
An exact. algorithm for the subset~sum problem

Hiroshi IIDA
e-mail: x-iida@jaist.ac.jp

Milan Vlach
e-mail: vlach@jaist.ac.jp

School of Information Science,
Japan Advanced Institute of Science and Technology, Hokurikut

Abstract
In this paper we propose a new algorithm for solving the subset-sum problem.

First we propose a new algorithm (xs-algorithm) for the partition problem. Then
we describe a transformation of the subset-sum problem to the partition problem,
and show how to solve the resulting problem by a slightly modified version of xs
algorithm. Fimi.lly, we present results of extensive computational experiments for
several types of data instances. The paper is based on the master thesis of the first
author.

1 Introduction

The main purpose of this paper is to present a new algorithm for solving the Subset-Sum
Problem. The Subset-Sum Problem (SSP) can formally be stated as follows: Given n + 1
positive integers aI, a2, ... ,an and c,

n

maXImIze LajXj (1)
j=1

n

subject to Lajxj::;; C (2)
j=1

Xj E {O, I}, 1 ::;; j ::;; n. (3)

The SSP can be considered as a special case of the classical 0-1 Knapsack Problem, which
can be formulated as follows: Given 2n positive integers Pj, Wj (1 ::;; j ::;; n) and a positive
integer c,

maXImIze

subject to
n

LWjXj::;; c
j=1

Xj E {O, I}, 1::;; j ::;; n.

t1-1 Asahidai Tatsunokuchi Ishikawa 923-12, JAPAN.

-11-

Following the terminology of Martello & Toth's book on knapsack problems [3], we
shall sometimes call the elements of the set {I, 2, ... , n} items. The numbers Pj and Wj

associated with each item j will be called profit and weight of item j, respectively. The
number c will be called capacity.

Obviously, if Pj equals Wj for every item j E N, then the 0-1 Knapsack Problem
reduces to the SSP. Thus the SSP can informally be stated as the problem of selecting
a subset of items such that the sum of the weights of the selected items is maximized
without exceeding a given capacity c.

Our approach to solving the SSP is based on an algorithm for solving the following
Partition Problem (PP): Given n positive integers CI, C2, ..• ,Cn ,

mInImIZe

subject to

LCj - LCj
jEJ jrf-J

J C {I, 2, ... ,n}

(4)

(5)

This new algorithm is described in detail in section 2. In section 3, we study relations
between the SSP and PP, and we show how to solve the SSP with the help of a modification
of the proposed algorithm for PP. Section 4 provides results of extensive computational
experiments for several types of standard data instances. The last section is devoted to
conclusions.

2 An algorithm for the partition problem

In this section we describe a new algorithm for solving the Partition Problem. Before
describing the details of the algorithm, which we call xs-algorithm or xs simply, we
introduce some notations and definitions.

Let N := {I, 2, ... , n} and let J be a subset of N. The complement of J in N
will be denoted by J, and the number of elements of J will be called length of J. In
addition, we denote the length of J as IJI. With each J C N, we associate a 0-1 n-vector

J _ (J J J) b d fi .x - Xl' X 2 " •• , X n y e nmg

J {I if i E J
Xi:= 0 if i ~ J

The vector (x~, X~_l" •• , xi) will be called bit pattern of J. On the other hand, with each
0-1 n-vector X = (xj, X2, ..• ,xn) we associate a subset Jm of N by the condition: j E Jm

if and only if Xj = 1. For each J C N and a family {Cj : j EN}, the sum L-jEJ Cj will be

denoted by c(J), and called weight of J. The number I c(J) - c(J) I will be called cost of
J.

The PP is obviously an NP-hard problem, because the problem of deciding whether
there exists J C N such that c(J) = c(J) is an NP-complete problem - see PARTITION
in Karp [1] or Garey & Johnson [2]. However, the PP has special structural properties
that make it possible to solve relatively large problems in reasonable time. Our approach
to solving the PP is based on the classical depth-first tree search. The proposed algorithm
consists of two main parts: preprocessing and searching. The purpose of preprocessing is
to construct trees for searching, and an incumbent initial solution and value.

- 12 -

2.1 Preprocessing

From now on, we shall always assume that the items are ordered according to nondecreas
ing values of their weights, i.e. so that Cl ::; C2 ::; •.. ~ Cn' The preprocessing performed
by the xs-algorithm is based on the following three observations.

Observation 1 Let k be the item such that

t Cj ~ c(:) < t Cj

i=n-k+2 i=n-k+l

Since Cn + Cn-l + ... + Cn -k+2 is the largest sum among all sums corresponding to
the subsets the lengths of which are less than k, we can discard from consideration
all subsets J with IJI < k except {n, n - 1, ... , n - k + 2}. We take this set as an
initial incumbent solution, and its cost as an initial incumbent value of the objective
function (4).

Observation 2 We can discard all subsets J such that ill > In/2J, because the cost of
each set J the length of which is greater than In/2J is equal to the cost of J and
the length of J is less than or equal to ln /2J.

Observation 3 If n is even, we can fix an arbitrary item first, and then we can discard
all subsets J of the length n/2 which contain the fixed item. For example, if n = 4
and if we fix item 4, then we can discard the sets {I, 4}, {2, 4}, {3, 4}, because their
costs are equal to those of complements {2, 3}, {I, 3}, {I, 2}, respectively.

In accordance with Observations 1 and 2, we can restrict further searching to the
subsets of N the length of which varies from k to In/2J. For every such length, the
xs-algorithm creates a binary tree for enumerating items in the order of nonincreasing
weights, i.e. in the order n, n -1, ... see Figure 1. If n is even, then the tree corresponding
to the set-length of n/2 can be simplified by taking into consideration Observation 3. To
be specific, we always fix item n, and discard all subsets of the length n/2 containing item
n. In other words, at the root of the corresponding tree is item n - 1 instead of item n.

· .· .· .· .· .· .
~ ;

n select

. .
" 't. .. ., \

n not selected

.
l \:

~ ;

Figure 1: search tree

- 13 -

2.2 Searching

Searching for an optimal solution is based on the following three procedures, which we call
TEST, LASTand SKIP. From the preprocessing we know that we have to search in In/2J
k + 1 trees, and we also have already the incumbent solution J = {n, n - 1, ... ,n - k + 2}
and its cost. Let us briefly describe the procedures mentioned above. In subsection 3.3,
we present a sample implementation for the routine of tree search taking these three
procedures into consideration.

TEST Suppose we are at a node of one of the search trees. Let 1be the length of solutions
prescribed for the tree under consideration, and let the item of the node be j. In
order to decide whether to move along "j-selected" edge or "j-not selected" edge, we
perform the following test, provided the number of items already selected is less than
1- 1. Let J be the set of already selected items. We add item j to J together with
items 1,2, ... ,i where i is such that the length ofthis new set J1 := JU{j, 1,2, ... ,i}
is equal to the prescribed length 1. Then we compute the difference c(J1) - c(J1) and
test whether it is greater than or equal to the incumbent value. If so, then obviously
the cost of all subsets represented by the node resulting from selecting item j is also
greater than or equal to the incumbent value. Therefore we cut that part and move
along the "j-not selected" edge. If the difference is less than the incumbent value,
then we move along the "j-selected" edge.

LAST Suppose we are at a node such that the length of the corresponding set of selected
items J is one unit shorter than the prescribed length. Let j E J be the item of the
minimum weight among items in J. If c(J) + C1 2: c(N)/2, then we add item 1 to
J, and go directly to the corresponding node, and perform BACKTRACK. We shall
discuss the procedure BACKTRACK later. If c(J) + Cj-1 < c(N)/2, then we move to
the node corresponding to the set J U {j - I} along the "j - 1 selected" edge, and
perform SKIP. If c(J) +C1 < c(N)/2 ::; c(J) +Cj-b then we perform a binary search
to find item p such that

. c(N)
1 ::; p < J - 1 and c(J) + cp < -2- ::; c(J) + cp+!o

Then we add item p to J and go directly to the corresponding node, and perform
SKIP.

SKIP Suppose we are at a node at which the length of sets represented by the node is
equal to the prescribed length. Let J be the corresponding set of already selected
items. If c(J) 2: c(N)/2, BACKTRACK is performed. If c(J) < c(N)/2, then we need
not continue searching from this node. Therefore we skip to some suitable node or,
if impossible, we terminate the search in the tree. We shall describe the skipping
procedure by means of an example. Consider the situation depicted in Figure 2.
First note that the partial bit patterns

a Ol0l111xx
f3 0101110lx
'Y OOxxxxxxx

- 14 -

a 010 ll11xx saU greater than c(N)/2

13 o~o-ii-ioilx less than c(N)/2 , then

y opxxxxxx~ skip to here from 13
L .J

Figure 2: SKIP

represent the collections of subsets determined by the nodes labelled also by a, (3
and "I, respectively. Let Ja , Jf3 and J, denote the corresponding sets of selected
items, i.e. Ja = {8,6,5,4,3}, Jf3 = {8,6,5,4,2}, J, = 0. Let us assume that

If we skip from node (3 to node "I, then we can possibly reach from node "I better
solutions. Since each node has its own unique partial bit pattern, we can realize
skipping very efficiently. In the example, we attempt to find first '1' after skipping
over two (or more if necessary) '0' to the left from the position indicating the last
selected item. Then we replace the found '1' by '0' and leave free all other bits to
the right. For instance, in Figure 2, we assume that SKIP is performed at the node
labelled (3. In this case we obtain the node labelled "I, and continue the search. In
this case we have skipped over exactly two '0' (C3, C7)' If we could not skip over at
least two '0' or could not find '1' after skipping over two (or more) '0', processing
of the tree terminates.

Finally we mention the procedure BACKTRACK. Roughly speaking, BACKTRACK is
similar to SKIP. The only essential difference is that in BACKTRACK we attempt to
find the first '1' after skipping over one (or more if necessary) '0' instead of at least
two '0' from the position indicating the last-selected item.

Remark In order to enhance the efficiency of searching, we go directly to the node
corresponding to the set J} := J U {I, 2, ... , j - I} whenever 1- PI = j - 1, where

- 15 -

1is the prescribed length and j is the item of the minimum weight in J. Then SKIP

is performed whenever c(Jd < c(N)/2. If c(J1) ~ c(N)/2, then BACKTRACK is
performed.

3 Subset-sum problem

To begin with, we show that the PP is equivalent to a special structured SSP. There
fore the xs-algorithm described in the previous section is directly applicable to certain
instances of the general SSP.

Proposition 1 A subset J of N is an optimal solution ofthe Partition Problem (4)-(5)
if and only if the corresponding x J is optimal for the problem

maXlmlze

subject to

n

LCjXj (6)
j=1

n

l_1f: CjjLCoxo < (7)J J -
2 j=1j=1

Xj E {O, I}, j E N (8)

Proof Suppose that J is an optimal solution of (4)-(5). Without loss of generality we
may assume that c(J) :::; c(J). It follows that c(J) :::; !c(N), because c(J)+c(J) =
c(N). Since c(J) is an integer, we have also

Since c(J) = 2:/1=1 CjXf, we see that xl is a feasible solution of (6)-(8). Now we
verify that xl is an optimal solution of (6)-(8). Suppose that x J is not optimal.
Then there exists KeN such that

n n II JL CjXf < L cf:::; -c(N)
j=1 j=1 2

This is equivalent to

c(J) < c(K) :::; l~C(N)J
Taking into consideration that c(k) ~ c(K), we obtain

c(J) - c(J)

and consequently

> c(J) - c(K)
c(J) + c(J) - c(J) - c(K)+ c(k) - c(k)
c(N) - c(J) - c(N) + c(k) = c(k) - c(J)

> c(k) - c(K) ~ 0

Ic(J) - c(J) I> Ic(k) - c(K) I'

- 16 -

which contradicts the optimality of J for (4)-(5). Thus xl must be optimal.

Now we prove the converse implication. Let x = (Xl, Xz, ... , x n) be an optimal
solution of (6)-(8). We now show that Jx is optimal for (4)-(5). Suppose this is
not true. Then there exists J eN such that c(J) ~ ltc(N)J and

c(Jx) - c(Jx) > c(J) - c(J) ~ O.

However

It follows that

c(J) - c(Jx) c(N) - c(J) - (c(N) - c(Jx))

c(Jx) - c(J) > c(Jx) - c(J)

c(Jx) < c(J) ~ l~C(N)J
However this is equivalent to

which contradicts the optimality of x. II

Proposition 1 shows that every algorithm for solving the PP can be used for solving
special cases of the SSP given by (6)-(8). However, it is not clear how to apply the xs-

algorithm to the instances of SSP with c i= It ~j=l ajJ. The following simple example
demonstrates that the xs-algorithm may fail in delivering an optimal solution of such
instances, if applied to the PP with Cj := aj for all j E N.

Example 1 Consider the instance of the SSP given by n = 3, al = 1, az = 2, a3 =
3, c = 4. Its unique solution is Xl = 1, Xz = 0, X3 = 1. It is obvious that the xs
algorithm cannot deliver this solution if applied to the instance of the PP given by
n = 3, CI := all Cz := a2, C3 := a3, because the only optimal solutions of this instance
are {I, 2} and {3}.

In order to overcome this difficulty we propose such conversion of the general SSP to the
PP that a modification of the xs-algorithm can solve the original problem.

3.1 Conversion from the SSP to PP

The main problem of conversion is caused by the fact that, in general, the right hand side
c of (2) may differ from l~ ~j=l ajJ as required by (7). To cope with this we suggest to
transform the general SSP with n items given by (1)-(3) to the. PP with n + 2 numbers
Cl, C2,' .. ,Cll.+2 defined by

.{ Cj

Cn+l

Cn +2

aj for all j E N

2c

~j·=l aj

- 17 -

(9)

Note that if 2:jEJ aj = c for some J c N, then c(J U {n + 2}) is exactly the half of
c(J U {n + 1, n + 2}). Similarly to the PP, we denote 2:jEJ aj by a(J) and call it weight
of J.

Remark This conversion differs slightly from the classical conversion of Karp [1] given
by

aj for all j E N

c+1

Ej=l aj + 1 - c

We replace "1" in the Karp conversion by "c" in order to prevent the su bsets of
N U {n + 1, n + 2} containing either both n + 1 and n + 2 or none of them from
being optimal for the resulting PP. Our conversion differs also from the Vavasis
conversion [5] defined by

aj for all j E N

E]=:l aj - 2c

in which Cn +1 may become negative.

Proposition 2 A vector x = (Xl, X2, ... ,Xn) is an optimal solution of the problem

mInImIZe

subject to

n

c-~a·x·L,; J J
j=l

Xj E {O, I}, for all j E N

(10)

(11)

if and only if Jx U {n + 2} is an optimal solution of the PP with data (9).

Proof Let J be an arbitrary subset of N. Let us calculate the values of the objective
function of the PP under consideration for J U {n + 1,n + 2} and J U {n + 2}.
For the former, we have

Ia(J) + 2c + a(N) - a(J) I

and for the latter, we obtain

Ia(J) + 2c + a(J) + a(J) - a(J) I
21 a(J) + c I,

Ia(J) + a(N) - a(J) - 2cl = [a(J) + a(J) + a(J) - a(J) - 2c J

= 21 a(J) - c I.
Consider the partition of the set of all subsets of N U {n + 1, n + 2} into the four
sets 51,52,53 and 54 defined as follows:

51 is the set of all subsets containing n + 2 and not containing n + 1,

52 is the set of all subsets containing n + 1 and not containing n + 2,

53 is the set of all subsets containing both n + 1 and n + 2,

54 is the set of all subsets containing neither n + 1 nor n + 2.

- 18 -

Since Ia(J) + c I 2: Ia(J) - c I for all J C N and since 3 2 is exactly the set of all
complements of the sets from 3 1 and 34 is exactly the set of all complements of
the sets from 33 , we conclude that if x is an optimal solution of (10)-(11), then
Jrz; U {n + 2} solves the corresponding PP.

Now suppose that x is not optimal for (10)-(11). Then there is x' such that

n

c- ~ a·x'·L..J J J
j=l

n

< c - 2: ajxj
j=l

Therefore Ie - a(Jrz;/) I < Ie - a(Jx) I. The values of the objective function for
the corresponding PP at Jrz;/ U {n + 2} and l£ U {n + 2} are 2la(Jxt) - c I and
2la(Jx) - c I, respectively. Therefore Jx U {n + 2} is not optimal. II

Remark Since 3 2 is the set of all complements of the sets from 31 , it is obvious that
a vector x = (Xl, X2, ... , x n) is an optimal solution of (10)-(11) if and only if Jx U
{n + I} is an optimal solution of the PP with data (9).

The following example shows that an optimal solution of the PP defined by (9) is
not necessarily an optimal solution of the original SSP. The reason is that an optimal
solution X of (10)-(11) may be infeasible for the original SSP, because it may not satisfy
the inequality 'L,J=l ajxj ::; c.

Example 2 Consider the instance of SSP given by n = 3, al = 3, a2 = 4, a3 = 8 and
c = 10. Using the transformation (9), we obtain the following instance of PP:
C1 = 3, C2 = 4, C3 = 8, C4 = 20, Cs = 15. The optimal solution containing item n + 2
is {I, 3, 5}. However, a1 + a3 = 11 > 10 = c. Therefore {I, 3} is infeasible for the
original instance of SSP, and it cannot be optimal.

3.2 Modification of the xs-algorithm

Consider again an arbitrary instance of SSP given by aI, a2, ... , an and c. Without any
loss of generality, we assume that

.. aj < c for all j E N

• a(N) f=. 2c and a(N) f=. 2c + 1

Note that if the last assumption is not fulfilled, then c = la(N)j2J, and we can solve
such problems by directly appling the unmodified xs-algorithm. In the terms of the PP
defined by (9), the last assumption means that Cn +2 f=. Cn+1 and Cn +2 f=. Cn +1 + l.

It is obvious from Proposition 2 that if J C N is such that J U {n + 2} solves the
corresponding PP with data (9), then J solves the original SSP whenever c(J) ::; c.
The previous example shows that the xs-algorithm may deliver an optimal solution with
c(J) > c. To resolve this difficulty we modify the xs-algorithm as follows.

- 19 -

1. We discard all sets belonging to S3 and S4. Thus we deal only with subsets of
N' := N U {n + 1, n + 2} belonging either to Sl or S2.

2. To guarantee the feasibility, we discard all subsets containing item n+2 the weights
of which are greater than c(N')/2 and all subsets containing item n + 1 the weights
of which are less than c(N')/2. The reason is that, for each J c N, a(J) ::; C

holds if and only if c(J) + Cn+2 ::; c(N')/2, and a(J) ::; c holds if and only if
c(J) + cn+} 2 c(N')/2.

3. According to Observation 1 of subsection 2.1, the lower bound k ofthe subsets length
is 2, because min{cn+hcn+2} > aj for each j E N, max{cn+}, Cn+2} ::; c(N')/2, and
Cn+l + Cn+2 > c(N')/2. However, since we do not deal with subsets containing both
items n + 1 and n + 2, we have to modify the definition of k. It is easy to see that
the following modification will serve the purpose:

(a) If Cn +2 > Cn+}, we define k by

n c(N') n

Cn+2 + l: aj > -2- 2 Cn+2 + l: aj, 3::; k ::; n + 1
j=n-k+2 j=n-k+3

In this case, we may discard all subsets containing item n + 2 the length of
which are less than k, except {n + 2, n, n - 1, ... ,n - k + 3}. Since Cn+l +
an + an-l + ... + cn-k+3 is less than c(N')/2, we may discard also all subsets
containing item n + 1 the length of which are less than k. Consequently, if
Cn +2 > Cn+t, then we discard all subsets of N' the length of which are less
than k, except {n + 2, n, n - 1, ... ,n - k + 3}. Then we take this set as initial
incumbent solution and its cost as initial incumbent value.

(b) If Cn +2 < Cn +}, we define k by

n c(N') n
Cn+l + l: aj > -2- 2 Cn+l + l: aj, 2::; k ::; n (12)

j=n-k+2 j=n-k+3

In this case, we may discard all subsets containing item n + 1 the length of
which are less than k, except {n+ 1, n, ... , n-k+3}, and all subsets containing
item n + 2 the length of which are less than k except {n + 2, n, n - 1, ... , n
k + 3}. Note that {n + 1, n, ... ,n - k + 3} cannot be discarded because its
cost might be zero. Consequently, if Cn +2 < Cn+ll then we discard all subsets
of N' the length of which are less than k, except {n + 1, n, . .. ,n - k + 3} and
{n+2, n, n-1, ... , n- k+3}. If the cost of {n+ 1, n, ... , n- k+3} is zero, then
we found an optimal solution. If not, then we take {n+2, n, n-1, . .. ,n-k+3}
as incumbent solution.

4. As upper bound of the length of solutions we take l(n + 2)/2J = In/2J + 1.

5. If n is even and the prescribed length of subsets is n/2, we fix item n + 1, provided
Cn+} > Cn+2, or we fix item n + 2, provided Cn+2 > Cn+}, and we deal only with Sl
or S2, respectively.

- 20-

6. In order to obtain an optimal solution of the original SSP, we discard item n + 2,
provided that the modified xs-algorithm delivered an optimal solution containing
n + 2. If the xs-algorithm delivers an optimal solution containing n + 1, we take its
complement in N' and discard item n + 2.

Let us summarize the proposed algorithm:

• Define Cj := aj for alII:::; j :::; n and sort them in a nondecreasing order, and
rename (if necessary) so that Cl :::; C2 S ... :::; Cn·

• Construct two additional items n + 1 and n + 2 with weights Cll+1 := 2c, Cn +2 :=

Ej=l aj.

• If Cn +2 = Cn+l or Cn +2 = Cll+1 + 1, then discard items n + 1 and n + 2, and solve the
resulting PP by the unmodified xs-algorithm. If this results in an optimal solution
J with c(J) > c(J), then take J as an optimal solution of the original SSP.

• If Cn +2 :I Cn+l and Cn +2 :I Cn+l +1, then we solve the PP with the help of the modified
xs-algorithm. Then we take the solution containing item n + 2 and discard n + 2.
The remaining set solves the original SSP.

3.3 Implementation

In this subsection we discuss an implementation of the basic routine, i.e. the routine for
search in trees used for solving the PP.

Regarding the arguments of the routine: NI (Number of Items) varies from k to In/2J,
BP (Base Position) is equal to n except for the case n even and NI= n/2. In the latter
BP=n - 1. If the routine is applied to an instance of SSP which requires the modified
xs-algorithm, then Cn+l and Cn +2 are managed separately, i.e. either item n + 1 or item
n + 2 is already taken before invoking the routine.

INPUT : BP
NI

base position, the item of maximum number we could take
of items we should take

eval:

if NI=1 then
binary search in [1,BP], and find p; exit

clear all L[]; II array for storing the selection of items
j:=BP; L[j] :=1; rst:=NI-1;
if rst=j-1 then II no more room for selection

take rest items as small number as possible and j:=1;
if weight is less than c(N)/2 then

counter:=2 and goto back; II skip
counter:=1, goto back; II backtrack

else if select test is N.G. then II testing item is 'j'
; II goto forw;

else if rst=1 then
binary search in [1,j-1], and find p;

- 21 -

forw:

back:

if p+2=j then
counter: =1 and goto back; II skip

else if p+1=j then
counter:=2 and goto back; II skip

else
j--; L[j] :=1; rst--; goto eval;

L[j] :=0; j--; L[j]:=l; II forward move
goto eval;
L[j] :=0; j++; rst++;
while j <= BP and counter > 0 do

if L[j]=1 then
L[j] :=0; rst++;

else
counter--;

j++;
II find '1' for forward move
while j <= BP do

if L[j]=1 then goto forw;
j++;

exit

In this pseudo-code, p indicates the item found by binary search in the range [1, j - 1].
In particular, when the weight of subset J U {j - I} is less than c(N)/2, then p = j - 1,
and when the weight of J U {I} is greater than c(N) /2, then p = O.

For the reader's convenience we also present a small-sized example. Consider an
instance of the SSP with 6 items given by

a6 as a4 a3 a2 al C

14 10 8 6 4 2 23

In accordance with (9), the corresponding instance of the PP is given by

Cg C7 C6 Cs C4 C3 C2 Cl

44 46 14 10 8 6 4 2

Since Cg f:. C7 and Cg f:. C7 + 1, we must apply the modified xs-algorithm. First, we
determine the range for the length of solutions. Since Cg < C7, we determine k according
to (12). Since

c(N')
C7 + C6 + Cs = 70 > 67 = -2- 2:: 60 = C7 + C6

we obtain k = 3. Since l(n + 2)/2J = 4, we have to search in two trees, taking the
prescribed length of solutions 3 and 4. Before starting the main loop, we have to examine
the subsets of the length 2, namely {7,6} and {8,6}. For the sake of brevity, we shall
represent subsets of J of N' by their bit patterns (xlx~,··xf), and the feasibility by the
+ sign in front of the pattern. In the case of subsets {7, 6} and {8,6} we obtain

01 100000 60, not equal to c(N')/2, discard it.
+10 100000 : 58, feasible, cost is 18(=158-(134-58) I).

- 22 -

Now, we start the main loop. In the first tree, the prescribed length of solutions is
three. First we consider solutions in 82 (containing 7 and not containing 8), then solutions
in 81 (containing 8 and not containing 7). Thus, it is a good idea to duplicate the first
tree. In the main loop, we first attempt to take item 6. According to the pseudo-code
presented above, we perform TEST, and so on. As mentioned above, the items 7 and 8
are managed separately. In this way we obtain (the symbol x represents not yet decided
positions):

01 lxxxxx
+01 101000

01 100100
01 01xxxx
01 011000
10 1xxxxx
10 110000

+10 101000

01 100001 -- c(J)=62, 62-72=-10<18, O.K. then, binary search
68, cost is 2, new incumbent (indeed optimal solution).
66, less than c(N')/2, skip.
01 010001 -- c(J)=58, 58-76=-18<2, O.K. then, binary search
64, less than c(N')/2, skip and end of 01xxxxxx
10 100001 -- c(J)=60, 60-74=-14<2, O.K. then, binary search
68, over c(N')/2, then infeasible
66, skip and end of 10xxxxxx

The point is that the skip is not concerned with items 7 and 8. Next, we search the last
tree in which we should take four items. Note that we take item 8 and discard item 7,
because Cs < C7. In general, when n is even, the last tree is not duplicated.

10 lxxxxx 10 100011 c(J)=64, 64-70=-6<2, O.K.
10 11xxxx 10 110001 c(J)=70, 70-64=6>=2, N.G.
10 101xxx 10 101001 c(J)=68, 68-66=2>=2, N.G.
10 1001xx 10 100101 c(J)=66, 66-68=-2<2, O.K. then, binary search
10 100110 68, over c(N')/2, then infeasible

+10 100101 66, skip
10 01xxxx 10 010011 -- c(J)=60, 60-74=-14<2, O.K.
10 011xxx 10 011001 -- c (J)=64 , 64-70=-6<2, O.K. then, binary search
10 011100 68, over c(N')/2, then infeasible

+10 011010 66, skip and processing terminates.

Finally, we invert the bit pattern (Oll01000h indicating an optimal solution and discard
the bits representing items 7 and 8. We obtain (OlOlllh as an optimal solution of original
SSP. Its weight is c({1, 2, 3, 5}) = 2 + 4 + 6 + 10 = 22.

4 Computational experiments

In order to test the efficiency of the proposed algorithm we compared it with the MTSL

algorithm by Martello & Toth [3] and the NRSUB algorithm by Pisinger [4]. We have im
plemented all algorithms in C and examined their behaviour on several groups of instances
used for experimenting both by Martello & Toth and Pisinger.

Remark When implementing MTSL and NRSUB, we modified them slightly. We believe
that these modifications may improve their performance. First, in the MTS proce
dure of Martello & Toth, we change the condition in the beginning of block 3 [per
form a forward move] from "Wj ::; Cand j < NA and c> c" to "Wj ::; Cand ((j <

- 23 -

NA and c> c) or j < NB)". In addition, we modified the last condition in the block
4 [use the dynamic programming lists] from "(c< WNB-l or j 2:: NB) and (c < c)"
to "(C< WNB-l or j 2:: NB) and (c ::; c)". Second, in Pisinger's NRSUB algorithm
([4], page 160), if St(c) =I=- 0 in the loop for variable t (lines 5-14), then an optimal
solution was found. Therefore, we modified the loop to allow for leaving it as soon
as possible.

To examine behaviour of the algorithms we used the problems TODD, AVIS, prE)
and EVEN/ODD(E) the detailed description of which are presented in the Martello &
Toth [3]. All instances were solved on SPARCstationIPX on which the amount of available
main memory and totally swap space are 32 and 64 megabytes, respectively. The reported
running time is always expressed in seconds.

4.1 ProbleIIls TODD

The instances of problems TODD are given by

aj .- 2k+n +l + 2k+j + 1, with k = llog2 n J

c lo.5f,a;j =(n+l)2k""-2k+l~j·

Since these instances have the property l~ I7i=1 ajJ = c, the unmodified xs-algorithm can
be applied directly to the PP with Cj := aj, j = 1,2, ... ,n.

Table 1 gives the fastest running time among several trials for each n of this deter
ministic test problem. Since the weights of items grow exponentially the integer overflow
occurs when n 2:: 23.

Table 1: results of problems TODD

n MTSL NRSUB XS

10 0.04 0.95 0.04
12 0.05 4.40 0.04
16 0.09 - 0.04
20 0.39 - 0.04
22 0.74 - 0.04

- Not enough memory.

It turns out that the preprocessing of the xs-algorithm is especially efficient for this
type of instances. Explanation is simple. Ifn is odd, then the lower bound k of the solution
length is greater than the upper bound ln/2J. Consequently, no tree is constructed and
only one subset is evaluated. If n is even, then k = n/2, and only one tree is constructed.
Moreover, in this case, xs discards the solutions containing n. Therefore the. subset
{n - 1, n - 2, ... , ~} is evaluated first. Since its weight is less than c(N) /2, SKIP is
performed, which results in termination of the search, because no '0' can be found in the
corresponding bit pattern.

- 24-.

4.2 Problems AVIS

The instances of problems AVIS are given by

aj .- n(n + 1) + j

c "- ln; 1jn(n + 1) + (~).

Since such instances do not satisfy the condition l~ ~j=l ajJ = c, we transform them to
PP according to (9) and apply the modified xs-algorithm. Table 2 gives again the fastest
running time among several trials for each n.

Table 2: results of problems AVIS

n MTSL NRSUB xs
12 0.04 0.07 0.04
16 0.04 0.10 0.04
20 0.05 0.15 0.05

100 0.06 11.90 0.05
200 0.08 91.90 0.06
300 0.09 307.99 0.06
500 0.12 - 0.06

1000 0.20 - 0.06
- Not enough memory.

Similarly to problems TODD, the preprocessing of the xS-algorithm is extremely ef
ficient for this type of instances. Again, explanation is simple. Since Cn+2 > Cn +! for all
n ~ 2, xs evaluates only one subset when determining the lower bound k. Moreover,
according to Avis ([8], page 1411)

L aj > c for all n ~ 2 and 111 ~ In +2 IJ
jEJ

Therefore, k = ln~l J. Consequently, no tree is constructed when n is odd, and only one
tree is constructed when n is even. In this tree, item n + 1 is always selected, because
Cn +2 > Cn +l· Moreover, the weights of all solutions occurring during the search are less
than c(N')/2, because the sum of Cn +2 and c(J) for each J c N with 111 = n/2 is greater
than c(N') /2. Therefore, the tree can be discarded.

4.3 Problems P(E)

In contrast to problems TODD and AVIS, the instances of problems P(E) are randomly
generated. The weights aj are constructed to be uniformly random in the interval [1, WE]
where E is a positive integer greater than 1, and c := n· WE /4. Note that c is selected
in such a manner, that about half the items can be expected to form optimal solutions.
This implies that problems P(E) tend to be more difficult with growing E, because the

- 25 -

difficulty is related to the number of different solutions J with a(J) = c. As pointed out
in Martello & Toth, truly difficult problems can be obtained only with very high values
of lOE. Table 3 and Table 4 give the results for problems P(3) and P(6), respectively.
Each entry gives the average running time of 10 instances. In the case of P(6), the integer
overflow occurs when n > 2000. The columns denoted XSL give the average running times
for a variant of xs which uses core problems in similar way as MTSL does. The rationale of
such modification is that, for large-size instances, too much time during the preprocessing
stage is consumed for sorting. For example, in the case of n = 100000 in P(3), the total
number of evaluated subsets by xs was only two or three. Thus almost all time was
spent on preprocessing. Regarding the results for P(6), it should be pointed out that xs
may become faster for larger values of n. We have observed that the average number of
evaluated subsets was

13 457 for n = 10,
1 301 for n = 1000,

200 for n = 2000

In all these cases solutions J with a(J) = c were found. Since the probability of hitting
such a solution tends to increase with growing n, and since xs stops when it finds such a
solution, it is obvious that the time spent on solving larger instances may be shorter.

Table 3: results of problems P(3)

n MTSL NRSUB XS XSL

12 0.054 0.114 0.045 0.048
16 0.048 0.105 0.048 0.050
20 0.052 0.105 0.048 0.052

100 0.054 0.095 0.051 0.052
1000 0.067 0.443 0.118 0.065

10000 0.182 5.679 0.932 0.185
100000 1.366 74.957 14.217 1.441

Table 4: results of problems P(6)

n MTSL NRSUB XS XSL

12 0.057 40.208 0.047 0.054
16 0.069 54.532 0.075 0.092
20 0.098 66.753 0.384 0.430

100 0.155 - 0.425 0.394
1000 0.152 - 0.165 0.495
2000 0.152 - 0.226 0.674

- Not enough memory.

- 26 -

4.4 Problems EVEN/ODD(E)

Similarly to problems P(E), the instances of problems EVEN/ODD(E) are randomly
generated. They differ from instances of P(E) in the following aspects. The weights are
again randomly distributed in the interval [1, 1OE] but now they are required to be even
numbers. The capacity is required to be an odd number given bye := n· 10E /4 + l.
Table 5 gives the average running times of 10 instances for E = 3.

Table 5: results of problems EVEN/ODD(3)

n MTSL NRSUB xs
12 0.050 0.142 0.051
16 0.072 0.179 0.074
20 0.282 0.207 0.470
24 3.598 0.219 4.215
28 38.905 0.263 67.851
32 445.617 0.292 758.912

Note that the performance of the xs-algorithm is not as good as in the previous
cases. We observed that the average of lower bounds for the length of solutions was
10.2 for n = 32. This indicates that relatively many trees must be dealt with in this
problem type. However, we observed that the performance of xs is much less sensitive
t:o changes in the "scaling factor" E, than the performance of MTSL and NRSUB. This is
clearly demonstrated by comparison of Table 5 with Table 6. The latter gives the average
running times of 10 instances for E = 6.

Table 6: results of problems EVEN/ODD(6)

n MTSL NRSUB xs
12 0.057 53.694 0.051
16 0.095 72.802 0.086
20 0.119 77.912 0.394
24 0.329 100.624 4.265
28 2.703 117.710 63.782
32 26.728 130.994 733.481

5 Conclusion

We have presented a new algorithm for solving exactly the subset-sum problem and com
pared its experimental behaviour with two algorithms from recent literatures, namely the
MTSL algorithm by Martello & Toth [3] and the NRSUB algorithm by Pisinger [4]. As one
may expect, the proposed algorithm (called xs) does not always outperform MTSL and
NRSUB. However, the computational experiments on the standard groups of instances
have shown that xs has some promising features. It turns out that

- 27 -

• xs is economical in memory requirements, because it is based on the depth-first tree
search and it does not use any component related to dynamic programming.

• xs is not too sensitive to the magnitude of input data, because the properties of the
partition problem used in preprocessing are not influenced by the magnitude and
range of weights, and because the basic strategy is based on a fixed order of items.

• xs is able to solve so called hard instances in reasonable time, because its orienta
tion on narrowing the necessary search space as much as possible and discarding
dominated states.

Since xs outperforms MTSL and NRSUB on problems TODD and AVIS, we may con
clude that xs is good at solving instances the weights of which are distributed close to
higher values. On the other hand the results for problems EVEN jODD(E) suggests that
xs is not good at solving instances with uniformly distributed weights. This indicates
that xs is more sensitive to the distribution of weights than to the magnitude of weights.
However our computational experiments are not sufficient for deriving some classification
of distributions with respect to the performance of XS.

Acknowledgments

The authors are grateful to Dr. David Pisinger at DIKU in Denmark who kindly answered our
question as to the algorithmic sketch in the paper and gave us a valuable suggestion.

References

[1] Richard M. Karp: "Reducibility among Combinatorial Problems", in R. E. Miller
and J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,
New York, pp.85-103 (1972).

[2] Michael R. Garey, David S. Johnson: Computers and intractability: a guide to the
theory of NP-completeness, W. H. Freeman, San Francisco (1979).

[3] Silvano Martello, Paolo Toth : Knapsack Problems: Algorithms and Computer Im
plementations, John Wiley & Sons, Chichester, England (1990).

[4] David Pisinger: Algorithms for Knapsack Problems, Ph.D. thesis, Dept. of Computer
Science, University of Copenhagen (DIKU), Denmark, February (1995).

[5] Stephen A. Vavasis: "Complexity Issues in Global Optimization: A Survey", in
Reiner Horst and Panos M. Pardalos (eds.), Handbook of Global Optimization, Kluwer
Academic Publishers, Dordrecht, Netherlands, pp.27-41 (1995).

[6] R. G. Jeroslow: "Trivial Integer Programs Unsolvable by Branch-and-Bound", Math
ematical Programming, 6, pp.105-109 (1974).

[7] Michael Todd: THEOREM 3. In V. Chvatal, "Hard knapsack problems", Opns. Res.,
28, pp.1408-1409 (1980).

- 28 -

[8] David Avis: THEOREM 4. In V. Chvatal, "Hard knapsack problems", Opns. Res.,
28, pp.1410-1411 (1980).

[9] S. N. N. Pandit and M. Ravi Kumar, "A Lexicographic Search for Strongly Correlated
0-1 Knapsack Problems", Opsearch, 30, No.2, pp.97-116 (1993).

[10] Hiroshi IIDA : "An exact algorithm for the subset-sum problem", Master's thesis,
School of Information Science at the JAIST, Hokuriku, February (1996).

- 29 -

