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Abstract 

In mammals, the prototypical endoplasmic reticulum (ER) stress sensor 

inositol-requiring enzyme 1 (IRE1) has diverged into two paralogs. The IRE1α is 

broadly expressed, and mediates the unconventional splicing of X-box binding protein 1 

(XBP1) mRNA during ER stress. By contrast, the IRE1β is expressed selectively in the 

digestive tract and its function remains unclear. Here, we report that IRE1β plays a 

distinctive role in mucin-secreting goblet cells. In IRE1β-/- mice, aberrant mucin 2 

(MUC2) accumulated in the ER of goblet cells, accompanied by ER distension and 

elevated ER stress signaling such as increased XBP1 mRNA splicing. In contrast, 

conditional IRE1α-/- mice showed no such ER distension but a marked decrease in 

spliced XBP1 mRNA. mRNA stability assay revealed that MUC2 mRNA was greatly 

stabilized in IRE1β-/- mice. These findings suggest that in goblet cells, IRE1β, but not 

IRE1α, promotes efficient protein folding and secretion in the ER by optimizing the 

level of mRNA encoding their major secretory product, MUC2. 
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 Introduction 

The endoplasmic reticulum (ER) is the site of synthesis and maturation of 

proteins destined for secretion. In the ER, chaperones and folding enzymes facilitate 

productive folding and assembly of nascent polypeptides (1). However, not all nascent 

peptides can fold properly in this process, particularly in cells that display high levels of 

secretion. When cells synthesize amounts of secretory or membrane proteins that exceed 

the folding and/or processing capacity of the ER, unfolded proteins accumulate in the 

ER; this condition is called ER stress. Under ER stress, signaling pathways, collectively 

termed the unfolded protein response (UPR), are activated to restore the ER to its 

normal state (2-5). This recovery is achieved by translational attenuation, refolding of 

unfolded proteins and degradation of irreversibly unfolded proteins via the 

ER-associated degradation (ERAD) pathway (6).  ER chaperones, such as 

immunoglobulin heavy chain binding protein (BiP) (2, 7), and ERAD components are 

induced transcriptionally by the UPR (8). In the initial step of the UPR, ER stress is 

sensed and a signal is transmitted across the ER membrane (5, 9). Several ER 

transmembrane proteins act as ER stress sensors. The oldest among these, 

inositol-requiring enzyme 1 (IRE1), is conserved from yeast to mammals and possesses 

a lumenal sensor domain (10-14) and a cytosolic effector domain (15, 16). In yeast 

Ire1p’s effector is a highly sequence-specific RNase that participates in the regulated 

first step of an unconventional splicing event that activates the Homologous to Atf/Creb 

1 (HAC1) mRNA to encode a potent transactivator of UPR target genes (8, 17-19). 

 Mammals have two IRE1 paralogs, IRE1α (20) and IRE1β (21), which 
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appear to possess non-overlapping physiological roles although these paralogs show a 

high degree of sequence similarity to each other (22). IRE1α is a ubiquitously expressed 

gene whose deletion results in early embryonic lethality (23). We demonstrated that this 

lethality was caused by failure in placenta development by generating non-lethal 

conditional knockout mice that express IRE1α only in the placenta (24). In contrast, the 

expression of IRE1β is restricted to the gastrointestinal tract, and its knockout mice are 

phenotypically normal, apart from hypersensitivity to experimental colitis (25). It is 

unclear if these dramatic differences merely reflect different patterns of expression or 

whether the two proteins have different molecular activities. 

X-box binding protein 1 (XBP1) is an animal homolog of yeast HAC1 and 

IRE1α is required for the unconventional splicing of its mRNA in most animal tissues 

(26, 27). The overlapping phenotypes of IRE1α-knockout and XBP1-knockout suggest 

that XBP1 mRNA splicing is IRE1α’s essential function. However animal IRE1 appears 

to possess additional activities such as a contribution to the relatively promiscuous 

degradation of membrane associated mRNAs observed in ER stressed cells (28, 29). 

The gut presents an interesting context for these two functions of IRE1. The importance 

of XBP1 mRNA splicing is supported by the association of rare alleles of XBP1 with 

inflammatory bowel disease and by the dramatic defect in Paneth cells observed in mice 

with intestine-specific deletion of XBP1 (30). Together with the observation that IRE1β 

is competent to splice XBP1 mRNA both in vitro and in vivo (27), these observations 

suggest that IRE1β evolved to enhance the capacity to splice XBP1 mRNA in response 

to stress in the ER of intestinal cells. However a role for IRE1β in other RNA 
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processing events is suggested by the observations that, in HeLa cells, ectopic 

expression of IRE1β led to cleavage of 28S rRNA and apoptosis (22) and in 

IRE1β-knockout mice, the mRNA encoding microsomal transfer protein is stabilized 

promoting chylomicron secretion from the intestine (31). 

Here we report on a detailed exploration of IRE1β’s expression and its 

molecular mechanism of action. Our study has led to the discovery of a hitherto 

unanticipated role for IRE1β in ER homeostasis of goblet cells that is mediated by the 

post-transcriptional metabolism of mucin mRNA.
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Results 

Localization of IRE1β 

RNAs were extracted from mouse tissues and analyzed by Northern blot (Fig. S1A). 

Signals for IRE1β mRNA were detected in tissues comprising the digestive tract: 

stomach, duodenum, small intestine, cecum and, most strongly, colon. The signals were 

weaker in the duodenum and small intestine, and none were detected in tissues other 

than the digestive tract. In contrast, IRE1α mRNA was detected in all tissues tested. 

Analyses in human tissues gave comparable results (Fig. S1C). For detailed analyses, 

we raised an antibody against the putative cytosolic domain of mouse IRE1β. As 

expected, the results of a Western blot with this antibody were consistent with those 

obtained in the Northern blot (Fig. S1B), and confirmed a preceding study (25). To 

determine which cells express IRE1β in the digestive tract, immunofluorescence 

microscopy was performed on cryosections of mouse colon, the tissue that expressed 

IRE1β most abundantly (Fig. 1A). Specific staining for IRE1β was seen in goblet cells 

while other cells, such as absorptive cells, were not stained. Non-specific signals were 

seen in smooth muscle cells of both IRE1β+/+ and IRE1β-/- mice. Specific staining of 

goblet cells was also observed in small intestine (Fig. S2). 

 Goblet cells are specialized to secrete mucins, which contribute to the 

protective mucus gel barrier between the epithelium and the harsh environment of the 

lumen (32). Mucins are a family of highly O-glycosylated proteins, and mucin 2 

(MUC2) is the most prominent protein secreted from goblet cells in the colon (33). The 

specific expression of IRE1β in goblet cells suggested that IRE1β might have some 
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relation with mucin production. In this context, it was important to determine the 

intracellular location of endogenous IRE1β in goblet cells. So we performed 

immunoelectron microscopy (Fig. 1B). Low-magnification images showed that the 

signals for IRE1β co-located with ER membranes (upper panel) and 

higher-magnification localized the IRE1β signals to the cytosolic surface of the ER and 

of the outer nuclear membrane (lower panel). This seems reasonable because IRE1β is 

regarded as a type I transmembrane protein (22) and the antibody we used was raised 

against the cytosolic (C-terminal) region of IRE1β. No signals were detectable at the 

surface of the inner nuclear membrane. These data indicate that IRE1β is primarily 

localized in the ER membrane in goblet cells. 

 

Enhanced ER stress in goblet cells of IRE1β-knockout mice 

 To confirm a previous report that ER stress occurs in the colons of IRE1β-/- 

mice (25), XBP1 mRNA was analyzed by RT-PCR (Fig. 2A). Although some amount of 

XBP1 mRNA is spliced in wild type (IRE1β+/+, IRE1α+/+) colon, the ratio of spliced to 

unspliced XBP1 mRNA was higher in IRE1β-/- than in wild type mice. This suggests 

that IRE1α was activated more strongly in IRE1β-/- colons. Another ER stress marker, 

BiP, was also examined by Western blot (Fig. 2B), and its level was found to be 1.6-fold 

higher in IRE1β-/- colon than in wild type colon. The restricted expression of IRE1β 

predicts that enhanced ER stress would be most conspicuous in the goblet cells, and we 

used immunohistofluorescence microscopy to test this prediction. Goblet cells 

differentiate from stem cells in the bottom of the crypt (34), and differentiated cells 
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mature during a 3-5-day migration (35) toward the lumen. In cryosections treated with 

anti-BiP antibody (Fig. 2C), IRE1β-/- goblet cells near the bottom of the crypt (indicated 

by the double-headed arrow) stained strongly, whereas staining in IRE1β+/+ goblet cells 

was faint. These data suggest that the lack of IRE1β promotes ER stress specifically in 

immature goblet cells. 

 In case of IRE1α conditional knockout mouse (IRE1α-/- IRE1β+/+) that 

expresses IRE1α only in placenta (24), XBP1 mRNA was hardly spliced in its colon 

(Fig. 2A). This suggests that IRE1β is not responsible for the splicing of XBP1 mRNA 

at least in weak ER stress condition. It should be noted that the expression of BiP was 

also decreased in IRE1α conditional knockout colon (Fig. 2B), implying that some of 

the basal expression of BiP may be maintained by XBP1 in colon. 

 

IRE1β-knockout immature goblet cells display a distended ER and aberrant mucin 

accumulation 

 Overlapping series of electron micrographs were taken to visualize whole (Fig. 

3A, B) or a part (Fig. 3G) of crypts. Although the morphology of mature goblet cells 

near the lumen (on the right side in Fig. 3A, B) appeared to be similar in IRE1β+/+ and 

IRE1β-/- mice, granule-like structures (indicated by arrows) in immature cells located 

near the bottom of the crypt differed visibly in the two genotypes (Fig. 3C, E). After 

observing higher-magnification micrographs (Fig. 3D, F, S3A), we concluded that these 

structures in IRE1β-/- goblet cells correspond to a distended ER rather than the large 

mucin granules (MG) seen in IRE1β+/+ goblet cells for the following reasons. Firstly, the 
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observed distended ER was continuous with the normal-shaped ER (indicated by an 

arrow in Fig. S3A). Secondly, on their surfaces, ribosomes were attached. Finally, 

signals for BiP were also observed in a normal-shaped ER in wild type goblet cells and 

in the distended ER in IRE1β -/- goblet cells by immunoelectron microscopy (Fig. S3B, 

C). 

 The region of the crypt in which these ER-distended goblet cells occurred 

(indicated by a double-headed arrow in Fig. 3B) was comparable to the region 

displaying ER-stressed goblet cells (Fig. 2C) in IRE1β-/- colon. In contrast, goblet cells 

in IRE1α conditional knockout mice did not display ER-distension (Fig. 3H). These 

findings suggest that IRE1β is involved in ER homeostasis in goblet cells. 

 What causes the ER to distend so dramatically in immature goblet cells of 

IRE1β-/- mice? Since goblet cells are specialized to produce large amounts of the 

O-glycosylated protein mucin, it seemed plausible that the ER distension was 

attributable to excessive mucin accumulation. To examine this possibility, we first tried 

to detect mucin with soybean agglutinin (SBA), which binds to serine- or 

threonine-linked N-acetylgalactosamine (Fig. S4). Compared with goblet cells in 

IRE1β+/- colon, those in IRE1β-/- colon were more strongly stained. Moreover, the 

SBA-stained regions in IRE1β-/- goblet cells were co-stained with an anti-calreticulin 

antibody, suggesting that O-glycosylated proteins accumulated in the ER of IRE1β-/- 

goblet cells rather than the mucin granules. 

O-glycosylated proteins were also investigated by Western blot using SBA 

(Fig. 4A), which yielded diffuse bands at around 150 kDa and in the stacking gel. The 
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latter was only visible in the IRE1β-/- lysate and thus correlates with the abnormal ER 

staining observed by fluorescence microscopy in the IRE1β-/- tissue (Fig. S4). To 

characterize the proteins in this region of the gel, it was excised from the stacking gel 

and analyzed by mass spectrometry (Fig. 4B). We identified five tryptic fragments that 

matched with the sequence of mouse MUC2; one of them mapped to the C-terminal 

region of this protein, and the other four to the N-terminal region (Fig. 4C). Although 

we cut out and analyzed the corresponding region of the IRE1β+/- lane in the same way, 

no MUC2-related peptides were identified. 

Since the C-terminal 76-kDa peptide (Fig. 4C) is known to be cleaved off 

from MUC2 in the trans-Golgi region (36), we anticipated that the band in the stacking 

gel might represent the full-length MUC2 precursor that had aggregated and 

accumulated in the ER, and that the second major band at around 150 kDa (Fig. 4A) 

might represent the cleaved N-terminal portion of mature MUC2 (Fig. 4C). To confirm 

this, immunological analyses were performed with an anti-MUC2 antibody (H-300) that 

was raised against the C-terminal precursor fragment of MUC2 (Fig. 4C). After 2-15% 

polyacrylamide gradient gel electrophoresis and Western blotting, 

high-molecular-weight bands were detected only in the IRE1β-/- colon lysate (Fig. 4D). 

This indicates that the C-terminal peptide is rapidly removed from MUC2 after its 

translation in IRE1β+/+ but not IRE1β-/- goblet cells. This notion is further supported by 

the presence of less material with the mobility of mature mucin in the IRE1β-/- sample 

(Fig. 4A). 

MUC2 was also localized within IRE1β-/- goblet cells by immunofluorescence 
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microscopy (Fig. 4E). Colon tissue sections stained with anti-MUC2 and 

anti-calreticulin antibodies displayed coincident staining for the two antibodies in goblet 

cells undergoing maturation, in the lower portion of the crypt (indicated as a 

double-headed arrow) in IRE1β-/- sections. The region where goblet cells with 

MUC2-containing ER were detected corresponds to the region where the ER-distended 

and ER-stressed goblet cells were found (double-headed arrows in Fig. 2C and 3B). In 

contrast, MUC2 did not always colocalize with calreticulin in goblet cells within 

IRE1β+/+ crypts. These data support the idea that aberrant MUC2 accumulates in the ER 

of IRE1β-knockout immature goblet cells. 

 

IRE1β promotes the turnover of MUC2 mRNA 

 Why does MUC2 accumulate in the ER of IRE1β-/- goblet cells? One 

explanation might be that MUC2 protein is overproduced. Since IRE1β is known to 

have RNase activity, we examined whether IRE1β affects MUC2 mRNA levels. First, 

we analyzed MUC2 mRNA by in situ hybridization (Fig. 5A). In wild type colon, 

MUC2 mRNA was observed only in goblet cells at early stages of maturation (i.e., near 

the bottom of the crypt). In IRE1β-/- colon, however, it was also detected in middle- to 

late-stage goblet cells. These results suggest that MUC2 mRNA expression is strictly 

regulated in wild type cells, and that this regulation fails in IRE1β-/- goblet cells. 

 To substantiate this idea, we examined mRNA stability. Cells collected from 

IRE1β+/+ or IRE1β-/- colons were cultured with α-amanitin, an inhibitor of RNA 

polymerase II. RNA was then extracted and analyzed by quantitative RT-PCR (Fig. 5B). 
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We used hypoxanthine phosphoribosyltransferase 1 (HPRT1) mRNA as a control, since 

IRE1β has little effect on mRNAs encoding cytosolic proteins (37). MUC2 mRNA from 

IRE1β+/+ (WT) cells decayed to the extent that only about 30% of the initial signal 

remained after 6 h of incubation with α-amanitin, whereas more than 80% of MUC2 

mRNA from IRE1β-/- (KO) cells remained after 6 h (P < 0.05). Thus, MUC2 mRNA was 

greatly stabilized in the IRE1β-/- colon.
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Discussion 

 IRE1β-knockout mice are reportedly sensitive to experimental colitis induced 

by dextran sodium sulfate (25). In this report, we showed that IRE1β was specifically 

expressed as a transmembrane protein in the ER of goblet cells. Since goblet cells are 

specialized for the secretion of mucins that protect the digestive tract, our study 

provides a plausible mechanism for this hypersensitivity. The results obtained with 

electron microscopy, immunohistofluorescence, Western blotting, mass spectrometry, 

and in situ hybridization all point to aberrant mucin accumulated in a distended ER of 

immature goblet cells in IRE1β-knockout mice. Though the morphology of the ER 

appears to recover in the goblet cells that survive and mature, it is unclear whether their 

ability to produce correctly folded and fully glycosylated mucin also recovers. The 

sensitivity of IRE1β-konockout mice to experimental colitis might thus reflect a 

qualitative defect in mucins secreted by IRE1β-knockout goblet cells. 

 Several studies have reported ER distension in genetically modified animals. 

Hepatocytes in transgenic mice over-expressing mutant α1-antitrypsin showed a 

distended ER that accumulated the mutant protein (38). Distended ER was also 

observed in pancreatic cells in the double-stranded RNA-dependent protein kinase 

(PKR)-like ER kinase (PERK)-knockout mice (39). As PERK phosphorylates 

eukaryotic translation initiation factor 2α (eIF2α) to attenuate translational initiation in 

response to ER stress, cells in PERK-knockout mice are believed to over-express 

proteins. Similarly, mice expressing a mutant eIF2α that is resistant to phosphorylation 

by PERK displayed ER distension in pancreatic cells (40). In addition, chondrocytes in 



14 

BBF2H7 (an ER-resident basic leucine zipper transcription factor)-deficient mice 

showed a distended ER, and an accumulation of aggregated proteins caused by impaired 

protein transport from ER to Golgi (41). These reports indicate that over-expression of 

secretory proteins can induce ER distension, and it is therefore likely that mucin 

over-expression leads to the accumulation of aberrant mucin and ER distension in 

IRE1β-knockout goblet cells. 

 We found that the expression of BiP was enhanced in the immature goblet 

cells of IRE1β knockout mice, suggesting that the lack of IRE1β provoked ER stress in 

immature goblet cells (Fig. 2C). How can it happen? Since the signal for the MUC2 

mRNA was stronger in immature goblet cells than in mature goblet cells in both 

genotypes (Fig. 5A), the level of secretory protein production is presumably higher in 

immature goblet cells than in mature goblet cells. This will lead to a situation that the 

ER of immature goblet cells tends to be more stressed than that of mature goblet cells. 

However, in the wild type immature goblet cells, IRE1β will promote the degradation of 

an excess amount of MUC2 mRNA, preventing the onset of ER stress. As a result, the 

level of secretory protein production will be high enough to provoke ER stress in 

immature goblet cells of IRE1β knockout mice, but not in other cells. 

 It is reported that IRE1α cleaves a wide variety of mRNAs besides XBP1 

pre-mRNA by the mechanism called regulated Ire1-dependent decay (RIDD) under a 

certain stress (28, 29, 42). Authors of those reports described that ER stress agent, 

tunicamycin, induced RIDD, but mutant IRE1α that became active upon binding to an 

ATP-analogue, 1NM-PP1, cleaved only XBP1 pre-mRNA without activating RIDD. So, 



15 

they suggested that pathogenic condition such as virus infection induces RIDD to 

protect cells (29), or severe stress activates RIDD to induce apoptosis (42). We found 

that splicing of XBP1 mRNA was enhanced in IRE1β-konockout colon, while the 

stability of mucin mRNA was increased. This finding indicates that IRE1α cleaves 

XBP1 pre-mRNA but very little mucin mRNA. Hence, it is unlikely that IRE1α 

expresses RIDD activity in the colon. Previously, we examined the difference in 

substrate specificity between IRE1α and IRE1β, and found that the RNase activity of 

IRE1α against XBP1 pre-mRNA is markedly higher than that of IRE1β (43). In the 

present study, we studied with IRE1α conditional knockout mice (24), and found the 

marked decrease in spliced XBP1 mRNA in their colons. As the population of goblet 

cells was reported to be over 50% in rat colon (44) and is presumably similar in mouse 

colon, the decrease of spliced XBP1 mRNA in the IRE1α knockout mouse conceivably 

occurred in both absorptive cells and IRE1β-containing goblet cells. In addition, we 

could observe no such ER distension in IRE1α-knockout goblet cells as in 

IRE1β-knockout cells (Fig. 3), suggesting that IRE1α is not able to compensate 

IRE1β-deficiency. These results suggest that ER stress in colon is not sufficient for 

IRE1α to activate RIDD. On the other hand, rRNA in mouse colon appeared to be intact 

(Fig. S1A) though we reported the degradation of 28S rRNA in HeLa cells after 

over-expression of IRE1β (22). It may be ascribed to the difference in the origin of cells 

or the expression levels between cells. 

 In addition to the mouse colon, we stained the small intestine with anti-IRE1β 

antibody and found the expression of IRE1β in its goblet cells (Fig. S2).  Although it is 
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reported that IRE1β plays a role in regulating microsomal triglyceride transfer protein 

(MTP) and in chylomicron production in enterocytes (31), we could not detect the 

signal for IRE1β in the enterocytes. This observation suggests that MTP mRNA is 

unlikely to be the primary target of IRE1β. IRE1β may mainly affect the production of 

mucins in the small intestine as well and affect the chyromicron production in other 

ways. 

Our results from in situ hybridization and RNA stability assays showed a 

greatly increased stability of MUC2 mRNA in IRE1β-knockout mice. This indicates that 

IRE1β normally degrades MUC2 mRNA to control levels of translatable, cytosolic 

mRNA in spite that the function of goblet cells is to produce mucin. The seemingly 

paradoxical role of IRE1β in maintaining mucin production may be explained as 

follows (Fig. S5): The folding capacity of the ER is high enough for most types of cells, 

but may be exceeded in high-secretion cells, including goblet cells. However, goblet 

cells should not over-express mucin, because doing so would lead to the accumulation 

of aberrant mucin in the ER, which might retard protein transport from the ER to the 

Golgi apparatus. The observation that IRE1β-knockout goblet cells appear to contain 

less C-terminal-cleaved mucin than wild type cells (Fig. 4A) supports this explanation. 

Maximum mucin production may therefore be achieved by regulating the rate of mucin 

synthesis so that it remains within the capacity of the ER. The fine-tuning of protein 

synthesis may thus depend on a balance between up- and down-regulation of transcripts. 

In this context, the present study suggests that IRE1β plays an important role in the 

down-regulation of MUC2 mRNA to optimize mucin protein production. This also 
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could be one of good examples that show the importance of negative feedback on 

fine-tuning of biological activities. 

We presented a possible role of IRE1β here. But it is still unknown whether 

IRE1β degrades MUC2 mRNA directly or not. Since IRE1β has RNase activity, it may 

cleave mRNA. But we cannot exclude a possibility that IRE1β decreases MUC2 mRNA 

by unconventional splicing of unidentified specific target mRNA like XBP1 pre-mRNA 

for IRE1α. Studying other tissues expressing IRE1β in addition to colon might give 

some hints to answer this question.
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Materials and methods 

Animal experiments were carried out in accordance with the policies of the Committee 

on Animal Research at Nara Institute of Science and Technology. Brief methods are 

described in the figure legends. Detailed methods can be found in SI Materials and 

Methods. 
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Figure legends 

Figure 1 

IRE1β is expressed and localized in the ER of goblet cells. (A) After deglycosylation, 

cryosections of mouse colons were stained with the antibody raised against the cytosolic 

region of IRE1β and Cy3-conjugated anti-guinea pig IgG as the secondary antibody. 

MUC2 was stained with anti-MUC2 (R-12) and FITC-conjugated anti-goat IgG. 

MUC2-positive cells (goblet cells) were also stained with anti-IRE1β antibody. DNA 

was stained with 4',6-diamidino-2-phenylindole (DAPI). Staining in smooth muscle was 

judged to be non-specific, because IRE1β-/- and IRE1β+/+ smooth muscle both exhibited 

the same staining pattern. Differential interference contrast (DIC) images are shown, far 

right. SM, smooth muscle; L, intestinal lumen. (B) Ultrathin sections of mouse colon 

were treated with anti-IRE1β and gold particle-labeled anti-guinea pig IgG. Gold 

particles are seen only on the outside of the ER because this antibody was raised against 

the cytosolic region of IRE1β. Less and more magnified images were shown in Upper 

and Lower panels, respectively. N, nucleus; NM, nuclear membrane; MG, mucin 

granule. 

 

Figure 2 

ER stress in goblet cells of IRE1β-/- mice. (A) The ratio of spliced to unsplicedXBP1 

mRNA is elevated in IRE1β-/- colon but decreased in IRE1α-/- colon. RNAs were 

extracted from two individual colons of wild type (IRE1β+/+, and IRE1α+/+), IRE1β-/-, 

IRE1α+/-, or IRE1α-/- mice. After RT-PCR, the intensity of each band was measured and 
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the ratio (s/u) of spliced to unspliced XBP1 mRNA was calculated. (B) Increase of BiP 

in IRE1β-/- colons. Western blotting was performed with anti-BiP antibody for colon 

lysates from wild type (IRE1β+/+, and IRE1α+/+), IRE1β-/-, IRE1α+/-, or IRE1α-/- mice. 

Signal intensity was normalized using β-actin, and fold induction relative to the level 

for the IRE1β+/+ sample was calculated. (C) Increase of BiP in IRE1β-/- goblet cells. 

Cryosections of IRE1β+/+ or IRE1β-/- colons were stained with anti-BiP (green) antibody 

and DAPI (blue).  The double-headed arrow indicates the region where BiP-induced 

goblet cells were prominent. The ‘+ DIC’ image depicts superimposed 

immunofluorescence and DIC images. SM, smooth muscle. 

 

Figure 3 

The ER is distended only in goblet cells of IRE1α+/+β-/- mice (this is the same mouse 

line shown as IRE1β-/-, but here we describe IRE1β-/- as IRE1α+/+β-/- to be clearly 

understandable). Colons from IRE1α+/+β+/+ (A, C, D), IRE1α+/+β-/- (B, E, F) and 

IRE1α-/-β+/+ (G, H) mice were fixed, stained and observed by electron microscope as 

described in Methods. High-magnification images revealed that the ER of IRE1α+/+β-/- 

in early-stage goblet cells (E, F) was distended while the ER of IRE1α+/+β+/+ (C, D) and 

IRE1α-/-β+/+ (H) goblet cells in the same stage showed normal structure. A series of low 

magnified images depict an entire (A, B) or a part (G) of crypt, and the double-headed 

arrow indicates the region where ER-distended goblet cells existed. The black and white 

arrows in (A, C) and (B, E) indicate mucin granule and ER, respectively. N, nucleus; 

MG, mucin granule; L, intestinal lumen. 
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Figure 4 

Aberrant mucin accumulates in the ER in goblet cells of IRE1β-/- mice. (A) 

SBA-binding high-molecular-weight aggregates accumulate in IRE1β-/- colon. Lysates 

of mucosal epithelia were electroblotted after 8% SDS-PAGE and treated with 

HRP-conjugated SBA. (B) The high-molecular-weight aggregates contain MUC2. 

Lysates as in (A) were electrophoresed and the indicated region of the stacking gel 

containing the IRE1β-/- lysate was cut out for mass spectrometry (LC/MS/MS) analysis. 

Five peptides identical to sequences in mouse MUC2 were detected. (C) Locations of 

the five identified peptides in the primary structure of mouse MUC2. Peptides identified 

by mass spectrometry are indicated as red lines with numbers corresponding to those in 

(B). Note that the fifth peptide maps to within the 76-kDa C-terminal region that is 

cleaved in the Golgi apparatus. The epitope of anti-MUC2 antibody H-300 (green line) 

is also shown. (D) MUC2, with its uncleaved C-terminal region, accumulates in 

IRE1β-/- colon. Western blotting with anti-MUC2 antibody H-300 was performed after 

non-reducing 2-15% gradient SDS-PAGE. High-molecular-weight protein stained 

intensely in IRE1β-/- colon lysate. (E) Immunofluorescence staining of MUC2 in mouse 

colons. Cryosections were stained with chicken anti-MUC2, goat anti-CRT antibodies 

and with DAPI. IRE1β-/- goblet cells show colocalization of MUC2 and calreticulin 

(CRT) in the region indicated by the double-headed arrow. 
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Figure 5 

The distribution and the stability of MUC2 mRNA in colon. (A) MUC2 mRNA 

distribution in IRE1β+/+ and IRE1β-/- colons. Colon sections (10 μm in thickness) were 

fixed and then hybridized with a DIG-labeled MUC2 cRNA probe (see Methods). 

MUC2 mRNA appears as dark staining. (B) Stability of MUC2 mRNA in IRE1β+/+ and 

IRE1β-/- colons. Cells collected from IRE1β+/+ (WT) or IRE1β-/- (KO) mouse colons 

were incubated in the medium containing α-amanitin for the indicated times. RNAs 

were then extracted from the cells and analyzed by quantitative RT-PCR. Relative RNA 

decay is expressed as MUC2 mRNA/HPRT1 mRNA ratio, and the values at time 0 were 

set to 1. Data presented are the averages of six independent experiments with SD 

indicated by error bars. 

 


