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The recently solved crystal structure of YidC suggests that it medi-
ates membrane protein insertion by means of an intramembrane
cavity rather than a transmembrane pore. This novel concept
of protein translocation prompted us to characterize the native,
membrane-integrated state of YidC with respect to the hydro-
pathic nature of its transmembrane (TM) region. Here, we show
that the cavity-forming region of SpoIIIJ, a YidC homolog, is indeed
open to the aqueous milieu of the Bacillus subtilis cells and that the
overall hydrophilicity of the cavity, along with the presence of an
arginine residue on several alternative sites of the cavity surface,
is functionally important. We propose that YidC functions as a
proteinaceous amphiphile that interacts with newly synthesized
membrane proteins and reduces energetic costs of their membrane
traversal.
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Introduction

Biogenesis of membrane proteins, a fundamental cellular process
essential for all living organisms, includes insertion of a newly
synthesized membrane protein into the membrane followed by
its folding and assembly with other cellular components. In the
Sec-dependent pathway in bacteria, membrane insertion is me-
diated by the SecYEG protein-conducting channel in the plasma
(cytoplasmic) membrane (1-3) whereas acquisition of the native
conformation is facilitated by the conserved YidC/Oxa1/Alb3
family of membrane proteins (4-7). In a Sec-independent path-
way, YidC facilitates insertion of a class of membrane proteins
independently of SecYEG. Thus, YidC is a dual-function protein
that serves as a chaperone or an insertase in membrane protein
biogenesis (4-7).

Bacillus subtilis possesses two YidC homologs, SpoIIIJ
(YidC1) and YidC2 (YqjG). These proteins in combination with
their substrate MifM have provided us a unique in vivo exper-
imental system to study YidC. While SpoIIIJ and YidC2 share
growth-essential functions, indicated from the synthetic lethal
phenotype of their deletion (8, 9), SpoIIIJ is constitutively ex-
pressed and YidC2 is induced upon dysfunction of SpoIIIJ (10,
11) in a manner repressible autogenously (12). MifM is encoded
from the upstream open reading frame of yidC2 and plays an
essential role in this cross-feedback and autogenous regulation by
undergoing regulated elongation arrest in its translation (12-14).
The ribosome stalling at mifM leads to exposure of the Shine-
Dalgarno (SD) sequence of yidC2 to enhance its translation.
Importantly, elongation arrest of mifM is released upon the YidC-
dependent membrane insertion of the nascent MifM polypeptide,
enabling the yidC2 translation to be up-regulated when cellular
YidC activity declines. In this manner, MifM enables the cell to
maintain the capacity of the YidC pathways of membrane protein
biogenesis under changing intracellular and extracellular condi-
tions (11, 12). This regulatory system also enables us to monitor
the in vivo activities of YidC proteins; expression of a yidC2’-lacZ
translational fusion gene and, hence, the β-galactosidase activity,
will increase in response to a decrease in the SpoIIIJ activity (11).

Although both SecYEG and YidC could facilitate mem-
brane protein insertion, their modes of actions are fundamentally
different. For instance, while SecYEG can mediate membrane
insertion of proteins with multiple TM segments as well as those
having large extracytoplasmic (periplasmic) domains, YidC, as
an insertase, is specialized in insertion of small membrane pro-
teins that possess a single or two TM segment(s) and (a) short
extracytoplasmic region(s) (7). Crystal structures of archaeal and
bacterial SecYEβ and SecYE(G) complexes reveal an hourglass-
shaped transmembrane pore formed by the TM segments of
SecY. The pore can also open laterally to the lipid phase of the
membrane, allowing release of a TM segment of substrates out
of the translocon pore to establish membrane protein integration
(15-17). Although earlier electronmicroscopic studies of E. coli
YidC and S. cerevisiae Oxa1 led to a proposal that YidC forms a
homo-dimer, which creates a channel-like structure at the subunit
interface (18), more recent evidence suggests that a monomer of
YidC interacts with the ribosome that is translating a membrane
protein (19, 20). The crystal structures of YidC from Bacillus
halodurans at resolution up to 2.4 Å (21) revealed that the five
TM segments of YidC forms a cavity presumably in the lipid
bilayer. This cavity appears to be open to the lipidic phase and the
cytoplasm but not to the extracytoplasmic environment (Fig. 1A
and B), arguing against the dimeric insertion pore model. Strik-
ingly, the concave surface of the cavity is enriched in hydrophilic
amino acid residues, including a conserved arginine. Genetic

Significance

How membrane proteins are guided into the membrane is a
fundamental question of cell biology. Translocons are known
to create a polypeptide-conducting, transmembrane channel
having a lateral gate to allow lipid phase partitioning of the
substrate. Here, we show that YidC guides a class of membrane
proteins in a channel-independent fashion. Our experiments
using intact Bacillus subtilis cells show that SpoIIIJ, a YidC
homolog, forms a water-accessible cavity in the cell membrane
and that the cavity's overall hydrophilicity as well as the
presence of an arginine residue at one of several alterna-
tive places on the cavity is functionally important. Probably,
extracellular part of substrate is first attracted to the YidC
cavity before establishment of a transmembrane configuration
through hydrophobic partitioning.
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Fig. 1. . Experimental design of NEM-reactivity assay to assess water accessibility to the SpoIIIJ cavity. (A) Ribbon diagram representations of the crystal
structure of B. halodurans YidC2 (PDB ID: 3WO6). Shown are the side views (left and center) and a top view (right). Arg72 (corresponding to Arg73 in B.
subtilis SpoIIIJ; Fig. S1) is shown by magenta spheres. TM and C1 indicate the transmembrane segments (with numbers) and the first cytoplasmic region,
respectively. (B) A surface model (upper) and cut-away molecular surface representation (lower) of B. halodurans YidC2. Orange dot-lined circles encircle the
intramembrane cavity. Arg72 (Arg73 in SpoIIIJ) is shown in magenta. (C) A schematic representation of the membrane integration topology of B. subtilis SpoIIIJ
and the sites where a unique cysteine was introduced for NEM-reactivity assay. TM1-TM5, C1-C3 and E1-E3 show the transmembrane, the cytoplasmic, and the
extracytoplasmic regions, respectively. (D) The work flow of the assay. Intact cells were treated with NEM. Proteins were then extracted with SDS and subjected
to PEGylation of the remaining thiols under denaturing conditions. Finally, SpoIIIJ species were visualized after SDS-PAGE. (E) Electrophoretic separation of
the PEG-modified and unmodified SpoIIIJ species. Positions of cysteine introduced into SpoIIIJ are shown at the bottom. Each sample received four different
treatments as indicated by + and –. DTT in excess was included in alternate samples at the PEGylation step to give unmodified controls. PEGylated SpoIIIJ forms
multiple slow-migrating bands due to heterogeneity of the Mal-PEG preparation. The bands near the 42 kDa position are non-specific.

analyses of a B. subtilis YidC homolog, SpoIIIJ, and its substrate
membrane protein, MifM, revealed that the positive charge of
the conserved arginine (Arg73 in SpoIIIJ) as well as negatively
charged residues in the extracytoplasmic and transmembrane
regions of MifM are essential for insertion of MifM into the
membrane (21). From these results we proposed that SpoIIIJ
mediates insertion of a class of membrane proteins such as MifM
by a channel-independent mechanism, in which electrostatic at-
traction between the SpoIIIJ cavity and the substrate initiates
the reaction (21). The other B. subtilis YidC homolog, YidC2
(YqjG), also functions with similar mechanism for insertion of
MifM (12). The importance of the cavity was also supported by
photo-crosslinking experiments showing that the inner surface of
the cavity of SpoIIIJ interacts with substrate protein in vivo (21).
Together with the crystal structure of Escherichia coli YidC (22),
it is suggested that having a hydrophilic and positively charged
cavity is a feature shared by the YidC family members.

Since the unprecedented hydropathic arrangement of YidC
bears crucial importance in our understanding of membrane
protein biogenesis, its occurrence in the native membrane must
be verified using intact living cells. Here, we explored the hy-
dropathic nature and the functional requirements of the cavity-
forming transmembrane region of SpoIIIJ in intact cells. The

YidC cavity indeed proved to be accessible by water and its
hydrophilicity, including an arginine residue somewhere in the
cavity, important functionally. That YidC creates an aqueous
microenvironment in the membrane gives a strong support to the
channel-independent mode of its action.

Results

Water-accessibility of the SpoIIIJ intramembrane cavity
YidC forms an intramembrane cavity that is open laterally,

presumably toward the lipid phase of the membrane and the
cytoplasm, whereas it is inaccessible from the extracytoplasm
(Fig. 1A and B). The inner surface of the cavity contains several
hydrophilic amino acid residues, including the essential argi-
nine, raising a possibility that YidC forms a hydrophilic local
environment in the otherwise hydrophobic lipid bilayer. To ex-
perimentally verify this unusual hydropathic arrangement, we
examined water accessibility of YidC TM residues using intact
living cells and the NEM (N-ethylmaleimide)-reactivity assay.
NEM is membrane-permeable and alkylates the thiol group of
a cysteine residue of protein in a water-dependent reaction (23-
25), enabling us to assess water availability of a specific site of
the target protein in intact cells by strategically placing a cysteine
residue.
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Fig. 2. Water accessibility profiles of the transmembrane regions of SpoIIIJ as assessed by NEM-reactivity. (A) NEM modification efficiencies (mean ± s.d.,
n ≥ 3) of cysteines at the indicated positions. Red columns show the efficiencies of > 50% and blue columns show lower (< 50%) modification efficiencies.
Asterisks indicate SpoIIIJ derivatives that were unable to assess because of the lack of PEGylation even without NEM treatment. Striped columns represent
non-functional SpoIIIJ mutants. (B) A schematic representation of the sites of cysteines and their NEM modification efficiencies. The sites of higher and lower
modification as well as nonreactive sites are color-coded as in A. The numbered four positions are located in the extracytoplasmic half of the membrane but
NEM-modified efficiently. The sites of non-functional cysteine substitutions are striped. (C) Ribbon (left) and surface (right) representations of the front and
back views of the B. halodurans YidC2 structure with the color-coded water accessibility.

Fig. 3. Functional importance of hydrophilicity of the SpoIIIJ cavity. (A)
Efficiencies of MifM insertion into the membrane by the SpoIIIJ variants.
Upper panel shows β-galactosidase activities (mean ± s.d., n = 3) of the spoIIIJ
mutant strains harboring the yidC2’-lacZ reporter gene, which inversely
correlate with the efficiencies of MifM insertion. Lower panel shows cellular
accumulation of SpoIIIJ derivatives determined by anti-SpoIIIJ immunoblot-
ting. (B) NEM modification efficiencies of cysteine introduced either at the
213rd or 228th position of the wild type and SpoIIIJ cavity mutants indicated
at the bottom. (C) Growth-supporting abilities of the SpoIIIJ cavity mutants.
Complementation assay of B. subtilis was carried out using strains lacking
the yidC2 gene and having a rescue plasmid encoding IPTG-inducible spoIIIJ-
FLAG. The chromosome contained the indicated spoIIIJ alleles shown on the
left. Cultures were serially diluted (from 10-1 to 10-5) and spotted onto LB
agar plates containing 0 (right panel) or 1 mM (left panel) IPTG, which were
then incubated for 17.5 hours at 37°C.

We first constructed the cysteine-less SpoIIIJ (SpoIIIJ-
C134A), which proved to be functional as shown by the low
β-galactosidase activity of the yidC2’-lacZ reporter (Fig S2),
whose expression level inversely correlates with the efficiency of

membrane insertion of MifM, a YidC substrate (11). We then
introduced a cysteine residue into selected single positions of the
cysteine-less SpoIIIJ. Mutant proteins were expressed from the
native chromosomal locus under the control of the native spoIIIJ
promoter. Intact cells were then treated with NEM directly with-
out any cell disruption (Fig. 1D).

Proteins extracted from NEM-treated cells are solubilized,
denatured in SDS and then subjected to the counter modifica-
tion with maleimide-PEG (Mal-PEG), an alkylating reagent of
∼5 kDa (Fig. 1D). An NEM-unmodified fraction of the target
protein, still having free thiol, is now modified by Mal-PEG
and mobility-shifted, whereas the NEM-modified fraction of the
protein resists the counter modification and does not show any
appreciable mobility shift. The efficiency of NEM-modification
was assessed by the extent of counter modification with Mal-PEG
(26).

To characterize this assay system, we first replaced Glu169
in the second extracytoplasmic (E2) loop with cysteine. SpoIIIJ-
C134A/E169C thus constructed was expected to have a fully
water-accessible cysteine (Fig 1C). When NEM was omitted from
the first reaction, the protein was efficiently modified with Mal-
PEG with concomitant disappearance of the unmodified species
(Fig 1E, lane 6). The cysteine-less SpoIIIJ did not show this
mobility shift and the intensity of the unmodified band remained
unchanged (Fig. 1E, lanes 1-4). By contrast, NEM treatment of
the E169C-expressing cells almost completely blocked the Mal-
PEG modification even after denaturation (Fig. 1E, lane 8),
indicating that the cysteine at this position was fully accessible by
NEM and water as expected.
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Fig. 4. Consequences of relocation of the essential arginine in SpoIIIJ. (A)
The target boundary of arginine relocation experiments shown in the SpoIIIJ
topology model. (B) Efficiencies of MifM insertion into the membrane by
the SpoIIIJ variants. Reported are β-galactosidase activities (mean ± s.d., n
= 3) of the spoIIIJ mutant strains harboring the yidC2’-lacZ reporter gene.
All strains, except △spoIIIJ and wild type (WT), had the Arg73Ala mutation
and an additional second site mutation indicated at the bottom in SpoIIIJ.
Red, orange and black columns represent SpoIIIJ mutants with low (< 15
units), intermediate (15-25 units) and high (> 25 units) activities of β-
galactosidase, indicative of high, intermediate and low efficiencies of MifM
insertion, respectively. Mutant proteins that did not significantly accumulate
in the cell are striped. β-galactosidase activity of wild type strain was shown
in magenta. (C) Ribbon representations of the TM regions (numbered in
squares) of B. halodurans YidC2 with the sites of functional Arg relocation (in
SpoIIIJ) highlighted by side chains colored in red (high activity) and orange
(intermediate activity). The B. subtilis numbering is used. The original Arg73
is shown in magenta.

We examined a total of 74 single-cysteine mutant derivatives
of SpoIIIJ to cover the TM regions of SpoIIIJ (Fig. 1C). Images of
immunoblotting in the NEM-reactivity assay are shown in Fig. 1E
(lanes 9-28) for selected target positions and in Fig. S3 for all the
positions examined. Cysteines at positions 185, 187, 188 and 189
were fully reactive with NEM, as judged from the lack of counter
modification with Mal-PEG (Fig 1E, lanes 10 vs 12, lanes 18 vs
20, lanes 22 vs 24 and lanes 26 vs 28, respectively). By contrast,
cysteine at position 186 was not markedly reactive with NEM, as
judged from the evident counter modification (lanes 14 vs 16).
These results suggest that water molecules can access residues
185, 187, 188 and 189 but not effectively residue 186. Average
NEM modification efficiencies in at least three independent

experiments, calculated as described in Experimental Procedures,
are shown in Fig. 2A. The summarized water accessibility features
are depicted in Fig. 2B and C (efficiently modified residues are
shown in red). We note that cysteines at positions 68, 70, 71, 72,
73 and 210 (shown by asterisks in Fig 2A and in black in Fig
2B, C and Fig. S3) were not efficiently modified with Mal-PEG
even without the first NEM modification. These positions may
have been buried in a manner inaccessible by the alkylating agents
and/or water, even after denaturation with SDS.

The results presented above show, strikingly, that numerous
positions of the TM segments of SpoIIIJ are facing an aqueous
environment. We note a tendency that the residues located closer
to the cytoplasm exhibit higher modification efficiencies than
those located in the distal side, with some exceptions (Fig 2 A-C).
It is remarkable that the eight positions (S64, Y148, H149, M152,
P177, I213, I218 and W228) are still highly accessible by water,
even though they are located at the extracytoplasmic half of the
bilayer membrane. Among these residues, S64, M152 and I218
are likely to be exposed to the extracytoplasmic environment, as
shown from the crystal structure, explaining their high reactivity.
By contrast, the other five NEM-modifiable residues in the distal
half are likely embedded in the lipid bilayer, among which Y148,
P177, I213 and W228 project their side chains toward the interior
of the concave cavity.

In summary, our systematic in vivo NEM-modification assay
suggests that the SpoIIIJ cavity creates an aqueous environment
in the living cell membrane. Functional assays showed that most
of the mutant SpoIIIJ derivatives were functional, although some
others were less functional (Fig. S2). Although we included the
non-functional SpoIIIJ mutants (Fig. S2 and those shown in
striped colors in Fig. 2A and B) in our analysis, omitting them
does not essentially affect our conclusion.

Functional importance of general hydrophilicity of the YidC
cavity

We next addressed whether the hydrophilicity of the cavity is
important for the YidC function. In our previous genetic studies,
single alanine substitutions for the conserved hydrophilic residues
in the cavity did not deteriorate SpoIIIJ functions, except for
Arg73 (21). We reason that single alanine substitutions may be
insufficient to reduce the overall hydrophilicity of the cavity. We
therefore selected six hydrophilic residues in the cavity (Gln140,
Thr184, Gln187, Gln188, Gly231, Asn232) that were efficiently
modified by NEM (Fig. 2) for their simultaneous replacement
with either alanine (SpoIIIJ-6A) or leucine (SpoIIIJ-6L) to make
the cavity more hydrophobic. As a control, we constructed a
mutant, in which the six residues were replaced either by hy-
drophilic asparagine or glutamine (SpoIIIJ-5N1Q, having mu-
tations Q140N, T184N, Q187N, Q188N, G231N and N232Q).
NEM-reactivity of cysteine introduced either at the 213th or
the 228th position was significantly lowered by the spoIIIJ-6A
and the spoIIIJ-6L mutations (Fig. 3B). By contrast, the NEM-
reactivity remained unaffected at the high level by the spoIIIJ-
5N1Q mutation.

We then assessed the insertase activity of the SpoIIIJ mutants
using the yidC2’-lacZ reporter. Whereas cell expressing wild type
spoIIIJ had a β-galactosidase activity of 5.3 units (Fig. 3A, column
1), the spoIIIJ-deletion strain (△spoIIIJ) had 25.7 units of it (Fig
3A, column 2). β-galactosidase activity of cells expressing spoIIIJ-
6A was 15.0 units and that of spoIIIJ-6L-expressing cells was
15.2 units, showing defects in SpoIIIJ function. By contrast, cells
expressing spoIIIJ-5N1Q had only 3.5 units, showing full function-
ality of SpoIIIJ. Immunoblotting showed that cellular abundance
was similar for the SpoIIIJ variants examined, except for SpoIIIJ-
6L, which was at a slightly lower level (Fig. 3A, lower panel).
However, this slight decrease in the accumulation level does not
explain the lower activity of SpoIIIJ-6L, since cells expressing
wild type SpoIIIJ at a similarly decreased abundance due to a
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mutation in the Shine-Dalgarno sequence (sdm3-spoIIIJ) showed
the normal reporter expression (Fig. 3A, sdm3). Thus, the spoIIIJ-
6A and the spoIIIJ-6L mutations impair the activity of SpoIIIJ to
insert MifM into the membrane.

Deletion of yidC2 makes spoIIIJ essential for cell viability (8,
9), allowing us to examine functionality of the SpoIIIJ mutant
derivatives in supporting growth of B. subtilis. We used plasmid
expressing spoIIIJ-FLAG under the IPTG-inducible promoter
to assess the growth phenotypes of spoIIIJ mutations on the
chromosome that was also deleted for yidC2; in the absence of
IPTG the chromosomal spoIIIJ (with a mutation to be tested) was
the sole source of YidC. We observed severe growth defects for
strains having the spoIIIJ-6A or the spoIIIJ-6L mutation in the
absence of IPTG. By contrast, the spoIIIJ-5N1Q and the sdm3-
spoIIIJ cells grew normally even in the absence of IPTG. These
results show that the hydrophilicity of the cavity is required for the
growth-supporting function of SpoIIIJ. Taken together with the
results obtained from the lacZ reporter assay, the SpoIIIJ cavity
must be hydrophilic to function normally.

Flexible positional requirements for the essential positive
charge within the YidC cavity

The SpoIIIJ cavity contains an arginine residue that is func-
tionally essential, leading us to propose a charge attraction model
for the initiation of translocation of MifM-like substrates (21). In
this case, substrate recognition may not be based on strict struc-
tural complementarity and electrostatic interaction may allow
certain positional flexibility. We addressed whether the arginine
residue can be relocated to different positions on the cavity,
by constructing a series of SpoIIIJ mutants with the original
Arg73 replaced with alanine and having a unique arginine at
various positions within the TM segments of SpoIIIJ. Western
blotting experiments showed that the arginine-relocating muta-
tions sometimes destabilized the SpoIIIJ protein (Fig. S4). Most
of the unstable protein had an arginine residue outside the cavity
(shown in blue in Fig. S4, A and B), which may have caused severe
hydrophobic mismatches.

We used the yidC2’-lacZ reporter assay and the growth
complementation assay to assess functionality of the mutant
forms of SpoIIIJ. While many Arg-relocated mutants gave el-
evated β-galactosidase activity, comparable to the activity ob-
served with the spoIIIJ-deleted cells (Fig 4B, mutants shown in
black columns) as well as with cells carrying the spoIIIJ-R73A
mutation (21), several mutants expressed β-galactosidase at levels
significantly lower than the above-mentioned class of mutants.
The latter SpoIIIJ variants can still support MifM insertion even
though they have lost the crucial arginine at the original position
and instead contain a relocated arginine at a different position
(Fig. 4B). Six of them (termed Class I that includes I72R, I76R,
Q140R, L144R, W228R and G231R; shown in red in Fig 4B and
C) had β-galactosidase activities of lower than 15 units, indicative
of nearly full functionality in inserting MifM into the membrane.
Remaining five mutants (termed Class II that includes T69R,
I137R, T184R, I213R and M235R) had β-galactosidase activities
ranging from 15 to 25 units, indicative of partial functionality.
The class I mutations were found only in TM1, TM2 and TM5,
whereas the class II mutations were found in all the five TM
segments. Locations of these residues on the crystal structure of
B. halodurans YidC2, revealed that they, except I72, project their
side chains toward the inside of the cavity (Fig. 4C). The side
chain of I72 projects toward TM2 but still seems to be accessible
from the cavity interior. TM2 and TM5 are both geometrically
close to TM1, where Arg73 originally resided, possibly explaining
why the class I mutations occurred only in TM1, TM2 and TM5.

Growth complementation assay showed that all the class I and
the class II R73A/I213R mutations fully supported cell growth
in the absence of YidC2. The class II mutations other than
R73A/I213R resulted in poor growth (Fig. S5). Thus, the abilities

of the SpoIIIJ variants to support cell growth correlated well
with their insertase activities. These systematic analyses strongly
support the idea that the concave surface of the cavity must
be positively charged to maintain the SpoIIIJ activity but some
flexibility is allowed about exact positions of the positive charge,
being consistent with the charge attraction model.

Discussion

Translocation of hydrophilic regions of a newly synthesized
polypeptide across the hydrophobic lipid bilayer is an energet-
ically challenging process in the membrane protein insertion
pathways. While the SecYEG translocon overcomes this difficulty
by forming a polypeptide-conducting channel that sequesters a
translocating polypeptide from the lipidic environment (15-17),
several lines of evidence (19, 20, 27), most notably the crystal
structure of B. halodurans YidC2 (21), suggest that YidC uses a
channel-independent mechanism.

The results of our systematic NEM-probing analysis of the
mono-cysteine derivatives of SpoIIIJ indicate that the SpoIIIJ
cavity provides an aqueous environment within the membrane
of living cells. Although cysteine substitution at certain positions,
such as in the midst of consecutive hydrophobic residues, could
itself have altered the local disposition of the polypeptide, we
envisage that such cases were rare except for the non-functional
mutations. The overall conclusion obtained from our in vivo anal-
ysis agrees well with the crystal structures of YidC as well as the
results of molecular dynamics simulation of YidC, showing the
presence of water molecules in the cavity (21). The hydrophilic
residues on the concave surface of the cavity should contribute
to maintaining the local aqueous environment as simultaneous
substitution of non-polar alanine or leucine for the six selected
hydrophilic residues on the cavity significantly reduced the effi-
ciencies of NEM-modification of a cysteine introduced into the
cavity. Importantly, SpoIIIJ's activities to insert MifM as well as to
support cell growth are compromised significantly by the spoIIIJ-
6A and the spoIIIJ-6L mutations, corroborating the physiological
importance of the cavity hydrophilicity.

A role of the YidC cavity may be to provide a hydrophilic
environment in the otherwise hydrophobic lipid bilayer, thereby
reducing the energetic cost required for insertion of hydrophilic
regions of substrate into the membrane en route to the trans-
side. It is also conceivable that the hydrophobic mismatch at the
protein-lipid interface could elicit local structural rearrangements
of the lipid bilayer (28, 29) so as to affect substrate-membrane
interactions and thereby facilitate membrane insertion. We spec-
ulate that the YidC cavity is designed not simply as a hydrophilic
platform but to allow for the unusual arrangement of intramem-
brane aqueous space to be compatible with the thermodynamic
principle. While it is unknown how this is accomplished, the
notion is consistent with the observations that placement of an
arginine residue is possible within the cavity but not its outer
regions without severely destabilizing the protein (Fig S4).

The functional arginine does not strictly require a unique
positioning in the cavity, as we were able to relocate it from
the original 73rd position to several other positions within the
cavity without loss of function. Such positional flexibility appears
to be consistent with the electrostatic attracting force serving as
a primary driving force for insertion of substrate. As discussed
previously, the cytosolic C1 region with hairpin-like helices may
provide a substrate entry point (21). Therefore, arginines that
are closer to the C1 region may have higher functionality as an
insertase element, although such a positioning should also be
compatible with the subsequent step of translocation completion.

The hydrophilic surface within the membrane interior might
be also important for the chaperone functions of YidC in the
Sec-dependent insertion pathway. For instance, transmembrane
regions of membrane proteins may contain functionally impor-
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tant polar residues, which might be unstable in the lipidic envi-
ronment upon release from translocon until assembling with a
partner transmembrane polypeptide also containing complemen-
tary polar residues (30, 31). It is tempting to speculate that the
hydrophilic cavity of YidC provides a transient docking surface
that binds a newly inserted TM segment before it finds a partner
of assembly, like regular aqueous phase chaperones do in the
inverted ways.

The YidC family contains divergent members in different
organisms, which differ in the modes of cooperation with other
factors including the signal recognition particle and the ribosome
(32-35). Moreover, each homolog can have multiple functions
and reaction mechanisms (7, 36-38). We envision that the pecu-
liarity of having a hydrophilic cavity in the membrane may be
a common feature conserved in many of the family members.
Still, it is possible that the hydrophilic local environment is used
differently in different YidC homologs. For instance, the cavity
arginine in the E. coli YidC was reported to be dispensable for
the insertase activity for the Pf3 coat protein, which requires
the arginine when handled by Streptococcus mutans YidC2 (39).
Further studies on this interesting membrane protein will advance
our understanding of how living organisms manage to solve prob-
lems associated with the movement of macromolecules across
hydropathic borders.

Experimental Procedures
Bacterial strains and plasmids

The B. subtilis strains and plasmids used in this study are listed in Table
S1 and S3, respectively. Construction procedures of B. subtilis strains were
summarized in Table S2 and described in Supporting Information.

Media and conditions for growth of B. subtilis
B. subtilis cells were cultured at 37°C in LB medium containing (an)

appropriate antibiotic(s). Samples were withdrawn from 3-ml cultures at
an absorbance at 600 nm (OD600) of 0.5 to 1.0 for NEM-reactivity assay, β-
galactosidase assay or Western blotting. Growth condition for the growth
complementation assay was described in Supporting Information.

NEM-reactivity assay, β-galactosidase assay and Western blotting
NEM and Mal-PEG modifications were carried out as described in Sup-

porting Information. Efficiency of NEM modification of SpoIIIJ was calculated
by the equation: NEM modification (%) = 100 x (a – b)/a (26), where a is
the PEGylation efficiency obtained without the NEM treatment of the cell
and b is the PEGylation efficiency obtained from NEM-treated cells. The
PEGylation efficiency (%) was calculated by the formula: 100 x (i0-i)/i0, in
which i0 and i represent intensity of SpoIIIJ at the non-PEGylated position,
the former before PEGylation and the latter after PEGylation. We used
the decrease in the band intensity of non-PEGylated species after Mal-PEG
treatment (without taking the band intensity of the PEGylated species into
account) because the PEGylated proteins were heterogeneous in sizes and
low in transfer efficiency upon blotting. β-galactosidase activity assays (10)
and Western blotting (12) using anti-SpoIIIJ antiserum (21) were performed
as described previously.
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