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Segmentation metric misinterpretations in 
bioimage analysis
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Quantitative evaluation of image segmentation algorithms is crucial in 
the field of bioimage analysis. The most common assessment scores, 
however, are often misinterpreted and multiple definitions coexist with 
the same name. Here we present the ambiguities of evaluation metrics for 
segmentation algorithms and show how these misinterpretations can alter 
leaderboards of influential competitions. We also propose guidelines for 
how the currently existing problems could be tackled.

In today’s scientific environment, with an increasing attention on 
artificial intelligence solutions for imaging problems, a plethora of 
new image segmentation and object detection methods have emerged. 
Thus, quantitative evaluation is crucial for an objective assessment 
of algorithms. Often, object detection and segmentation tasks use 
evaluation metrics with the same name but a different meaning due 
to the differences between object- and pixel-level classification, or 
just because multiple interpretations coexist. One could argue that, 
in most cases, the meaning should be clear from the context, however, 
specific and often nondetailed characteristics of the circumstances 
(for example, small variations of the task) can make it hard for read-
ers to understand the exact meaning of different metrics. Recently, 
an exhaustive study has been published on the variety of assessment 
scores and their proper use-cases1. Our study focuses on the vari-
ous interpretations that have emerged in the research communities 
related to some segmentation scores. As such, we identified five dif-
ferent definitions for the ‘average precision’ (AP) and six different 
interpretations for the ‘mean average precision’ (mAP) metrics in 
the literature. To make things even more complicated, even when 
some methods work with the same dataset, the metrics used for the 
evaluation of performance are not necessarily the same. The aims of 
our study are to shed light on some of the main issues with the current 
state of segmentation and object detection metrics and to investigate 
the reasons for the ambiguous use of classification concepts. We also 
point out the problems of using similar metrics with nuanced differ-
ences by evaluating the 2018 Kaggle Data Science Bowl (DSB), 2021 
Kaggle Sartorius Cell Instance Segmentation and 2021 MIDOG (Mitosis 
Domain Generalization) challenge submissions with metrics of similar 
meaning but slightly differing interpretations.

Our study mainly focuses on segmentation scores that are 
object-based, that is a single object is counted as true positive (TP), 
false positive (FP) or false negative (FN) instead of labeling every pixel. 
However, some of the object-based metrics can be defined on a pixel 
level as well2–5 (Supplementary Table 1).

Object-based segmentation scores are used (1) for object detec-
tion tasks (usually, when we want to find objects in an image with 
bounding boxes) or (2) for segmentation tasks, when the image con-
tains many objects or when the pixel perfect delineation of the bounda-
ries is not the only and most important priority to be evaluated. When 
using these scores, as a first step, an intersection over union (IoU) 
threshold is specified. Any prediction that yields an IoU score greater 
than this threshold will be considered as true positive, otherwise, we 
consider it as false positive. If an object cannot be detected with the 
specified IoU threshold, we consider a false negative label. All the 
metrics noted above have their own purpose in evaluation pipelines. 
For example, if one wants to quantify whether every object has been 
detected, but does not care about false detections, they will prioritize 
what is known as the recall metric. This metric is also known as sensi-
tivity and is especially important in medical applications. If one cares 
about quantifying objects and about false detections, F1 and threat 
scores should be prioritized, as they penalize false detections. These 
scores are more appropriate for cell counting applications. Besides 
the most important simple metrics listed in Supplementary Table 1, 
three other important quality assessment scores are often used in 
image processing tasks:

•	 The panoptic quality (PQ) metric measures segmentation quality 
and recognition quality simultaneously:
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it stands for the average threat score across several IoU thresholds. As 
for the mAP metric, ‘mean’ is sometimes used for the IoU thresholds, 
whereas in other cases it indicates the average across all images in a 
given dataset, but there is also precedent for averaging across both IoU 
thresholds and images. Furthermore, when a metric uses several IoU 
thresholds, the starting and ending threshold values should be speci-
fied along with the threshold step size. This may also contribute to the 
increasing diversity among the existing evaluation metrics (Fig. 1a–c).

To demonstrate the possible consequences of misinterpreting 
the metrics, we used several assessment scores to evaluate submis-
sions to prestigious bioimage competitions. We evaluated the second 
stage submissions of the 2018 Kaggle Data Science Bowl6, final stage 
submissions of the 2021 Sartorius7 and final stage submissions of the 
2021 MIDOG8 challenges (sample images from the competitions can 
be seen in Extended Data Fig. 1). For evaluation, we used several misin-
terpretations of AP, mAP and the F1 score (as used in ref. 9) with various 
thresholds, both in an aggregated and in an averaged-by-image way. 
Our results indicate that the leaderboards of the competitions are sub-
stantially influenced by changing the evaluation metric, depending on 
which properties we modify. On using a fixed IoU threshold, the thresh-
old value can noticably influence the outcome. However, when using 
multiple IoU threshold values, tweaking the step size does not change 
the outcome drastically. Using a fixed IoU threshold of 0.9 yielded gen-
erally low correlation values, thus we argue that such a high threshold 
is, in general, not useful to determine the efficiency of a segmentation 
algorithm. When we calculate the scores in an image-by-image way 
and take the average of these values, the outcome is notably different 
compared to what we get when we calculate the scores in an aggregated 
way (Fig. 1d–g). Deciding when to use averaging or aggregation mainly 
comes down to a few aspects: for datasets that either have a high vari-
ance in the number of objects in each image or the images are similar 
to each other (for example, same modalities), the aggregation strategy 
can be useful, however, for datasets with a consistent number of objects 
and diverse images (for example, different modalities), the averaging 
strategy is better due to every image getting the same weight in the 
final score. We note that despite some metric variations having a high 
correlation to each other, this does not mean that the scores cannot 
be used to alter leaderboards. Even a correlation as high as 0.99 may 

PQ =
∑(p,g)∈TPIoU(p, g)

TP + FP+FN
2

,

where p is a predicted object labeled as true positive and g is the 
corresponding ground truth.
•	 The AP metric is calculated by taking the area under the preci-

sion–recall curve, which is given for recalls r and associated pre-
cisions p(r):

AP1 = ∫p(r)dr.

•	 When it comes to multi-class classification or detection, the mAP 
is used, which is calculated as the average of AP values taken for 
every individual class:

mAP1 =
1
N
∑

N

n=1AP1(n).

Most of the time, biological image segmentation tasks use eval-
uation metrics such as the ones defined in Supplementary Table 1 
rather than AP1 (which is very common in computer vision) because  
AP1 requires a confidence value for each detected and/or segmented 
object and for segmentation, but very few algorithms have such  
a score.

Despite clear definitions existing for the AP and mAP metrics, 
many alternative interpretations have emerged recently. This confu-
sion possibly stems from the evaluation section of the 2018 Kaggle Data 
Science Bowl challenge, where the threat score metric was referred 
to as ‘an AP value’ (as seen on the event’s webpage), even though this 
expression is ignored in the related article6. Besides this new definition, 
possible variations of the metrics AP and mAP also started to emerge 
since then: we have identified six different interpretations for the AP 
and five different interpretations for the mAP metrics (Table 1).

These variations exist because there is no consensus for what 
‘mean’ and ‘average’ stand for: for some metrics, ‘average’ in AP is 
equivalent to the threat score for a single image, whereas in other cases 

Table 1 | Various interpretations of AP and mAP

Metric Note Referenced in

AP1 = ∫p(r)dr Fixed IoU threshold 10–14

mAP1 =
1
N

N

∑
n=1

AP1(n)
AP1(n) is AP1 calculated for class n 10

AP2 =
TP

TP+FP+FN
Fixed IoU threshold 15–17

mAP2 =
1

|thresholds|
∑t∈thresholds AP2

@(IoU=t) 18

AP3 =
1

|thresholds|
∑t∈thresholds (

TP
TP+FP

)
@(IoU=t) 19

mAP3 =
1

|images|
∑i∈images AP3(i) AP3(i) is calculated for image i 19

mAP4 = p × r = TP2

TP2+TP×FN+TP×FP+FP×FN
Also known as ‘Digits score’ 20

mAP5 =
1

|images|
∑i∈images mAP2(i) mAP2(i) is calculated on image i 21

AP4 =
1

|thresholds|
∑t∈thresholds AP1

@(IoU=t) Also known as the ‘COCO metric’ 22,23

mAP6 = AP5 =
1
N

N

∑
n=1

AP4(n)
AP4(n) is AP4 calculated for class n: also known as the ‘primary COCO competition metric’ 23
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induce that some solutions shift multiple positions back and forth on 
the leaderboard. These findings confirm that using clearly defined 
metrics with as few modifications as possible is vital for the transpar-
ency of the biomedical image segmentation field. Therefore, here we 
propose some recommendations that should be followed on defining 
the evaluation metric for a segmentation task, to avoid confusion as 
much as possible.

To resolve some of the main issues mentioned above, we would 
like to propose some concrete measures to increase transparency and 
clarity when it comes to selecting and defining an assessment metric 
for semantic segmentation:

 (1) The designation of ‘AP’ and ‘mAP’ should be omitted when they 
are not used according to their original definitions. Instead, we 
propose that the image processing communities should use the 
designation of ‘threat score’.

 (2) IoU threshold ranges and step sizes should be denoted explicitly.
 (3) Whether a metric is aggregated through an entire dataset or av-

eraged over the images in the set should also be clearly visible 
and should be noted explicitly.

 (4) Even though it may be implied by the context, it should be 
stated explicitly whether a metric is calculated pixel-wise or 
object-wise.
For example, when we would like to use the aggregated threat score 

from IoU threshold 0.5 to 0.95 with a step size of 0.05, the following 
notation should be used:

TSagg
0.5∶0.05∶0.95,

whereas in case of an F1 score calculated for an IoU threshold of 0.5 
averaged over the images in the test set, the notation should be the 
following:

F1avg
0.5.

Besides these recommendations, we would also advise the 
researchers to use well-established metrics on datasets on which evalu-
ations have already been executed previously. Whenever evaluated, the 
same performance scores should be applied on these types of datasets, 

fAggregated Averaged
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Fig. 1 | Results for the evaluation of the final stage submissions of three 
different competitions. a–c, Cross-correlation matrix of the different metrics 
for the 2018 Kaggle Data Science Bowl (a), 2021 Sartorius Cell Segmentation 
Challenge (b) and the 2021 MIDOG (c) challenges. Both image-by-image and 
aggregated scores are calculated with various IoU threshold ranges for four 
different metrics. d, Correlation (Corr.) between the aggregated version of the 
threat score with IoU = 0.5:0.05:0.95 and aggregated F1 with IoU = 0.5:0.05:0.95 

for the 2018 DSB competition. e, Correlation between the aggregated version of 
the threat score with IoU = 0.5:0.05:0.95 and averaged threat score with IoU = 0.9 
for the 2018 DSB competition. f, Correlation between the averaged version of 
the F1 score with IoU = 0.5 and averaged digits score with IoU = 0.5 for the 2021 
Sartorius competition. g, Correlation between the averaged version of the threat 
score with IoU = 0.5 and averaged F1 score with IoU = 0.5 for the 2021 MIDOG 
challenge.
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or, in a case where a new metric is introduced, the reasons for its intro-
duction should be clearly justified. Once a different metric is used, the 
‘original’ score should also be computed and shown.

To summarize, we have presented some of the main issues related 
to the variations of evaluation metrics in image segmentation. The 
possible exploitations and faulty uses have been demonstrated by 
evaluating prestigious bioimage segmentation challenge submis-
sions via different metric interpretations. We are concerned that a 
simple approach of consistency, including explicitly specifying the 
IoU threshold ranges, the averaging strategy and whether the metric 
is calculated pixel-wise or object-wise, would help to avoid most of the 
ambiguity related to segmentation tasks in the future. We hope that 
these recommendations will be of use for the research community.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01942-8.
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Methods
Competitions
2018 Kaggle Data Science Bowl (DSB2018). The task of this competi-
tion was to segment nuclei on microscopy images from approximately 
15 different biological experiments donated by multiple laboratories (a 
total of 106 images). The images can be divided into two main catego-
ries: fluorescent and brightfield microscopy images. A total of 2,263 
submissions were processed in the second stage evaluation.

2021 Sartorius Cell Instance Segmentation Challenge (Sartorius). 
Here the task was to segment neuronal cells in light microscopy images, 
specifically with the SH-SY5Y cell line due to the challenging nature 
of the task (concave shapes, irregular morphology of cells). A total of 
1,304 submissions were processed in the last stage evaluation.

2021 Mitosis Domain Generalization Challenge (MIDOG2021). A 
challenge that focused on detection rather than segmentation, this 
competition included brightfield hematoxylin and eosin-stained 
microscopy images from six different scanners, with samples from 
300 patients with breast cancer. The task was to find the mitotic cells 
in these images. The final evaluation stage included 13 submissions.

Ranking
To see how various metric interpretations can alter the leaderboard of 
competitions, we first processed the ground truth and submission files 
we received from the challenge organizers: for the 2018 DSB and 2021 
Sartorius challenges, we got the run-length encoded representation of 
the segmentations. As for the MIDOG challenge, we got the centroids 
of the bounding boxes for every mitotic cell in JSON format.

First, we created labeled mask images from all the data that we 
received. After that, we used the scripts provided by StarDist (https://
github.com/stardist/stardist) as a basis for our evaluation, in which we 
calculated the submission score for every team according to various 
metric interpretations. In the end, we calculated the correlation coef-
ficient (Pearson product-moment correlation coefficients calculated 
with the numpy python library) of the matrix containing every sub-
mission score in the challenges (matrix rows, submission of one team 
according to various metrics).

We note that the AP2 and F 1 scores are deterministically related, 
thus, when using a fixed IoU threshold, the correlation between the 
two is 1. This relation, however, fades away when changing the metric 
parameters (averaging across multiple IoU thresholds or calculating 
one metric aggregated, the other one in an averaged-by-image way).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Images and corresponding ground truth masks are publicly available 
for the DSB2018 and Sartorius Challenges. As for the MIDOG2021 chal-
lenge, the images for the final stage evaluation data are private and 
thus not available. Submission files from the competitors are available 
upon request. DSB2018 data https://www.kaggle.com/competitions/
data-science-bowl-2018/data. Sartorius data: https://www.kaggle.com/
competitions/sartorius-cell-instance-segmentation/data. MIDOG2021 
data: https://imig.science/midog2021/download-dataset/.

Code availability
All of the source code used to process the submissions and create the 
ranking correlations can be found at https://bitbucket.org/biomag/
metric-code/
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Extended Data Fig. 1 | Sample images and ground truth labels (in green) from the DSB2018, Sartorius and MIDOG 2021 challenges.
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