (see e.g. [5, 9, 11, 14] andthe references therein).

We also exhibit several Hilbert space representations of the theory carrying unitary representations
of the diffeomorphism group. The first one is a “tautologicalrepresentation” of the global algebra on
itself allowing us to attach toM a von Neumann algebraR(M). The other ones deal with physics.
A meaningful quantum field theory must exhibit stability i.e., “positive mass representations” of its
local observables in the sense of Wigner. In our case this directly leads to the long-standing problem
of gravitational mass [18]. It is quite interesting that theGelfand–Naimark–Segal construction in the
theory ofC∗-algebras and quasilocal energy-momentum constructions [18] in general relativity natu-
rally meet up here because immersed surfaces inM provide us withboth C∗-algebra representations
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and Dougan–Mason-like quasilocal quantities [7]. More precisely our quasilocal energy-momenta and
masses stem from quasilocal translations along immersed surfaces inM with a choice of a complex
structure on them. However the whole construction is expected to be independent of this choice lead-
ing to the by-now classical observation of Witten [21] that in fact one has to deal with a conformal field
theory on these surfaces. We identify this theory: its spaces of conformal blocks are the Clifford alge-
bras generated by finite energy meromorphic sections of certain unitary holomorphic vector bundles on
punctured Riemannian surfaces. Apart from these quantum representations, “classical representations”
corresponding to the classical limit of the theory also exist. Indeed, unlike in the previous two cases,
in these representations the diffeomorphism symmetry spontaneously breaks down to a finite dimen-
sional Lie subgroup provided by the isometry group of an emergent metricg on M; hence a causal
structure can be constructed onM as well. Therefore classical general relativity is recovered again at
the representation theoretic level. The emergent metric distinguishes a canonically split Hilbert space
H +(M)⊕H −(M) provided by metric (anti)self-duality leading to a splitting of the Hilbert space
of the corresponding “classical representation”, too. Thenatural quantum observable provided by the
curvatureRg of the metric in this representation obeys the splitting if and only if g is a vacuum metric.

However our algebraic quantum field theory itself lacks any causal structure in general as an un-
avoidable consequence of its vast diffeomorphism symmetry.1 The causal futureJ+(p) ⊂ M of an
eventp ∈ M in space-time is by definition the union of all future-inextendible worldlines of particles
departing fromp and moving forward in time locally not exceeding the speed oflight. The causal past
J−(p) is defined similarly. The collection of these subsets of space-time generates a special topology
onM in the strict mathematical sense. The Lorentzian metric is amathematical fusion of the geometry
of M identified with a Riemannian metricand the causal structure ofM identified with this topology.
But from this operational description of causality it is clear that the construction of a causal structure
refers to not only gravity but other entities of physical reality as well which are moreover quite classi-
cal: pointlike particles, electromagnetic waves, time, etc. However they cannot appear for instance in
a vacuum space-time considered in the strict sense. Very strictly speaking even the interpretation of a
space-time point as a “physical event” fails in anemptyspace-time. Therefore we are convinced that
causality cannot be a fundamental ingredient of a classicalhence even of a quantum description of pure
gravity if it is a diffeomorphism-invariant quantum field theory. As a technical consequence we will
prefer to use Riemannian metrics in this note (although emphasize that mathematically all conclusions
hold for Lorentzian metrics as well). To summarize: from ourstandpoint causality is an emergent sta-
tistical phenomenon created by the highly complex interaction of gravity and matter. Consequently in
order to recover it first we should be able to break down the diffeomorphism symmetry and distinguish
pure gravity from matter.

This note is organized as follows. In Sect. 2 we construct natural indefinite unitary representa-
tions of orientation-preserving diffeomorphisms of an oriented 4-manifold. Then we extract a unique
C∗-algebra out of these representation spaces. We identify its “classical part” with Einstein manifolds.
In Sect. 3 we introduce an algebraic quantum field theory and in Theorems 3.1 and 3.2 and 3.3 we
construct certain representations of its algebras of localobservables what we call “a tautological repre-
sentation”, “positive mass representations” and “classical representations” respectively. In Sect. 4 we
bunch the positive mass representations together into a conformal field theory.

Acknowledgement. The author is grateful to M.J. Dupré, I. Ojima, L.B. Szabados and P. Vrana for
the stimulating discussions and to the Alfréd Rényi Institute of Mathematics for their hospitality. This
work was supported by OTKA grant No. NK81203 (Hungary).

1This is in accordance with recent speculations on Lorentz symmetry violations for instance in extreme high energy
cosmic processes, for a review cf. e.g. [4].
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2 TheC∗-algebra of an oriented smooth4-manifold

Let M be a connected orientable smooth 4-manifold, possibly non-closed (i.e., it can be non-compact
and-or with non-empty boundary). Fix an orientation onM. Given only these data at our disposal it
is already meaningful to talk about the group of its orientation-preserving diffeomorphisms Diff+(M).
Our overall guiding principle simply will be a search for unitary representations of Diff+(M). A bunch
of representations arise in a geometric way as follows. Consider T(r,s)M ⊗R C, the bundle of com-
plexified(r,s)-type tensors with the associated vector spacesC∞

c (M;T(r,s)M ⊗RC) of their compactly
supported smooth complexified sections. Then the group Diff+(M) acts from the left via pushforward
onC∞

c (M;T(r,0)M⊗RC) for all r ∈N while from the right via pullback onC∞
c (M;T(0,s)M⊗RC) for all

s∈N. However these representations are typically not unitary because the underlying vector spaces do
not carry extra structures in a natural way.

The only exception is the 2nd exterior power∧2M ⊂ T(0,2)M of the cotangent bundle with the
corresponding space of sectionsC∞

c (M;∧2M ⊗R C) =: Ω2
c(M;C), the space of complexified smooth

2-forms with compact support. Indeed, this vector space hasa natural non-degenerate Hermite scalar
product〈 · , · 〉L2(M) : Ω2

c(M;C)×Ω2
c(M;C)→ C given by integration on oriented smooth manifolds;

more precisely forα,β ∈ Ω2
c(M;C) put

〈α,β 〉L2(M) :=
∫

M

α ∧β (1)

(complex conjugate-linear in its first variable). Note however that this scalar product isindefinite: an
unavoidable fact which plays a key role in our considerations ahead. Consequently this scalar product
cannot be used to completeΩ2

c(M;C) into a Hilbert space. Instead with respect to (1) there is a non-
unique direct sum decomposition

Ω2
c(M;C) = Ω+

c (M;C)⊕Ω−
c (M;C)

with the property that they are maximal definite orthogonal subspaces i.e.,±〈 · , · 〉L2(M)|Ω±
c (M;C) :

Ω±
c (M;C)×Ω±

c (M;C)→ C are both positive definite moreoverΩ+
c (M;C)⊥L2(M) Ω−

c (M;C). There-
fore these restricted scalar products can be used to complete Ω±

c (M;C) into separable Hilbert spaces
H ±(M) respectively. That is, starting with anM we can makeΩ2

c(M;C) complete only in non-
canonical ways as follows. The possible completions form a family and any member of this family
consists of a particular direct sum Hilbert spaceH +(M)⊕H −(M) (with its particular non-degenerate
positive definite scalar product(α,β )L2(M) := 〈α+,β+〉L2(M)−〈α−,β−〉L2(M)) and a common indefi-
nite scalar product

〈 · , · 〉L2(M) : H
+(M)⊕H

−(M)×H
+(M)⊕H

−(M)−→ C (2)

induced by (1) such that:
{

H +(M)⊥L2(M) H −(M),

〈 · , · 〉L2(M)|H ±(M) : H ±(M)×H ±(M)−→C are positive or negative definite, respectively.

Moreover any(H +(M)⊕H −(M),〈 · , · 〉L2(M)) carries a representation of Diff+(M) from the right

given by the unique continuous extension of the pullback of 2-forms: ω 7→ f ∗ω for ω ∈ Ω2
c(M;C) and

f ∈Diff+(M). It is easy to check that these operators are unitary with respect to (2) and operators corre-
sponding to compactly supported diffeomorphisms are also bounded with respect to the operator norm
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induced by the particular Hilbert space norm onH +(M)⊕H −(M). Note thata priori representations
on different completions arenot unitary equivalent.

These representations have the following immediate properties:

Lemma 2.1.Consider the indefinite unitary reprsentation ofDiff +(M) from the right on any particular
(H +(M)⊕H −(M),〈 · , · 〉L2(M)) constructed above.

(i) A vector v∈ H +(M)⊕H −(M) satisfies f∗v= v for all f ∈ Diff+(M) if and only if v= 0 (“no
vacuum”);

(ii) The closed subspacesB(M) j Z (M) ⊂ H +(M)⊕H −(M) generated by exact or closed2-
forms respectively are invariant under the action ofDiff +(M).

Proof. (i) Assume that there exists an element 06= v ∈ H +(M)⊕H −(M) stabilized by the whole
Diff+(M). Consider a 1-parameter subgroup{ ft}t∈R ∈ Diff +(M) such thatf0 = IdM and letX be the
vector field onM generating this subgroup. Differentiating the equationf ∗t v= v with respect tot ∈ R
at t = 0 we obtainLXv= 0 (in the weak sense) whereLX is the Lie derivative byX. Since an arbitrary
compactly supported vector field generates a 1-parameter subgroup of Diff+(M) we obtain that in fact
v= 0, a contradiction.

(ii) The statement readily follows by naturality of exterior differentiation i.e., d( f ∗ϕ) = f ∗dϕ for
all f ∈ Diff +(M) andϕ ∈ Ωk

c(M;C). ✸

Remark. 1. We succeeded to construct a family of faithful, reducible, indefinite unitary representations
of the diffeomorphism group out of the structures provided only by an orientable smooth 4-manifold.2

All of these representation spaces are split however such decompositions cannot hold as a Diff+(M)-
module or in other words such decompositions break the diffeomorphism symmetry. The relevance of
these splittings, as we will see shortly, is that the classical vacuum Einstein equation can be viewed
as saying that there is a distinguished representationH +(M)⊕H −(M) on which the curvature is
blockdiagonal i.e., respects the splitting. In general, starting only with an oriented smooth 4-manifold
M without extra structure, there is no way to associate a canonical non-split Hilbert space toM.

2. From the mathematical viewpoint in many important cases we do not loose topological informa-
tion if we replaceM with any representation. Indeed, restrictingΩ2

c(M;C) to closed forms and dividing
by the exact ones we can pass to compactly supported cohomology H2

c (M;C); then ifM admits a finite
good cover Poincaré duality works and givesH2

c (M;C) ∼= (H2(M;C))∗. If we assume thatM is com-
pact and simply connected then the singular cohomologyH2(M;Z) maps injectively intoH2(M;C)
hence finally the scalar product (2) descends to the topological intersection form

qM : H2(M;Z)×H2(M;Z)−→ H4(M;Z)∼= Z

of the underlying topological 4-manifold. However taking into account that by assumptionM has a
smooth structure we can refer to Freedman’s fundamental result [8] that qM uniquely determines the
topology ofM.

Now we proceed further and observe that in spite of thisplethoraof diffeomorphism group represen-
tations one can attach aunique C∗-algebra to an oriented smooth 4-manifold. However thisC∗-algebra
does not admit representations on the previous Hilbert spaces.

2In fact our construction so far works in any 4k (k= 1,2, . . . ) dimensions if the diffeomorphism group acts on 2k-forms.
In 4k+2 dimensions (1) gives symplectic forms.
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Lemma 2.2.Let> be the adjoint operation onΩ2
c(M;C) for the indefinite scalar product (1). Consider

the>-closed space V:=
{

A∈ End(Ω2
c(M;C)) | r(A>A)<+∞

}

defined by the spectral radius

r(B) := sup
λ∈C

{

|λ |
∣

∣

∣
B−λ · IdΩ2

c(M;C) is not invertible
}

.

Then
√

r is a norm and the corresponding completion of V renders(V,>) a unital C∗-algebra contain-
ing Diff +(M). This C∗-algebra will be denoted byB(M).

Proof. Our strategy to prove the lemma is as follows. Obviously(V,>) is a ∗-algebra. Provided it
can be equipped with a norm such that corresponding completion ofV improves(V,>) to aC∗-algebra
then knowing the uniqueness of theC∗-algebra norm this sought norm[[ · ]] on allA∈V must look like
[[A]]2 = [[A>A]] = r(A>A). Therefore we want to see that the spectral radius gives a norm here.

Take any splittingΩ2
c(M;C) = Ω+

c (M;C)⊕Ω−
c (M;C) and the corresponding Hilbert space com-

pletionH +(M)⊕H −(M) ⊃ Ω2
c(M;C). If P± : H +(M)⊕H −(M)→ H ±(M) are the orthogonal

projections then putJ := P+−P− moreover let † denote the adjoint onH +(M)⊕H −(M). ThenJ
satisfiesA> = JA†J andJ2 = IdH +(M)⊕H −(M) thereforeA† = JA>J as well. Recall that the operator
norm is

‖B‖= sup
v6=0

‖Bv‖L2(M)

‖v‖L2(M)

(3)

where‖ · ‖L2(M) comes from the positive definite scalar product( · , · )L2(M) on H +(M)⊕H −(M).
Since‖J‖= 1 it readily follows from this definition that‖JA>JA‖= ‖A>A‖. The adjoint † and the norm
‖ · ‖ are actually the∗-operation and norm on the particularC∗-algebra of bounded linear operators on
the particular Hilbert spaceH +(M)⊕H −(M). Therefore taking into account again the uniqueness
of C∗-algebra norm we also have equalities‖A‖2 = ‖A†A‖= r(A†A). Additionally the spectral radius

always satisfiesr(B) = lim
k→+∞

‖Bk‖ 1
k ≦ ‖B‖ which is Gelfand’s formula (cf. e.g. [15, Sect. XI.149]).

After these preparations we can embark upon the proof. On theone hand

r(A>A) = r(JA†JA)≦ ‖JA†JA‖≦ ‖A‖2 .

On the other hand, for anyε > 0 one can find a positive integerk such that

‖A‖2− ε = r(A†A)− ε = r(JA>JA)− ε ≦ ‖(JA>JA)k‖ 1
k = ‖(A>A)k‖ 1

k ≦ r(A>A)+ ε

therefore, sinceε > 0 was arbitrary,
‖A‖2 ≦ r(A>A) .

We conclude thatr(A>A) = ‖A‖2 demonstrating that the spectral radius indeed provides us with a norm
on Ω2

c(M;C). Consequently putting
[[A]] :=

√

r(A>A) (4)

we can completeV with respect to this norm and enrich the∗-algebra(V,>) to aC∗-algebraB(M).
Finally, since diffeomorphisms are unitary i.e.,( f ∗)>( f ∗) = IdΩ2

c(M;C) for all f ∈ Diff +(M) we find
[[ f ∗]] = 1 which means thatf ∗ ∈V ⊂B(M) as stated.✸

Remark. From the proof of Lemma 2.2 we can also read off that although the individual Hilbert
space completionsH +(M)⊕H −(M) ⊃ Ω2

c(M;C) might be unitary inequivalent, the induced op-
erator norms on the common intersection of the individual algebras of bounded linear operators are not
only equivalent as norms but evennumerically equal. They are commonly given by (4).
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For a relatively compact open subset /0jU j M a unitalC∗-algebraB( /0)jB(U)jB(M) is defined
as the norm-completion of the>-closed space

{

B∈ End(Ω2
c(M;C))

∣

∣

∣
[[B]]<+∞ ,

[

B|Ω2
c(M\U ;C) , Diff+U (M)

]

= 0
}

i.e.,B(U) consists of operators which commute on the subspaceΩ2
c(M \U ;C)j Ω2

c(M;C) with the
subgroup Diff+U (M) j Diff+(M) consisting of allU -preserving diffeomorphisms. Since an operator
commuting with all diffeomorphisms is proportional to the identity,B( /0)∼= C ·1.

Consider the assignment{U 7→ B(U)}UjM for all relatively compact open subsets. Taking into
account that ifA∈B(U) thenA|Ω2

c(M\U ;C) =C IdΩ2
c(M\U ;C) andΩ2

c(M\V;C)jΩ2
c(M\U ;C) if U jV

the embedding induces a unit-preserving injective homomorphismeU
V : B(U) → B(V) of local C∗-

algebras. This permits to defineB(U) for any open /0j U j M andB(M) as theC∗-algebra direct
(inductive) limit of these local algebras. Henceforth thisassignment in fact defines a covariant functor
from the category of open subsets ofM with inclusion into the category of unitalC∗-alegbras with
∗-homomorphisms. However observe that if we consider the dual process namely the restriction then
elements of these local algebras do not behave well because they lack the presheaf property in general.

As a consequence of the geometric origin of the globalC∗-algebraB(M), it has an interesting sub-
C∗-algebraC(M) if M is compact. Indeed, consider the sheafCM overM whose spaces of local sections
C (U) over open subsets are algebras of local smooth bundle (i.e.,fiberwise) morphisms

C∞(U ; End(∧2U ⊗RC)) for all openU j M .

In contrast to general elements ofB(U), local sections inC (U) behave well under restriction due
to their presheaf property; i.e., given two open subsetsU j V the restriction map induces a unit-
preserving injective homomorphismrV

U : C (V) → C (U) of algebras. AlthoughB(U) andC (U) are
not related in general ifM happens to be compact the spaceC (M)⊂ End(Ω2

c(M;C)) of global sections
can be completed with respect to (4) to a unitalC∗-algebraC(M) and in this case there is an obvious
embedding of unitalC∗-algebrasC(M)$B(M).

Examples.The time has come to take a closer look of the various operatoralgebrasB(M) andC (M)
(or C(M) if M is compact) associated to an oriented smooth 4-manifoldM emerging through unitary
representations of its diffeomorphism group. We will see that especially in 4 dimensions these algebras
admit rich physical interpretations as follows.

1. Let(M,g) be a 4-dimensional Riemannian Einstein manifold i.e., assume thatg is a Riemannian
metric onM with Ricci tensorrg satisfying the vacuum Einstein equationrg=ΛMg with a cosmological
constantΛM ∈ R. In this special situation the vast symmetry group of the original theory reduces to
the stabilizer subgroup Iso+(M,g) $ Diff +(M) leaving the geometry(M,g) unaffected. In this realm
the Riemannian metric together with the orientation gives aHodge operator∗g : ∧2M → ∧2M with
∗2

g = Id∧2M. This induces a usual real splitting

∧2 M = ∧+M⊕∧−M . (5)

It is well-known [17] but from our viewpoint is an interesting coincidence that in exactly 4 dimensions
the full Riemannian curvature tensor can be regarded as a real linear bundle mapRg : ∧2M → ∧2M
which as a bundle map decomposes i.e., over every pointx∈ M decomposes like

Rg =

(

W+
g +

sg
12 Bg

B∗
g W−

g +
sg
12

)
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with respect to the splitting (5). Here the traceless symmetric mapsW±
g : ∧±M → ∧±M are the

(anti)self-dual parts of the Weyl tensor, the diagonalsg : ∧2M → ∧2M is the scalar curvature while
Bg : ∧+M → ∧−M is the traceless Ricci tensor together with its metric adjoint B∗

g : ∧−M → ∧+M.
Observe that the Einstein equationrg− 1

2sgg= 8πT −ΛMg exactly says that

{

Bg = 8πT0

sg = 4ΛM −8π trgT

whereT0 is the traceless part of the energy-momentum tensor. The vacuum T = 0 is equivalently
characterized by the single conditionBg = 0. Indeed, in this case alwaysT0 = 0 hence ifT 6= 0 then
matter is present only through its tracial part(1

4trgT)g moreover trgT is constant by the differential
Bianchi identity. However by convention such a thing is not called as “matter” but rather is incorporated
into the cosmological constantΛM. Consequently looking at the vacuum as being equivalent to the
conditionBg = 0, in the case of vacuumRg ∈ C∞(M;End(∧2M)) obeys (5). The pointwise splitting
above in addition yields the canonical decomposition

Ω2
c(M;C) = Ω+

c (M;C)⊕Ω−
c (M;C)

of the space of 2-forms into (anti)self-dual forms which is the same as decomposing this space into
mutually orthogonal maximal definite subspaces with respect to the scalar product (1). Therefore in
the presence of a metric—which is a way to break the original symmetry group Diff+(M) down to
a smaller one—there is a splittingH +(M)⊕H −(M) preferred by the curvatureRg. Switching to
our notation we conclude thatRg ∈ C (M) satisfiesRg(H

±(M)) j H ±(M). Moreover by the usual
symmetries of the curvature tensorRg is self-adjoint for (2). For clarity we note that this actionof
for exampleRg ∈ C (M) on H +(M)⊕H −(M) is not a Hilbert space representation of the∗-algebra
C (M) but rather a representation on the indefinite space(H +(M)⊕H −(M),〈 · , · 〉L2(M)).

Therefore we come up with a natural embedding of classical real Riemannian (or Lorentzian with
complexified curvature) vacuum general relativity into a quantum framework:

C. The real Riemannian curvature tensor of an orientable Riemannian Einstein4-manifold(M,g) is
a global section Rg ∈ C (M) of the sheafCM. The curvature Rg also can be regarded as a linear real
self-adjoint operator with respect to the scalar product (2) acting on the canonically split Hilbert space
H +(M)⊕H −(M) induced by the metric such that Rg obeys this splitting. The existence of a metric
breaks the original symmetry groupDiff +(M) down to the finite dimensional groupIso+(M,g) which
acts onH +(M)⊕H −(M) also obeying the splitting.

Remark. Before proceeding further we call attention that—taking into account that under mild techni-
cal assumptions both the vacuum [9, 11, 14] and the non-vacuum [5] Einstein equations admit at least
local solutions with prescribed regularity—this classical picture is expected to continue to hold at least
locally in the following sense if one considers more generalalgebraic curvature tensors. Given a con-
nected oriented smooth 4-manifoldM with a pointx∈ M it is known that if a global algebraic curvature
tensorRM ∈ C (M) satisfies some technical conditions inx (formulated for example in [9, 11, 14]),
then there exists at least a local Riemannian Einstein metric gU on an open subsetx∈U j M with the
propertyRgU |x = RM|x = Rx i.e., the two curvature tensors coincide at least inx. Apparently we can
pick a countable collection of distinguished points of thiskind such that the corresponding open sub-
sets comprise an open covering ofM hence endowingM with a “patchwork structure” of local Einstein
metrics.
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2. Next we take a departure from classical general relativity and explore the quantum regime.
Of course the trouble is how to describe a generic bounded linear operatorQ ∈ B(M) in terms of
a geometric linear operatorR∈ C (M)∩B(M). Our quantum instinct tells us that a truely quantum
operator should be constructed by somehow smearing geometric operators over regions inM. This
instinct will be justified by the famous Schwartz kernel theorem applied below.

Fix a geometric operatorR∈ C (M)∩B(M) and a pointx∈ M. Then on any 2-formω ∈ Ω2
c(M;C)

its action can be expressed in a fully local form(Rω)x = Rxωx. We can generalize this as follows.
Pick finitely many distinct further pointsy1, . . . ,yn(x) ∈ M wheren(x) ∈ N may depend onx ∈ M.
Consider diffeomorphismsfyi ∈ Diff+(M) such thatfy0 = IdU hencefy0(x) = x moreoverfyi(x) = yi

for i = 1, . . . ,n(x). An operatorQ∈B(M) out of R∈ C (M)∩B(M) and fy0, . . . , fyn(x)
∈ Diff+(M) is

constructed such that on vectorsω ∈ Ω2
c(M;C) forming a dense subset has the shape

(Qω)x :=
n(x)

∑
i=0

f ∗yi
(Rω) = Rxωx+

n(x)

∑
i=1

f ∗yi
(Rω) . (6)

Note that this linear operator is not local in the sense that its effect onωx depends not only onRx and
ωx but on the value ofR andω in further distant pointsy1, . . . ,yn(x) ∈ M as well. The question arises
how to generalize this construction for countable or even uncountable infinite sums. For all points
y∈ M pick up unique diffeomorphismsfy ∈ Diff +(M) such thatfy(x) = y and fx = IdM. Then for all
ω ∈ Ω2

c(M;C) the assignmenty 7→ f ∗y (Rω) gives a function fromM into ∧2
xM⊗RC. Suppose we can

integrate it against a complexmeasureµx on M what we write as
∫

y∈M f ∗y (Rω)dµx(y). Such a measure
can be constructed from adouble2-form K i.e., a section of the bundle(∧2M ⊗RC)× (∧2M ⊗RC)
overM×M regarding it as a “kernel function”. In other words for allx∈ M and a 2-formω we put

∫

y∈M

f ∗y (Rω)dµx(y) :=
∫

y∈M

Kx,y∧ (Rω)y ∈ ∧2
xM⊗RC .

Consequently the appropriate way to generalize the discrete formula (6) is to set

(Qω)x :=
∫

y∈M

Kx,y∧ (Rω)y .

Of course in order this integral to make sense we have to specialize the precise class of these “kernel
functions”. We shall not do it here but note that the more singular the kernel is, the more general is the
resulting bounded linear operator. The general situation is controlled by the Schwartz kernel theorem:
non-tempered distributional double 2-formsK ∈ D ′(M ×M ; (∧2M ⊗R C)× (∧2M ⊗R C)) give rise
to bounded linear operatorsQ via 〈α,Qβ 〉L2(M) = (K,α ⊗ (Rβ ))M×M where this latter bracket is the
pairing between dual spaces (cf. e.g. [19, Vol. I Sect. 4.6])and all bounded linear operators arise this
way with suitable kernels.

Q. Over a connected oriented smooth4-manifold M a generic element Q∈B(M) always can be con-
structed from a geometric one R∈ C (M)∩B(M) by a smearing procedure provided by the Schwartz
kernel theorem. In this general situation no pointwisely given geometric object has a meaning because
the original symmetry groupDiff+(M) is unbroken. This is in accord with the physical expectations.

We have completed the exploration of the elements ofC (M) andB(M).
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3 Gravity as an algebraic quantum field theory

Before proceeding further let us summarize the situation wehave reached in Sect. 2. To a smooth
oriented 4-manifoldM one can attach a sheafCM whose global sectionsC (M) contains algebraic cur-
vature tensors.C (M) often can be completed to aC∗-algebraC(M). Classical solutions of the vacuum
Einstein equations i.e., classical real Riemannian (or Lorentzian with complexified curvature) Einstein
manifolds(M,g) can be characterized by the fact that their curvature operators obey the canonical
splitting Ω+

c (M;C)⊕Ω−
c (M;C) ⊂ H +(M)⊕H −(M) and this completion equipped with an indef-

inite scalar product carries a representation ofC (M) or evenC(M) and a unitary one of Diff+(M).
Therefore one is tempted to look at curvature operators as local quantum observables in a quantum
field theory possessing a huge symmetry group coming from diffeomorphisms. We make these ob-
servations more formal by constructing something which resembles analgebraic quantum field theory
in the sense of [10]. For this aim we need a “net” or a “co-presheaf” of local algebras onM i.e., a
functorial assignmentO 7→ A(O) attachingC∗-algebrasA(O) to open subsets /0j Oj M such that the
basic axioms of this theory having still meaning in our more general context should be satisfied.

Recall that the space of local smooth complexified(0,4)-type algebraic curvature tensors overM is
C∞(M;(S2∧2 M∩Kerb)⊗RC) whereb : C∞(M;(∧1M)⊗4)→C∞(M;(∧1M)⊗4) is the usual algebraic
Bianchi map. Making use of a metric i.e., pseudo-Euclidean structures on the fibers, the corresponding
(2,2)-type algebraic curvature tensors fulfill a subspace ofC∞(M;End(∧2M ⊗R C)). However now
we lack any preferred metric hence only the whole endomorphism space is at our disposal. Consider
therefore End(Ω2

c(M;C)), the adjoint operation> with respect to (1) and the norm (4) given by the
spectral radius. Take compactly supported complex bundle morphismsR∈ C∞

c (M;End(∧2M ⊗RC))
andreal vector fieldsX ∈ C∞

c (M;TM) with the associated Lie derivativeLX. Then eR as well as eLX

have finite norm (4). Fix a relatively compact open subset /0j U j M and letA(U) be the unital
C∗-algebra generated by the operators eR,eLX which commute onΩ2

c(M \U ;C) ⊂ Ω2
c(M;C) with the

subgroup Diff+U (M) ⊂ Diff +(M) consisting ofU -preserving diffeomorphisms. I.e.,A(U) arises as the
norm-closure for (4) of the>-closed subspace

〈

eR,eLX

∣

∣

∣

[

eR|Ω2
c(M\U ;C) , Diff+U (M)

]

= 0 ,
[

eLX |Ω2
c(M\U ;C) , Diff+U (M)

]

= 0
〉

.

By constructionC ·1∼=A( /0)jA(U)jA(V) if /0 jU jV therefore, as usual, the global algebraA(M)
is constructed (ifM is non-compact) as theC∗-algebra direct (inductive) limit of these local algebras.

Definition 3.1. The algebraA(U) is called thelocal generalized CCR algebraof local quantum ob-
servables whileA(M) is theglobal generalized CCR algebraof M.

Remark. 1. This definition of local quantum observables stems from the physical intuition that on
remote localized states local operations should commute with localization-preseving symmetries.

2. A(U) contains a usual CCR algebra at least whenU j M is a coordinate ball. Pick self-adjoint
local endomorphismsR and local vector fieldsX with LX being self-adjoint. SinceX is real then eLX is
a diffeomorphism which is unitary henceLX is self-adjoint. Consider the maximal subspace of those
self-adjoint elements which either commute:[R1,R2] = 0, [LX1,LX2] = 0, [R,LX] = 0 or are canonically
conjugate to each other i.e.,[R,LX] = c ·1 with c∈ C. Then the sub-C∗-algebra inA(U) generated by
the corresponding unitary operators eR,eLX form a usual CCR algebra;R andLX play the role of the
position operatorQ and its canonically conjugate momentum operatorP, respectively. This standard
CCR algebra withinA(U) describes the “free graviton part” while the rest ofA(U) the “self-interacting
part” of this theory. This justifies in some extent why we expect to construct something like a “quantum
theory”.
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Putting things together then let us consider the algebraic quantum field theory defined by the assignment

U 7−→A(U), U j M is relatively compact open.

MoreoverA(M) is taken to be theC∗-algebra direct (inductive) limit of theA(U)’s as usual. Note
that the formulation of this theory rests only on the smooth structure onM hence does not refer to any
metric onM for instance. A Hilbert spaceH +(M)⊕H −(M) carries an action of allA(U)’s from the
left and a unitary representation with respect to〈 · , · 〉L2(M) of Diff+(M) from the right. Elements of
the algebraA(U) are thelocal quantum observablesand those of the group Diff+(M) are thesymmetry
transformations. The statesare continuous normalized positive linear functionals onA(M) and the
expectation valueof B∈ A(M) in the stateΦ is Φ(B) ∈ C.

Now we introduce the concept of a “quantum gravitational field” in the standard way.

Definition 3.2. Let M be a connected oriented smooth4-manifold. Take a local generalized CCR
algebra A(U) generated byeR’s and eLX ’s as above. For a differentiable1-parameter subgroup
{At}t∈R ⊂ A(U) with A0 = 1∈ A(U) a local observable of the infinitesimal form

Q :=
dAt

dt

∣

∣

∣

∣

t=0
∈ T1A(U)

is a called alocal quantum gravitational fieldon U j M.
Take any split Hilbert spaceH +(M)⊕H −(M) containing maximal definite orthogonal subspaces

(note that this breaks the diffeomorphism symmetry). The off-blockdiagonal part of Q is thematerial
content of the local quantum gravitational field relative tothe splitting. In particular Q is called alocal
quantum vacuum gravitational field relative to the splitting if its material content relative to the splitting
vanishes i.e., Q(H ±(M)∩D)j H ±(M) at least on a dense subset Dj H +(M)⊕H −(M).

Now we turn to the representation theory of the global algebraA(M). As usual this global CCR algebra
of observables admits an abundance of non-equivalent representations therefore an important task is to
single out those which possess some—either mathematical orphysical—significance.

Firstly we construct what will be referred to as thetautological representationhaving probably a
mathematical relevance only.

Theorem 3.1.M itself gives rise to a faithful and irreducible so-calledtautological representationπM

ofA(M) on a Hilbert spaceHM. It also carries a unitary representation UM of the groupDiff+(M). A
vector v∈ HM satisfies UM(v) = v if and only if v= 0 (“no vacuum”).

As a consequence to M always a von Neumann algebraR(M) := (πM(A(M)))′′ can be attached
canonically.

Proof.Referring back to Lemma 2.2 we improveA(M) itself to a Hilbert spaceHM on whichA(M) acts
from the left. Recall thatA(M) has a norm given by the spectral radius (4). We want to demonstrate that
this norm[[ · ]] actually comes from a positive definite non-degenerate Hermite scalar product( · , · )M.
This will also yield that the Hilbert space completionHM of A(M) will actually coincide withA(M)
i.e.,HM will arise simply by putting this scalar product ontoA(M).

Define a map fromA(M)R×A(M)R into R by differentiatingT 7→ [[T]]2 at the unit 1∈ A(M) as
follows:

A(M)R×A(M)R ∋ (A,B) 7−→ 1
4
(D[[ · ]]2)1(A

>B+B>A) ∈ R .

Properties of the norm ensure us that this derivative existsand the map is symmetric andR-bilinear.
Take any particular Hilbert spaceH +(M)⊕H −(M) from the proof of Lemma 2.2. Recall the equality
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[[A]] = ‖A‖ for all A∈A(M) where‖ · ‖ is the usual operator norm on this Hilbert space satisfying (3).
Then

1
2

D

(‖( · )v‖2
L2(M)

‖v‖2
L2(M)

)

1

(A>A) =
Re(A>Av, v)L2(M)

‖v‖2
L2(M)

=
Re(JAv, AJv)L2(M)

‖v‖2
L2(M)

hence these derivatives also exist and taking their supremum with respect tov ∈ H +(M)⊕H −(M)
gives‖A‖2. Consequently

1
2
(D[[ · ]]2)1(A

>A) =
1
2

D

(

sup
v6=0

‖( · )v‖2
L2(M)

‖v‖2
L2(M)

)

1

(A>A) = sup
v6=0

1
2

D

(‖( · )v‖2
L2(M)

‖v‖2
L2(M)

)

1

(A>A) = ‖A‖2 .

This shows that12(D[[ · ]]2)1(A>A) = ‖A‖2 ≧ 0 and equality holds if and only ifA = 0. Therefore
(A,B) 7→ 1

4(D[[ · ]]2)1(A>B+B>A) is a real non-degenerate scalar product onA(M)R with induced
norm[[ · ]]. The norm satisfies[[A]] = [[iA]] overA(M) as well therefore putting

(A , B)M :=
1
2

(

[[A+B]]2− [[A]]2− [[B]]2
)

+
i
2

(

[[iA+B]]2− [[iA]]2− [[B]]2
)

gives rise to a non-degenerate Hermitian scalar product onA(M). In other wordsA(M) as a complete
normed space has the further structure of a Hilbert spaceHM andA(M) acts on it(self) from the left
yielding a faithful irreducible representationπM i.e.,πM(A)B :=AB for all A∈A(M), B∈HM =A(M).

Since by construction Diff+(M)⊂A(M) we also obtain a unitary representationUM( f ) := πM( f ∗)
and via part (ii) of Lemma 2.1 obviouslyv= 0 is the only invariant vector underUM as stated.✸

Secondly, in a quantum field theory the algebra of quantum observables must possess positive mass
and energy representations. Let us therefore construct some representationsπΣ,ω of our global algebra
A(M) what we will callpositive mass representations. When doing this we touch upon the problem of
gravitational mass and energy which is probably the most painful part of current general relativity [18].

Theorem 3.2. Take an oriented closed surfaceΣ. Let (Σ, p1, . . . , pn) denote a generic smooth immer-
sion i : Σ # M where the points p1, . . . , pn ∈ Σ are the preimages of the double points of this immersion.
Moreover take any closedω ∈ Ω2

c(M;C). Assume that

(i) 1
2π i

∫

Σ ω = 1;

(ii) ω is non-degenerate alongΣ and for all complex structures C= C(Σ) on Σ there exist positive
definite unitary holomorphic vector bundle structures on the vector bundle E:= TM⊗RC|C over
C⊂ M compatible withω such thatdimCH0(C;O(E)) = 4.

Then(Σ, p1, . . . , pn,ω) gives rise to a so-calledpositive mass representationπΣ,ω ofA(M) on a Hilbert
spaceHΣ,ω as follows:

(i) HΣ,ω also carries a unitary representation UΣ,ω of the groupDiff+(M). A vector v∈ HΣ,ω
satisfies UΣ,ω( f )v= v for all f ∈ Diff+(M) if and only if v= 0 (“no vacuum”);

(ii) On a dense subset of states0 6= [A] ∈ HΣ,ω a complex4-vector PC,ω,A ∈ H0(C;O(E)) can be
defined together with its length mC,ω,A := ‖PC,ω,A‖L2(C) ≧ 0 with respect to a natural Hermitian
scalar product( · , · )L2(C) on C∞(C;E). It has the porperty that if[1] ∈ HΣ,ω is a state corre-
sponding to vanishing algebraic curvature R= 0 then PC,ω,1 = 0 hence mC,ω,1 = 0.
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Proof. (i) A continuous functionalΦΣ,ω : A(M)→ C is defined by extending continuously the map

A 7−→ ΦΣ,ω(A) :=
1

2π i

∫

Σ

Aω ∈ C

from End(Ω2
c(M;C))∩A(M). By assumption (i)ΦΣ,ω(1>1) = 1 henceΦΣ,ω(A>A)> 0 if ‖A−1‖< ε.

Since anyB∈A(M) can be written asB= cAwith c∈C we see thatΦΣ,ω(B>B) = |c|2ΦΣ,ω(A>A)≧ 0
consequentlyΦΣ,ω is continuous, normalized and positive. Therefore the GNS construction applies and
yields a corresponding representation of theC∗-algebraA(M). Recall that this goes as follows. One
has the induced left-multiplicative Gelfand idealIΣ,ω := {A∈ A(M) |ΦΣ,ω(A>A) = 0} ⊂ A(M). The
functional provides us with a well-defined positive definitescalar product([A], [B])Σ,ω := ΦΣ,ω(A>B)
onA(M)/IΣ,ω with A∈ [A],B∈ [B] where[A] := A+ IΣ,ω , etc. Making use of this scalar product one
completesA(M)/IΣ,ω to a Hilbert spaceHΣ,ω and then letsA(M) act from the left by the continuous
extension ofπΣ,ω(A)[B] := [AB] from A(M)/IΣ,ω to HΣ,ω . Since the whole construction is acted upon
equivariantly by Diff+(M) (i.e., all theM,A(M) andHΣ,ω carry induced actions of the diffeomorphism
group) two representationsπΣ,ω andπ f (Σ), f ∗ω are considered to beidenticaland the whole set of these
representations will be denoted byπΣ,ω with Hilbert spaceHΣ,ω . In fact two representationsπΣ1,ω1 and
πΣ2,ω2 areunitary equivalentif and only if there is a positive real numbera ∈ R+ such thatΦΣ2,ω2 =
aΦΣ1,ω1 hence in particular if exists an elementf ∈ Diff+(M) satisfyingΣ2 = f (Σ1) andω2 = f ∗ω1;
consequently our identification is consistent from a representation-theoretic viewpoint as well.

In usual Poincaré-invariant quantum field theory the Hilbert space carries a unitary representa-
tion of the space-time symmetry group. Here the “space-timesymmetry transformations” are all the
diffeomorphisms hence in our algebraic quantum field theorythe corresponding infinitesimal trans-
formations are the Lie derivatives with respect to vector fields. We construct a unitary representation
UΣ,ω of Diff+(M) on HΣ,ω from the left as follows. An elementf ∈ Diff +(M) arises as limits of
products of diffeomorphisms whose infinitesimal generators are compactly supported real vector fields
X ∈ C∞

c (M;TM). Recalling the construction ofA(M) we see that if one looks at the pullbackf ∗ in-
duced byf ∈ Diff +(M) as a linear operator onΩ2

c(M;C) then f ∗ ∈ A(M) and it is a unitary element.
Therefore putUΣ,ω( f ) := πΣ,ω( f ∗) for f ∈ Diff+(M). This representation is indeed unitary because

(UΣ,ω( f )[A],UΣ,ω( f )[B])Σ,ω = ([ f ∗A], [ f ∗B])Σ,ω = ΦΣ,ω(( f ∗A)>( f ∗B)) = ΦΣ,ω(A
>B) = ([A], [B])Σ,ω .

The representationUΣ,ω : Diff +(M)→ U(HΣ,ω) has a complexified infinitesimal version

uΣ,ω : C∞
c (M;TM⊗RC)∼= Lie(Diff+(M))⊗RC−→ u(HΣ,ω)⊗RC∼= End(HΣ,ω)

whose matrix elements on the dense subspaceD := (A(M)∩End(Ω2
c(M;C)))/IΣ,ω ⊂ HΣ,ω look like

([A],uΣ,ω(X)[B])Σ,ω = lim
t→0

ΦΣ,ω

(

A> etXB−B
t

)

=
1

2π i

∫

Σ

A>LXBω .

For real vector fields we have a more geometric description: if { ft}t∈R ⊂ Diff+(M) is a 1-parameter
subgroup forX ∈C∞

c (M;TM) thenuΣ,ω(X)[A]∈ HΣ,ω satisfies

lim
t→0

∥

∥

∥

∥

uΣ,ω(X)[A]−
[

f ∗t A−A
t

]
∥

∥

∥

∥

Σ,ω
= 0

consequently theuΣ,ω(X)’s are indeed the complexified infinitesimal generators of Diff+(M) in the
representationUΣ,ω . It follows from part (i) of Lemma 2.1 that the only invariantvector under Diff+(M)
is 0∈ HΣ,ω .
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(ii) In usual Poincaré-invariant quantum field theory a 4 dimensional commuting set of infinitesimal
space-time symmetries are regarded as infinitesimal translations; the corresponding operators are inter-
preted as energy-momentum operators acting on the Hilbert space of the theory. However in general
one cannot find a distinguished 4 dimensional commuting subspace which could be called as “infinites-
imal translations”. To overcome this difficulty we will follow Dougan and Mason [7] (or [18, Chapter
8]) to find a distinguished subspace of vector fields by holomorphy.

ConsiderE := TM⊗R C|Σ satisfying rkCE = 4 and degE = 0. The 2-formω can also be used
to construct a Hermitian metric on it. Indeed, a Hermitian form on M is defined byg(X,Y) :=
1
2

(

ω(X, iY)−ω(iX,Y)
)

for all X,Y ∈ C∞(M;TM⊗R C). By assumptions (ii) in the theorem its re-
striction makesE into a smooth positive definite unitary vector bundle(E,g) overΣ. Take a connection
∇E : C∞(Σ;E)→C∞(Σ;E⊗C∧1Σ) satisfying∇Eg= 0 which means that it is compatible with the uni-
tary structure. Picking any complex structure onΣ we can identify it with a compact Riemann surface
C = C(Σ). The (0,1)-part ∂ E of the connection endows(E,g) with the structure of a unitary holo-
morphic vector bundle overC. Its finite dimensional subspace of holomorphic sections isdenoted by
H0(C;O(E)). The Riemann–Roch–Hirzebruch theorem gives dimCH0(C;O(E)) ≧ 4(1−genus(C))
but by assumptions (ii) in the theorem this vector space is supposed to be precisely 4 dimensional. It
also follows that the HermitianL2 scalar product(X,Y)L2(C) := 1

2π i

∫

C g(X,Y)ω onC∞(C;E) is positive

definite. A simple choice forE can be the holomorphically trivial bundleC×C4.
We already have seen that the expectation value of any vectorfield X on M is well defined for a

dense subset of vectors 06= v∈ D ⊂ HΣ,ω and looks like(v,uΣ,ω (X)v)Σ,ω
‖v‖2

Σ,ω
∈ C. However

([A],uΣ,ω(X)[A])Σ,ω =
1

2π i

∫

Σ

A>LXAω

by construction, therefore

([A] , uΣ,ω(X)[A])Σ,ω

‖[A]‖2
Σ,ω

=

∫

Σ
A>LXAω
∫

Σ
A>Aω

which is complex linear inX ∈ C∞
c (M;TM⊗RC). Let Nε(C) ⊂ M be a small tubular neighbourhood

of C⊂ M; we can suppose that it is aB2
ε -bundle overC hence putN0(C) :=C. Take a linear functional

onC∞(Nε(C);TNε(C)⊗RC) by setting

Pε,C,ω,A(X|Nε(C)) :=

∫

C
A>LXAω
∫

C
A>Aω

and then onC∞(C;E) by
PC,ω,A(X|C) := lim

ε→0
Pε,C,ω,A(X|Nε(C)) . (7)

A vector fieldX ∈ C∞
c (M;TM⊗RC) is called aquasilocal infinitesimal translation alongΣ if X|C ∈

H0(C;O(E)) ⊂ C∞(C;E)) and (7) gives rise to a well-defined dual vectorPC,ω,A ∈ (H0(C;O(E)))∗.
ThisPC,ω,A is called thequasilocal energy-momentum4-vector alongΣ of the state[A] ∈ HΣ,ω . By the
aid of the scalar product( · , · )L2(C) we identify (H0(C;O(E)))∗ with H0(C;O(E)) therefore we can

suppose thatPC,ω,A ∈ H0(C;O(E)) by putting(PC,ω,A,X|C)L2(C) := PC,ω,A(X|C). By assumptions (ii)
of the theoremPC,ω,A is indeed a complex 4-vector. Its length looks like

‖PC,ω,A‖2
L2(C) =

1
2π i

∫

C

g
(

PC,ω,A , PC,ω,A
)

ω =
1

2π i

∫

C

PC,ω,A∧∗gPC,ω,A =
1

2π i

∫

C

|PC,ω,A|2gω
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and we call the numbermC,ω,A := ‖PC,ω,A‖L2(C) ≧ 0 themassof the the state[A] ∈ HΣ,ω .
Finally, the “semiclassical gravitational vacuum” definedby R= 0 alongM is represented by the

state[e0] ∈ HΣ,ω . However e0 = 1 ∈ A(M) hence[e0] = [1]. Consequently with someε > 0 for any
quasilocal infinitesimal translationX alongΣ we find

Pε,C,ω,1(X|Nε(C)) =
1

2π i

∫

C

LXω =
1

2π i

∫

C

(ιXdω +d(ιXω)) = 0

because bothC andω are closed by assumption. Therefore takingε → 0 the expression (7) yields
PC,ω,1 = 0 that is, this state has zero quasilocal energy-momentum hence mass as expected.✸

Remark. 1. The formula (7) for the quasilocal energy-momentum formally remains meaningful for
quantum gravitational fields introduced in Definition 3.2. Hence the corresponding quantitiesPC,ω,Q

andmC,ω,Q are interpreted as the quasilolcal energy-momentum 4-vector and the mass of a quantum
gravitational fieldQ. Among local quantum gravitational fields one can recognizeclassical curvature
tensors hence we obtain quasilocal quantities for classical general relativity, too.

2. Notice that the topological condition for the existence of a representationπΣ,ω is that both
i : Σ # M andω ∈ Ω2

c(M;C) must represent non-trivial classes inH2(M;Z) andH2(M;C) respectively
such that〈[Σ], [ω]〉M = 1

2π i

∫

Σ ω 6= 0. Hence in particularR4 or S4 does not possess positive mass
representations! However even if[Σ1] = [Σ2] ∈ H2(M;Z) and [ω1] = [ω2] ∈ H2(M;C) the resulting
representationsπΣ1,ω1 andπΣ2,ω2 are not unitarily equivalent in general.

Thirdly, apart from the tautological and positive massquantumrepresentations with unbroken sym-
metry Diff+(M) there exist other ones what we callclassical representationsbecause in these repre-
sentations the original vast symmetry group is spontaneously broken to a finite dimensional subgroup
Iso+(M,g)⊂ Diff +(M) of an emergent metricg on M.

Theorem 3.3.Take a perhaps non-compactly supportedω ∈ Ω2(M;C) such thatω is non-degenerate
along the whole M moreover satisfies

∫

M ω ∧ω = 1.
Thenω gives rise to a so-calledclassical representationπω of A(M) on a Hilbert spaceHω as

follows:

(i) Hω also carries a unitary representation Uω of the group1j Iso+(M,g)$ Diff+(M) consisting
of the isometries of the unitary metric g on the complexified tangent bundle given by

g(X,Y) :=
1
2

(

ω(X, iY)−ω(iX,Y)
)

for all X ,Y ∈C∞(M;TM⊗RC) .

Moreover the stateΩ := [1]∈Hω corresponding to vanishing algebraic curvature R= 0 satisfies
Uω( f )Ω = Ω for all f ∈ Iso+(M,g);

(ii) The distinguished splittingH +(M)⊕H −(M) via (anti)self-duality with respect to g induces a
splittingHω = H +

ω ⊕H −
ω into orthogonal subspaces obeyed byIso+(M,g). The distinguished

quantum gravitational field Q:= Rg in the sense of Definition 3.2 provided by the curvature of
the metric g acts onHω . Moreoverπω(Rg) obeys the splitting ofHω if and only if Rg does the
same onH +(M)⊕H −(M) i.e., Rg is a vacuum quantum gravitational field or in other words g
is a complexified Einstein metric on M. In particular if the metric g is flat then Rg = 0 also gives
the invariant stateΩ = [1] ∈ Hω .
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Proof. (i) This time take another natural normalized linear functionalΨω : A(M)→C by continuously
extending a functional whose shape on elementsA∈ End(Ω2

c(M;C))∩A(M) looks like

A 7−→ Ψω(A) :=
∫

M

ω ∧ (Aω) = 〈ω , Aω〉L2(M)

provided by (1). Exactly as in the proof of Theorem 3.2 we can exploit the continuity of the functional
to conclude fromΨω(1>1) = 1 thatΨω is a positive functional onA(M).

Therefore applying again the GNS construction we come up with a reprsentationπω on a Hilbert
spaceHω . The metric also provides us with its isometry group 1j Iso+(M,g)⊂ Diff+(M). We con-
struct a unitary representationUω of Iso+(M,g) onHω as follows. First of all for anyf ∈ Iso+(M,g)
we find f ∗A(M)( f−1)∗ j A(M). We define a representation onHω by Uω( f )[A] := [ f ∗A( f−1)∗].
Moreover diffeomorphisms are unitary:( f ∗)> = ( f−1)∗ and in particular an isometry has the property
ω = f ∗ω consequently

(Uω( f )[A],Uω( f )[B])ω =
∫

M

ω ∧ (( f ∗A( f−1)∗)>( f ∗B( f−1)∗ω)) =
∫

M

ω ∧ ( f ∗A>B( f−1)∗ω)

=

∫

M

f ∗ω ∧ ( f ∗A>Bω) =

∫

M

f ∗(ω ∧ (A>Bω)) =

∫

M

ω ∧ (A>Bω)

= ([A], [B])ω

ensuring us that this representation is indeed unitary.Ω := [1]∈Hω corresponding to the “semiclassical
gravitational vacuum”R= 0 is a (not necessarily unique) invariant vector.

(ii) SinceA(M)⊂ End(H +(M)⊕H −(M)) we get a decomposition ofA(M) as

A(M)∩
(

End(H +(M))⊕End(H −(M))⊕Hom(H +(M),H −(M))⊕Hom(H −(M),H +(M))
)

.

Write an elementB ∈ End(Ω2
c(M;C))∩A(M) in the corresponding form asB =

(

a b
c d

)

. It is easy

to check thatω henceω is (anti)self-dual with respect tog and the orientation onM (on a complex
manifold with its natural orientationω is always self-dual, cf. [6, Lemma 2.1.57]). Suppose now that
∗gω = ω. Then we obtainBω = aω +cω with aω ∈H +(M) as well ascω ∈H −(M). Consequently
exploiting the orthogonality ofH +(M) andH −(M) we can expandΨω(B>B) and find

Ψω

((

a>a+c>c a>b+c>d
b>a+d>c b>b+d>d

))

= Ψω

((

a>a+c>c 0
0 0

))

yielding thatA(M)∩ (Hom(H −(M),H +(M))⊕End(H −(M)) j Iω where, as before,Iω ⊂ A(M)
is the Gelfand ideal ofΨω . ConsequentlyHω—being the completion ofA(M)/Iω with respect to
the scalar product( · , · )ω—splits like H +

ω ⊕H −
ω by completing(A(M)∩End(H +(M)))/Iω and

(A(M)∩Hom(H +(M),H −(M)))/Iω respectively. The two summands are orthogonal subspaces and
the decomposition obviously satisfiesUω(H

±
ω )j H ±

ω . The case of∗gω =−ω is similar.
If Q := Rg is the curvature ofg regarded as a quantum gravitational field as in Definition 3.2andg

is vacuum i.e., Einstein then we already know thatRg(H
±(M)) j H ±(M). MoreoverRg ∈ T1A(M)

acts onHω from the left by passing to the infinitesimal action ofA(M) on Hω what we continue to

denote byπω . It then follows from

(

p 0
0 q

)(

a 0
c 0

)

=

(

pa 0
qc 0

)

that for an Einstein metricπω(Rg)

also satisfiesπω(Rg)(H
±

ω )jH ±
ω . The particular case of the flat metric withRg = 0 gives the invariant

stateΩ = [1] ∈ Hω as well.✸
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Remark. The usual axioms of algebraic quantum field theory (cf. e.g. [10, pp. 58-60 or pp. 105-107])
typically make no sense in this very general setting. But forclarity we check them one-by-one in order
to see in what extent our algebraic quantum field theory is more general than the usual ones.3

[10, Axiom A on p. 106] can be translated to saying that the Hilbert space of a representation of
the global generalized CCR algebraA(M) also carries a unitary representation of the (spontaneously
broken) space-time symmetry group of the theory which has been taken to be the whole diffeomorphism
group here. We found three types of representations; here wediscuss two of them.

We constructedHΣ,ω carrying apositive mass representationπΣ,ω of A(M) as well as a unitary
representationUΣ,ω of the unbroken group Diff+(M). HoweverHΣ,ω does not possess a Diff+(M)-
invariant state i.e., “vacuum” does not exist here. Nevertheless the Dougan–Mason quasilocal trans-
lations of i : Σ # M give rise to quasilocal energy-momentum 4-vectorsPC,ω,A in a manner that the
state corresponding to the classical gravitational vacuumhas vanishing energy-momentum as one ex-
pects. This is interesting because the concepts of mass and energy are quite problematic in classical
general relativity as well as that of the vacuum in general quantum field theories. But recall that this
construction—which mixes ideas of quasilocal constructions in classical general relativity [7, 18] and
standard GNS representation theory ofC∗-algebras—contains a technical ambiguity namely a choice
of a complex structure on an immersed surface inM. However one expects the whole machinery to be
independent of this choice. We treat this problem in Sect. 4.

We also constructedHω carrying aclassical representationπω of A(M) together with a unitary
representationUω of the spontaneously broken group Iso+(M,g)⊂ Diff+(M) provided by an emergent
metricg on M. This representation gives back the classical picture. It also possesses a (probably not
unique) invariant stateΩ∈Hω but this time we lack the concept of energy-momentum hence wecannot
call this state as the “vacuum”.

[10, AxiomsB andC on p. 107] dealing with the additivity of local algebras and their hermiticity
by construction hold here.

[10, Axiom D on p. 107] can be translated to saying that since the diffeomorphism group is the
symmetry group of the theory, it acts on the net of local algebras like

f ∗A(U)( f−1)∗ = A( f (U)) (8)

for all f ∈ Diff+(M) i.e., symmetry transformations map the local algebra of a region to that one of the
transformed region. This continues to be valid here.

[10, AxiomE on p. 107] holds in a trivial way as an unavoidable consequence of the vast diffeomor-
phism invariance. It is easy to see that[A(U),A(V)] = 0 if and only ifU ∩V = /0. Indeed, demanding
(8) to be valid we can see that regardless whatA(U) actually is, it must commute with diffeomor-
phisms being the identity onU ; consequently ifA∈A(U)⊂B(M) thenA|Ω2

c(M\U ;C) ∈ Z(B(M\U)) =

C IdΩ2
c(M\U ;C). But Ω2

c(V;C)⊂ Ω2
c(M \U ;C) if U ∩V = /0 hence the assertion follows. Therefore there

is no causality hence no dynamics present here. Hence the reason we prefer to use Riemannian met-
rics over Lorentzian ones throughout the paper (although emphasize again that all conclusions hold for
Lorentzian metrics as well). We can also physically say thatthis theory represents a very elementary
level of physical reality where even no causality exists yet. Causality should emerge through break-
ing of the diffeomorphism symmetry. This symmetry breakinghas been carried out in the case of the
classical representations.

3We quote from Haag [10, p. 60]: “On the other hand the word≫axiom≪ suggests something fixed, unchangeable.
This is certainly not intended here. Indeed, some of the assumptions are rather technical and should be replaced by some
more natural ones as deeper insight is gained. We are concerned with a developing area of physics which is far from closed
and should keep an open mind for modifications of assumptions, additional structural principles as well as information
singling out a specific theory within the general frame.”
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[10, Axiom F on p. 107] This completeness requirement claims for the validity of Schur’s lemma
i.e., in a representation the only bounded operator which commutes with all quantum observables
should be a multiple of the identity operator. This holds if the representation ofA(M) in question
is irreducible.

[10, Axiom G on p. 107] about “primitive causality” has no meaning in thisgeneral setting.

4 Positive mass representations and conformal field theory

Theorem 3.2 allows us to make a link with conformal field theory. We obtained representationsπΣ,ω
of the algebra of global observablesA(M) constructed by standard means from a smooth immersion
(Σ, p1, . . . , pn) of a surfaceΣ into M and a regular elementω ∈ Ω2

c(M;C). If a complex structure
C =C(Σ) is put onto the surface as well then the quasilocal energy-momentumPC,ω,A ∈ H0(C;O(E))
and massmC,ω,A ∈ R+ ∪{0} of a non-zero state[A] ∈ HΣ,ω can be defined enrichingπΣ,ω further to
a positive mass representation. However on physical grounds we expect the whole construction to be
independent of these technicalities i.e., any choice of these complex structures have to result in the same
construction. Following Witten [21] this means that a conformal field theory lurks behind the curtain.
We can indeed find this theory which however turns out to be a very simple topological conformal
field theory in the sense that its Hilbert space is finite dimensional and the correlation functions are
insensitive for the insertion of marked points i.e., how theimmersion looks like.

In constructing this topological conformal field theory we will follow G. Segal [16]. That is first
construct a “modular functor extended with an Abelian category possessing a symmetric object” (cf.
[1, Definition 5.1.12]) in particular and [1, Chapters 5 and 6] in general). In other words we have to
construct an assignment

τ : (Σ, p1, . . . , pn) 7−→ τ(Σ, p1, . . . , pn) (9)

which somehow associates to surfaces with marked points finite dimensional complex vector spaces
satisfying certain axioms. Consider a positive mass representationπΣ,ω of A(M) constructed out of
(Σ, p1, . . . , pn,ω) as in Theorem 3.2. Recall that the marked pointspi ∈ Σ correspond the multiple
points of the immersioni : Σ # M (the case(Σ, /0,ω) is an embedding). Then to a positive mass
representation ofA(M) a holomorphic vector bundleE of spaces of conformal blocksτ(Σ, p1, . . . , pn)
over the coarse moduli spaceMg,n of complex structures on(Σ, p1, . . . , pn) will be assigned in manner
that if 0 6= [A] ∈ HΣ,ω is a state then its quasilocal energy-momentum 4-vectorPC,ω,A gives rise to
a sectionPΣ,ω,A of E . This section will be moreover (projectively) flat with respect to the natural
(projectively) flat connection∇ on E (the Knizhnik–Zamolodchikov connection). In other words the
quasilocal energy-momentum 4-vector gives rise to a conformal block in this conformal field theory.

We begin with the following simple observation (an elementary version of Uhlenbeck’s singularity
removal theorem [20]).

Lemma 4.1. Take any compact Riemann surface C=C(Σ) with distinct marked points p1, . . . , pn ∈C
and a holomorphic unitary vector bundle F′ over C\{p1, . . . , pn}. Let s′ ∈ H0(C\{p1, . . . , pn};O(F ′))
be a meromorphic section with the property‖s′‖L2

loc(C) <+∞ i.e., having locally finite energy over C.

If s′ is singular in pi ∈ C then one can find a local gauge transformation about this point such
that the gauge transformed section extends holomorphically across it i.e., pointlike singularities of
locally finite energy meromorphic sections over C are removable. More precisely there exists a unique
unitary holomorphic vector bundle F over C satisfying F|C\{p1,...,pn}

∼= F ′ so that for any locally finite
energy section s′ ∈H0(C\{p1, . . . , pn};O(F ′)) there exists a section s∈H0(C;O(F))with the property
s|C\{p1,...,pn} is gauge equivalent to s′.
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Proof. First we prove the existence of the unique extendibility of the unitary bundle(F ′,h′). Consider
a local holomorphic coordinate system(Ui,z) onC such thatz(Ui) = D(0)⊂ C some open disc about
the origin andUi contains only one marked pointpi ∈ Ui satisfyingz(pi) = 0. Cutting out the open
neighbourhoodUi ⊂C of pi we obtain a manifold-with-boundaryC\Ui and∂ (C\Ui)∼= S1. Consider
the restriction(F ′,h′)|∂ (C\Ui) regarded as a smooth U(k)-bundle overS1. Taking a smooth local trivial-
ization the corresponding smooth local transition function of (F ′,h′)|∂ (C\Ui) gives rise to a monodromy
mapµi : S1 → U(k) wherek= rkF ′. Howeverπ0(U(k))∼= 1 hence this monodromy map together with
its derivatives alongS1 extends overpi as the identity consequently(F ′,h′)|Ui\{pi} can be extended over
this point as a smooth unitary vector bundle(Fi ,hi)|Ui . Consider a smooth trivializationFi |Ui

∼=Ui ×Ck

and write in this smooth gauge the restriction of the partialconnection defining the holomorphic struc-
ture onF ′ as∂ F ′|Ui\{pi} = ∂ +α ′

Ui\{pi}. Then the Hermitian scalar product onFi satisfies

∂ Fi(hi|Ui\{pi}) = ∂ (hi|Ui\{pi})+α ′
Ui\{pi}(hi|Ui\{pi}) = 0

andhi |Ui\{pi} extends smoothly overpi ashi |Ui . ThereforeαUi := −(∂hi|Ui )(hi|Ui)
−1 on Ui defines a

smooth extension ofα ′
Ui\{pi} overpi in a manner that∂ Fi |Ui := ∂ +αUi is the restriction of a compatible

partial connection∂ Fi yielding a compatible holomorphic structure on(Fi,hi). Performing this proce-
dure around every marked points we obtain a unique unitary holomorphic vector bundle i.e.,(F,h,∂F)
with ∂ Fh= 0.

Now we come to the extendibility of sections. Compatibilityprovides us that in a local holomorphic
trivializationF |U ∼=U ×Ck the coefficients ofh|U are holomorphic functions. Performing a GL(k,C)-
valued holomorphic gauge transformation if necessary we can pass to a local holomorphic trivialization
in whichh|U has the standard form. Take any holomorphic section ofF or equivalently, a meromorphic
section ofF with singularities in the marked points i.e., pick any

s′ ∈ H0(C\{p1, . . . , pn};O(F ′))∼= H0(C\{p1, . . . , pn};O(F))

with local shapes′|U(z) = s′1(z) f1+ · · ·+s′k(z) fk in this local trivialization. Sinces′|U is holomorphic
outside 0∈ C each componentss′ j : U → C admit Laurent expansions

s′ j(z) =
+∞

∑
m=−N j

a j
mzm, a j

m ∈ C .

Moreover the localL2-norm of the section in this special gauge looks like

‖s′‖2
L2(U) =

1
2π i

∫

U

(

|s′1(z)|2+ · · ·+ |s′k(z)|2
)

ω|U =

∫

U

(

|s′1(z)|2+ · · ·+ |s′k(z)|2
)

ϕU(z,z)dz∧dz

whereϕU is a smooth nowhere vanishing function onU . Assume that the section has locally finite
energy. On substituting the above expansions into this integral the finiteness then dictates to conclude
that N j = 0 for all j = 1, . . . ,k and i = 1, . . . ,n hence in facts′ is holomorphic over the wholeC as
desired.✸

Now we turn to the construction of the relevant modular functor. Suppose thatΣ # M is a compact
surface without boundary. Choose any complex structureC =C(Σ) on it andn distinct marked points
p1, . . . , pn ∈ C given by multiple-points of the immersion. LetE′ := TM⊗RC|C\{p1,...,pn} be a holo-
morphic unitary bundle over the punctured surface. Or rather more generally, ifC= ⊔iCi is an abstract
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compact non-punctured Riemann surface as in Theorem 3.2 with connected componentsCi then letE
be a holomorphic unitary bundle overC with rkC(E|Ci) = 4, deg(E|Ci) = 0 and dimCH0(C;O(E)) = 4.
Then in terms of the restricted bundleE′ := E|C\{p1,...,pn} our choice is as follows:

τ(Σ, p1, . . . , pn) :=







Cliff
(

H0(C\{p1, . . . , pn};O(E′))∩L2
loc(C;E)

)

if (Σ, p1, . . . , pn) 6= /0 ;

C if (Σ, p1, . . . , pn) = /0
(10)

that is, this vector space is the underlying vector space of the complex Clifford algebra of the scalar
product space

(

H0(C\{p1, . . . , pn};O(E′))∩L2
loc(C;E) , ( · , · )L2(C)

)

∼= C4
Hermite

consisting of vector fields onM which, upon restriction toC, are holomorphic except in the marked
points and have locally finite energy.

Lemma 4.2. Let (Σ, p1, . . . , pn) be a smooth surface with marked points and take a complex structure
C=C(Σ) rendering it a Riemann surface with marked points(C, p1, . . . , pn). Also take the holomorphic
unitary bundle E′ over C\{p1, . . . , pn} as before. Attach to every marked point pi ∈C the single label

ν := {a holomorphic section of E′ has a finite energy singularity in pi ∈C} .

Then the assignment (9) with the choice (10) is a modular functor which is not normalized in the sense
that τ(S2, /0) = Cliff (H0(CP1;O(E′))) instead ofτ(S2, /0) = C.

Moreover the vector spacesτ(Σ, p1, . . . , pn) fit together into a trivial holomorphic vector bundleE
over the coarse moduli spaceMg,n of genus g Riemann surfaces with n marked points carrying a flat
connection∇ (the Knizhnik–Zamolodchikov connection). The vector PC,ω,A ∈ H0(C;O(E)) is the value
at C∈ Mg,n of a section PΣ,ω,A of this bundle overMg,n satisfying∇PΣ,ω,A = 0.

Proof. We check the three relevant axioms of [1, Definition 5.1.2]. First of all Lemma 4.1 yields that if
(Σ, p1, . . . , pn) 6= /0 then

τ(Σ, p1 . . . , pn)∼= Cliff (H0(C;O(E)))

consequently the vector spaces are finite dimensional. It also readily follows from (10) that

τ((Σ1, p1, . . . , pn)⊔ (Σ2,q1, . . . ,qm))∼= τ(Σ1, p1, . . . , pn)⊗C τ(Σ2,q1, . . . ,qm)

as vector spaces, in agreement with [1, part (iii) of Definition 5.1.2]. The second axiom to check is
[1, part (iv) of Definition 5.1.2] which is the glueing axiom.Let γ ⊂ (Σ, p1, . . . , pn) be a closed curve
without self-intersections. Cut(Σ, p1, . . . , pn) alongγ. The resulting surface has naturally the structure
of a not necessarily connected punctured surface(Σ̃, p1, . . . , pn,q1,q2)where the two new marked points
q1,q2 come from the circleγ. PuttingẼ := E|C\({p1,...,pn}∪γ) into (10) by the aid of Lemma 4.1 we
obtain that locally finite energy meromorphic sections on(C̃, p1, . . . , pn,q1,q2) correspond to those on
(C, p1, . . . , pn) consequently, taking into account that there is only a single labelν with its meaning,

τ(Σ̃, p1, . . . , pn,q1,q2)∼= τ(Σ, p1, . . . , pn)

hence the glueing axiom holds in a trivial way here.
The third axiom to check is the functorial behaviour under diffeomorphisms [1, part (ii) of Defini-

tion 5.1.2]. In turn this is equivalent to checking the existence of a Knizhnik–Zamolodchikov connec-
tion. LetMg,n be the coarse moduli space of connected non-singular Riemann surfaces of genusg andn
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marked points. We take a complex vector bundleE overMg,n whose fibers over(C, p1, . . . , pn) ∈Mg,n

are the individual spaces of conformal blocksτ(Σ, p1, . . . , pn) constructed from the holomorphic bun-
dle E′ over C \ {p1, . . . , pn} or equivalentlyE over C. Recall thatM is acted upon by its diffeo-
morphism group. Hence the subgroup Diff+

Σ (M) ⊂ Diff +(M) consisting ofΣ-preserving diffeomor-
phisms acts on the real smooth punctured surface such that itdeforms its complex structure i.e.,
(Σ, p1, . . . , pn) and( f (Σ), f (p1), . . . , f (pn)) correspond in general to different points inMg,n. This sub-
group also acts onC∞(C;E) by pullback. Consequently it transforms the subspacesτ(Σ, p1, . . . , pn) ∼=
Cliff (H0(C;O(E)))⊂ Cliff (C∞(Σ;E)) giving rise to linear isomorphisms

τ(Σ, p1, . . . , pn)∼= τ( f (Σ), f (p1), . . . , f (pn)) for all f ∈ Diff +Σ (M) .

These linear isomorphisms can be interpreted as parallel translations alongE by a flat connection∇
called the Knizhnik–Zamolodchikov connection. Note that since the representation ofΣ-preserving dif-
feomorphisms onC∞(Σ;E) is not only projective but in fact a true representation, theresulting connec-
tion is not only projectively but truely flat onE . In particular the bundleE as a complex vector bundle is
trivial overMg,n but is equipped with a holomorphic structure. Via Lemma 4.1 the holomorhic section
PC,ω,A∈H0(C;O(E)) can be regarded as a meromorphic one i.e.,PC,ω,A∈H0(C\{p1, . . . , pn};O(E′)).
Define a sectionPΣ,ω,A of E onMg,n by puttingPΣ,ω,A(C) := PC,ω,A. It follows from the invariance of
the definition (7) of the quasilocal energy-momentum 4-vector

PC,ω,A ∈ H0(C;O(E))⊂ Cliff
(

H0(C;O(E))
)∼=

Cliff
(

H0(C\{p1, . . . , pn};O(E′)
)

∩L2
loc(C;E)

)

= τ(Σ, p1, . . . , pn)

under diffeomorphisms that as the complex structure variesPΣ,ω,A of E satisfies∇PΣ,ω,A = 0 i.e., is
parallel for the Knizhnik–Zamolodchikov connection.

We conclude that the assignment (9) with (10) is aC-extended modular functor as in [1, Definition
5.1.2] i.e., a weakly conformal field theoryá la G. Segal [16].✸

After having constructed the modular functor, we find the vector space on which it acts hence exhibit
the conformal field theory given by (9) and (10). This step is very simple: the space(Σ, p1, . . . , pn)
identified with an oriented smooth cobordism between the disconnected compact oriented 1-manifolds
S1

p1
⊔ · · ·⊔S1

pk
andS1

pk+1
⊔ · · ·⊔S1

pn
. To the oriented 1-manifoldS1

p1
⊔ · · ·⊔S1

pk
⊔ (S1

pk+1
)∗⊔ · · ·⊔ (S1

pn
)∗,

regardless what it actually is, we associate the finite dimensional complex vector spaceS⊗C S∗ where
S is the unique irreducible complex Clifford-module ofτ(Σ, p1, . . . , pn). The resulting conformal field
theory is a topological one because its state space is finite dimensional and its correlation functions are
insensitive for the insertion of marked points (due to Lemma4.1).
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