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Abstract: Parallel implementations of algorithms are usually compared with single-core CPU perfor-
mance. The advantage of multicore vector processors decreases the performance gap between GPU
and CPU computation, as shown in many recent pieces of research. With the AVX-512 instruction
set, there will be another performance boost for CPU computations. The availability of parallel code
running on CPUs made them much easier and more accessible than GPUs. This article compares the
performances of parallel implementations of the particle swarm optimization algorithm. The code
was written in C++, and we used various techniques to obtain parallel execution through Advanced
Vector Extensions. We present the performance on various benchmark functions and different prob-
lem configurations. The article describes and compares the performance boost gained from parallel
execution on CPU, along with advantages and disadvantages of parallelization techniques.
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1. Introduction

Intel’s AVX (Advanced Vector Extension) utilizes parallel processing of single instruc-
tions on several data streams. It was developed to simplify and increase the efficiency of
algorithms such as matrix multiplication. This allows the CPU architecture to adapt to
more complex problems where the classical approach becomes slow.

A fair comparison of code performance is hard for the same programs, especially
for different architectures or compilers. Generally, the only objective metric available is
the execution time, and most authors have adopted this approach [1–5]. The speedup
in execution time is also one of the main reasons for developing a parallel version of an
algorithm.

Most papers focused on parallelization speedup compare highly parallel GPU versions
of algorithms with single-core scalar CPU versions. However, this may lead to a misleading
interpretation of the GPU vastly outperforming the CPU version. However, the modern
CPU multicore architecture with SIMD (single instruction multiple data) instructions
reduces the performance gap between GPUs and CPUs.

In recent years, SIMD has been adopted in various fields—image processing, sig-
nal processing, cryptography, machine learning, etc. The impact of AVX on 3D collision
modeling was examined by the authors of [6]. The use of AVX in data science, computa-
tional statistics and high-performance computation was studied by the authors of [7,8].
They investigated various vectorization options and available compilers to investigate
the impacts on the performances of different algorithms. The authors of [9] explored the
optimization of matrix multiplication. The other general concept is sorting, a fast vectorized
implementation presented in the paper [10].

The vector instruction helps to optimize cryptography too. The authors of [11] used
AVX to optimize shuffling in the diffusion layer used in block ciphers. AVX-512 was
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deployed in the SIKE cryptosystem to minimize the latency in the key encapsulation
mechanism, arithmetics and isogeny computation.

Related research aims at improving the performance of machine learning. AVX-512
was deployed to enhance deep learning in [12]. The study compares the performance of
learning using a GPU and a CPU with AVX. The authors of [13] experimented with AVX
for genetic programming, especially with generations of binary trees. AVX allowed them
to execute faster and far longer than previous attempts. Another study aimed at improving
graph partitioning problems [14].

This paper compares computing performances obtained by CPU-based parallelized
versions of PSO. We have a scalar version of the PSO algorithm, allowing us to run the
program with virtually any size of the swarm. We developed parallel versions of this scalar
PSO with an internal structure optimized for SIMD instructions. As final implementations
share similar limitations, we could compare the actual performances with different designs.

Our paper presents the novelty of comparing various options of vectorized PSO
algorithms. The motivation was to compare the variants for the specific task of PSO. The
results presented in this paper could guide other authors and ease the task of selecting the
proper vectorization method for faster development and more efficient code.

We obtained all results on a suite of standard benchmark functions used for single-
objective stochastic optimization algorithms. The paper is organized as follows: Section 2
provides relevant background on the PSO algorithm and its parallel implementation with
SIMD instructions. We present our experiment design, benchmark test functions and
evaluation of results in Section 3. In the last Section 4, we offer conclusions and future
outlines.

2. Particle Swarm Optimization

The algorithm utilizes a swarm theory inspired by observing animals and their social
behavior (e.g., herds, fish schools, and bird flocks). The algorithm has a population of
entities called particles serving as candidate solutions. Those particles are randomly
initialized in the search space of the problem.

Every particle starts with a random velocity vector that defines its movement. The
particle adjusts this velocity vector with regard to its own experience and the best solution
(position of a best-performing particle) in the current swarm. This way, the particle explores
the search space, and the whole swarm should converge to the optimum solution.

The problem’s solution space is a J dimensional area with a population of I particles.
Each particle i has a position Xi = xi1, xi2, . . . , xij and a velocity vector Vi = vi1, vi2, . . . , vij.
The particle updates the position during each iteration and moves towards a personal
best-known position Li = li1, li2, . . . , lij. The second attractor is the best position known so
far Gbest = g1, g2, . . . , gj. The velocity update is then a combination of the previous velocity
and the aforementioned attractors:

vij(t + 1) = w ∗ vij(t) + c1r1(t)[lij(t)− xij(t)] + c2r2(t)[gj(t)− xij(t)], (1)

where vij(t) is the velocity of particle i in dimension j at time t. The inertial weight w influ-
ences the velocity from the previous iteration to control the exploration and exploitation of
search space. Small w urges the particle to exploit the area in its near position, and a high
value prevents getting stuck in local minima [15].

Values r1 and r2 are independent random numbers (having uniform distribution from
0 to 1). c1 and c2 constants control the acceleration to attractors. c1 influences the cognitive
part of the particle (moving towards the historically best position), representing primitive
thinking. The constant c2 takes part in social behavior and represents the cooperation
among particles.

Various recommendations of c1 and c2 values exist. Some publications rely on using
complementary values less than or equal to 1 [4,16]. Engelbrecht and others [15,17] con-
firmed that having high inertial weight in compare to c1 and c2 (see Equation (2)) leads
particles to divergent or cyclic trajectories:
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w >
1
2
(c1 + c2)− 1. (2)

Similar results were found by other researchers in [18].
The updated position of the particle is then computed simply as:

Xi(t + 1) = Xi(t) + Vi(t + 1), (3)

where Xi(t) is the actual position of particle in search space and Vi(t+ 1) is the new velocity
vector.

The basic PSO terminate safter reaching a specific number of iterations when the value
of Gbest reaches a designated goal. One iteration (or generation) means the updating of
particle position, evaluation of the fitness function, and updating of internal attractors (local
lij and global Gbest best) in the whole swarm. Table 1 summarizes PSO control parameters.
The choice of values is similar to that of Engelbrecht [15,19,20].

Table 1. PSO parameters during experiments.

Param Value

PSO iterations 1000

Particles in swarm 32, 64, 128, 256, 512

Number of dimensions 8, 16, 32, 64, 128, 256, 512

Inertia weight 0.729

Max. velocity by problem’s range

Local weight (c1) 1.49445

Global weight (c2) 1.49445

Parallelization of PSO

A real-world optimization requires much computational effort typically. In the case of
the PSO algorithm, there could be thousands or even millions of dimensions. Parallelization
of these high-dimensional problems provides a needed performance boost. The PSO is
among the most efficient stochastic search algorithms. It is intrinsically parallel and best
suited for parallelization, being better than other evolutionary or swarm intelligence
algorithms [5].

Improvements in vector processors allow efficient parallelization even without a GPU.
The vectorization of PSO using AVX2 instructions is natural because all particles act in
parallel implicitly [21].

The theoretical performance peak of a GPU is a hundred times higher than the perfor-
mance of a single CPU. However, a GPU shows only about a 30× speedup for PSO and
similar problems [22]. Various research confirms the potential of multicore SIMD execution,
providing a similar performance boost [23,24].

Vectorized PSO requires sharing of a few values: an array with Gbest position and
corresponding fitness evaluation for this position [15,25]. All other values and particles are
mutually independent and easily parallelizable.

Most compilers have the ability of automatic vectorization. If they detect potentially
vectorized code, they will try to replace it with a vectorized counterpart. However, the
compiler usually fails to vectorize a part code for various reasons, as confirmed by our test
of auto-vectorization of C++ PSO code. There are several ways how to achieve vectorized
C++ code:

• Compiler’s auto-vectorization (scalar);
• Vectorized classes (avavx);
• AVX intrinsics (intavx);
• ASM code with AVX instructions (asmavx).
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The methods are ordered from the most programmer-friendly to the sophisticated
approach [26–28]. Writing highly vectorized and fast code decreases readability and
maintainability. The most convenient way is using the auto-vectorization capability of
the compiler. Even the auto-vectorization of simple loops has some hidden requisites,
which are specific to parallel programming [22]. One of the most efficient ways to achieve
vectorized code is using already vectorized libraries, vector classes and SIMD intrinsics.

3. Empirical Analysis Additionally, Experimental Procedure

This part aims to provide an empirical comparison of PSO implementation with AVX
instructions. We tested the performance on a set of benchmark functions described below
closely.

We compared the algorithm’s performance on four C++ implementations, which
differ in just one detail. The scalar implementation uses a straightforward approach
without any vector instructions. This implementation provides just baseline results for
further experiments. Parallel variants use Advanced Vector Extensions (AVX2) to compute
particle movement updates. This crucial feature is achieved with auto-vectorization, SIMD
intrinsics and raw assembly instructions.

The optimized code affects only the PSO algorithm itself (especially the velocity and
position update), not the computation of the fitness function. Our goal was to monitor the
change in algorithm performance, not the optimization of test functions.

We executed the PSO algorithm 200 times for each benchmark function to obtain
independent results. All algorithms used the same PSO settings and synchronous updates.
The exact values of control parameters are contained in Table 1.

We chose to follow the approach from Engelbrecht [19] and used functions from the
CEC2005 test suite, in combination with other standard benchmark functions. Table 2 lists
the benchmark functions with their range constraints.

We tested a few implementations of PSO, all implemented in C++. Each PSO run
used specific settings of dimensions and number of particles for each experimental run.
All PSO variants were optimized to achieve maximum performance and compiled with
optimizations for speed.

The first implementation used a scalar approach without any parallelization and
served as an AVX-independent measure of performance. The second approach (Avavx)
used optimized C++ code with enabled auto-vectorization capabilities of the compiler. An-
other variant (Intavx) relied on AVX intrinsics, which are C-style functions providing access
to AVX instructions without the need to write assembly code. The last implementation
(Asmavx) was C++ code combined with raw assembly code. For all implementations using
specific AVX instructions, we optimized only the same crucial part of PSO computation.

All benchmarks were performed on an Intel Core i7-4770K (4 physical, 8 logical
cores) processor with 16GB RAM, running Windows 10. The runtime performance on
the complete test suite is provided in Table 3. The table shows the cumulative runtimes
of various versions sharing the same configuration of 32 particles but having varying
dimensionality for the test functions.

Table 3 shows the performance boost provided by SIMD. All AVX versions easily
outperformed the scalar implementation. We can see the performance change in low di-
mensions, where the auto-vectorized version struggled more than the intrinsic or assembly
version of PSO. This could be caused by inefficient data fetching and cache missing. After
processing larger chunks of data, the Avavx’s version performance increases.

The detailed performance comparison of various configurations is displayed Figures 1–3.
As all parallel implementations outperformed the scalar version, we omitted details of its
results.

In the first experiment, we compared the runtimes of Intavx and Avavx code with
the various configurations on the whole test suite. This experiment showed only slight
differences between implementations. Figure 1 illustrates the PSO runs (with appropriate
configurations) used on the whole test suite (cumulative sum of each test function run-
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times). The differences between code variants were small, but the Intavx code slightly
outperformed Avavx, and the average reduction in total runtime was 3.13%.

Table 2. Benchmark functions.

Benchmark Function Range

f01 Absolute [−100, 100]

f02 Ackley [−32.77, 32.77]

f03 Alpine [0, 20]

f04 Egg holder [−512, 512]

f05 Elliptic [−100, 100]

f06 Griewank [−600, 600]

f07 Hyperellipsoid [−5.12, 5.12]

f08 Michalewicz [0, π]

f09 Norwegian [−1.1, 1.1]

f10 Quadratic [−100, 100]

f11 Quadratic [−1.28, 1.28]

f12 Rastrigrin [−5.12, 5.12]

f13 Rosenbrock [−30, 30]

f14 Salomon [−100, 100]

f15 Schaffer 6 [−100, 100]

f16 Schwefel 1.2 [−100, 100]

f17 Schwefel 2.6 [−100, 100]

f18 Schwefel 2.13 [−π, π]

f19 Schwefel 2.21 [−100, 100]

f20 Schwefel 2.22 [−10, 10]

f21 Shubert [−10, 10]

f22 Spherical [−5.12, 5.12]

f23 Step [−100, 100]

f24 Vincent [0.25, 10]

f25 Weierstrass [−0.5, 0.5]

Table 3. Runtime performances of various PSO versions (32 particles, complete test suite).

Dimension Scalar [s] Avavx [s] Intavx [s] Asmavx [s]

8 4.32× 10−1 3.54× 10−1 2.25× 10−1 2.32× 10−1

16 7.32× 10−1 3.14× 10−1 2.85× 10−1 2.63× 10−1

32 1.20× 100 5.552× 10−1 5.32× 10−1 5.23× 10−1

64 2.42× 100 1.05× 100 1.01× 100 9.76× 10−1

128 4.92× 100 2.06× 100 1.99× 100 1.87× 100

256 9.92× 100 4.10× 100 3.96× 100 3.84× 100

512 1.99× 101 8.12× 100 7.78× 100 7.55× 100

The graph shows a linear increase in runtime as the dimensionality and particle
number grow. The runtime measures the time from the initialization of the PSO till the
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last iteration. When the dimensionality doubles, the algorithm needs to compute twice the
updates, and vice versa. The same condition is true for the number of particles.

8  16 32 64 128 256 512

Dimensions
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103
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n
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m
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]

32 AVAVX

32 INTAVX

64 AVAVX

64 INTAVX

128 AVAVX

128 INTAVX

256 AVAVX

256 INTAVX

512 AVAVX

512 INTAVX

Figure 1. Runtime performance on benchmark suite—various configurations of particles, and dimen-
sions.
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Figure 2. Runtime performance of PSO (Vincent function)—various configurations.

However, if we look closely at individual performance for each test function, we can
see a significant difference in performance, especially for the lower numbers of dimensions
and particles. As the numbers grow, the difference in runtime decreases. The architecture of
AVX instruction could cause this—before execution of AVX instruction, the processor needs
additional time. Fast switching between AVX instruction and scalar instruction causes
another overhead.

Table 4 summarizes average runtime for each test function. In this experiment, we
performed 100 PSO runs with the same configuration of 128 dimensions and 32 particles.
The remaining parameters used the values mentioned in Table 1.
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The results in Table 4 show the highest similarity in performance of both implementa-
tions for test function number 24—the Vincent function. Figure 2 illustrates the runtime
performances of various PSO configurations on the Vincent function. The graph shows
similar performance in multiple settings.

We selected the Vincent function with the highest similarity to mitigate the impacts
of other factors. The final performance depends on memory allocation, data prefetching,
loop unrolling, blocking, etc. Using the highest similarity, we could see the lowest expected
increase in performance.

The Intavx code with AVX intrinsics generally outperformed auto-vectorized code in
most PSO problem configurations. The average performance boost for Intavx was 6.48%,
and the highest variability of runtimes occurred for a low number of dimensions and
particles.

We conducted the last series of experiments with the Asmavx version. It improved
in performance by an average of 3.66% against Intavx, especially for the higher numbers
of particles and dimensions. Intavx achieved the same or even better runtimes in lower
dimensions and for smaller swarms. Results are summarized in Figure 3, where we omit
Avavx results for clarity.

Table 4. PSO runtime performance on the test suite: 128 dimensions, 32 particles.

Fn

Avavx Intavx Difference

Average [s] St.
Deviation Average [s] St.

Deviation Absolute Relative

1 7.79× 10−2 9.02× 10−4 8.34× 10−2 1.89× 10−3 5.46× 10−3 6.76%

2 9.93× 10−2 4.65× 10−3 1.14× 10−1 1.39× 10−3 1.45× 10−2 13.64%

3 1.11× 10−1 5.44× 10−3 1.04× 10−1 1.49× 10−3 6.78× 10−3 6.32%

4 1.75× 10−1 3.42× 10−3 1.97× 10−1 2.30× 10−3 2.17× 10−2 11.66%

5 1.20× 10−1 1.95× 10−3 1.23× 10−1 3.08× 10−3 2.91× 10−3 2.40%

6 1.51× 10−1 1.32× 10−3 1.39× 10−1 2.75× 10−3 1.21× 10−2 8.34%

7 8.86× 10−2 8.64× 10−4 9.59× 10−2 1.65× 10−3 7.28× 10−3 7.90%

8 1.03× 10−1 9.35× 10−3 1.12× 10−1 5.17× 10−3 8.52× 10−3 7.93%

9 7.65× 10−2 1.06× 10−3 7.55× 10−2 2.24× 10−3 9.90× 10−4 1.31%

10 7.94× 10−2 2.28× 10−3 8.48× 10−2 5.02× 10−3 5.43× 10−3 6.61%

11 1.13× 10−1 2.32× 10−3 1.94× 10−1 5.90× 10−3 8.06× 10−2 52.51%

12 8.81× 10−2 5.10× 10−3 8.67× 10−2 1.75× 10−3 1.45× 10−3 1.66%

13 7.72× 10−2 4.77× 10−4 7.89× 10−2 5.94× 10−4 1.66× 10−3 2.13%

14 8.13× 10−2 5.63× 10−4 8.42× 10−2 8.00× 10−4 2.99× 10−3 3.61%

15 1.27× 10−1 1.59× 10−3 1.45× 10−1 1.20× 10−3 1.79× 10−2 13.14%

16 7.78× 10−2 7.66× 10−4 7.92× 10−2 5.47× 10−4 1.36× 10−3 1.73%

19 7.53× 10−2 1.02× 10−3 7.81× 10−2 1.32× 10−3 2.86× 10−3 3.72%

20 8.71× 10−2 1.72× 10−3 8.75× 10−2 8.11× 10−4 3.60× 10−4 0.41%

21 1.17× 10−1 4.47× 10−3 2.99× 10−1 3.14× 10−3 1.82× 10−1 87.78%

22 8.74× 10−2 9.44× 10−4 1.25× 10−1 2.15× 10−3 3.75× 10−2 35.34%

23 2.26× 10−1 2.22× 10−3 9.71× 10−2 1.40× 10−3 1.29× 10−1 79.81%

24 9.12× 10−2 3.85× 10−3 9.13× 10−2 1.48× 10−3 1.40× 10−4 0.15%

25 7.66× 10−2 7.13× 10−4 7.48× 10−2 1.15× 10−3 1.83× 10−3 2.42%
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Figure 3. Runtime performance of PSO, benchmark suite—Asmavx vs. Intavx.

4. Conclusions

We tested the performance of a parallel CPU-based implementation of the PSO algo-
rithm. Our goal was to compare the impact of AVX instructions on the execution speed.

We assessed the performance of four versions of PSO implemented in C++ program-
ming language. All versions were optimized for the target architecture and used the same
code, except for the crucial part of the PSO computation.

The results confirm that the best-performing version uses assembly code . Similar
performance was achieved by the more independent code programmed with AVX intrinsics,
which resulted in only a slight performance decrease compared to the assembly code. The
code optimized just by the auto-vectorization capability of the compiler suffers from another
reduction in performance but still vastly outperforms the scalar version of PSO.

In other words, automatic compiler vectorization creates fast parallel code. This
approach combines the benefits of rapid development without using any AVX-specific
instructions. There are still some limitations and specific requirements on the source code
affecting vectorization by the compiler.

The most suitable approach for increasing code performance involves AVX intrinsics.
The final assembly code was almost identical to the Asmavx version and provided better
performance than the Avavx version.

Asmavx code benefits from the problems usually caused by high dimensions and big
swarms—providing further performance gains because of its low-level nature and other
assembly tweaks. On the other hand, there are higher requirements for programmers,
maintenance, portability and development time than for the previous versions.

We generally achieved about two times faster code using vectorization instead of
the simple scalar version. The overall performance gain affects several factors. Not all
code can be parallel, and we vectorized only the crucial part of PSO computation. The
PSO algorithm’s performance depends significantly on the test function used. As the test
function varies or is unknown for real-world problems, we oriented the optimizations only
toward the core of the PSO algorithm.

The results suggest that the use of auto-vectorization brings significant improvement
in performance without further requirements on developers. The code is competitive
with intrinsic and assembler versions. The performance gain became helpful for various
real-world applications and should be used as default settings. However, to fully utilize the
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AVX performance in complex computations, optimization by using intrinsic or assembler
instructions is still required.
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